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Gravitational-wave (GW) astronomy is transforming our understanding of the Universe by probing
phenomena invisible to electromagnetic observatories. A comprehensive exploration of the GW
frequency spectrum is essential to fully harness this potential. Remarkably, current methods have
left the µHz frequency band almost untouched. Here we show that this µHz gap can be filled by
searching for deviations in the orbits of binary systems caused by their resonant interaction with
GWs. In particular, we show that laser ranging of the Moon and artificial satellites around the Earth,
as well as timing of binary pulsars, may discover the first GW signals in this band, or otherwise set
stringent new constraints. To illustrate the discovery potential of these binary resonance searches, we
consider the GW signal from a cosmological first-order phase transition, showing that our methods
will probe models of the early Universe that are inaccessible to any other near-future GW mission.
We also discuss how our methods can shed light on the possible GW signal detected by NANOGrav,
either constraining its spectral properties or even giving an independent confirmation.

Our results can be reproduced using the Python code gwresonance, available at this URL.

Introduction.—The direct detection of gravitational
waves (GWs) [1] has initiated an exciting new era in
astronomy, opening a window onto uncharted phenomena
in the Universe. The range of GW frequencies covered
by current and future experiments will probe an impress-
ive list of physical processes, from fundamental aspects
of the early Universe to late-time astrophysical systems.
However, the practical limitations of these experiments
leave certain windows in the GW spectrum unexplored.
Crucially, these windows may contain signals from new
phenomena difficult to observe at other frequencies. It
is thus vitally important to cover the GW spectrum as
thoroughly as possible.
A well-known gap in the GW landscape occurs at

roughly 10−7–10−4 Hz, between the sensitive bands of
pulsar timing arrays (PTAs) [2–4] and future space-based
interferometers such as LISA [5]. Accessing these fre-
quencies is challenging, as this requires “detectors” of
astronomical scale, which are nonetheless sensitive to the
subtle effects of GWs. One proposal is to construct a
solar-system-sized interferometer [6]; however, such ideas
remain futuristic.

Another possibility is to exploit the interaction of GWs
with binary systems, an idea which has a long history [7–
11], but has yet to be fully explored. Much like in any
other system of masses, the passage of GWs through a
binary perturbs the separation of the two bodies, leaving
imprints on the system’s orbit. This effect is particularly
pronounced if (i) the duration of the signal is much longer
than the binary period, and (ii) the GW frequency is an
integer multiple of the orbital frequency; the binary then
responds resonantly to the GWs, allowing the perturba-

tions to the orbit to accumulate over time. By tracking
changes in the binary’s orbital parameters with sufficient
precision, one can thus search for GWs at a discrete “comb”
of frequencies set by the orbital period. For periods ran-
ging from days to years, this allows us to probe the µHz
gap between LISA and PTAs.
We have recently developed a powerful formalism for

calculating the evolution of a binary due to resonance
with the stochastic GW background (SGWB) [12]: the
persistent, broadband signal sourced by the incoherent
superposition of GWs from many sources that are too
faint or too numerous to be resolved individually. This
formalism improves upon previous work [7–11] by captur-
ing the evolution of the entire probability distribution for
all six of the binary’s orbital parameters. In this Letter,
we apply our formalism to explore the SGWB constraints
that are possible with high-precision observations of vari-
ous binary systems. We show that Lunar laser ranging
(LLR) and timing of binary pulsars can place stringent
new bounds on the SGWB intensity in the µHz band,
while satellite laser ranging (SLR) can be used to explore
the LISA band in the decade before LISA flies. Our fore-
cast bounds span the entirety of the gap between LISA
and PTAs, and are orders of magnitude stronger than all
existing direct bounds in this frequency range.
We use units where c = kB = 1, and set the Hubble

constant to H0 = 67.66 km s−1 Mpc−1 [13].
Theoretical background.—In the absence of perturba-

tions, a Newtonian binary system traverses a fixed ellipt-
ical orbit, as determined by Kepler’s laws. This ellipse is
described in terms of six orbital elements: P , the orbital
period; e, the eccentricity; I, the inclination; �, the lon-
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gitude of ascending node; ω, the argument of pericentre;
and ε, the mean anomaly at epoch. If perturbed, for
example by the passage of a GW, the binary will deviate
from its Keplerian ellipse, causing its orbital elements to
vary. We thus treat these six parameters as functions of
time, called the osculating orbital elements [12, 14].
The SGWB is the most natural target of binary res-

onance searches, being persistent (rather than transient)
and broadband (rather than narrowband). The SGWB
is also a highly interesting target, as it encodes the GW
emission from a broad range of sources throughout cosmic
history. These sources are likely to include unresolved
astrophysical systems at low redshift, such as inspiralling
compact binaries [15], and may also include a host of more
exotic early-Universe sources, including cosmological first-
order phase transitions (FOPTs) [16, 17], cosmic strings,
and inflationary tensor modes [18].

