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We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-
time local unitary ensembles, known as locally scrambled quantum dynamics, where the unitary
ensemble is invariant under local basis transformations. In this case, the reconstruction map for
the classical shadow tomography depends only on the average entanglement feature of classical
snapshots. We provide an unbiased estimator of the quantum state as a linear combination of reduced
classical snapshots in all subsystems, where the combination coefficients are solely determined by
the entanglement feature. We also bound the number of experimental measurements required for
the tomography scheme, so-called sample complexity, by formulating the operator shadow norm
in the entanglement feature formalism. We numerically demonstrate our approach for finite-depth
local unitary circuits and finite-time local-Hamiltonian generated evolutions. The shallow-circuit
measurement can achieve a lower tomography complexity compared to the existing method based on
Pauli or Clifford measurements. Our approach is also applicable to approximately locally scrambled
unitary ensembles with a controllable bias that vanishes quickly. Surprisingly, we find a single
instance of time-dependent local Hamiltonian evolution is sufficient to perform an approximate
tomography as we numerically demonstrate it using a paradigmatic spin chain Hamiltonian modeled
after trapped ion or Rydberg atom quantum simulators. Our approach significantly broadens the
application of classical shadow tomography on near-term quantum devices.

I. INTRODUCTION

Quantum state tomography[1–3] is an essential task
in many quantum technology applications. It seeks to
reconstruct a quantum state from experimental data of
repeated measurements. While reconstructing the full
density matrix of a many-body system quickly becomes
unfeasible with increasing system size due to the curse of
dimensionality[4, 5], predicting a collection of (possibly
exponentially many) properties of the quantum system
can still be efficiently achieved with an only polynomial
number of state copies, which was the idea of shadow
tomography proposed by Aaronson[6, 7]. The idea is fur-
ther improved by the recent work[8] to propose the clas-
sical shadow tomography, which significantly reduces the
demand on the quantum hardware and enables efficient
classical post-processing.

Given a copy of an unknown quantum state ρ of N
qubits, the classical shadow tomography protocol (see
Fig. 1) first transforms the state ρ → ρ′ = UρU† by a
unitary U , which is randomly sampled (independently
each time) from some probability distribution P (U), then
measures the transformed state ρ′ in the computational
basis, ρ′ → |b〉〈b|, which collapses the system to a prod-
uct state |b〉 labeled by a bit-string b ∈ {0, 1}×N of mea-
surement outcomes b = (b1, · · · , bN ) with the probability
P (b|ρ′) = 〈b|ρ′|b〉. Based on the observed bit-string b
and the classical description of the unitary U , a classical
snapshot σ̂U,b = U†|b〉〈b|U can be constructed in princi-
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ple, which essentially encodes the measurement outcomes
together with their basis choice (pulled back through the
unitary evolution). Repeating such measurements on in-
dependent and identical copies of ρ for a few times, a
collection of classical snapshots Eσ|ρ = {σ̂U,b} can be ob-
tained (which correlates with ρ). Ref. [9] showed that
as long as the unitary ensemble is expressive enough
(i.e. tomographically complete), there exist a linear re-
construction map M−1 such that the density matrix ρ
can be formally recovered as ρ = Eσ̂∈Eσ|ρM−1[σ̂]. This
also enables the prediction of many properties of ρ, like
the expectation value of any physical observable O as:
〈O〉 = Tr(Oρ) = Eσ̂∈Eσ|ρ Tr(OM−1[σ̂]). The construc-
tion of classical snapshots σ̂U,b and the computation of
their associated properties are performed on a classical
computer.
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FIG. 1. Illustration of classical shadow tomography protocol.
This work focuses on the case when the unitary channel is of
finite depth and respects locality.

However, the existing methods[6–8, 10] have limita-
tions in applying to near-term quantum devices. First,
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depending on the type of observables O that we are in-
terested in, one needs to employ different strategies to
design the unitary circuit U . Two limiting cases have
been analyzed in Ref. [8]: (i) if the observable is low-rank
(such as many-body overlap fidelity), it is most efficient
to adopt deep circuits, such that U effectively forms a
global Haar random ensemble; (ii) if the observable is
high-rank and quasi-local, it would be more efficient to
adopt shallow circuits (e.g. the on-site Haar random).
Otherwise the sample complexity will be high. However,
the flexibility to interpolate between these two limits has
not been available yet, such that the tomography proto-
col can not adjust to the target observables in a more
adaptive manner. Second, more importantly, in existing
quantum simulation platforms, applying random unitary
circuits is very challenging, because it requires high de-
grees of sophisticated quantum controls. In particular,
for programmable quantum simulators of large systems
based on trapped ions or Rydberg atom systems,[11–13]
a certain set of entangling unitary evolution is much more
favorable to implement than typical random unitaries
that require fine-tuned control. Therefore, it is desirable
to develop a method applicable for systems with limited
controls.

In this work, we address these challenges by generaliz-
ing the classical shadow tomography methods to a broad
class of unitary ensembles. In our approach, the spe-
cific details of the unitary ensemble is not important as
long as the ensemble generates locally scrambled quantum
dynamics[14]. Rigorously speaking, the probability dis-
tribution P (U) of evolution unitaries is invariant under
local basis transformations, i.e. ∀V ∈ U(d)N : P (U) =
P (UV ) = P (V U) where V =

∏
i Vi is a product of local

unitary operator Vi on each qudit. This basically means
that the unitary evolution U is efficient in scrambling lo-
cal quantum information, such that the initial local ba-
sis choice is quickly “forgotten” under the quantum dy-
namics. Examples of locally scrambled quantum dynam-
ics includes random unitary circuits (including random
Clifford circuit at the 3-design level)[15–20] and quan-
tum Brownian dynamics[21–25]. As the unitary ensemble
does not care about local basis choice, the only informa-
tion that matters will be the quantum entanglement that
the unitary dynamics can create in the quantum system.
Therefore, for locally scrambled quantum dynamics, the
reconstruction map only depends on the entanglement
property of the classical snapshots. The density matrix
ρ can be reconstructed as a linear superposition of the
classical snapshot σ̂ reduced in different subsystems. The
combination coefficient can be calculated from the entan-
glement feature[26, 27] of the classical snapshots, which
is simply the collection of average purities of classical
snapshots in all possible subregions.

Since our method is applicable to a broad class of quan-
tum dynamics, it is natural to consider an ensemble of
realistic Hamiltonian evolutions that are readily available
in near-term quantum devices. To this end, we intro-
duce an approximate classical shadow tomography (with

a non-vanishing but small bias) applicable to an ensemble
of time-dependent Hamiltonian evolution that generates
approximately locally scrambled dynamics. We numeri-
cally demonstrate this idea by using a simple spin chain
Hamiltonian modeled after programmable trapped ions
or Rydberg atom array systems. We introduce the lo-
cal frame potential to characterize the bias and we show
the bias decreases rapidly for the initial short period of
time, and reaches a vanishingly small plateau value for
the proposed Hamiltonian. Surprisingly, we find even a
single instance from an ensemble of Hamiltonian evolu-
tion suffices to perform an approximate tomography, im-
plying that our method is hardware efficient for existing
quantum devices[28, 29].

In the following, we will first establish the general
theoretical framework to calculate the reconstruction
map in Sec. II A and to bound the sample complexity in
Sec. II B. We also provide a two-qudit toy model to an-
alytically demonstrate our construction in Sec. II C. We
comment on how to carry out the computation efficiently
in Sec. II D. Then we apply our construction for local uni-
tary circuits and numerically demonstrates its accuracy
in quantum fidelity and Pauli observable estimation tasks
in Sec. III A, as well as their scaling of sample complex-
ity in Sec. III B. Finally, we show in Sec. III D that our
approach can be extended to broader classes of unitary
ensembles that are approximately locally scrambled. We
propose a frame potential to characterize the level of ap-
proximation, which serves as a powerful indicator to de-
sign nearly-locally-scrambled unitary ensembles that are
available for existing analog quantum simulators[28, 29].
We summarize our classical post-processing protocol and
outline a few interesting future applications in Sec. IV

II. THEORETICAL FRAMEWORK

A. Reconstruction Map from Entanglement
Features

To be general, we consider a quantum system consists
of N qudits, where each qudit has the Hilbert space di-
mension d (where d = 2 corresponds to the qubit sys-
tem). The protocol of classical shadow tomography de-
scribes a process that first measures the unknown quan-
tum state ρ in a random basis specified by the unitary
transformation U and then prepare the classical snap-
shot σ̂U,b ≡ U†|b〉〈b|U based on the measurement out-
come b. The randomness involved in the process in-
cludes (i) sampling U from the distribution P (U) and
(ii) obtaining the measurement outcome b conditioned
on the evolved state ρ′ = UρU† with the probability
P (b|ρ′) = 〈b|ρ′|b〉 = Tr(σ̂U,bρ). Inspired by the discus-
sion in Ref. [30], we define

Eσ|ρ = {σ̂U,b | P (σ̂U,b|ρ) = Tr(σ̂U,bρ)P (U)} (1)

as the posterior snapshot ensemble, as it is conditioned
on the observation of ρ. The posterior snapshot ensemble
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reduces to the prior snapshot ensemble

Eσ = {σ̂U,b | P (σ̂U,b) = d−NP (U)}, (2)

when there is no knowledge contained in ρ, i.e. ρ =
d−N1. For the prior distribution P (σ̂U,b), the out-
come b is uniformly drawn from all possible outcomes
in {0, 1, · · · , d − 1}×N (independent of U, ρ). The prior
snapshot ensemble Eσ only depends on the unitary en-
semble EU = {U |P (U)}.

With the notation introduced above, the expected clas-
sical snapshot σ can be expressed as

σ ≡ E
σ̂∈Eσ|ρ

σ̂ = E
σ̂∈Eσ

σ̂Tr(σ̂ρ)dN =M[ρ], (3)

which is related to the original state ρ by a quantum
channel M, called the measurement channel. It is easy
to check that the measurement channel M is trace-
preserving, completely positive and self-adjoint. It is
generally difficult to obtain an explicit expression of M
for generic unitary ensemble EU (or for generic prior
snapshot ensemble Eσ). Results of M are known for
global and on-site 2-design unitaries[9, 31, 32] (possibly
with noise[33, 34]), fermionic Gaussian unitaries[35], and
many-body Gaussian unitaries[10].

We can make progress in computing the measure-
ment channel M (and its inverse) for yet another class
of unitary ensemble, namely the locally scrambled uni-
taries[14], for which P (U) obeys the local-basis invari-
ance condition

∀V ∈ U(d)N : P (U) = P (UV ) = P (V U), (4)

where the local scrambling unitary V is an element in the
group U(d)N (the tensor product of the on-site unitary
group U(d) of each qudit). This condition is sufficient to
ensure the prior ensemble Eσ of snapshot states σ̂ to be
invariant under σ̂ → V †σ̂V ,

∀V ∈ U(d)N : P (σ̂) = P (V †σ̂V ). (5)

In this case, we say that Eσ is a locally scrambled en-
semble. In fact, our following derivation only requires
the weaker condition Eq. (5) at the state level, instead
of Eq. (4) at the channel level, though it will be practi-
cally more straight forward to design unitary circuits that
satisfies Eq. (4) by assembling locally scrambled unitary
gates.

Nevertheless, as long as the states σ̂ are locally scram-
bled (even if the unitaries U may or may not be locally
scrambled), we will be able to insert local basis transfor-
mations V in Eq. (3), and average V over any ensemble
of our choice,

σ = E
V ∈U(d)N

E
σ̂∈Eσ

V †σ̂V Tr(V †σ̂V ρ)dN . (6)

We can choose the ensemble of V =
∏
i Vi to be such that

every Vi is independently a local 2-design unitary. With
this choice, the ensemble average of V can be evaluated

by averaging every Vi over the Haar unitary measure fol-
lowing Ref. [36, 37], and the result can be written as (see
Appendix A for derivation)

σ =
∑

B,C∈2ΩN

d2N−|B|ρBWgB,CW
(2)
Eσ,C , (7)

with B,C summing over all possible subregions of the N
qudit system, where each subregion is labeled by a sub-
set of ΩN = {1, · · · , N} (as an element in the power set
2ΩN ). |B| denotes the size (cardinality) of the region B.

ρB = (TrB̄ ρ) ⊗ (1B̄/d
|B̄|) is the reduced density matrix

of ρ in region B embedded back into the total Hilbert
space. B̄ denotes the complement of region B. Note
that B and B̄ do not need to be consecutive regions in
the space, and they can intertwine with each other in
general. WgB,C = (d2 − 1)−N (−1/d)|B	C| is the Wein-
garten function of regions B and C, where B	C denotes
the subregions that belong to either B or C but not both.

W
(2)
Eσ,C ≡ E

σ̂∈Eσ
TrC(TrC̄ σ̂)2 = E

σ̂∈Eσ
e−S

(2)
C (σ̂) (8)

is the 2nd entanglement feature[26, 27] of the prior snap-

shot ensemble Eσ, where S
(2)
C (σ̂) denotes the 2nd Rényi

entanglement entropy of the state σ̂ in region C. The

entanglement feature W
(2)
Eσ,C is merely a property of the

unitary ensemble EU (which determines Eσ). It describes
how the unitary channel entangles a product state in gen-
eral. It depends on neither the underlying state ρ to be
reconstructed nor any particular snapshot state σ̂ col-
lected in the tomography process.

Given the entanglement feature W
(2)
Eσ,C , Eq. (7) spells

out how the expected classical snapshot σ is written as a
linear combination of reduced density matrices ρB in all
regions, which explicitly specifies the measurement chan-
nelM as a linear map σ =M[ρ] from ρ to σ. Therefore,
any reduced classical snapshot σA must also be a linear
combination of reduced density matrices ρB , which im-
plies that the measurement channel can be represented
as a matrix MAB such that σA =

∑
BMABρB . Sup-

pose the map M is invertible (i.e. the unitary ensemble
is tomographically complete), the inverse mapM−1 (the
reconstruction map) must also be a linear map that com-
bines all reduced classical snapshots σA to reconstruct
ρB =

∑
A(M−1)BAσA. In particular, we are most inter-

ested to reconstruct the full density matrix ρ (because all
reduced density matrices follows from its partial trace),
which must also be a linear combination of σA with some
coefficients rA ∈ R,

ρ =M−1[σ] = dN
∑

A∈2ΩN

rAσA, (9)

where σA = (TrĀ σ) ⊗ (1Ā/d
|Ā|) follows the same def-

inition as the reduced density matrix. The reconstruc-
tion mapM−1 is not a physical channel, because the re-
construction coefficients rA may not be positive definite
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in general. Nevertheless, M−1 is still trace-preserving
and self-adjoint. Since M−1 is linear, we have ρ =
M−1[Eσ̂∈Eσ|ρ σ̂] = Eσ̂∈Eσ|ρM−1[σ̂], which enables us to
reconstruct the underlying state ρ from the ensemble of
classical snapshots. The collection of ρ̂ =M−1[σ̂] is also
called the classical shadow [8] of ρ, which can then be
used to predict many properties of ρ efficiently.

Now the key problem is to compute rA from W
(2)
Eσ,C .

For a system of N qudits, there will be 2N many recon-
struction coefficients rA. To determine them, we substi-
tute Eq. (7) to Eq. (9) and find

ρ =
∑

A,B,C∈2ΩN

fA,B,CrAρBW
(2)
Eσ,C , (10)

with the fusion coefficient fA,B,C given by

fA,B,C =
∑

D∈2ΩN

δB,A∩Dd
2N+|A|−|B|+|Ā∩D̄|WgD,C

=
( d3

d2 − 1

)N ∑

D∈2ΩN

δB,A∩Dd
−|D|

(
− 1

d

)|C	D|
,

(11)

which is universally determined by the qudit dimension
d. Here δA,B denotes the Kronecker delta of two regions
A and B, s.t. δA,B = 1 (or 0) if A = B (or A 6= B).
Eq. (10) will hold for any choice of ρ if and only if

∑

A,C∈2ΩN

rAfA,B,CW
(2)
Eσ,C = δB,ΩN , (12)

where ΩN = {1, · · · , N} is the full set that labels the
full system of N qudits. By solving this linear equation,
we can determine the reconstruction coefficients rA in

terms of of the entanglement featureW
(2)
Eσ,C , such that the

reconstruction map M−1 can be constructed according
to Eq. (9).