The unpredictable arrival times and phases of GWs from
many independent sources make the SGWB inherently
random [18], and we therefore cannot hope to predict
the exact evolution of the osculating elements for any
given binary. We can, however, calculate the statistical
properties of this evolution, allowing us to predict the
time evolution of the distribution function (DF) of the
orbital elements, W (X, t), where X = {P, e, I,�, ω, ε}.
This is defined such that an integral over any region X of
parameter space gives the corresponding probability for
the osculating elements taking those values at time t,

Pr(X ∈ X |t) =

∫
X

dXW (X, t). (1)

Assuming the SGWB perturbations are Gaussian, the
time-evolution of the DF follows a nonlinear [19] Fokker-
Planck equation (FPE) [12, 20],

∂W

∂t
= − ∂

∂Xi

(
D

(1)
i W

)
+

∂

∂Xi

∂

∂Xj

(
D

(2)
ij W

)
, (2)

(with summation over repeated indices implied). Here
D

(1)
i and D(2)

ij are the drift vector and diffusion matrix ;
functions of the orbital elements encoding the statistical
properties of the stochastic perturbations. In our case,
these quantities are fully specified by the SGWB intensity
spectrum,

Ωgw(f) ≡ 1

ρc

dρgw

d(ln f)
, (3)

which is the energy density in GWs per logarithmic fre-
quency bin, normalised relative to the critical energy dens-
ity of the Universe, ρc ≡ 3H2

0/(8πG). In a companion
paper [12] we derive D(1)

i and D(2)
ij for a binary immersed

in a Gaussian SGWB; both can be written as linear com-
binations of the SGWB intensity at the binary’s harmonic

frequencies,

D
(1)
i (X) = Vi(X) +

∞∑
n=1

An,i(X)Ωgw(n/P ),

D
(2)
ij (X) =

∞∑
n=1

Bn,ij(X)Ωgw(n/P ).

(4)

Note that the drift vector also includes a deterministic
term Vi accounting for the binary’s evolution in the ab-
sence of the SGWB. This includes relativistic effects such
as the precession of the pericentre ω and the decay of
the period P and eccentricity e due to radiation of GWs,
which are particularly important to capture in the case
of binary pulsars.

To get a sense of how strong we can expect our forecast
constraints to be, it is instructive to carry out a back-of-
the-envelope calculation in which the rms perturbation to

the orbital period after time T is σP =

√
2TD

(2)
PP . Taking

the LLR case as an example, for a SGWB intensity Ωgw =
10−5 and an observation period of T = 15 yr, this gives
σP ∼ 1 µs. This corresponds to a rms perturbation to
the semi-major axis of σa = (2a/3P )σP ∼ 0.1 mm. Given
that each LLR “normal point” measurement determines
the Earth-Moon distance to within ∼ 3 mm, we see that a
campaign of ∼ 1000 such measurements should be capable
of detecting this signal.
Results and discussion.—Our main results are based

on three different high-precision probes of binary orbital
dynamics:

MSP: Timing of binary millisecond pulsars (MSPs), with
periods between P ≈ 1.5 hr and P ≈ 5.3 yr [21];

LLR: Laser-ranging measurements of the Moon’s orbit
around the Earth (P ≈ 27 days) [22];

SLR: Laser-ranging measurements of the orbits of ar-
tificial satellites around the Earth, in particular
the LAGEOS-1 satellite (P ≈ 3.8 hr) [23], as this
has been regularly producing laser-ranging data for
longer than any other satellite mission.

We numerically evolve the first and second moments
of the FPE (2) from delta-function initial conditions for
each of these systems using our Python code gwresonance,
which we make publicly available at the linked URL. This
gives a probabilistic model for the orbital elements over
time, which we combine with a Fisher-forecasting ap-
proach to calculate the expected sensitivity of each binary
to the SGWB. (See the Supplemental Material [24].)

The resulting power-law integrated (PI) [25] sensitivity
curves are shown in Fig. 1, alongside the sensitivities of
various other current and future GW experiments [26].
For each of our binary resonance probes (MSP, LLR, and
SLR), we calculate two sensitivity curves: one which re-
flects the data available in 2021, and one which should

https://github.com/alex-c-jenkins/gw-resonance
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be achievable by 2038, by which time LISA is expected
to have completed its nominal 4-year mission. By this
point in the late 2030s we also anticipate sensitive SGWB
searches by the Einstein Telescope [27] (ET; a planned
third-generation GW interferometer), the Square Kilo-
metre Array [4] (SKA; a radio telescope array whose
planned uses include a next-generation PTA to search for
nHz GWs) and by some km-scale versions of the atom
interferometers AION [28] or MAGIS [29], which occupy
the frequency band between LISA and ground-based in-
terferometers. (There are various other constraints at
lower frequencies not shown here, including those from
CMB temperature and polarisation anisotropies [30, 31]
and spectral distortions [32], as well as potential future
constraints in the frequency band we are interested in, e.g.
from astrometry [33–37], helioseismology [38], modulation
of GW signals [39], the µAres proposal [6], the Moon’s
normal modes [40, 41], and high-cadence PTA observa-
tions [42, 43]. However, all these constraints are either
very futuristic, not applicable to stochastic GW signals,
or not strong enough to be competitive with our fore-
casts.) The horizontal black lines in Fig. 1 show indirect
constraints due to SGWB contributions to the effective
number of relativistic degrees of freedom (Neff) in the
early Universe [44], as probed by the Cosmic Microwave
Background (CMB) and Big-Bang Nucleosynthesis (BBN).
These lines should be interpreted differently from the other
constraints that we show, as they represent bounds on the
total sub-horizon SGWB energy density [the values plot-
ted correspond to the upper bounds on

∫
d(ln f)Ωgw at

frequencies f & 10−15 Hz], and only include GWs emitted
before the epoch of BBN.

We find that laser-ranging experiments are already able
to place cosmologically relevant bounds with present data;
LLR has an expected sensitivity of Ωgw ≥ 6.2 × 10−6

at f = 0.85 µHz (95% confidence upper limit), while
the forecast for SLR with the LAGEOS satellite is
Ωgw ≥ 2.4 × 10−6 at f = 0.15 mHz. These forecasts,
if realised, would be by far the most sensitive direct
SGWB searches to date in the broad frequency band
between ground-based interferometers at f & 10 Hz and
PTAs at f ∼ nHz, a full three orders of magnitude
stronger than existing constraints from the Cassini space-
craft [48] and the Earth’s normal modes [47], and com-
petitive with indirect Neff constraints [44], which cur-
rently set

∫
d(ln f)Ωgw ≤ 2.6× 10−6. With some reason-

able assumptions about future improvements in the noise
levels and data cadence of laser-ranging experiments (see
the Supplemental Material), these forecasts improve to
Ωgw ≥ 4.8 × 10−9 for LLR and Ωgw ≥ 8.3 × 10−9 for
SLR by 2038, significantly better than the Neff constraint,
which is expected to reach

∫
d(ln f)Ωgw ≤ 1.7× 10−7 by

that time [44].
The frequencies f = 0.85 µHz and f = 0.15 mHz men-

tioned above correspond to the n = 2 harmonics of the
Earth-Moon and Earth-LAGEOS systems, respectively.
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Figure 1. SGWB sensitivity curves of current and future GW
experiments, as well as our forecasts. Each curve is a 95% con-
fidence upper limit (SNR = 2), with shaded regions extending
up to SNR = 20. Solid curves indicate existing results from
the LIGO/Virgo/KAGRA Collaboration [45, 46] (LVK), gra-
vimeter monitoring of the Earth’s normal modes [47], Doppler
tracking of the Cassini spacecraft [48], pulsar timing by the
Parkes PTA [2], and indirect constraints from Neff [44], as well
as our forecast present-day sensitivities for binary resonance
searches with binary millisecond pulsars (MSPs), Lunar laser
ranging (LLR), and satellite laser ranging (SLR), which are
presented for the first time here. Hatching indicates the new
region probed by our present-day forecasts. Dashed curves
indicate our binary resonance forecast sensitivities for 2038,
along with expected bounds from ET [27], LISA [5], SKA [4],
and the proposed km-scale atom interferometer AION [28], as
well as improved Neff constraints [44]. Dotted curves show
various potential SGWB signals in the µHz band. The purple
curves indicate a possible signal associated with the common
process (CP) identified by NANOGrav [3], while the overlaid
pink curves show the inferred amplitude for the NANOGrav
CP when assuming a Ωgw ∼ f2/3 spectrum, as expected for
SMBBHs. The yellow curves show two FOPT spectra at tem-
peratures T∗ = 2GeV and 200GeV, peaking at f ≈ 1 µHz
and ≈ 100 µHz respectively. The orange curve shows the
predicted spectrum from a population of horizonless SMBH
mimickers [49]. The pale green curves show the predicted spec-
tra from ultralight bosonic condensates around SMBHs [50],
with boson masses varying from 10−20 ev (left-most curve) to
10−15 eV (right-most curve).

The corresponding forecast sensitivity curves are strongly
peaked in both cases, since the coupling to the n = 2
harmonic is by far the strongest for low-eccentricity or-
bits like that of the Moon (e ≈ 0.055) and LAGEOS
(e ≈ 0.0045) [12]. The next most sensitive frequency in
both cases is the n = 1 harmonic, which is sensitive to
Ωgw ≥ 3.2 × 10−4 for LLR and Ωgw ≥ 2.2 × 10−2 for
SLR at present, improving to Ωgw ≥ 2.5 × 10−7 and
Ωgw ≥ 7.5× 10−5 respectively by 2038. (See Fig. 1 in the
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Supplemental Material for the individual sensitivities of
each harmonic of the Earth-Moon system.)