In conclusion, we provide a general framework to com-
pute the reconstruction map for the classical shadow
tomography with locally scrambled quantum dynamics.
The protocol is summarized as:

1. Given the prior snapshot ensemble Eσ, first cal-
culate its entanglement feature by

W
(2)
Eσ,C = E

σ̂∈Eσ
TrC(TrC̄ σ̂)2.

2. Solve for the reconstruction coefficient rA by

∑

A,C∈2ΩN

rAfA,B,CW
(2)
Eσ,C = δB,ΩN .

3. Then the reconstruction map is given by

ρ =M−1[σ] = dN
∑

A∈2ΩN

rAσA.

All computations are supposed to be carried out on a
classical computer in the post-processing procedure. Al-
though solving for rA may be computationally demand-
ing for large systems, it only needed to be done once and
its result can be applied to process all classical snapshots
collected from all possible states ρ to be learned.

B. Variance Estimation and Sample Complexity

Given the ensemble Eσ|ρ of classical snapshots collected
from measuring the unknown state ρ, we can use the re-
construction map M−1 to predict properties of ρ. For
example, let O be a traceless Hermitian operator rep-
resenting a physical observable. Its expectation value
〈O〉 ≡ Tr(Oρ) can be predicted via

〈O〉 = E
σ̂∈Eσ|ρ

Tr(OM−1[σ̂]) = E
σ̂∈Eσ|ρ

Tr(M−1[O]σ̂),

(13)
where we have used the self-adjoint property of M−1

to transpose its action from σ̂ to O. We can interpret
ô(σ̂) ≡ Tr(M−1[O]σ̂) as the single-shot estimation of the
observable (based on a particular classical snapshot σ̂),
such that 〈O〉 = Eσ̂∈Eσ|ρ ô(σ̂).

The variance of the single-shot estimation is defined
as Var ô ≡ Eσ̂∈Eσ|ρ ô(σ̂)2 − (Eσ̂∈Eσ|ρ ô(σ̂))2, which can be

bounded by (the first term in Var ô)

Var ô ≤ ‖O‖2Eσ|ρ ≡ E
σ̂∈Eσ|ρ

ô(σ̂)2

= E
σ̂∈Eσ

(TrM−1[O]σ̂)2 Tr(σ̂ρ)dN .
(14)

The bound ‖O‖Eσ|ρ can be considered as a generalized ρ-

dependent notion of the (squared) shadow norm[8] of an
operator O (whereas the shadow norm originally defined
in Ref. [8] further maximizes over all possible underlying
states ρ to remove the dependence on ρ). Assuming Eσ
is locally scrambled, following the same approach of in-
serting and averaging local-basis transformations as in
Eq. (6), the bound in Eq. (14) becomes

‖O‖2Eσ|ρ =
∑

g,h∈SN3

‖O‖2ρ,gWgg,hW
(3)
Eσ,h, (15)

where g, h are group elements in the SN3 (product of 3-
fold permutation groups over N qudits). Wgg,h is the
Weingarten function of permutations g and h, which is
equivalent to traditional Weingarten function as Wgg,h =

Wg(gh−1, d), where d is the local Hilbert dimension of

qudit. ‖O‖2ρ,g is a generalized operator norm for O, which
is defined as

‖O‖2ρ,g ≡ d
N Tr((M−1[O]⊗2 ⊗ ρ)χg), (16)

where χg is the representation of the SN3 permutation g

in the 3-fold Hilbert space. W
(3)
Eσ,h is the 3rd entanglement
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feature of the ensemble Eσ, defined as

W
(3)
Eσ,h ≡ E

σ̂∈Eσ
Tr(σ̂⊗3χh). (17)

Note that the 2nd entanglement feature previously de-
fined in Eq. (8) can be consistently cast into the form of
Eq. (17) in terms of permutation operators (see Ref. [27]).

In practice, the expectation value 〈O〉 is always es-
timated based on a finite collection of the snapshot
states. Let M be the number of samples of ρ mea-
sured in the data acquisition stage (each sample results
in a snapshot state σ̂k). The finite average estimation

ō = 1
M

∑M
k=1 ô(σ̂k) will fluctuate around the true expec-

tation value 〈O〉 with a variance that scales as (Var ô)/M .
By the Chebyshev inequality, the probability for ō to de-
viate from 〈O〉 by more than ε amount is bounded by

Pr(|ō− 〈O〉| ≥ ε) ≤ Var ô

ε2M
≤
‖O‖2Eσ|ρ
ε2M

. (18)

Therefore, to control the failure probability within a
threshold δ, i.e. Pr(|ō − 〈O〉| ≥ ε) ≤ δ, sufficient num-
ber of samples is required

M ≥
‖O‖2Eσ|ρ
ε2δ

. (19)

A larger (smaller) shadow norm ‖O‖2Eσ|ρ indicates that

more (less) samples are needed.

However, the ρ-dependent shadow norm ‖O‖2Eσ|ρ is

generally complicated to evaluate. If we are not inter-
ested in the shadow norm for a specific state ρ, but rather
the expectation of the shadow norm over an ensemble
of states {V ρV †} that are similar to ρ by local basis
transformations V ∈ U(d)N , we can actually define a
ρ-independent shadow norm by averaging over V ,

‖O‖2Eσ ≡ E
V ∈U(d)N

‖O‖2E
σ|V ρV †

. (20)

The expected shadow norm can be expressed purely in
terms of the entanglement features of Eσ and EO (see
Appendix B for derivation),

‖O‖2Eσ =
∑

A,B,C,D∈2ΩN

vA,B,C,DW
(2)
Eσ,A∩B∩CW

(2)
EO,D, (21)

where the coefficient vA,B,C,D is given by

vA,B,C,D = rArB

( d2

d2 − 1

)N
d|A∩B∩C|−|C|

(
− 1

d

)|C	D|
,

(22)
and EO = {V †OV |V ∈ U(d)N} denotes the locally scram-
bled ensemble (or known as U(d)N -twirling) associated
with the observable O in question.

In conclusion, given a traceless Hermitian operator O,
its expected shadow norm ‖O‖2Eσ provides a typical lower
bound for the number of samples needed

M &
‖O‖2Eσ
ε2δ

, (23)

in order to control the error of the prediction ō given by
the classical shadow tomography within the probability
bound Pr(|ō−〈O〉| ≥ ε) ≤ δ. Here we have only analyzed
the sample complexity for a single linear observable. For
the analysis of multiple and/or non-linear observables,
we refer to the original paper of Ref. [8]. Their result
applies to our case simply by replacing the shadow norm
with our version.

C. A Toy Example of Two-Qudit System

To demonstrate our framework and to gain some an-
alytical intuition, we present a toy example to com-
pute the reconstruction map in a two-qudit (N = 2)
system. We assume that the two-qudit system always
evolves under a locally scrambled quantum dynamics,
which can be modeled (for example) by a finite-time
Brownian evolution[38] driven by random Hamiltonians.
Every classical snapshot σ̂U,b = U†|b〉〈b|U is generated
by the reversed evolution from the product state |b〉〈b|.
In the long-time limit (Fig. 2(a)), the entanglement fea-

ture W
(2)
Eσ = (1, 2d

d2+1 ,
2d
d2+1 , 1) follows from that of Page

states, where the subregion basis are arranged in the or-
der of {}, {1}, {2}, {1, 2}. This is because the evolution of
entanglement feature under any locally scrambled quan-
tum dynamics always converges to the Page state, re-
gardless of the initial state, as proven in Ref. [14]. In
the short-time limit (Fig. 2(b)), σ̂ remains as a product
state, therefore the entanglement entropy vanishes for all

regions, which translates to W
(2)
Eσ = (1, 1, 1, 1). In gen-

eral, for any intermediate time, the entanglement feature
should take the form of

W
(2)
Eσ = (1, w, w, 1), (24)

with w varies between 2d
d2+1 (the long-time limit) and 1

(the short-time limit). The physical meaning of w is the
average single-qudit purity in the snapshot state σ̂.

Given W
(2)
Eσ in Eq. (24), Eq. (12) reads

d2




1 d(d−w)
d2−1

d(d−w)
d2−1

d2(d2−2dw+1)
(d2−1)2

0 dw−1
d2−1 0 d(d2w−2d+w)

(d2−1)2

0 0 dw−1
d2−1

d(d2w−2d+w)
(d2−1)2

0 0 0 d2−2dw+1
(d2−1)2







r{}

r{1}

r{2}

r{1,2}




=




0

0

0

1



.

(25)
By solving this linear equation, the reconstruction coef-
ficient rA can be obtained

r =




r{}

r{1}

r{2}

r{1,2}




=




d3w−3d2+3dw−2w2+1
(dw−1)(d2−2dw+1)
−d4w+2d3−2d+w

d(dw−1)(d2−2dw+1)
−d4w+2d3−2d+w

d(dw−1)(d2−2dw+1)
(d2−1)2

d2(d2−2dw+1)



. (26)

The behavior of rA as a function of w is shown in
Fig. 2(c), which continuously interpolates the two limits.
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FIG. 2. Two-qudit unitary channel in (a) the long-time
(Page state) limit and (b) the short-time (product state) limit.
(c) Reconstruction coefficients rA and (d) the shadow norm
‖O‖2Eσ v.s. the single-qudit purity w, for d = 2. w varying
from 1 to 4/5 effectively models the circuit depth (or evolution
time) growing from 0 to ∞.

In the short-time limit, w = 1 and Eq. (26) reduces to
rA = (1,−(d+1)/d,−(d+1)/d, (d+1)2/d2), correspond-
ing to the reconstruction map

M−1[σ] =
⊗

i=1,2

((d+ 1)σi − 1i), (27)

matching the result of on-site 2-design circuits[31, 32].
In the long-time limit, w = 2d

d2+1 and Eq. (26) reduces to

rA = (−1, 0, 0, (d2 + 1)/d2), corresponding to the recon-
struction map

M−1[σ] = (d2 + 1)σ − 1, (28)

matching the result of global 2-design circuits[31, 32].
The general result in Eq. (26) provides the reconstruction
map that interpolates these two limits, which allows us
to perform classical shadow tomography for intermediate
unitary channels that are neither on-site nor global 2-
design.

To investigate the sample complexity of the tomogra-
phy scheme in the two-qudit system, we consider a trace-
less Hermitian operator O (i.e. TrO = 0) and define two
parameters k1 and k2 to parameterize the purity:

k1 = Tr{1}(Tr{2}O)2/TrO2

k2 = Tr{2}(Tr{1}O)2/TrO2.
(29)

Then the entanglement feature of the observable O can
be arranged as the following vector

W
(2)
EO = (0, k1, k2, 1) TrO2, (30)

with the same choice of region basis as in Eq. (24). Given

r, W
(2)
EO and W

(2)
Eσ , we have all the information needed to

calculate the shadow norm, according to Eq. (21)

‖O‖2Eσ = d2−1
d3

(
ktot

dw−1 + (d2−1)(d−ktot)
d2−2dw+1

)
TrO2, (31)

where ktot = k1 + k2.
The operator locality crucially affects ktot. Consider

modeling a local operator Oloc by a random operator
drawn from the Gaussian unitary ensemble (GUE) and
acting on the first qudit only, we have

W
(2)
EOloc

= (0, d, 0, 1) TrO2
loc, (32)

hence ktot = d. On the other hand, for a global operator
Oglb modeled by a global GUE random operator acting
on both qudits simultaneously, we have

W
(2)
EOglb

= (0, d
d2+1 ,

d
d2+1 , 1) TrO2

glb, (33)

hence ktot = 2d
d2+1 . In these two cases, the shadow norm

in Eq. (31) becomes

‖Oloc‖2Eσ = d2−1
d2(dw−1) TrO2

loc,

‖Oglb‖2Eσ = d2−1
d2(d2+1)

( (d2−1)2

d2−2dw−1 + 2
dw−1

)
TrO2

glb.
(34)

Their dependence in w is plotted in Fig. 2(d). In the

short-time limit (w = 1), ‖Oloc‖2Eσ < ‖Oglb‖2Eσ , mean-
ing that the shallow circuit is more efficient in predicting
local observables. In the long-time limit (w = 2d

d2+1 ),

‖Oloc‖2Eσ = ‖Oglb‖2Eσ = (1 + d−2) TrO2, such that there
is no difference in predicting both local and global ob-
servables in terms of the sample efficiency, because all
operators are equally scrambled in this limit.

D. Additional Remarks on Computational
Methods and Future Directions

Efficient numerical methods have been developed[20,
39] to calculate the evolution of entanglement feature

W
(k)
Eσ under locally scrambled quantum dynamics by solv-

ing the corresponding entanglement dynamics equation
(without simulating the quantum dynamics using brute
force). However, we will leave this approach for fu-
ture exploration. In this work, we will compute the en-
tanglement feature beforehand based on the definition
Eq. (8), by direct sampling from the prior snapshot en-
semble Eσ. For experimentally generated random uni-
taries whose distribution is a priori unknown, it is also
possible to estimate the entanglement feature efficiently
from Rényi entropy measurements[40–42] following the
definition Eq. (8).

As shown in Ref. [39], for one-dimensional quantum

systems, the entanglement feature vector W
(k)
Eσ admits ef-

ficient matrix product state (MPS) representation, even
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if snapshot states in Eσ are volume-law entangled. Com-

bining the MPS representation of W
(2)
Eσ with the fact that

fA,B,C is factorizable to every qudit, one can develop effi-
cient MPS-based numerical approach to find the solution
of rA (also as a MPS). However, we will defer the devel-
opment of this approach to future work. In the following
numerical demonstrations, we will directly solve Eq. (12)
for small systems as a proof of concept.

The MPS representations for r, W
(2)
Eσ and W

(2)
EO also en-

ables us to calculate the shadow norm ‖O‖2Eσ efficiently
by a four-way MPS contraction. The ability to compute
the shadow norm efficiently will be particularly useful
if we want to design optimal unitary channels to mini-
mize the sample complexity for a given set of designated
observables. It is possible to apply machine learning ap-
proaches (such as deep reinforcement learning) to per-
form the circuit structure optimization. Therefore, our
construction provides the flexibility to allow the classical
shadow tomography to adapt to designated observables,
which has not been possible before. We will also leave
this promising direction to future research.

III. NUMERICAL DEMONSTRATIONS

To demonstrate the effectiveness of our approach, we
consider three types of unitary ensembles for the unitary
channel in the data acquisition protocol, as illustrated in
Fig. 3.
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FIG. 3. Classical shadow tomography with (a) finite-depth
random unitary/Clifford circuits (of L layers), (b) a fixed
unitary twirled by single qubit random Clifford gates, and
(c) discrete-time Hamiltonian dynamics (of T steps).

A. Classical Shadow Tomography with Shallow
Random Unitary/Clifford Circuits

We first consider using random unitary circuits (RUCs)
[15] for the unitary channel. As illustrated in Fig. 3(a),
the unitary circuit consists of two-qubit local unitary
gates arranged in the brick-wall pattern with a periodic
boundary condition. Each gate in the circuit is indepen-
dently drawn from the Haar random unitary ensemble.
The depth L of the circuit can be adjusted. Obviously,

RUCs are locally scrambled, as any local-basis transfor-
mation (from both left and right) can be absorbed by the
Haar random unitary gates in the circuit. Therefore, we
expect our reconstruction map to work perfectly in this
case for any choice of the circuit depth L.
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FIG. 4. (a) Fidelity estimation of GHZ state with RUC of
different circuit depth L using entanglement-feature-based re-
construction M−1

EF (denoted by EF) over different number N
of qubits. (b) Fidelity estimation of GHZ state using shallow
RUC (3-layer, with M−1

EF, denoted by EF), random on-site
(local Haar) gates (0-layer, with M−1

LH, denoted by LH) and
global Haar unitary (∞-layer, with M−1

GH, denoted by GH).
The inset shows the variance VarF of the predicted fidelity as
a function of system size N . In both subfigures, the sample
size is 5000. Error bar indicates 3-standard-deviation esti-
mated by the bootstrap method. Points are split horizontally
to avoid the overlap of markers.

For illustration purpose, we start with a Greenberger-
Horne-Zeilinger (GHZ) state ρ = |Ψ〉〈Ψ|, where |Ψ〉 =
1√
2
(|00 · · · 0〉 + |11 · · · 1〉). For every given circuit depth

L, we first calculate the entanglement feature W
(2)
Eσ,C to

determine the reconstruction map M−1. This calcula-
tion is done for once and stored in the classical memory
for future reference. In our numerical simulation of the
data acquisition process, we sample the RUC, apply it to
the GHZ state |Ψ〉, and perform the computational basis
measurement. We generate a collection of classical snap-
shots Eσ|ρ = {σ̂} of size M by repeated measurements.
We then estimate the fidelity F of the reconstructed state
by

F =

√√√√ 1

M

∑

σ̂∈Eσ|ρ
〈Ψ|M−1[σ̂]|Ψ〉. (35)
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Following the philosophy of classical shadow tomogra-
phy, one should view Eq. (35) as a prediction task. If the
shadow tomography is successful, then the estimated fi-
delity should converge to F = 1. This estimation can be
achieved accurately by a few measurements, even though
the full density matrix estimation avgσ̂∈Eσ|ρM

−1[σ̂] may

still have large fluctuations. In addition, when the recon-
struction is biased, for example the experimental chan-
nel M doesn’t match the theoretical assumption of the
unitary ensemble, then the fidelity estimation will devi-
ate from one. Fig. 4 (a) shows that the entanglement-
feature-based reconstruction map M−1

EF indeed gives un-
biased estimation of fidelity F for different circuit depths
L and for different system sizes N . Furthermore, when
the GHZ state is prepared with Z errors, our method can
give the correct fidelity estimation that decreases linearly
with the probability of Z error, which is challenging for
the current state-of-art machine-learning quantum state
tomography method[8, 43] (see Appendix D for more dis-
cussions).
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FIG. 5. (a) Fidelity estimation of the reconstructed GHZ
state with RUC of finite depth L. (b) Estimation of ob-
servable P0 = |〈Ψ|00 · · · 0〉|2 (the projection operator to the
|00 · · · 0〉 state) on the reconstructed GHZ state with RUC
of finite depth L. In both cases, the reconstruction uses the
global Haar reconstruction map. The sample size is 5000. Er-
ror bar indicates 3-standard-deviation estimated by the boot-
strap method.

To compare with the existing classical shadow tomog-
raphy method[8], we consider the reconstruction maps
M−1

GH[σ] = (dN + 1)σ−1 andM−1
LH[σ] =

⊗
i((d+ 1)σi−

1i), where M−1
GH (or M−1

LH) assumes the unitary ensem-
ble is global (or on-site local) Haar random. They can
be viewed as special limits where circuit depth L tends
to infinity and zero respectively. Although they can also
achieve an unbiased estimation of quantum fidelity, the
tomography efficiency differs. In Fig. 4(b), the error bar
shows how the (3-times) standard deviation of the esti-
mated fidelity scales with the number of qubits N at 5000
sample size. As we can see (both from the error bar and

from the inset of Fig. 4(b)), the variance of (on-site) lo-
cal Haar estimation increases drastically as N increases,
which implies an increasingly high sample complexity for
large systems.

In the other limit, the variance of global Haar estima-
tion is independent of system size, achieving the optimal
sample complexity as advocated in Ref. [8]. However, to
realize the global Haar ensemble, the circuit depth needs
to be at least of order O(N), which is quite demand-
ing for quantum devices. If we approximate the global
Haar ensemble with finite-depth circuits and use the re-
construction map M−1

GH on data collected from finite-
depth circuit measurements,[9] this will yield systemati-
cally biased predictions for physical quantities when the
circuit is not deep enough. In Fig. 5(a), we show that
the biased prediction tends to over-estimate the fidelity,
leading to the unphysical result of F > 1 (the correct
behavior is F = 1). This occurs because, when the mea-
surement channel M in data acquisition protocol dis-
agrees with the reconstruction channel M−1 in classi-
cal post-processing protocol, the reconstructed density
matrix 1

M

∑
σ̂∈Eσ|ρM

−1[σ̂] may not be positive-definite

(see Appendix E for detailed discussions), resulting in the
unphysical fidelity estimation. This bias gets worse for
larger system size. In Fig. 5(b), we also show the estima-
tion of P0 = |〈Ψ|00 · · · 0〉|2. For GHZ state, the correct
behavior is P0 = 0.5, and we still see significant bias
when applying M−1

GH for shallow circuits.
However, with the entanglement-feature-based recon-

struction map M−1
EF, as demonstrated in Fig. 4 (b), we

are able to achieve an unbiased fidelity estimation with
a 3-layer shallow circuit, approaching similar variance
level (i.e. similar sample efficiency) as global Haar ensem-
ble while keeping a low circuit complexity. This clearly
demonstrates the advantage of our approach.

B. Scaling of Variance and Tomography
Complexity

The above discussion motivate us to define the tomog-
raphy complexity as C = (L+1)M , where L is the circuit
complexity (the number of layers in the quantum circuit),
and M is the sample complexity (the number of sam-
ple needed). M will be proportional to the single-shot
variance Var ô. Suppose applying each layer of quantum
gates and performing measurements both take a unit of
time on the quantum device, then C is roughly the to-
tal amount of time needed to collect the classical shadow
from M copies of the quantum state, which characterizes
the complexity of the data acquisition protocol. This no-
tion of complexity is consistent with the Quantum Algo-
rithmic Measurement (QUALM) complexity introduced
in Ref. [44] (with LM and M being their gate and query
complexities respectively). In the following, we will in-
vestigate the scaling of single-shot variance Var ô as a
function of circuit depth L and system size N for both
low-rank operators (such as fidelity) and full-rank oper-
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ators (such as Pauli operators), and show how the to-
mography complexity C can guide us to find the optimal
circuit depth L∗.
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FIG. 6. (a) Single-shot variance of estimated fidelity v.s. cir-
cuit depth L for a 9-qubits GHZ state. (b) Single-shot vari-
ance of estimated fidelity as a function of the effective sys-
tem size Neff. The best fit for VarF ∝ exp

(
c N

(L+1)α

)
gives

c = 0.47± 0.08 and α = 0.72± 0.1. (c) Variance of full rank
operator estimation on 9-qubit GHZ state. The full rank oper-
ators are Pauli-Z operators of the form: Z(k) = Z⊗kI⊗(N−k)

with different support k. The dots are experimental results
from simulation, and the lines are theoretical prediction using
operator shallow norm by Eq. (21). They match perfectly.

For low-rank operators, we will focus on quantum fi-
delity, which is important in many quantum information
applications, such as (variational) state preparation. We
will define the zero-depth limit (L → 0) of the RUC to
be a single layer of on-site Haar-random gates because
even if there is no two-qubit gate in the “zero-depth”
circuit, we still assume that the unitary ensemble is lo-
cally scrambled such that on-site scrambling unitaries
continue to persist. In this limit, the single-shot variance
VarF of fidelity estimation scales exponentially with the
number of qubits N . On the other hand, in the deep
circuit limit (L → ∞), RUCs will approach the global
Haar unitary ensemble, and the variance VarF will be
independent of system size. We are interested to inves-

tigate how VarF behaves in the shallow circuit regime.
In Fig. 6(a), we calculated VarF numerically using the
bootstrap method for the 9-qubit GHZ state. It shows
the variance VarF will decrease quickly in the shallow
circuit regime. Interestingly, we found that an empirical
formula VarF ∝ exp

(
c N

(L+1)α

)
fits the data well in the

shallow circuit regime, with α = 0.7 ± 0.1. In Fig. 6(b),
we plot VarF as a function of N

(L+1)α for different fixed

circuit depth L. We find curves with different choices
of circuit depth L all collapse together with the same
coefficient c = 0.47± 0.08.

The physical intuition behind the empirical formula
has to do with the operator growth in RUCs. If the
quantum circuit is very shallow, then the computational
basis measurement will only probe local information in
the original basis. If the circuit becomes deeper, com-
putational basis measurement can probe information in
larger regions in the original basis, because the measure-
ment operator has grown under the (backward) circuit
evolution. Suppose the size of the measurement operator
grows in a power-law manner ∼ (L+1)α[45] with respect
to the depth L of the RUC, the relative size of the sys-
tem will effectively shrink to Neff = N

(L+1)α , such that

VarF should scale universally with Neff, as proposed in
the empirical formula. We might expect α = 1/2 (or
α = 1), if the operator grew diffusively (or ballisticaly).
However, the best fit of our numerical result seems to in-
dicate an effective operator growth between the diffusive
and ballistic limits. Due to the limited system size in
this study, we are unable to determine whether our ob-
servation persists to the thermodynamic limit. We will
leave this intriguing scaling behavior for further investi-
gation in the future. Nevertheless, for any α, the variance
decreases faster than exponential with L in the shallow
circuit regime, which already speaks for the advantage of
applying shallow circuits in classical shadow tomography.

For full-rank operators, we mainly focus on consecutive
strings of Pauli operators of the form

Z(k) = Z⊗kI⊗(N−k) = ZZ · · ·Z︸ ︷︷ ︸
k

II · · · I︸ ︷︷ ︸
N−k

, (36)

where Z is the Pauli-Z operator, and I is the identity
operator. We define the locality of the Pauli string oper-
ator by its length k. In the shallow circuit limit (L→ 0),
the variance of estimation for Z(k) scales VarZ(k) ∝ 4k.
So shallow circuit is only efficient for predicting the local
observables, and becomes inefficient for non-local observ-
ables. In the deep circuit limit (L→∞), as the unitary
ensemble becomes globally Haar, there is no difference
between local and non-local operators in this limit, and
VarZ(k) ∝ 2N . A simple comparison indicates: when
k & N/2, VarZ(k) will decrease with L, thus deep cir-
cuits will have lower sample complexity; when k . N/2,
VarZ(k) will increase with L, thus shallow circuits will
have lower sample complexity. In Fig. 6(c), the dots
shows the variance VarZ(k) as a function of circuit depth
L for different support k. The trend agrees with our sim-
ple argument. For non-local operators, their variance will
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quickly decrease with the circuit depth L, while the vari-
ance for local operators will mildly increase with L. The
behavior is theoretically described by how the operator
shadow norm ‖O‖2Eσ depends on both the circuit depth
L and the operator locality k, which are separately en-
coded in the entanglement features of Eσ and EO. We

calculate the shadow norm ‖Z(k)‖2Eσ based on the entan-
glement feature formalism using Eq. (21), and plot the
result as lines in Fig. 6(c). The theoretical calculation
agrees perfectly with the numerical results, which also
indicates that the shadow norm bounds the single-shot
variance (and hence the sample complexity) quite tightly.
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FIG. 7. (a) Tomography complexity C ∝ (L + 1) VarF as
a function of circuit depth L for the fidelity (low-rank ob-
servable) estimation task. Dots are tomography complexities
for GHZ states of qubit number N by our numerical simula-
tion. Solid curves are best fits based on the empirical formula
Eq. (37). (b) Tomography complexity C ∝ (L+1) VarZ(k) for
the Pauli string (full-rank observable) estimation task. Dots
are numerical simulation results. Solid curves are analytic cal-
culations using the operator shadow norm formula Eq. (21).

Based on the discussion in Sec. II B, the sample com-
plexity M is proportional to the single-shot variance.
Given the scaling of variance with the the circuit depth
L, we can study the scaling of the sample complexity, as
well as that of the tomography complexity C. For fidelity
estimation task, C scales as

C = (L+ 1)M ∝ (L+ 1) VarF

∝ (L+ 1) exp
( cN

(L+ 1)α

)
.

(37)

For sufficiently large systems, the complexity C can have
a non-trivial minimum at a finite circuit depth L∗ '

(αcN)1/α − 1. Our simulation result in Fig. 7(a) veri-
fies such behavior. For small systems (N . 5), random
single-qubit measurements can efficiently benchmark the
quantum state, so we do not need to use a finite-depth
circuit for data acquisition. However, as the system size
N gets larger, to maintain the prediction accuracy, single-
qubit measurements will require more and more samples
that have to grow exponentially with N . As shown in
Fig. 6(a), applying a few layers of quantum circuits be-
fore the measurement can quickly bring down the single-
shot variance (and hence reduce the sample complexity).
However, we also do not want to go too far in the circuit
depth, because that would increase the circuit complex-
ity. Therefore, we expect an optimal circuit depth L∗
where the sample complexity and the circuit complexity
reach a balance, and the total tomography complexity is
minimized. This explains the advantage of shallow cir-
cuits in classical shadow tomography, as compared to the
existing method that requires either on-site Haar random
(L→ 0) or global Haar random (L→∞) unitaries.

We also study the tomography complexity C ∝ (L +
1) VarZ(k) for the full-rank observables, such as Pauli
strings Z(k), as shown in Fig. 6(b). In this case, what
matters is the locality k of the full-rank operator (the
length k of the Pauli string). For local operators (small
k), on-site measurement will be most efficient. However,
for non-local operators (large k), we observe that the to-
mography complexity is minimized at some finite circuit
depth, again demonstrating the advantage of employing
shallow circuits in classical shadow tomography. For dif-
ferent classes of physical observables, we can use the to-
mography complexity C as an objective function to guide
the design of the optimal circuit structure. We will leave
this promising direction for future investigation.

C. Classical Shadow Tomography with Fixed
Quantum Circuits or Hamiltonian Dynamics

Compared to other classical shadow tomography pro-
tocols, our method can be applied to a large family of
unitary ensembles that only requires the local scrambling
condition, which is more appealing to near term quan-
tum devices. One of the biggest challenges in realizing
the original proposal of global Clifford classical shadow
tomography is that the realization of global Clifford uni-
tary requires ∼ N2 many local Clifford gates (for a N -
qubit system), which remains challenging for near term
quantum devices. Even though global Clifford shadow
tomography is very efficient in predicting non-local prop-
erties, it has not been implemented even for few-qubit
systems as far as we know.

As we have seen in Sec. III A, the quantum entan-
glement created by the unitary channel plays an im-
portant role in reducing the sample complexity. With
the quantum entanglement generated by the unitary
channel, the classical shadow tomography is essentially
an entanglement-assisted non-local measurement proto-
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col. To circumvent the difficulty of sampling (fully-
scrambled) deep random unitaries but still harness the
power of entanglement, we can use the idea of locally
scrambled unitaries to design randomized measurement
protocols that have sandwich structures like Fig. 3 (b),
where random single-qubit Clifford gates (green boxes)
are introduced at the beginning and the end of the uni-
tary channel, and a fixed unitary circuit/quantum dy-
namics (the blue box) is sandwiched in between to pro-
vide entanglement generation. This sandwiched protocol
satisfies the local scrambling condition rigorously, there-
fore the reconstruction map in Eq. (12) can be applied.

We will give two examples to demonstrate this sand-
wiched protocol. In the first example, as shown in
Fig. 8(a), the fixed unitary is taken to be a fixed Clifford
circuit consist of a sequence of controlled-NOT (CNOT)
gates that generates entanglement. In the second exam-
ple, as illustrated in Fig. 8(b), the fixed unitary is gener-
ated by the time evolution of a Rydberg atom Hamilto-
nian [46]:

H =
Ω

2

∑

i

Xi −∆
∑

i

Zi + Ω
∑

i<j

(
Rb

a|i− j|

)6

ZiZj .