While binary pulsars are not able to compete with the
laser-ranging experiments in terms of sheer sensitivity,
their forecasts cover a much wider frequency band, span-
ning nearly five decades in frequency from ≈ 6 nHz up
to ≈ 0.2 mHz. This is partly due to the range of orbital
periods of various systems, and partly to the large eccent-
ricities of many of these binaries, which gives them sensit-
ivity to much higher harmonics. The overall binary pulsar
sensitivity curves shown in Fig. 1 are computed by com-
bining the overlapping PI curves of 215 binaries from the
ATNF pulsar catalogue [21]. The most stringent forecast
sensitivity from this combined curve is Ωgw ≥ 8.2× 10−4

at f = 14–25 nHz with present data, expected to reach
Ωgw ≥ 7.5× 10−7 by 2038.
Fig. 1 also shows various potential SGWB signals

around the µHz band probed by our proposed binary res-
onance searches. The most important to mention here are
the phase transition spectra, partly because FOPTs are a
robust prediction of many well-motivated extensions to
the Standard Model of particle physics [16–18], and partly
because the spectral shape of a FOPT signal highlights
the constraining power of binary resonance searches [51].
While binary resonance probes are not competitive with
GW interferometers and PTAs in searching for SGWB
spectra which are roughly flat over many decades in fre-
quency (e.g. GWs from inflation or cosmic strings), they
can prove extremely useful for spectra that are confined to
a narrow frequency band. FOPTs are a leading example
of such a signal, producing a narrow spectrum with a
peak frequency [16]

f∗ ≈ 19 µHz× T∗
100 GeV

β/H∗
vw

( g∗
106.75

)1/6

, (5)

and a peak intensity of

Ωgw(f∗) ≈ 5.7× 10−6 × vw
β/H∗

(
κα

1 + α

)2( g∗
106.75

)−1/3

×
[
1− (1 + 2τswH∗)

−1/2
]
.

(6)

Here T∗ is the temperature at which the FOPT occurs, α
is the energy density released by the FOPT in units of the
radiation density at the transition epoch, β is the inverse
duration of the transition, H∗ is the Hubble rate at the
epoch of the transition, vw is the bubble wall velocity,
κ is an efficiency parameter determined by α and vw,
and g∗ is the number of relativistic degrees of freedom in
the plasma, which we normalise to the Standard Model
value, g(SM)

∗ = 106.75. The second line of Eq. (6) is a
suppression factor due to the finite lifetime of the sound
waves, τsw, which is a function of α, β, and vw [17].

In Fig. 2 we perform a scan over the FOPT parameters
(T∗, α, β/H∗, vw) for transitions occurring between T∗ =
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Figure 2. Forecast exclusion regions of the FOPT parameter
space for various SGWB searches at 2038 sensitivity. Here T∗
is the temperature at which the FOPT occurs, α is the energy
density released by the FOPT in units of the radiation density
at the transition epoch, β/H∗ is the inverse duration of the
transition in units of the Hubble rate at the transition epoch,
and vw is the bubble wall velocity.

10−3 GeV and 107 GeV, identifying regions of parameter
space where the corresponding SGWB signal is expected
to be detected by binary resonance searches and other
GW probes by 2038. We find that LLR and SLR are
able to probe significant regions of the FOPT parameter
space at T∗ ∼ GeV and ∼ 100 GeV respectively. While
SLR is less sensitive than LISA and will provide only
complementary information, LLR will probe a region of
the parameter space that is not accessible by any other
planned GW experiment, thus providing a unique and
valuable contribution to the search for phase transitions
in the early Universe. FOPTs are only one example of a
strongly-peaked SGWB spectrum, but they demonstrate
that binary resonance searches (and LLR in particular)
have unique GW discovery potential.

Another potential SGWB signal shown in Fig. 1 is the
stochastic common process identified by the NANOGrav
collaboration in their 12.5-year PTA dataset [3]. While
there is not yet sufficient evidence for quadrupolar cross-
pulsar correlations to confidently interpret this signal as
being due to GWs, the values inferred for its amplitude
and spectral tilt are consistent with those expected for
the SGWB from a population of inspiralling supermassive
binary black holes [52] (SMBBHs), as well as with several
more exotic interpretations [53–61]. Assuming that the
spectrum seen by NANOGrav can be extrapolated into
the µHz band, we find that present-day LLR data are