(38)

Both cases are ready to be implemented with near term
quantum devices, such as trapped ion based quantum
simulator or Rydberg based quantum simulator, given
the fact that single qubit Clifford gates can be efficiently
implemented, and randomized Pauli measurements have
been demonstrated.[47]
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FIG. 8. Classical shadow tomography with a fixed unitary and
onsite random Clifford gates. The fixed unitary can be gener-
ated with single quantum circuit, such as (a) CNOT gates, or
fixed quantum dynamics, such as (b) Rydberg Hamiltonian
dynamics.

For comparison, we use both our proposed sandwiched
protocol and the standard randomized Pauli measure-
ment to perform the classical shadow tomography on
a GHZ state and to evaluate the fidelity of the recon-
structed state. The results are shown in Fig. 9. As we can
see, the variance of the fidelity estimation based on ran-
domized Pauli measurements grows exponentially with
increasing system size. As expected, the variance (or
the sample complexity) reduces dramatically if one adds
a fixed unitary generated by the CNOT circuit or the
Rydberg Hamiltonian dynamics. More specifically, the

variance of prediction is reduced by one order of mag-
nitude even for a small system of N = 9 qubits. In
both cases, the quantum entanglement generated by the
locally scrambled quantum dynamics helps to improve
the tomography efficiency. This result demonstrates the
power of our protocol: it is both very flexible in terms
of the design and very efficient in terms of the sample
complexity.
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FIG. 9. Fidelity estimation of GHZ state using randomized
Pauli measurements (denoted as Pauli), classical shadow to-
mography with fixed CNOT gates as in Fig. 8 (a) and classical
shadow tomography with fixed Rydberg Hamiltonian dynam-
ics as in Fig. 8 (b). The inset shows the variance VarF of the
predicted fidelity as a function of system size N . The sample
size is 10000. Error bar indicates 3-standard-deviation esti-
mated by the bootstrap method. Points are split horizontally
to avoid the overlap of markers.

D. Approximate Classical Shadow Tomography
with Local Hamiltonian Dynamics

Requiring an unitary ensemble to be strictly locally
scrambled could be restrictive. To this end, we would
like to explore a broader class of unitary ensembles that
are only approximately locally scrambled. In particular,
we study unitary evolutions U = e−iHT generated by
a local Hamiltonian H for finite amount of time T , as
depicted in Fig. 3(b). Two classes of Hamiltonians are of
particular interest. In the first class, we consider a model
of random local Hamiltonians

H =
∑

i

Hi,i+1, (39)

where each term Hi,i+1 is independently sampled as 2-
local GUE random matrices. We dub this class the GUE2
ensemble to remind ourselves that the Hamiltonian is
2-local. The local Hamiltonian describes a disordered
one-dimensional quantum system in general. Once ev-
ery Hi,i+1 term is sampled, we will use the Hamilto-
nian H to drive the time evolution without changing H
during the evolution. The unitary GUE2 ensemble is
only invariant under U → V †UV (not U → UV ) for
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V ∈ U(d)N , such that that its corresponding prior snap-
shot ensemble Eσ will transform as σ̂U,b = U†|b〉〈b|U →
V †U†V |b〉〈b|V †UV 6= V †σ̂U,bV , which does not satisfy
the locally scrambling condition at the state level (i.e. the
invariance under σ̂ → V †σ̂V ). However, we anticipate
that under a sufficient amount of time evolution, the
original local basis choice (of |b〉) will be quickly random-
ized given the chaotic nature of the local Hamiltonian,
such that the initial choice of V |b〉〈b|V † or |b〉〈b| will not
make a substantial difference statistically, so the GUE2
ensemble will become approximately locally scrambled
after some local thermalization (scrambling) time TTh.

Another more realistic class of random Hamiltonians to
be considered is based on the quantum Ising model with
both disordered coupling in space and random fields in
time

Ht =
∑

〈ij〉
JijXiXj + h

∑

i

(cos θtXi + sin θtYi), (40)

where the local coupling Jij ∼ Uni[J− J
2 , J+ J

2 ] is drawn
from a uniform distribution, and the angle of magnetic
field θt ∼ Uni[0, 2π] is also random. We use this Hamil-
tonian to drive the quantum dynamics in discrete time
steps. In each period of time, the magnetic field h will be
applied along a different random direction θt in the x-y
plane for all spins uniformly. However, Jij will remain
the same throughout the time evolution. The ensemble
of unitary consists of

U =

T∏

t=1

e−iHt . (41)

which we name as the Disordered Quantum Ising Model
or DQIM for short. The DQIM ensemble is friendly for
quantum technology such as Rydberg-atom-based[28] or
trapped-ion-based[29] quantum simulators. Similar con-
struction of approximate unitary designs by Hamiltonian
evolution with random quenches in time was also pro-
posed in Ref. [40, 41]. We would like to investigate how
well our framework applies to these two cases.

Each approximately locally scrambled unitary ensem-
bles EU leads to a prior snapshot ensemble Eσ = {σ̂U,b|b ∈
{0, 1}×N , U ∈ EU} that is also approximately locally
scrambled. We propose to characterize how close the
prior snapshot ensemble Eσ is towards its local-basis in-
variant limit by the following frame potential

F (k)
Eσ = E

σ̂,σ̂′∈Eσ
(Tr σ̂σ̂′)k. (42)

Recall that in deriving Eq. (6) from Eq. (3), we only re-
quire the 2nd moment to match, i.e.

E
σ̂∈Eσ

σ̂⊗2 = E
V ∈U(d)N

E
σ̂∈Eσ

(V †σ̂V )⊗2, (43)

therefore we will be most interested in the 2nd frame
potential F (2)

Eσ . The frame potential F (2)
Eσ for any ensem-

ble Eσ is lower bounded by its locally-scrambled (U(d)N -

twirled) limit F (2)
ELS
σ

as

F (2)
Eσ ≥ F

(2)
ELS
σ

=
∑

A,B

W
(2)
Eσ,AWgA,BW

(2)
Eσ,B . (44)

The fact that F (2)
ELS
σ

is expressed purely in terms of the en-

tanglement feature of Eσ indicates that it is indeed free
of any local-basis-dependent information. We can de-
fine the gap between the frame potential and its locally-
scrambled limit as

∆
(2)
Eσ = F (2)

Eσ −F
(2)
ELS
σ

= Tr
(

E
σ̂∈Eσ

(
σ̂⊗2 − E

V ∈U(d)N
(V †σ̂V )⊗2

))2

,
(45)

which turns out to match the trace-square-difference be-
tween the 2nd moment Eσ̂ σ̂⊗2 and its local twirling

EV,σ̂(V †σ̂V )⊗2. The frame potential gap ∆
(2)
Eσ serves as

an indicator of the validity of our approach, as it vanishes
if Eσ is locally scrambled such that our construction be-
comes exact.

Different unitary ensembles can lead to different frame
potential gaps of Eσ, which can be used to evaluate
the quality of the unitary ensemble in obeying the local
scrambling condition. In Fig. 10(a), we first focus on the
frame potential gap ∆(2) for the GUE2 ensemble. We find
the gap will first decay exponentially and then saturate to
a plateau at a very low level. The quickly vanishing gap
implies that the GUE2 ensemble quickly becomes approx-
imately locally scrambled as time evolves. We define the
characteristic time associated with the exponential de-
cay as TTh, i.e. ∆(2)(T ) ∝ exp(−T/TTh), which can be
considered as the local scrambling (thermalization) time.
Such an exponential decaying behavior in the early time
regime is generally expected for non-critical quantum dy-
namics, which admit typical local energy scales (or time
scales). In addition, the inset plot in Fig. 10(a) shows
that TTh is independent of the system size N , as the
slope remains the same for different N within error bar.
Unlike global scrambling (global thermalization) which
requires a long time (∼ N) to achieve, achieving local
scrambling only requires a fixed amount of time set by
the ultra-violet energy scale that is independent of the
system size N . This is another advantage of using lo-
cally scrambled quantum dynamics for classical shadow
tomography in practice.

As for the DQIM ensemble, we fix the strength of the
magnetic field at h = π/4, since this value produces the
fastest on-site scrambling of a single qubit. According to
the definition Eq.(40), the only tuning parameter will be
the mean value J of Ising couplings (which also sets their
disorder strength). We calculate the frame potential gap
∆(2) for DQIM ensemble with different J . We observe
that the frame potential gap always decays exponentially
in the early time regime, in correspondence to the local
thermalization process. Then it will typically crossover
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FIG. 10. (a) Frame potential gap ∆
(2)
Eσ of the GUE2 ensem-

ble as a function of evolution time T . The inset shows the
decay behavior for different system sizes N . (b) Frame po-
tential gap of DQIM ensemble at different coupling strength
J , in comparison with that of the GUE2 ensemble. (c) The
dependence of the local scrambling time TTh on the coupling
strength J . (d) Frame potential gap for single instances in the
DQIM ensemble. Each instance corresponds to a light-green
curve in the background.

to a plateau (i.e. saturate to a finite constant) in the late
time. The early-time exponential decay region is larger
for larger J , and we use the exponential decay regime to
define the local scrambling time TTh. The result is shown
in Fig. 10(b). The DQIM ensemble also approaches local
scrambling as time evolves, although the final saturation
plateau is not as low as the GUE2 ensemble. Larger Ising
coupling J will lower the saturation plateau and shorter
the local scrambling time TTh, as shown in Fig. 10(c). In
addition, as shown in Fig. 10(d), we find the frame poten-
tial gap for a single realization quenched-disorder Hamil-
tonian does not deviate significantly from the ensemble
mean value. This indicates that a single fixed disordered
Ising chain under a randomly rotating uniform magnetic
field is already good to generate an approximately locally
scrambled ensemble that can be used for classical shadow
tomography.

In practice, we use the two proposed approximated
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FIG. 11. Fidelity prediction by (a) different approximated
locally scrambled ensembles, and (b) the GUE ensemble at
different system sizes N . Sample number is 10000 and error
bar indicates 3-standard deviation.

ensembles, (i) the GUE2 ensemble and (ii) a single in-
stance of the DQIM ensemble, to perform the tomogra-
phy task and predict the fidelity of a 7-qubit GHZ state.
In Fig. 11(a), we see the predicted fidelity will be biased
in the beginning (the biased fidelity can be greater than
one, see Appendix E for more discussions), due to the
fact that the quantum dynamics is still on its way to
establish local scrambling. After around T ∼ 10TTh,
the local scrambling condition is approximately estab-
lished, then the entanglement-feature-based reconstruc-
tion map M−1

EF can provide a good reconstruction of the
quantum state, as indicated by the convergence of the
quantum fidelity to identity. In Appendix E, we further
investigate the quantum fidelity of ρ̃ projected to the
physical space (to tame the unphysical F > 1 behavior)
and show that the reconstruction is nearly perfect after
around T ∼ 10TTh. In addition, Fig. 11(b) also shows
the local scrambling time for GUE2 is independent of
system size, which is consistent with the same behav-
ior in Fig. 10(a). The results in Fig. 11 suggest that the
entanglement-feature-based approach could be applicable
for approximately locally scrambled unitary ensembles.
The reconstruction bias vanishes as the frame potential
gap decays. As long as the frame potential gap is low
enough, the bias is also expected to be vanishingly small
for all predictions. This significantly broadens the ap-
plication of classical shadow tomography to a large class
of quantum dynamics that can be achieved on NISQ de-
vices.

IV. SUMMARY AND DISCUSSIONS

Our result can be further extended to more gen-
eral measurement channels, which can involve ancilla
qubits and partial measurements. The unitary chan-
nel can be noisy and the measurements can be weak.
Under generalized measurements, the state ρ collapses
to ρ → KaρK

†
a/(TrKaρK

†
a), where Ka is the Kraus

operators[48] associated with the measurement outcome
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a. We can define the measurement operator σ̂a = K†aKa

(with the standard normalization
∑
a σ̂a = 1), which

forms the prior snapshot ensemble Eσ = {σ̂a|P (σ̂a) =
d−N}, and the posterior snapshot ensemble will be Eσ|ρ =
{σ̂a|P (σ̂a|ρ) = Tr σ̂aρ} correspondingly. As long as the
generalized prior snapshot ensemble Eσ is locally scram-
bled, i.e. ∀V ∈ U(d)N : P (σ̂) = P (V †σ̂V ), our theoretical
framework automatically applies, and all formulations in
this work remain valid in the same form. This enables us
to consider classical shadow tomography with very gen-
eral data acquisition protocols.



σ a

oA rA

Wℰσ
(2) WℰO

(2)

O

description
of Ka

circuit
structure

circuit
simulator

EF
solver

operator
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Tr O σA
ℳ-1

solver

〈O〉 Oℰσ
2

FIG. 12. Classical post-processing protocol to estimate the
operator expectation value and shadow norm.

The entanglement feature formalism plays a central
role in our approach. Fig. 12 summarizes the proposed
classical post-processing protocol to predict the expecta-
tion value 〈O〉 of a physical observable O, together with

its estimated variance (given by the shadow norm ‖O‖2Eσ
divided by the sample size M). Given the circuit struc-
ture, the entanglement feature (EF) solver calculates the

entanglement feature W
(2)
Eσ of the prior snapshot ensem-

ble as defined in Eq. (8) (the algorithm is developed in
previous works[14, 20, 39]). The result is passed to the
inverse channel solver to calculate the reconstruction co-
efficients rA by solving Eq. (12). With rA, we can predict
any physical observable O by 〈O〉 = dN

∑
A rAoA where

oA = Eσ̂∈Eσ|ρ TrOσ̂A (the median-of-means trick[8] can

be used here if multiple observables are to be predicted).
For every sample of classical description of the Kraus
operator K, a quantum circuit simulator (running on a
classical computer) is needed to construct the (efficient
representation of) measurement operator σ̂ = K†K. The
classical simulation could be efficient if the circuit is
Clifford[49] (our formalism applies to random Clifford
circuits with no problem). The part of computation in
the dashed box of Fig. 12 should be repeated for every
sample to evaluate the ensemble average. Finally, given
the reconstruction coefficient r and the entanglement fea-

tures W
(2)
Eσ and W

(2)
EO , the shadow norm ‖O‖Eσ can be

calculated, which provides an estimation for variance of

the predicted observable. Although it takes some ef-
fort to process the entanglement feature data and to cal-
culate the reconstruction coefficients, such computation
(everything outside the dashed box in Fig. 12) only oc-
curs once for a given circuit structure, therefore this com-
putational effort is usually affordable (especially when
efficient tensor-network approaches are developed and
employed)[50].

Ψ〉

FIG. 13. Illustration of holographic classical shadow tomog-
raphy scheme, where the quantum circuit is arranged in a
hierarchical structure (forming the hyperbolic bulk space).

The theoretical framework established in this work ex-
tends the classical shadow tomography to general quan-
tum circuits, which opens up many possible applications.
As one interesting example, we consider performing the
classical shadow tomography in the “holographic bulk”
by transforming the original state by a random Clifford
circuit arranged in a hierarchical structure (see Fig. 13),
similar to the multi-scale entanglement renormalization
ansatz (MERA) network[51, 52] or the holographic quan-
tum error-correcting code[53]. Following the idea of holo-
graphic duality, local measurements in the holographic
bulk translate to measurements at all different scales on
the holographic boundary. Therefore it is conceivable
that the holographic classical shadow tomography could
achieve high sample efficiency for operators of all scales,
potentially evading the dichotomy between sample com-
plexity and circuit complexity.