https://www.atnf.csiro.au/research/pulsar/psrcat/
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able to probe some of the steeper spectra allowed by the
NANOGrav data (roughly Ωgw ∼ f1.8), which could cor-
respond to a strongly blue-tilted [62] inflationary tensor
spectrum [59, 61]. If instead we assume that the NANO-
Grav signal follows the Ωgw ∼ f2/3 scaling expected from
inspiralling SMBBHs, we find that the spectrum should
be detectable with 2038 LLR data. This provides further
motivation for the binary resonance searches we propose,
showing that LLR can probe the nature of GW signals
detected in the nHz band by NANOGrav and other PTAs.
Summary and outlook.—In this Letter we have demon-

strated the potential for binary resonance searches to
bridge the µHz gap in the SGWB spectrum, showing that
high-precision data from pulsar timing and laser-ranging
experiments may lead to the first discovery of (or stringent
constraints on) the SGWB in this region. In particular,
the sensitive frequency band of LLR sits almost exactly
halfway between those of LISA and PTAs, and is thus
highly complementary to these experiments.

As an illustrative example of the constraining power of
binary resonance searches, we have considered potential
SGWB spectra from FOPTs, showing that near-future
LLR and SLR data will be sensitive to a broad range
of FOPT models, and that LLR in particular can probe
regions of the FOPT parameter space that are inaccessible
to all other GW experiments. We have also shown that
current and future LLR data can provide complementary
information about nHz GW signals probed by PTAs, such
as the candidate SGWB signal recently announced by the
NANOGrav Collaboration.
Our results provide strong motivation for further

work in this direction. On the theory side, there is
plenty of scope to extend our formalism, either to other
gravitationally-bound systems (e.g. hierarchical triples,
globular clusters) or other GW signal morphologies (e.g.
transient and/or narrowband signals, even if not exactly
on-resonance). Ultimately, the most pressing future work
is to develop SGWB search pipelines based on our code
gwresonance, allowing us to efficiently study the µHz–
mHz band, perhaps even to discover GW signals waiting
for us in this as-yet-unexplored regime. The history of
both electromagnetic and GW astronomy gives us plenty
of reasons to be optimistic about the outcomes of these
searches, and their potential for scientific discovery.
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SUPPLEMENTAL MATERIAL

Integrating the Fokker-Planck equation.—On observa-
tional timescales, the evolution of the DF from “sharp”
initial conditions can be well-approximated by considering
just the first two moments of the Fokker-Planck equation
(FPE) [12]; i.e., the mean vector X̄i and covariance matrix
Cij of the orbital elements. The stochastic evolution of
the mean vector due to binary resonance is typically much
slower than the evolution due to deterministic effects, so
it is convenient to separate the two effects by writing

X̄i(t) = X̄0,i(t) + δX̄i(t), (7)

where the first term is the deterministic value, and the
second term is the mean effect of the GW perturbations.
To leading order in Ωgw, the evolution equations are then
given by

˙̄X0,i = Vi,

δ
˙̄Xi ' D(1)

i − Vi + δX̄j∂jVi +
1

2
Cjk∂j∂kVi,

Ċij ' 2D
(2)
ij + Cik∂kVj + Cjk∂kVi,

(8)

where ∂i ≡ ∂/∂Xi , and summation over repeated in-
dices is implied. We include in Vi the general-relativistic
precession of ω and ε at first post-Newtonian order
(1PN) [68], and the decay of P and e due to GW emission
at 2.5PN [69], but any other perturbations to the binary
orbit can be included, e.g. due to tidal dissipation, or
higher-order PN corrections. (Neglecting these additional
effects has little impact on our results here, but may be
important for more refined searches in the future.) The
drift vector D(1)

i and diffusion matrix D(2)
ij are derived

in a companion paper [12]; note that these are secularly
averaged over the binary orbit, so that the evolution equa-
tions (8) are only valid on timescales longer than the
period P . We include the first 400 harmonics in all of
our integrations, although the evolution is almost always
dominated by the first three harmonics.
By writing the FPE in this form, we have replaced a

six-dimensional, second-order partial differential equation
with 33 coupled, one-dimensional, first-order ordinary dif-
ferential equations (six each for the deterministic mean
elements X̄0,i and the perturbations δX̄i, with the remain-
ing 21 coming from the independent components of the
6×6 symmetric matrix Cij). We integrate these equations
numerically using a fifth-order Runge-Kutta method, as
implemented in the scipy.integrate library [64].
Sensitivity forecasts.—For each of our binary resonance

probes (MSPs, LLR, SLR), we assume an observational
campaign in which the data are divided into intervals
much shorter than the total observing time, but much
longer than the binary period [94]. We use a Fisher-
forecasting approach to estimate the accuracy with which
the orbital elements can be measured in each data interval,

as quantified by the Fisher matrix

Fij ≡
1

σ2

∑
a

∂Oa
∂Xi

∂Oa
∂Xj

. (9)

Here a labels the individual data points, Oa is the ob-
served quantity (for MSPs, the integrated pulse time-of-
arrival or “ToA”; for LLR and SLR, the “normal point”
ranging distance), and σ is the rms uncertainty in this
quantity. We assume that the number of data points
is sufficiently large and uniformly distributed that the
sum in Eq. (9) can be replaced by an integral averaging
over the orbit. We compute the derivatives ∂Oa/∂Xi

with respect to the orbital elements analytically, using
the Blandford-Teukolsky timing formula [70] for MSPs
and Kepler’s equations for the ranging distance.
Given the stochastic nature of the GW-induced vari-

ations in the orbital elements, one might worry that these
variations could be degenerate with the intrinsic noise of
the observations, and could therefore be absorbed into
σ. However, we can convince ourselves that this is not
the case by considering the data residuals caused by the
orbital evolution (including secular effects from GWs)
relative to a model in which Ωgw = 0 (i.e., with fixed
orbital elements). These residuals will generically grow
over time, for two reasons: first, that the perturbations
to the orbital elements are themselves expected to grow
over time (roughly like ∝

√
t in most cases, as expected

for a random walk), and second, that even a constant
offset in the orbital elements would generally cause the
residuals to grow over time, due to the accumulation of
relative phase between the the orbital model and the true
orbit. As a result, this effect cannot be absorbed into the
intrinsic noise σ (which is assumed to be stationary), and
should thus be detectable with sufficient data. (One could
also hope to obtain further evidence for the GW-driven
nature of this orbital evolution by combining data from
several binaries with overlapping GW frequency sensitivit-
ies, and checking that each system shows orbital evolution
consistent with the same SGWB spectrum.)

We assume the SGWB search is carried out by perform-
ing a likelihood-ratio test, comparing the maximum log-
likelihood of the observed set of orbital elements under the
assumption of a power-law SGWB spectrum Ωgw ∼ fα

to their log-likelihood in the absence of GWs,

Λ(X) ≡ 2 max
Ωgw

ln
p(X|Ωgw)

p(X|0)
. (10)

In the limit of many observation intervals, this statistic is
asymptotically χ2

1-distributed due to Wilks’ theorem [71]
(where χ2

1 denotes the chi-square distribution with one
degree of freedom), such that an observed value of Λ ≥
3.841 would correspond to a detection of the SGWB with
95% confidence.
The expectation value of the likelihood-ratio statistic
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Figure 3. Comparison of the continuous PI curves (cyan) and discrete frequency “comb” forecasts (green points) for two binary
systems at 2038 sensitivity: the Earth-Moon system in the left panel, and the binary pulsar J1638-4725 in the right panel.

in the presence of a SGWB signal is

〈Λ〉Ωgw
=
∑
t

Fij
(
Cij + δX̄iδX̄j

)
− ln det(δij + FikCkj),

(11)
and can be calculated for a given SGWB spectrum by
integrating the FPE moment equations (8) over the dur-
ation of the observing campaign. We thus estimate the
detection threshold for a given experiment and for a given
SGWB power-law index α by finding the smallest SGWB
amplitude such that 〈Λ〉 ≥ 3.841, using a numerical root-
finding procedure. We then iterate this procedure over dif-
ferent power-law indices, α = −10,−9.75,−9.5, . . . ,+10,
and take the maximum value of the resulting set of power-
law curves at each frequency to construct the PI curves [25]
shown in Fig. 1 of the main text. The resulting curves
represent the SGWB sensitivity of the binary, under the
assumption that the SGWB spectrum is reasonably well-
modelled as a power law with |α| ≤ 10 in the sensitive
frequency band. Fig. 3 shows how the shape of the result-
ing PI curve depends on the “comb” of constraints at each
of the binary’s resonant frequencies. For low-eccentricity
cases such as the Earth-Moon system (e ≈ 0.055), the
n = 2 harmonic is by far the most sensitive, giving a PI
curve which is sharply peaked at this frequency (left panel
of Fig. 3). On the other hand, high-eccentricity systems
such as the binary pulsar J1638-4725 (e ≈ 0.955) can have
sensitivity out to harmonics of order n ∼ 100 or more,
giving much broader PI curves (right panel of Fig. 3).
Binary pulsars.—We extract the orbital elements of

322 binary MSPs from the ATNF pulsar catalogue [21],
discarding 106 due to incomplete information, as well
as the extremely wide binary J2032+4127, whose 46 yr
period [72] means that the system has completed less than
one complete orbit [95] since its discovery in 2009 [73].
For the remaining 215 MSPs, we extract the period P ,

eccentricity e, and argument of pericentre ω; for near-
circular systems e ≤ 10−3 the latter two are replaced
by the Laplace-Lagrange parameters ζ = e sinω, κ =
e cosω, as these are more numerically stable when e is very
small. The strongest GW constraints typically come from
binaries with longer periods, although the sensitivity also
depends on the eccentricity and argument of pericentre
in a more complicated way—see the companion paper for
details [12].
The inclinations of binary MSPs are generally poorly-

determined due to a degeneracy with the (often un-
known) masses of the pulsar and its companion. For
most of the 215 systems, we assume a pulsar mass of
mp = 1.35M� and an inclination of I = π/3, as this
corresponds to the median value of the companion mass
mc, which we extract from the catalogue. In order to
refine our results, we replace these values with more
accurate mass and inclination determinations from the
literature for the following MSPs, which produce the
best SGWB bounds from our sample: J0737-3039A [74]
(the double pulsar), B1913+16 [75] (the Hulse-Taylor sys-
tem), B2127+11C [76], B1534+12 [77], J1829+2456 [78],
B2303+46 [79], J0045-7319 [80], J1903+0327 [81], J1740-
3052 [82], and B1259-63 [83].