Another interesting application is to consider random
circuits hybrid with random measurements inserted into
the circuit at a fixed rate[54–58]. Conditioned on the in-
termediate measurement outcomes, the hybrid quantum
circuit forms a quantum channel that transmits quantum
information from end to end. Driven by the measure-
ment rate, the final state can undergo an entanglement
transition[19, 59, 60] (or the quantum channel can un-
dergo a purification transition[61] equivalently). When
the measurement rate is high, the quantum information
in the initial state can be efficiently extracted by interme-
diate measurements (eavesdroppers), such that the chan-
nel has zero transmission capacity. When the measure-
ment rate is lower than a critical threshold, the channel
will have a finite capacity and can transmit quantum
information in an error-correcting manner.[18, 20, 62]
However, it is unclear how to take advantage of the self-
organized quantum error correction in these hybrid quan-
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tum circuits. We anticipate that the classical shadow
tomography with a flexible measurement scheme can
help decoding the measurement-induced quantum error-
correcting code. We will leave these interesting applica-
tions for future explorations.

Finally, the classical shadow tomography provides an
efficient interface that converts quantum states to classi-
cal shadow data, which enables us to exploit the power
of classical computation, especially data-driven and ma-
chine learning approaches, to advance our understanding
of complex quantum systems and to solve challenging
quantum many-body problems. As shown in Ref. [63],
classical algorithms that learns from the classical shadow
data has provable performance advantages over conven-
tional numerical approaches that do not learn of data.
Our work further adds to this promising direction by

providing a more flexible classical shadow tomography
scheme that works with very general measurement pro-
tocols (beyond on-site Pauli measurements), which could
lead to potentially more efficient classical-shadow-based
learning algorithms.
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Appendix A: Entanglement feature and the reconstruction channel

In this appendix, we discuss the details about the derivation on measurement channel σ =M[ρ] and reconstruction
channel ρ =M−1[σ]. With the notation developed in II A, the expected classical snapshot σ is expressed as

σ =M[ρ] =
∑

σ̂∈Eσ
σ̂Tr(σ̂ρ)dN . (A1)

By utilizing the assumption that prior ensemble Eσ is locally scrambled, i.e. P (σ̂) = P (V †σ̂V ),∀V ∈ U(d)N , we are
free to insert local basis transformations V , and average it out. By doing so, we have

σ = EV ∈U(d)NEσ̂∈EσV †σ̂V Tr(V †σ̂V ρ)dN
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<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂

<latexit sha1_base64="B0geynJuhsRuSaJmRliiZ+739lw=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXV89yEfhHg4pHJa8+2qU3fmQKvELUgVCrR8+2sQJiSLqdCEY6X6rpNqL8dSM8LptDzIFE0xGeMh7RsqcEyVl88Pn6Izo4QoSqQpodFc/T2R41ipSRyYzhjrkVr2ZuJ/Xj/T0ZWXM5FmmgqyWBRlHOkEzVJAIZOUaD4xBBPJzK2IjLDERJusyiYEd/nlVdJp1N2LunPXqDavizhKcAKncA4uXEITbqEFbSCQwTO8wpv1ZL1Y79bHonXNKmaO4Q+szx/UbZKJ</latexit>

V †
1<latexit sha1_base64="dbAS1MppO+a48Bhk5uvT9/5C2N8=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXX8xkM+CPFwSOW05ttVp+7MgVaJW5AqFGj59tcgTEgWU6EJx0r1XSfVXo6lZoTTaXmQKZpiMsZD2jdU4JgqL58fPkVnRglRlEhTQqO5+nsix7FSkzgwnTHWI7XszcT/vH6moysvZyLNNBVksSjKONIJmqWAQiYp0XxiCCaSmVsRGWGJiTZZlU0I7vLLq6TTqLsXdeeuUW1eF3GU4ARO4RxcuIQm3EIL2kAgg2d4hTfryXqx3q2PReuaVcwcwx9Ynz/V/JKK</latexit>

V †
2

<latexit sha1_base64="qaAxhR0usL+/cKDVyHr9A3ujyn4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJdgKnkpSED1JwYsnqWA/oI1hs9mkSzebsLsRaugv8eJBEa/+FG/+G7dtDtr6YODx3gwz8/yUUals+9sora1vbG6Vtys7u3v7VfPgsCuTTGDSwQlLRN9HkjDKSUdRxUg/FQTFPiM9f3w983uPREia8Hs1SYkbo4jTkGKktOSZ1XrXu33IhwGKIiKmdc+s2Q17DmuVOAWpQYG2Z34NgwRnMeEKMyTlwLFT5eZIKIoZmVaGmSQpwmMUkYGmHMVEuvn88Kl1qpXAChOhiytrrv6eyFEs5ST2dWeM1EguezPxP2+QqfDSzSlPM0U4XiwKM2apxJqlYAVUEKzYRBOEBdW3WniEBMJKZ1XRITjLL6+SbrPhnDfsu2atdVXEUYZjOIEzcOACWnADbegAhgye4RXejCfjxXg3PhatJaOYOYI/MD5/AAGvkqY=</latexit>

V †
N

<latexit sha1_base64="ohPnHi7E4j3OzQdW7VXXGh0m/jU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfrXV96r9csWtuQuQdeLlpAI5mv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmaim2DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpFWveVc196FeadzmcRThDM7hEjy4hgbcQxN8YMDhGV7hzZHOi/PufCxbC04+cwp/4Hz+AI/Kjdg=</latexit>

V1
<latexit sha1_base64="7il+WGWawu3ZO//03bcPmOjQuKQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QQn+DFw+KePUHefPfuP04aOuDgcd7M8zMC1PBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjrJFEOfJSJRnZBqFFyib7gR2EkV0jgU2A7HdzO//YRK80Q+mkmKQUyHkkecUWMlv9rq16v9csWtuXOQdeItSQWWaPbLX71BwrIYpWGCat313NQEOVWGM4HTUi/TmFI2pkPsWippjDrI58dOyYVVBiRKlC1pyFz9PZHTWOtJHNrOmJqRXvVm4n9eNzPRTZBzmWYGJVssijJBTEJmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6adVr3lXNfahXGrfLOIpwBudwCR5cQwPuoQk+MODwDK/w5kjnxXl3PhatBWc5cwp/4Hz+AJFPjdk=</latexit>

V2

<latexit sha1_base64="r887mJgny0GbhyRsIbXwdzmbvGo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OJJKphaaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DJJphn3WSIT3Q6p4VIo7qNAydup5jQOJX8MRzcz//GJayMS9YDjlAcxHSgRCUbRSn611bur9soVt+bOQVaJl5MK5Gj2yl/dfsKymCtkkhrT8dwUgwnVKJjk01I3MzylbEQHvGOpojE3wWR+7JScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRlfBRKg0Q67YYlGUSYIJmX1O+kJzhnJsCWVa2FsJG1JNGdp8SjYEb/nlVdKq17yLmntfrzSu8ziKcAKncA4eXEIDbqEJPjAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwC72431</latexit>

VN

<latexit sha1_base64="cQOn2G8zZKSPd3udwbyfIfIb0Yg=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4KrsF0ZMUvHisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWM/7RmvrG5tb24Wd4u7e/sFh6ei4ZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Ob2d++4lpw5V8sJOEBTEZSh5xSqyTWpWeHqlKv1T2qt4ceJX4OSlDjka/9NUbKJrGTFoqiDFd30tskBFtORVsWuylhiWEjsmQdR2VJGYmyObXTvG5UwY4UtqVtHiu/p7ISGzMJA5dZ0zsyCx7M/E/r5va6DrIuExSyyRdLIpSga3Cs9fxgGtGrZg4Qqjm7lZMR0QTal1ARReCv/zyKmnVqv5l1buvles3eRwFOIUzuAAfrqAOd9CAJlB4hGd4hTek0At6Rx+L1jWUz5zAH6DPH9h5jqE=</latexit>⇢
<latexit sha1_base64="JiO7HHGBBSt9ZYAYZS6udmFOGjU="></latexit>

E
V 2U(d)N

E
�̂2E�

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂
<latexit sha1_base64="mCtE+A+/BkK6rv8bc/S6IQ7+aFc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI+FXjxJBVMLbSib7aZdursJuxuhhP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0o508bzvp3SxubW9k55t7K3f3B4VD0+6egkU4QGJOGJ6kZYU84kDQwznHZTRbGIOH2MJq25//hElWaJfDDTlIYCjySLGcHGSkG9NbirD6o1z/UWQOvEL0gNCrQH1a/+MCGZoNIQjrXu+V5qwhwrwwins0o/0zTFZIJHtGepxILqMF8cO0MXVhmiOFG2pEEL9fdEjoXWUxHZToHNWK96c/E/r5eZ+CbMmUwzQyVZLoozjkyC5p+jIVOUGD61BBPF7K2IjLHCxNh8KjYEf/XlddJpuP6V6903ak23iKMMZ3AOl+DDNTThFtoQAAEGz/AKb450Xpx352PZWnKKmVP4A+fzB5oGjdI=</latexit>

CN

<latexit sha1_base64="VSeLB0OprMazB1kLlhY6E29KcBE=">AAAB7HicbVBNS8NAEJ2tX7V+VT16WWwFTyEpiB4LvXisYNpCG8pmu2mXbjZhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjuNyptbe/s7pX3KweHR8cn1dOzjk4yRZlPE5GoXkg0E1wy33AjWC9VjMShYN1w2lr43SemNE/ko5mlLIjJWPKIU2Ks5Ndbw0Z9WK25jrsE3iReQWpQoD2sfg1GCc1iJg0VROu+56YmyIkynAo2rwwyzVJCp2TM+pZKEjMd5Mtj5/jKKiMcJcqWNHip/p7ISaz1LA5tZ0zMRK97C/E/r5+Z6C7IuUwzwyRdLYoygU2CF5/jEVeMGjGzhFDF7a2YTogi1Nh8KjYEb/3lTdJpON6N4z40ak2niKMMF3AJ1+DBLTThHtrgAwUOz/AKb0iiF/SOPlatJVTMnMMfoM8fb3qNtg==</latexit>

C2

<latexit sha1_base64="DvRKtRz7jqybKI7OptP0aMgjWUc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI+FXjxWMG2hDWWz3bRLdzdhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmRSln2njet1Pa2t7Z3SvvVw4Oj45PqqdnHZ1kitCAJDxRvQhrypmkgWGG016qKBYRp91o2lr43SeqNEvko5mlNBR4LFnMCDZWCuqtoV8fVmue6y2BNolfkBoUaA+rX4NRQjJBpSEca933vdSEOVaGEU7nlUGmaYrJFI9p31KJBdVhvjx2jq6sMkJxomxJg5bq74kcC61nIrKdApuJXvcW4n9ePzPxXZgzmWaGSrJaFGccmQQtPkcjpigxfGYJJorZWxGZYIWJsflUbAj++subpNNw/RvXe2jUmm4RRxku4BKuwYdbaMI9tCEAAgye4RXeHOm8OO/Ox6q15BQz5/AHzucPbfWNtQ==</latexit>

C1

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="jAGh5EP2fJ702h7h8k0WM6i1eck=">AAAB7XicbVDLSgMxFL2pr1pfVZdugq3gqswURJcVNy4r2Ae0Q8mkmTY2kwxJRihDwU9w40IRt/6PO//G9LHQ1gMXDufcy733hIngxnreN8qtrW9sbuW3Czu7e/sHxcOjplGppqxBlVC6HRLDBJesYbkVrJ1oRuJQsFY4upn6rUemDVfy3o4TFsRkIHnEKbFOapa7eqjKvWLJq3gz4FXiL0gJFqj3il/dvqJpzKSlghjT8b3EBhnRllPBJoVualhC6IgMWMdRSWJmgmx27QSfOaWPI6VdSYtn6u+JjMTGjOPQdcbEDs2yNxX/8zqpja6CjMsktUzS+aIoFdgqPH0d97lm1IqxI4Rq7m7FdEg0odYFVHAh+Msvr5JmteJfVLy7aql2/TSPIw8ncArn4MMl1OAW6tAACg/wDK/whhR6Qe/oY96aQ4sIj+EP0OcP/2CPJA==</latexit>⇢

<latexit sha1_base64="4GeEkIRPU/sXu62fXIrnBNguH5Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FLx4rmLbQhrLZbtqlm92wuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH1eOTtpaZIjQgkkvVjbCmnAkaGGY47aaK4iTitBNN7uZ+54kqzaR4NNOUhgkeCRYzgo2VgvrtwK8PqjXP9RZA68QvSA0KtAbVr/5QkiyhwhCOte75XmrCHCvDCKezSj/TNMVkgke0Z6nACdVhvjh2hi6sMkSxVLaEQQv190SOE62nSWQ7E2zGetWbi/95vczEN2HORJoZKshyUZxxZCSaf46GTFFi+NQSTBSztyIyxgoTY/Op2BD81ZfXSbvh+leu99CoNd0ijjKcwTlcgg/X0IR7aEEABBg8wyu8OcJ5cd6dj2VrySlmTuEPnM8fbG6NtA==</latexit>

B1

<latexit sha1_base64="3abWjxVVSwB6AUkey4jOB0k8O0o=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FLx4rmLbQhrLZbtqlm92wuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH1eOTtpaZIjQgkkvVjbCmnAkaGGY47aaK4iTitBNN7uZ+54kqzaR4NNOUhgkeCRYzgo2VgvrtoFEfVGue6y2A1olfkBoUaA2qX/2hJFlChSEca93zvdSEOVaGEU5nlX6maYrJBI9oz1KBE6rDfHHsDF1YZYhiqWwJgxbq74kcJ1pPk8h2JtiM9ao3F//zepmJb8KciTQzVJDlojjjyEg0/xwNmaLE8KklmChmb0VkjBUmxuZTsSH4qy+vk3bD9a9c76FRa7pFHGU4g3O4BB+uoQn30IIACDB4hld4c4Tz4rw7H8vWklPMnMIfOJ8/bfONtQ==</latexit>

B2

<latexit sha1_base64="TYWFVGWUQ3WnQS8FJQnT1IGzknw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FL56kgqmFNpTNdtMu3d2E3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6WcaeN5305pbX1jc6u8XdnZ3ds/qB4etXWSKUIDkvBEdSKsKWeSBoYZTjupolhEnD5G45uZ//hElWaJfDCTlIYCDyWLGcHGSkH9un9X71drnuvNgVaJX5AaFGj1q1+9QUIyQaUhHGvd9b3UhDlWhhFOp5VepmmKyRgPaddSiQXVYT4/dorOrDJAcaJsSYPm6u+JHAutJyKynQKbkV72ZuJ/Xjcz8VWYM5lmhkqyWBRnHJkEzT5HA6YoMXxiCSaK2VsRGWGFibH5VGwI/vLLq6TdcP0L17tv1JpuEUcZTuAUzsGHS2jCLbQgAAIMnuEV3hzpvDjvzseiteQUM8fwB87nD5h/jdE=</latexit>

BN

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="9qUsmnGn8/j4XV20CkJFSkPtKL0=">AAAB+nicbZBLSwMxFIUz9VXra6pLN8FWcCFlpiC6rHbjsoJ9QDsMmTTThmYeJHfUMg74R9y4UMStv8Sd/8b0sdDWA4GPc27IzfFiwRVY1reRW1ldW9/Ibxa2tnd298zifktFiaSsSSMRyY5HFBM8ZE3gIFgnlowEnmBtb1Sf5O07JhWPwlsYx8wJyCDkPqcEtOWaxXIP2AOk7UHmplen9azsmiWrYk2Fl8GeQwnN1XDNr14/oknAQqCCKNW1rRiclEjgVLCs0EsUiwkdkQHragxJwJSTTlfP8LF2+tiPpD4h4Kn7+0ZKAqXGgacnAwJDtZhNzP+ybgL+hZPyME6AhXT2kJ8IDBGe9ID7XDIKYqyBUMn1rpgOiSQUdFsFXYK9+OVlaFUr9lnFuqmWapdPszry6BAdoRNko3NUQ9eogZqIonv0jF7Rm/FovBjvxsdsNGfMKzxAf2R8/gClGpP9</latexit>

WgB,C

<latexit sha1_base64="ZqB1m1Y8wzeZfj42WXYmZRB1TbI=">AAAB7HicbVBNSwMxEJ34WetX1aOXYCt4KrsF0WPFiyep4LaFdi3ZbLYNzWaXJCuUpeA/8OJBEa/+IG/+G9OPg7Y+GHi8N8PMvCAVXBvH+UYrq2vrG5uFreL2zu7efungsKmTTFHm0UQkqh0QzQSXzDPcCNZOFSNxIFgrGF5P/NYjU5on8t6MUubHpC95xCkxVvIq4cNtpVcqO1VnCrxM3DkpwxyNXumrGyY0i5k0VBCtO66TGj8nynAq2LjYzTRLCR2SPutYKknMtJ9Pjx3jU6uEOEqULWnwVP09kZNY61Ec2M6YmIFe9Cbif14nM9Gln3OZZoZJOlsUZQKbBE8+xyFXjBoxsoRQxe2tmA6IItTYfIo2BHfx5WXSrFXd86pzVyvXr55mcRTgGE7gDFy4gDrcQAM8oMDhGV7hDUn0gt7Rx6x1Bc0jPII/QJ8/9p6OhQ==</latexit>

dN

<latexit sha1_base64="ZqB1m1Y8wzeZfj42WXYmZRB1TbI=">AAAB7HicbVBNSwMxEJ34WetX1aOXYCt4KrsF0WPFiyep4LaFdi3ZbLYNzWaXJCuUpeA/8OJBEa/+IG/+G9OPg7Y+GHi8N8PMvCAVXBvH+UYrq2vrG5uFreL2zu7efungsKmTTFHm0UQkqh0QzQSXzDPcCNZOFSNxIFgrGF5P/NYjU5on8t6MUubHpC95xCkxVvIq4cNtpVcqO1VnCrxM3DkpwxyNXumrGyY0i5k0VBCtO66TGj8nynAq2LjYzTRLCR2SPutYKknMtJ9Pjx3jU6uEOEqULWnwVP09kZNY61Ec2M6YmIFe9Cbif14nM9Gln3OZZoZJOlsUZQKbBE8+xyFXjBoxsoRQxe2tmA6IItTYfIo2BHfx5WXSrFXd86pzVyvXr55mcRTgGE7gDFy4gDrcQAM8oMDhGV7hDUn0gt7Rx6x1Bc0jPII/QJ8/9p6OhQ==</latexit>

dN

<latexit sha1_base64="JevVSSNAErynAHO15rsRylQjnZU=">AAACD3icbVDLSgMxFM3Ud32NunQTbBUXUmYKoksfG1c+wFqhM5ZMeltDk8yQZIQyDPgBbvwVNy4UcevWnX9j+lio9cCFwznnktwTJZxp43lfTmFicmp6ZnauOL+wuLTsrqxe6ThVFGo05rG6jogGziTUDDMcrhMFREQc6lH3uO/X70BpFstL00sgFKQjWZtRYqzUdLfKQSpbNgAmO9o5DpjE1ZssOBPQIc3TPM8CnYq83HRLXsUbAI8Tf0RKaITzpvsZtGKaCpCGcqJ1w/cSE2ZEGUY55MUg1ZAQ2iUdaFgqiQAdZoN7crxplRZux8qONHig/tzIiNC6JyKbFMTc6r9eX/zPa6SmvR9mTCapAUmHD7VTjk2M++XgFlNADe9ZQqhi9q+Y3hJFqLENFW0J/t+Tx8lVteLvVryLaung8H5YxyxaRxtoG/loDx2gE3SOaoiiB/SEXtCr8+g8O2/O+zBacEYVrqFfcD6+AanknNU=</latexit> P
B,C22⌦N

<latexit sha1_base64="3l9S+8e/8Gc1J3UpfjnPxVNgOMo=">AAACJXicbZDLSgMxFIYz9VbrrerSTbAVXJWZgujCRUUElxXsBTplOJNJ29BMZkgyQhkGfBY3voobFxYRXPkqphdBWw8k/Hz/CTnn92POlLbtTyu3srq2vpHfLGxt7+zuFfcPmipKJKENEvFItn1QlDNBG5ppTtuxpBD6nLb84fXEbz1QqVgk7vUopt0Q+oL1GAFtkFe8LLuJCEwD1ak7AHMp1g8hc5lwQ9ADAjy9ybwfnKVT6vsGZmWvWLIr9rTwsnDmooTmVfeKYzeISBJSoQkHpTqOHetuClIzwmlWcBNFYyBD6NOOkQJCqrrpdMsMnxgS4F4kzREaT+nvFymESo1C33ROZlSL3gT+53US3bvopkzEiaaCzD7qJRzrCE8iwwGTlGg+MgKIZGZWTAYggWiTW8GE4CyuvCya1YpzVrHvqqXa1eMsjjw6QsfoFDnoHNXQLaqjBiLoCb2gNzS2nq1X6936mLXmrHmEh+hPWV/fOTSn8Q==</latexit>

E
�̂2E�

<latexit sha1_base64="d4nM6fh78HkrD/mAXlHxNfSnl+s=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYCLkFHYDoseIF48RzQOSJcxOepMhs7PLzKwQloA/4MWDIl79Im/+jZPHQRMLGoqqbrq7gkRwbVz321lb39jc2s7t5Hf39g8OC0fHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6xGV5rF8MOME/YgOJA85o8ZK96VyqVcouhV3BrJKvAUpwgL1XuGr249ZGqE0TFCtO56bGD+jynAmcJLvphoTykZ0gB1LJY1Q+9ns1Ak5t0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9TL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfRv0ucKmRFjSyhT3N5K2JAqyoxNJ29D8JZfXiXNasW7qLh31WLt+mkeRw5O4QzK4MEl1OAW6tAABgN4hld4c4Tz4rw7H/PWNWcR4Qn8gfP5A0rHjYk=</latexit>

(
<latexit sha1_base64="t8fuDeIaxRJrJRK+Tnc7tbt3tDM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYCLoJewGRI8RLx4jmgckS5id9CZDZmeXmVkhLAF/wIsHRbz6Rd78GyePgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3kz85iMqzWP5YEYJ+hHtSx5yRo2V7kvnpW6h6JbdKcgy8eakCHPUuoWvTi9maYTSMEG1bntuYvyMKsOZwHG+k2pMKBvSPrYtlTRC7WfTU8fk1Co9EsbKljRkqv6eyGik9SgKbGdEzUAvehPxP6+dmvDKz7hMUoOSzRaFqSAmJpO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0KmXvouzeVYrV66dZHDk4hhM4Aw8uoQq3UIM6MOjDM7zCmyOcF+fd+Zi1rjjzCI/gD5zPH0xMjYo=</latexit>

)

=

<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂

<latexit sha1_base64="B0geynJuhsRuSaJmRliiZ+739lw=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXV89yEfhHg4pHJa8+2qU3fmQKvELUgVCrR8+2sQJiSLqdCEY6X6rpNqL8dSM8LptDzIFE0xGeMh7RsqcEyVl88Pn6Izo4QoSqQpodFc/T2R41ipSRyYzhjrkVr2ZuJ/Xj/T0ZWXM5FmmgqyWBRlHOkEzVJAIZOUaD4xBBPJzK2IjLDERJusyiYEd/nlVdJp1N2LunPXqDavizhKcAKncA4uXEITbqEFbSCQwTO8wpv1ZL1Y79bHonXNKmaO4Q+szx/UbZKJ</latexit>

V †
1<latexit sha1_base64="dbAS1MppO+a48Bhk5uvT9/5C2N8=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXX8xkM+CPFwSOW05ttVp+7MgVaJW5AqFGj59tcgTEgWU6EJx0r1XSfVXo6lZoTTaXmQKZpiMsZD2jdU4JgqL58fPkVnRglRlEhTQqO5+nsix7FSkzgwnTHWI7XszcT/vH6moysvZyLNNBVksSjKONIJmqWAQiYp0XxiCCaSmVsRGWGJiTZZlU0I7vLLq6TTqLsXdeeuUW1eF3GU4ARO4RxcuIQm3EIL2kAgg2d4hTfryXqx3q2PReuaVcwcwx9Ynz/V/JKK</latexit>

V †
2

<latexit sha1_base64="qaAxhR0usL+/cKDVyHr9A3ujyn4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJdgKnkpSED1JwYsnqWA/oI1hs9mkSzebsLsRaugv8eJBEa/+FG/+G7dtDtr6YODx3gwz8/yUUals+9sora1vbG6Vtys7u3v7VfPgsCuTTGDSwQlLRN9HkjDKSUdRxUg/FQTFPiM9f3w983uPREia8Hs1SYkbo4jTkGKktOSZ1XrXu33IhwGKIiKmdc+s2Q17DmuVOAWpQYG2Z34NgwRnMeEKMyTlwLFT5eZIKIoZmVaGmSQpwmMUkYGmHMVEuvn88Kl1qpXAChOhiytrrv6eyFEs5ST2dWeM1EguezPxP2+QqfDSzSlPM0U4XiwKM2apxJqlYAVUEKzYRBOEBdW3WniEBMJKZ1XRITjLL6+SbrPhnDfsu2atdVXEUYZjOIEzcOACWnADbegAhgye4RXejCfjxXg3PhatJaOYOYI/MD5/AAGvkqY=</latexit>

V †
N

<latexit sha1_base64="ohPnHi7E4j3OzQdW7VXXGh0m/jU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfrXV96r9csWtuQuQdeLlpAI5mv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmaim2DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpFWveVc196FeadzmcRThDM7hEjy4hgbcQxN8YMDhGV7hzZHOi/PufCxbC04+cwp/4Hz+AI/Kjdg=</latexit>

V1
<latexit sha1_base64="7il+WGWawu3ZO//03bcPmOjQuKQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QQn+DFw+KePUHefPfuP04aOuDgcd7M8zMC1PBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjrJFEOfJSJRnZBqFFyib7gR2EkV0jgU2A7HdzO//YRK80Q+mkmKQUyHkkecUWMlv9rq16v9csWtuXOQdeItSQWWaPbLX71BwrIYpWGCat313NQEOVWGM4HTUi/TmFI2pkPsWippjDrI58dOyYVVBiRKlC1pyFz9PZHTWOtJHNrOmJqRXvVm4n9eNzPRTZBzmWYGJVssijJBTEJmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6adVr3lXNfahXGrfLOIpwBudwCR5cQwPuoQk+MODwDK/w5kjnxXl3PhatBWc5cwp/4Hz+AJFPjdk=</latexit>

V2

<latexit sha1_base64="r887mJgny0GbhyRsIbXwdzmbvGo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OJJKphaaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DJJphn3WSIT3Q6p4VIo7qNAydup5jQOJX8MRzcz//GJayMS9YDjlAcxHSgRCUbRSn611bur9soVt+bOQVaJl5MK5Gj2yl/dfsKymCtkkhrT8dwUgwnVKJjk01I3MzylbEQHvGOpojE3wWR+7JScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRlfBRKg0Q67YYlGUSYIJmX1O+kJzhnJsCWVa2FsJG1JNGdp8SjYEb/nlVdKq17yLmntfrzSu8ziKcAKncA4eXEIDbqEJPjAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwC72431</latexit>

VN

<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂

<latexit sha1_base64="B0geynJuhsRuSaJmRliiZ+739lw=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXV89yEfhHg4pHJa8+2qU3fmQKvELUgVCrR8+2sQJiSLqdCEY6X6rpNqL8dSM8LptDzIFE0xGeMh7RsqcEyVl88Pn6Izo4QoSqQpodFc/T2R41ipSRyYzhjrkVr2ZuJ/Xj/T0ZWXM5FmmgqyWBRlHOkEzVJAIZOUaD4xBBPJzK2IjLDERJusyiYEd/nlVdJp1N2LunPXqDavizhKcAKncA4uXEITbqEFbSCQwTO8wpv1ZL1Y79bHonXNKmaO4Q+szx/UbZKJ</latexit>

V †
1<latexit sha1_base64="dbAS1MppO+a48Bhk5uvT9/5C2N8=">AAAB+HicbVBNS8NAEJ34WetHox69LLaCp5IURE9S8OKxgv2ANobNZtMu3WzC7kaoob/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb2ttfWNza7u0U97d2z+o2IdHHZVkktA2SXgiewFWlDNB25ppTnuppDgOOO0G45uZ332kUrFE3OtJSr0YDwWLGMHaSL5dqXX8xkM+CPFwSOW05ttVp+7MgVaJW5AqFGj59tcgTEgWU6EJx0r1XSfVXo6lZoTTaXmQKZpiMsZD2jdU4JgqL58fPkVnRglRlEhTQqO5+nsix7FSkzgwnTHWI7XszcT/vH6moysvZyLNNBVksSjKONIJmqWAQiYp0XxiCCaSmVsRGWGJiTZZlU0I7vLLq6TTqLsXdeeuUW1eF3GU4ARO4RxcuIQm3EIL2kAgg2d4hTfryXqx3q2PReuaVcwcwx9Ynz/V/JKK</latexit>

V †
2

<latexit sha1_base64="qaAxhR0usL+/cKDVyHr9A3ujyn4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJdgKnkpSED1JwYsnqWA/oI1hs9mkSzebsLsRaugv8eJBEa/+FG/+G7dtDtr6YODx3gwz8/yUUals+9sora1vbG6Vtys7u3v7VfPgsCuTTGDSwQlLRN9HkjDKSUdRxUg/FQTFPiM9f3w983uPREia8Hs1SYkbo4jTkGKktOSZ1XrXu33IhwGKIiKmdc+s2Q17DmuVOAWpQYG2Z34NgwRnMeEKMyTlwLFT5eZIKIoZmVaGmSQpwmMUkYGmHMVEuvn88Kl1qpXAChOhiytrrv6eyFEs5ST2dWeM1EguezPxP2+QqfDSzSlPM0U4XiwKM2apxJqlYAVUEKzYRBOEBdW3WniEBMJKZ1XRITjLL6+SbrPhnDfsu2atdVXEUYZjOIEzcOACWnADbegAhgye4RXejCfjxXg3PhatJaOYOYI/MD5/AAGvkqY=</latexit>

V †
N

<latexit sha1_base64="ohPnHi7E4j3OzQdW7VXXGh0m/jU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHSSKYY+S0SiOiHVKLhE33AjsJMqpHEosB2O7+Z++wmV5ol8NJMUg5gOJY84o8ZKfrXV96r9csWtuQuQdeLlpAI5mv3yV2+QsCxGaZigWnc9NzXBlCrDmcBZqZdpTCkb0yF2LZU0Rh1MF8fOyIVVBiRKlC1pyEL9PTGlsdaTOLSdMTUjverNxf+8bmaim2DKZZoZlGy5KMoEMQmZf04GXCEzYmIJZYrbWwkbUUWZsfmUbAje6svrpFWveVc196FeadzmcRThDM7hEjy4hgbcQxN8YMDhGV7hzZHOi/PufCxbC04+cwp/4Hz+AI/Kjdg=</latexit>

V1
<latexit sha1_base64="7il+WGWawu3ZO//03bcPmOjQuKQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OKxgmkLbSib7aRdutmE3Y1QQn+DFw+KePUHefPfuP04aOuDgcd7M8zMC1PBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjrJFEOfJSJRnZBqFFyib7gR2EkV0jgU2A7HdzO//YRK80Q+mkmKQUyHkkecUWMlv9rq16v9csWtuXOQdeItSQWWaPbLX71BwrIYpWGCat313NQEOVWGM4HTUi/TmFI2pkPsWippjDrI58dOyYVVBiRKlC1pyFz9PZHTWOtJHNrOmJqRXvVm4n9eNzPRTZBzmWYGJVssijJBTEJmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6adVr3lXNfahXGrfLOIpwBudwCR5cQwPuoQk+MODwDK/w5kjnxXl3PhatBWc5cwp/4Hz+AJFPjdk=</latexit>