Using these orbital elements and masses, we integrate
the evolution equations (8) from sharp initial conditions,
with the initial time set to the year in which each system
was discovered. With these details specified, the SGWB
sensitivity is then set by the number of ToAs per observing
interval and the rms timing noise σ associated with each
ToA. We assume each ToA corresponds to a 10-minute
integration time. For our 2021 sensitivity curves, we
assume each system is monitored for two weeks every
year, with ToAs being gathered for two hours every day
within this period; this corresponds to the data cadence
for B1913+16 [11], and gives 168 ToAs per year. We

https://www.atnf.csiro.au/research/pulsar/psrcat/
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Figure 4. SGWB PI curve forecasts from 11 binary pulsar
systems at 2038 sensitivity. The red dashed curve shows
the combined bound from these systems plus 204 others in
the ATNF catalogue [21], and corresponds to the red dashed
curve in Fig. 1 of the main text. The assorted shapes of the
curves shown here depend on the binary orbital parameters
(particularly the eccentricity), and illustrate the utility of our
formalism in accurately capturing the response of each system
to the SGWB.

further assume σ = 1 µs. For our 2038 sensitivity curves,
we assume an observing campaign of 365 ToAs per year
(i.e., 10 minutes of observations per pulsar per day) with
σ = 80 ns, which is the forecast 10-minute ToA uncertainty
of next-generation radio telescopes like SKA [84]. We
assume this observing campaign covers the entire period
from 2021 to 2038, which is somewhat optimistic as SKA
has not yet begun its pulsar timing observations; however,
since the size of the perturbations to the orbital elements
grows over time, our forecast constraints depend primarily
on the timing precision at the end of the campaign, as
well as the total observing time, rather than on the exact
details of how the timing precision improves over time.
By combining the resulting individual PI curves for each
of our 215 MSPs, we obtain the joint constraint curve
shown in Fig. 4.

It is important to note that our 2038 bounds are based
only on known pulsars. However, the SKA and other
future radio telescopes are expected to discover large
numbers of new pulsars [4], some of which may be in
binaries with orbits that are particularly sensitive probes
of SGWB resonance. We make no assumptions about
these as-yet undiscovered pulsars, meaning that our 2038
bounds are conservative in this sense.
Laser ranging experiments.—For our LLR results we use

the Lunar orbital elements, Lunar mass, and Earth mass
tabulated in Murray and Dermott’s Solar System Dynam-
ics [14]. We base our 2021 sensitivity calculations on

the APOLLO experiment, which has been observing since
2006, collecting roughly 260 “normal point” range measure-
ments per year with a rms uncertainty of σ ≈ 3 mm [22].
For our 2038 sensitivity curve, we assume an observa-
tion campaign which collects 1040 normal points per year
(four times the current level) with an order-of-magnitude
improvement in precision, σ = 0.3 mm (this would likely
require the installation of new retroreflectors on the Lunar
surface [22], as the degradation of the existing reflect-
ors is currently the main impediment to LLR sensitivity
improvements). We emphasise that including only the
APOLLO experiment represents a conservative estimate
of LLR sensitivity, as this excludes other experiments
which have been collecting LLR data since 1969 (albeit
with much less precision than the APOLLO data).

For our SLR results we focus on the LAGEOS-I satellite,
with a start date of 1976, and using the satellite mass
and orbital elements tabulated on the International Laser
Ranging Service LAGEOS webpage [85]. We assume that
50,000 normal points are collected per year for our 2021
sensitivity curve [85], rising to 200,000 per year by 2038
(again, a factor of four increase), and assume the same
normal point uncertainties as for LLR in both cases.
We note that any futuristic GW mission in the solar

system focusing on the band of interest here may face
the challenge of modelling the gravity gradient noise from
asteroids [86], though the latter is several orders of mag-
nitude too small to affect the forecasts we present in this
work.
Solar system bounds.—All of the binary resonance

searches discussed in the main text rely on precision meas-
urements of orbital elements over observational timescales
of years to decades. However, our theoretical framework
and our code gwresonance can also be used to study
the SGWB-induced evolution of binaries on much longer
timescales, e.g. the evolution of planetary orbits since
the formation of the Solar System ∼ 4.5 Gyr ago. This
amplifies the size of the effect we are interested in, as the
deviations in the orbital elements typically grow like the
square root of the elapsed time. However, this also en-
tails a loss of precision, as the initial values of the orbital
elements are unknown.