V2

<latexit sha1_base64="r887mJgny0GbhyRsIbXwdzmbvGo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURE9S8OJJKphaaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DJJphn3WSIT3Q6p4VIo7qNAydup5jQOJX8MRzcz//GJayMS9YDjlAcxHSgRCUbRSn611bur9soVt+bOQVaJl5MK5Gj2yl/dfsKymCtkkhrT8dwUgwnVKJjk01I3MzylbEQHvGOpojE3wWR+7JScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRlfBRKg0Q67YYlGUSYIJmX1O+kJzhnJsCWVa2FsJG1JNGdp8SjYEb/nlVdKq17yLmntfrzSu8ziKcAKncA4eXEIDbqEJPjAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwC72431</latexit>

VN

<latexit sha1_base64="cQOn2G8zZKSPd3udwbyfIfIb0Yg=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4KrsF0ZMUvHisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWM/7RmvrG5tb24Wd4u7e/sFh6ei4ZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Ob2d++4lpw5V8sJOEBTEZSh5xSqyTWpWeHqlKv1T2qt4ceJX4OSlDjka/9NUbKJrGTFoqiDFd30tskBFtORVsWuylhiWEjsmQdR2VJGYmyObXTvG5UwY4UtqVtHiu/p7ISGzMJA5dZ0zsyCx7M/E/r5va6DrIuExSyyRdLIpSga3Cs9fxgGtGrZg4Qqjm7lZMR0QTal1ARReCv/zyKmnVqv5l1buvles3eRwFOIUzuAAfrqAOd9CAJlB4hGd4hTek0At6Rx+L1jWUz5zAH6DPH9h5jqE=</latexit>⇢
<latexit sha1_base64="JiO7HHGBBSt9ZYAYZS6udmFOGjU="></latexit>

E
V 2U(d)N

E
�̂2E�

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂<latexit sha1_base64="zZ/yyZ5V+BVibz24XkDxBfI3ryc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFvBU9ktiB4LevBYwX5Ady2zabYNTbJLklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nitAWiXmsuiFoypmkLcMMp91EURAhp51wfD3zO49UaRbLezNJaCBgKFnECBgrPVT9EZjM12woYFrtlytuzZ0DrxIvJxWUo9kvf/mDmKSCSkM4aN3z3MQEGSjDCKfTkp9qmgAZw5D2LJUgqA6y+dVTfGaVAY5iZUsaPFd/T2QgtJ6I0HYKMCO97M3E/7xeaqKrIGMySQ2VZLEoSjk2MZ5FgAdMUWL4xBIgitlbMRmBAmJsUCUbgrf88ipp12veRc29q1caN3kcRXSCTtE58tAlaqBb1EQtRJBCz+gVvTlPzovz7nwsWgtOPnOM/sD5/AEyOpJQ</latexit>

�̂
<latexit sha1_base64="mCtE+A+/BkK6rv8bc/S6IQ7+aFc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI+FXjxJBVMLbSib7aZdursJuxuhhP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0o508bzvp3SxubW9k55t7K3f3B4VD0+6egkU4QGJOGJ6kZYU84kDQwznHZTRbGIOH2MJq25//hElWaJfDDTlIYCjySLGcHGSkG9NbirD6o1z/UWQOvEL0gNCrQH1a/+MCGZoNIQjrXu+V5qwhwrwwins0o/0zTFZIJHtGepxILqMF8cO0MXVhmiOFG2pEEL9fdEjoXWUxHZToHNWK96c/E/r5eZ+CbMmUwzQyVZLoozjkyC5p+jIVOUGD61BBPF7K2IjLHCxNh8KjYEf/XlddJpuP6V6903ak23iKMMZ3AOl+DDNTThFtoQAAEGz/AKb450Xpx352PZWnKKmVP4A+fzB5oGjdI=</latexit>

CN

<latexit sha1_base64="VSeLB0OprMazB1kLlhY6E29KcBE=">AAAB7HicbVBNS8NAEJ2tX7V+VT16WWwFTyEpiB4LvXisYNpCG8pmu2mXbjZhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjuNyptbe/s7pX3KweHR8cn1dOzjk4yRZlPE5GoXkg0E1wy33AjWC9VjMShYN1w2lr43SemNE/ko5mlLIjJWPKIU2Ks5Ndbw0Z9WK25jrsE3iReQWpQoD2sfg1GCc1iJg0VROu+56YmyIkynAo2rwwyzVJCp2TM+pZKEjMd5Mtj5/jKKiMcJcqWNHip/p7ISaz1LA5tZ0zMRK97C/E/r5+Z6C7IuUwzwyRdLYoygU2CF5/jEVeMGjGzhFDF7a2YTogi1Nh8KjYEb/3lTdJpON6N4z40ak2niKMMF3AJ1+DBLTThHtrgAwUOz/AKb0iiF/SOPlatJVTMnMMfoM8fb3qNtg==</latexit>

C2

<latexit sha1_base64="DvRKtRz7jqybKI7OptP0aMgjWUc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI+FXjxWMG2hDWWz3bRLdzdhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmRSln2njet1Pa2t7Z3SvvVw4Oj45PqqdnHZ1kitCAJDxRvQhrypmkgWGG016qKBYRp91o2lr43SeqNEvko5mlNBR4LFnMCDZWCuqtoV8fVmue6y2BNolfkBoUaA+rX4NRQjJBpSEca933vdSEOVaGEU7nlUGmaYrJFI9p31KJBdVhvjx2jq6sMkJxomxJg5bq74kcC61nIrKdApuJXvcW4n9ePzPxXZgzmWaGSrJaFGccmQQtPkcjpigxfGYJJorZWxGZYIWJsflUbAj++subpNNw/RvXe2jUmm4RRxku4BKuwYdbaMI9tCEAAgye4RXeHOm8OO/Ox6q15BQz5/AHzucPbfWNtQ==</latexit>

C1

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...
<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="jAGh5EP2fJ702h7h8k0WM6i1eck=">AAAB7XicbVDLSgMxFL2pr1pfVZdugq3gqswURJcVNy4r2Ae0Q8mkmTY2kwxJRihDwU9w40IRt/6PO//G9LHQ1gMXDufcy733hIngxnreN8qtrW9sbuW3Czu7e/sHxcOjplGppqxBlVC6HRLDBJesYbkVrJ1oRuJQsFY4upn6rUemDVfy3o4TFsRkIHnEKbFOapa7eqjKvWLJq3gz4FXiL0gJFqj3il/dvqJpzKSlghjT8b3EBhnRllPBJoVualhC6IgMWMdRSWJmgmx27QSfOaWPI6VdSYtn6u+JjMTGjOPQdcbEDs2yNxX/8zqpja6CjMsktUzS+aIoFdgqPH0d97lm1IqxI4Rq7m7FdEg0odYFVHAh+Msvr5JmteJfVLy7aql2/TSPIw8ncArn4MMl1OAW6tAACg/wDK/whhR6Qe/oY96aQ4sIj+EP0OcP/2CPJA==</latexit>⇢

<latexit sha1_base64="4GeEkIRPU/sXu62fXIrnBNguH5Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FLx4rmLbQhrLZbtqlm92wuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH1eOTtpaZIjQgkkvVjbCmnAkaGGY47aaK4iTitBNN7uZ+54kqzaR4NNOUhgkeCRYzgo2VgvrtwK8PqjXP9RZA68QvSA0KtAbVr/5QkiyhwhCOte75XmrCHCvDCKezSj/TNMVkgke0Z6nACdVhvjh2hi6sMkSxVLaEQQv190SOE62nSWQ7E2zGetWbi/95vczEN2HORJoZKshyUZxxZCSaf46GTFFi+NQSTBSztyIyxgoTY/Op2BD81ZfXSbvh+leu99CoNd0ijjKcwTlcgg/X0IR7aEEABBg8wyu8OcJ5cd6dj2VrySlmTuEPnM8fbG6NtA==</latexit>

B1

<latexit sha1_base64="3abWjxVVSwB6AUkey4jOB0k8O0o=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FLx4rmLbQhrLZbtqlm92wuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH1eOTtpaZIjQgkkvVjbCmnAkaGGY47aaK4iTitBNN7uZ+54kqzaR4NNOUhgkeCRYzgo2VgvrtoFEfVGue6y2A1olfkBoUaA2qX/2hJFlChSEca93zvdSEOVaGEU5nlX6maYrJBI9oz1KBE6rDfHHsDF1YZYhiqWwJgxbq74kcJ1pPk8h2JtiM9ao3F//zepmJb8KciTQzVJDlojjjyEg0/xwNmaLE8KklmChmb0VkjBUmxuZTsSH4qy+vk3bD9a9c76FRa7pFHGU4g3O4BB+uoQn30IIACDB4hld4c4Tz4rw7H8vWklPMnMIfOJ8/bfONtQ==</latexit>

B2

<latexit sha1_base64="TYWFVGWUQ3WnQS8FJQnT1IGzknw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5AURI9FL56kgqmFNpTNdtMu3d2E3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6WcaeN5305pbX1jc6u8XdnZ3ds/qB4etXWSKUIDkvBEdSKsKWeSBoYZTjupolhEnD5G45uZ//hElWaJfDCTlIYCDyWLGcHGSkH9un9X71drnuvNgVaJX5AaFGj1q1+9QUIyQaUhHGvd9b3UhDlWhhFOp5VepmmKyRgPaddSiQXVYT4/dorOrDJAcaJsSYPm6u+JHAutJyKynQKbkV72ZuJ/Xjcz8VWYM5lmhkqyWBRnHJkEzT5HA6YoMXxiCSaK2VsRGWGFibH5VGwI/vLLq6TdcP0L17tv1JpuEUcZTuAUzsGHS2jCLbQgAAIMnuEV3hzpvDjvzseiteQUM8fwB87nD5h/jdE=</latexit>

BN

<latexit sha1_base64="xWJthtG/77Epipl/zXYwa3CNffY=">AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbED1JwYvHCvYD2qVks9k2NJusSbZQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJbRHKpugHWlDNBW4YZTruJojgOOO0E47u535lQpZkUj2aaUD/GQ8EiRrCxUrfan4TS6OqgXHFr7gJonXg5qUCO5qD81Q8lSWMqDOFY657nJsbPsDKMcDor9VNNE0zGeEh7lgocU+1ni3tn6MIqIYqksiUMWqi/JzIcaz2NA9sZYzPSq95c/M/rpSa68TMmktRQQZaLopQjI9H8eRQyRYnhU0swUczeisgIK0yMjahkQ/BWX14n7XrNu6q5D/VK4zaPowhncA6X4ME1NOAemtACAhye4RXenCfnxXl3PpatBSefOYU/cD5/AIWCj5w=</latexit>...

<latexit sha1_base64="9qUsmnGn8/j4XV20CkJFSkPtKL0=">AAAB+nicbZBLSwMxFIUz9VXra6pLN8FWcCFlpiC6rHbjsoJ9QDsMmTTThmYeJHfUMg74R9y4UMStv8Sd/8b0sdDWA4GPc27IzfFiwRVY1reRW1ldW9/Ibxa2tnd298zifktFiaSsSSMRyY5HFBM8ZE3gIFgnlowEnmBtb1Sf5O07JhWPwlsYx8wJyCDkPqcEtOWaxXIP2AOk7UHmplen9azsmiWrYk2Fl8GeQwnN1XDNr14/oknAQqCCKNW1rRiclEjgVLCs0EsUiwkdkQHragxJwJSTTlfP8LF2+tiPpD4h4Kn7+0ZKAqXGgacnAwJDtZhNzP+ybgL+hZPyME6AhXT2kJ8IDBGe9ID7XDIKYqyBUMn1rpgOiSQUdFsFXYK9+OVlaFUr9lnFuqmWapdPszry6BAdoRNko3NUQ9eogZqIonv0jF7Rm/FovBjvxsdsNGfMKzxAf2R8/gClGpP9</latexit>

WgB,C

<latexit sha1_base64="ZqB1m1Y8wzeZfj42WXYmZRB1TbI=">AAAB7HicbVBNSwMxEJ34WetX1aOXYCt4KrsF0WPFiyep4LaFdi3ZbLYNzWaXJCuUpeA/8OJBEa/+IG/+G9OPg7Y+GHi8N8PMvCAVXBvH+UYrq2vrG5uFreL2zu7efungsKmTTFHm0UQkqh0QzQSXzDPcCNZOFSNxIFgrGF5P/NYjU5on8t6MUubHpC95xCkxVvIq4cNtpVcqO1VnCrxM3DkpwxyNXumrGyY0i5k0VBCtO66TGj8nynAq2LjYzTRLCR2SPutYKknMtJ9Pjx3jU6uEOEqULWnwVP09kZNY61Ec2M6YmIFe9Cbif14nM9Gln3OZZoZJOlsUZQKbBE8+xyFXjBoxsoRQxe2tmA6IItTYfIo2BHfx5WXSrFXd86pzVyvXr55mcRTgGE7gDFy4gDrcQAM8oMDhGV7hDUn0gt7Rx6x1Bc0jPII/QJ8/9p6OhQ==</latexit>

dN

<latexit sha1_base64="ZqB1m1Y8wzeZfj42WXYmZRB1TbI=">AAAB7HicbVBNSwMxEJ34WetX1aOXYCt4KrsF0WPFiyep4LaFdi3ZbLYNzWaXJCuUpeA/8OJBEa/+IG/+G9OPg7Y+GHi8N8PMvCAVXBvH+UYrq2vrG5uFreL2zu7efungsKmTTFHm0UQkqh0QzQSXzDPcCNZOFSNxIFgrGF5P/NYjU5on8t6MUubHpC95xCkxVvIq4cNtpVcqO1VnCrxM3DkpwxyNXumrGyY0i5k0VBCtO66TGj8nynAq2LjYzTRLCR2SPutYKknMtJ9Pjx3jU6uEOEqULWnwVP09kZNY61Ec2M6YmIFe9Cbif14nM9Gln3OZZoZJOlsUZQKbBE8+xyFXjBoxsoRQxe2tmA6IItTYfIo2BHfx5WXSrFXd86pzVyvXr55mcRTgGE7gDFy4gDrcQAM8oMDhGV7hDUn0gt7Rx6x1Bc0jPII/QJ8/9p6OhQ==</latexit>

dN

<latexit sha1_base64="JevVSSNAErynAHO15rsRylQjnZU=">AAACD3icbVDLSgMxFM3Ud32NunQTbBUXUmYKoksfG1c+wFqhM5ZMeltDk8yQZIQyDPgBbvwVNy4UcevWnX9j+lio9cCFwznnktwTJZxp43lfTmFicmp6ZnauOL+wuLTsrqxe6ThVFGo05rG6jogGziTUDDMcrhMFREQc6lH3uO/X70BpFstL00sgFKQjWZtRYqzUdLfKQSpbNgAmO9o5DpjE1ZssOBPQIc3TPM8CnYq83HRLXsUbAI8Tf0RKaITzpvsZtGKaCpCGcqJ1w/cSE2ZEGUY55MUg1ZAQ2iUdaFgqiQAdZoN7crxplRZux8qONHig/tzIiNC6JyKbFMTc6r9eX/zPa6SmvR9mTCapAUmHD7VTjk2M++XgFlNADe9ZQqhi9q+Y3hJFqLENFW0J/t+Tx8lVteLvVryLaung8H5YxyxaRxtoG/loDx2gE3SOaoiiB/SEXtCr8+g8O2/O+zBacEYVrqFfcD6+AanknNU=</latexit> P
B,C22⌦N