In Fig. 5 we show SGWB constraints from the observed
orbital elements of the eight Solar System planets, along
with the dwarf planet Pluto and 110 classical Kuiper Belt
Objects (KBOs). We find that these are all orders of
magnitude weaker than the precision binary resonance
constraints possible with binary pulsars and laser ranging,
with the strongest limit ofΩgw ≤ 6.6×103 at f = 0.13 nHz
coming from 523678 (2013 XB26), a classical KBO on a
very low-eccentricity orbit [87].

To produce these constraints, we integrate the evolution
equations (8) over the age of the solar system (∼ 4.5 Gyr),
and comparing the present-day periods, eccentricities,
and inclinations of various solar system bodies to the rms

https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html
https://github.com/alex-c-jenkins/gw-resonance
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Figure 5. SGWB PI curves inferred from the present-day
orbital elements of various Solar System bodies. The faint
cyan curves show constraints from 110 individual KBOs from
the NASA/JPL Small-Body Database, while the solid cyan
curve shows the combined KBO constraint.

changes in each of these predicted due to binary resonance,

σi =
√

δX̄2
i + Cii, (12)

(no summation over the repeated index). Since the SGWB
tends to drive binaries towards longer periods, higher
eccentricities, and larger inclinations, we can infer an
upper limit on the SGWB intensity by requiring Eq. (12)
to be less than the present-day values of each of these
quantities. In doing so, we account for the redshifting of
GWs over cosmological timescales, setting

Ωgw = Ωgw,0 × (1 + z)4, f = f0 × (1 + z), (13)

with “0” subscripts denoting the present-day values that
we place bounds on. Since the solar system formed at
redshift z ≈ 0.41, this can affect the final bounds by
roughly a factor of (1 + z)4 ≈ 3.9. The redshifting of the
GW frequency also broadens the shape of the resulting
PI curve.
We extract the present-day orbital elements and

masses of the eight planets and Pluto from Murray and
Dermott [14], as well as those of 110 dynamically cold
“classical” KBOs from the NASA/JPL Small-Body Data-
base [87]. The individual PI curves of the KBOs are
combined to give an overall PI curve for the Kuiper Belt
constraint, which is dominated by 523678 (2013 XB26) at
low frequencies, and by 79360 Sila-Nunam (1997 CS29) at
high frequencies, primarily due to their low eccentricities
e ≈ 0.007.

FOPT spectra.—As mentioned in the main text, we
include only the contribution from sound waves in the
plasma, as this is generally expected to be the strongest
component of the FOPT SGWB spectrum [16]. This
contribution is given by [88]

Ωgw(f) = Ωgw(f∗)× (f/f∗)
3

[
7

4 + 3(f/f∗)2

]7/2

, (14)

where the peak frequency f∗ and peak intensity Ωgw(f∗)
are given by Eqs. (5) and (6) of the main text respect-
ively, subject to the requirement that the mean bubble
separation,

R∗ =
(8π)1/3

β
max(vw, cs), (15)

is smaller than the Hubble scale 1/H∗ (with cs = 1/
√

3
the speed of sound in the plasma). For the efficiency
parameter κ which appears in the peak intensity, we use
the fitting functions in the appendix of Espinosa et al.
[89] while for the sound wave lifetime we take [90]

τsw = R∗ ×
(

3κ

4

α

1 + α

)−1/2

. (16)

In order to compute the Neff constraints, we use the
integrated form of this spectrum,∫ +∞

−∞
d(ln f)Ωgw(f) =

343
√

7/3

360
Ωgw(f∗) ≈ 1.46Ωgw(f∗).

(17)
(Strictly speaking this is an overestimate, as it includes
frequencies f . 10−15 Hz that do not contribute to Neff ;
however, this has negligible effect on the results in prac-
tice.)
We use the MCMC sampler emcee [65] to explore the

FOPT parameter space, using the following priors:

1. transition temperature T∗: log-uniform in
[10−3, 107] GeV;

2. transition strength α: log-uniform in [10−3, 103];

3. inverse duration β/H∗: log-uniform in [100, 104];

4. bubble wall velocity vw: uniform in [0.2, 1].

We discard any samples for which the mean bubble sep-
aration (15) is larger than the horizon, R∗H∗ > 1. The
resulting exclusion regions in Fig. 3 of the main text show
FOPTs which can be detected at ≥ 95% confidence.

https://ssd.jpl.nasa.gov/sbdb.cgi
https://ssd.jpl.nasa.gov/sbdb.cgi
https://ssd.jpl.nasa.gov/sbdb.cgi
https://emcee.readthedocs.io/en/stable/
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