<latexit sha1_base64="3l9S+8e/8Gc1J3UpfjnPxVNgOMo=">AAACJXicbZDLSgMxFIYz9VbrrerSTbAVXJWZgujCRUUElxXsBTplOJNJ29BMZkgyQhkGfBY3voobFxYRXPkqphdBWw8k/Hz/CTnn92POlLbtTyu3srq2vpHfLGxt7+zuFfcPmipKJKENEvFItn1QlDNBG5ppTtuxpBD6nLb84fXEbz1QqVgk7vUopt0Q+oL1GAFtkFe8LLuJCEwD1ak7AHMp1g8hc5lwQ9ADAjy9ybwfnKVT6vsGZmWvWLIr9rTwsnDmooTmVfeKYzeISBJSoQkHpTqOHetuClIzwmlWcBNFYyBD6NOOkQJCqrrpdMsMnxgS4F4kzREaT+nvFymESo1C33ROZlSL3gT+53US3bvopkzEiaaCzD7qJRzrCE8iwwGTlGg+MgKIZGZWTAYggWiTW8GE4CyuvCya1YpzVrHvqqXa1eMsjjw6QsfoFDnoHNXQLaqjBiLoCb2gNzS2nq1X6936mLXmrHmEh+hPWV/fOTSn8Q==</latexit>

E
�̂2E�

<latexit sha1_base64="d4nM6fh78HkrD/mAXlHxNfSnl+s=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYCLkFHYDoseIF48RzQOSJcxOepMhs7PLzKwQloA/4MWDIl79Im/+jZPHQRMLGoqqbrq7gkRwbVz321lb39jc2s7t5Hf39g8OC0fHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6xGV5rF8MOME/YgOJA85o8ZK96VyqVcouhV3BrJKvAUpwgL1XuGr249ZGqE0TFCtO56bGD+jynAmcJLvphoTykZ0gB1LJY1Q+9ns1Ak5t0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9TL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfRv0ucKmRFjSyhT3N5K2JAqyoxNJ29D8JZfXiXNasW7qLh31WLt+mkeRw5O4QzK4MEl1OAW6tAABgN4hld4c4Tz4rw7H/PWNWcR4Qn8gfP5A0rHjYk=</latexit>

(
<latexit sha1_base64="t8fuDeIaxRJrJRK+Tnc7tbt3tDM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYCLoJewGRI8RLx4jmgckS5id9CZDZmeXmVkhLAF/wIsHRbz6Rd78GyePgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMY3kz85iMqzWP5YEYJ+hHtSx5yRo2V7kvnpW6h6JbdKcgy8eakCHPUuoWvTi9maYTSMEG1bntuYvyMKsOZwHG+k2pMKBvSPrYtlTRC7WfTU8fk1Co9EsbKljRkqv6eyGik9SgKbGdEzUAvehPxP6+dmvDKz7hMUoOSzRaFqSAmJpO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0KmXvouzeVYrV66dZHDk4hhM4Aw8uoQq3UIM6MOjDM7zCmyOcF+fd+Zi1rjjzCI/gD5zPH0xMjYo=</latexit>

),

(A2)

where each Bi and Ci have two choices: swap operator (1) or identity operator (0), and WgB,C = (d2 −
1)−N (−1/d)|B	C| is the Weingarten function of regions B and C, where B 	 C = (B \ C) ∪ (C \ B) denotes their
symmetric difference. In the above tensor diagram, short parallel lines indicate the periodic boundary condition, and
the summation of B and C is over all possible subregions of the N qudit system. As we can see, if we choose a subre-
gion B to be the swap operators, then ρ will be traced out on the counter part B̄. In addition, the identity operators
(red lines) on B̄ are inserted. So the first tensor diagram in Eq. (A2) is the reduced density matrix embedded back

into the total Hilbert space. We spoil the notation and use ρBd
B̄ = (TrB̄ ρ)⊗ 1B̄ to denote the first tensor diagram,

but one should remember the identity operators are supported in region B̄. The tensor product ⊗ notation indicates
that (TrB̄ ρ) and 1B̄ act separately in regions B and B̄, which does not imply that B should be a consecutive region
“in front of” B̄ (as in the conventional notation). The second tensor diagram in Eq. (A2) is the 2nd entanglement
feature of the prior POVM Eσ,

W
(2)
Eσ,C ≡ E

σ̂∈Eσ
TrC(TrC̄ σ̂)2 = E

σ̂∈Eσ
e−S

(2)
C (σ̂), (A3)

where S
(2)
C (σ̂) denotes the 2nd Rényi entanglement entropy of the state σ̂ in region C. The above tensor diagram

representation is equivalent to Eq.7 in the main text.

Appendix B: Variance estimation and sample complexity

In the main text, we relate the sample complexity M with the ρ-dependent shadow norm ‖O‖2Eσ|ρ , by

M ≥ ‖O‖2Eσ|ρ/ε
2δ. (B1)

However, the ρ-dependent shadow norm ‖O‖2Eσ|ρ is generally complicated to evaluate. If we are not interested in the

shadow norm for a specific state ρ, but rather the expectation of the shadow norm over an ensemble of states {V ρV †}
that are similar to ρ by local basis transformations V ∈ U(d)N , we can actually define a ρ-independent shadow norm
by averaging over V . The result is similar to Eq. (15)

‖O‖2Eσ ≡ E
V ∈U(d)N

‖O‖2E
σ|V ρV †

=
∑

g,h∈SN3

‖O‖2gWgg,hW
(3)
Eσ,h,

(B2)
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where ‖O‖2g is inherited from Eq. (16)

‖O‖2g ≡ E
V ∈U(d)N

‖O‖2V ρV †,g

= Tr
(
(M−1[O]⊗2 ⊗ 1)χg

)
.

(B3)

Compared with Eq. (16), we can see that the ensemble average EV ∈U(d)N in Eq. (B3) removes the ρ dependence by

effectively replacing ρ with d−N1 (the prior density matrix that defines the prior POVM Eσ). This explains the

consistency in our notation that ‖O‖2Eσ = Eσ̂∈Eσ ô(σ̂)2 follows from essentially the same definition as in Eq. (14).

Note that the reconstruction map M−1 always commutes with the local basis transformation V =
∏
i Vi,

i.e. M−1[V †OV ] = V †M−1[O]V , because Vi acts on each qudit separately and hence does not interfere with the

partial trace operation. This indicates that the norm ‖O‖2g = ‖V †OV ‖2g is invariant under the transformation V .

This suggests us to define a locally scrambled ensemble EO (or known as U(d)N -twirling) associated with any given
observable O

EO ≡ {V †OV |V ∈ U(d)N}, (B4)

such that ‖O‖2g in Eq. (B3) can be redefined as its ensemble average

‖O‖2g = E
O∈EO

‖O‖2g

= E
V ∈U(d)N

Tr
(
(M−1[V †OV ]⊗2 ⊗ 1)χg

)

=
∑

A,B,C,D∈2ΩN

d2NrArBWgC,DW
(2)
EO,D Tr

(
((χC)A,B ⊗ 1)χg

)
.

(B5)

Here χC denotes the swap operator supported in region C that acts between the first two copies of the Hilbert
space, and (χC)A,B denotes the reduction of χC in region A and B respectively in the first and the second copies of

the Hilbert space, which results in (χC)A,B = χA∩B∩Cd|A∩B∩C|−|C|. The operator entanglement feature W
(2)
EO,D =

EO∈EO TrD(TrD̄ O)2 follows from the same definition given in Eq. (8). rA, rB are the reconstruction coefficients
given by the solution of Eq. (12). Substitute Eq. (B5) to Eq. (B2), we can evaluate the summation of g, h given

that
∑
g,h∈SN3 Tr(χA∩B∩Cχg)Wgg,hW

(3)
Eσ,h = W

(2)
Eσ,A∩B∩C . The reduction of the 3rd entanglement feature to the 2nd

entanglement feature is a consequence of the fact that ρ drops out from the tensor product in Eq. (B3), such that

only 2-fold Hilbert space is required to define ‖O‖2Eσ .
Thus we finally arrive at the expression for the operator shadow norm purely in terms of the entanglement features

of Eσ and EO,

‖O‖2Eσ =
∑

A,B,C,D∈2ΩN

vA,B,C,DW
(2)
Eσ,A∩B∩CW

(2)
EO,D, (B6)

where the coefficient vA,B,C,D is given by

vA,B,C,D = rArB

( d2

d2 − 1

)N
d|A∩B∩C|−|C|

(
− 1

d

)|C	D|
. (B7)

Appendix C: Efficient classical post-processing algorithm with tensor network method

1. Overview of tensor network based classical post-processing

In the main text, we have derived the following protocol for predicting quantities of states with locally scrambled
quantum circuits: It seems that the number of coefficient rA scales exponentially with system size, therefore not
efficient. Surprisingly, with clever design and the help of tensor network, there indeed exists efficient tensor network
method that can achieve efficient classical post-processing. Fig. 14 summarizes the classical post-processing workflow
of predicting operator expectations with tensor network methods.

On the right side of workflow, given the circuit structure, the entanglement feature can be efficiently encoded as a
tensor network using “EF solver”. Then the tensor network representation of the entanglement feature is inputted
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into the M−1 solver, whose output is a tensor network representation of the reconstruction coefficient rA. The nice
thing is that one only need to solve the tensor network representation for rA once. And this representation can be
stored for future usage.

On the left of the workflow, we do experiments on quantum devices and calculate classical shadows σ̂. And one
should notice that our formulation is general enough to include Clifford circuits that do not have group structure.
And the classical shadows of those circuits can be calculated efficiently. Then we can combine the classical shadows
σ̂ and tensor network representation of rA to predict operator expectations 〈O〉.

A detailed discussion on how to model both Tr (Oσ̂A) and rA with tensor network is discussed in the following two
subsections.

!

σ# a

oA rA

Wℰσ

(2)

O

description
of Ka

circuit
structure

circuit
simulator

EF
solver

TrO σ#A
ℳ-1
solver

〈O〉

1

Printed by Wolfram Mathematica Student Edition

FIG. 14. Classical post-processing protocol to estimate the operator expectation value and shadow norm.

2. Efficient matrix product state representation of ~o = {oA|Tr(OσA)}

In the main text, we have shown the reconstruction channel under local scrambling assumption can be written as

ρ =M−1[σ] = dN
∑

A∈2ΩN

rAσA. (C1)

At first sight, the exponential summation of subregion A seems to be troublesome. However, it can be circumvented
by tensor network methods. Here, we will introduce a concrete algorithm. First of all, if the unitaries used in the
classical shadow experiment are Clifford gates, then classical shadows σ̂ are stabilizer states, and each of them can be
efficiently stored with O(N2) memory on a classical computer, where N is the system size.
• Proposition I: Given O is a Pauli observable and σ is a stabilizer state, the vector ~o = {oA|oA = Tr (OσA)} has

an efficient matrix product state (MPS) representation with internal bond dimension equals one, where σA = DĀ[σ].
And DA[◦] is the depolarizing channel acting on region A.

Proof: If the circuit is composed of Clifford gates, then classical shadow σ is a stabilizer state with stabilizer group
generated by

S = 〈(−1)b1U†Z1U, · · · , (−1)bnU†ZNU〉 = 〈Z̃1, · · · , Z̃N 〉, (C2)

σ =

n∏

i=1

1+ Z̃i
2

=
1

2N

∑

g∈S
g. (C3)

The reduced state σA = DĀ[σ] restricted to region A is also a stabilizer state with stabilizer group SA ⊆ S defined
by taking the elements of S which have zero support on Ā. This is obviously a subgroup of S since it is closed under
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multiplication and inversion. Without loss of generality, we can write

σA =


 1

2|A|
∑

g∈SA
g


⊗

(
12

2

)⊗(N−|A|)
. (C4)

It is obvious that the expectation Tr (OσA) = 0 when supp(O) * A. Moreover, the only scenario when Tr (OσA) is
non-zero is ±O ∈ SA. Therefore, we have

Tr (OσA) =

{
0, ±O /∈ SA
Tr(OσA) = Tr(Oσ), ±O ∈ SA.

(C5)

From the above equation, it is clear that for any Pauli observable O, oA = Tr (OσA) can be represented as a trivial
MPS with bond dimension D = 1:

oA = Tr(σO) Tr
(
o

(a1)
1 o

(a2)
2 · · · o(aN )

N

)

= Tr(σO)o
(a1)
1 o

(a2)
2 · · · o(aN )

N ,
(C6)

where we drop the second trace since the internal bond dimension is one, and each tensor o
(ai)
i on site i with binary

physical index (ai = 0 or 1) is

oi =





(
1

1

)
, i /∈ supp(O)

(
0

1

)
, i ∈ supp(O)

. (C7)

This concludes that even the vector ~o = {oA|oA = Tr (OσA)} contains exponentially many elements, it has an efficient
MPS representation with bond dimension D = 1. This MPS representation can be easily constructed: given Pauli
observable O, first calculate Tr(Oσ), then construct the MPS using Eq. (C7). Tr(Oσ) can computed in O(N2) time,
because O is a Pauli observable and σ is a stabilizer state. The remaining MPS tensors can be constructed in O(N)
time by traversing through the Pauli string.

3. Encoding reconstruction coefficient rA with variational MPS method

=

MPS-base algorithm

FIG. 15. A cartoon illustration of variational solving MPS representation of rA.

In the main text, we argued that the vector rA can be represented as a MPS. Here, we illustrate how to find such
a MPS using variational method. First of all, we have shown that the reconstruction coefficient rA satisfies the linear
equation:

∑

A,C∈2ΩN

rAfA,B,CW
(2)
C = δB,ΩN , (C8)

where W
(2)
C is the second entanglement feature vector created by the unitary ensemble. In Ref. [64], the authors shows

entanglement feature vector W
(2)
C can be efficiently encoded using MPS representation. The physical intuition behind

this efficient representation is that if one views W
(2)
C as a weight of a quantum state, i.e. |ψ〉 =

∑
C∈2ΩN W

(2)
C |C〉, then
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this state will possess low entanglement Ref. [65]. Therefore, it can be represented as a MPS with low bond dimension.

In Fig. 15, the blue nodes indicate the MPS representation of W
(2)
C . For translation invariant circuit structure (such

as the brick-wall circuit), the time complexity to construct the MPS representation for W
(2)
C is O(1) (independent of

the system size). For general circuit structure, the time complexity is at most O(N).

In Eq. (C8), the fusion coefficient fA,B,C is

fA,B,C =
( d3

d2 − 1

)N ∑

D∈2ΩN

δB,A∩Dd
−|D|

(
− 1

d

)|C	D|
. (C9)

Note that this fusion factor fA,B,C can be factorized to each site as fA,B,C =
∏
i fai,bi,ci where

fai,bi,ci =




(
d
0

) (
0
0

)

d2

d2 − 1

(
d
−1

)
d

d2 − 1

(
−1
d

)


 , (C10)

as the tensor subscripts ai, bi, ci = 0, 1 enumerates over boolean variables. Therefore, the fusion factor fA,B,C can be
represented as the gray tensors in Fig. 15.

To find the MPS representation of vector rA, we use the variational method. We can write an MPS ansatz for rA
and try to find the best parameters in the MPS by doing variational optimization. The same idea has been explored
in machine learning tensor network optimization [66–68], and differential programming of tensor networks [69–71].
With differential programming, we can find the best parameters in the MPS ansatz for rA by minimizing the L1 or
L2 loss of the left-hand side tensor and right-hand side tensor of Fig. 15. With a fixed bond dimension, the algorithm
complexity is O(N). In addition, we can utilize the symmetry of the unitary ensemble to minimize the training
parameters in the MPS ansatz. In practice, we find that rA can be represented as a MPS with a low bond dimension
using the variational method. A detailed discussion of this new computational method will be in another paper.

In addition, we would like to point out that after the first draft of our paper, our new proposal has caught much
attention from both theoretical and experimental sides. Especially, the formal solution of Eq. (C8) can be solved [72],

rA =
(−1)−|A|

2N

∑

A⊆S

3|S|
∑
B⊆S(−2)|B|W (2)

B

. (C11)

It would be also interesting to directly encode Eq. (C11) with a MPS without the help of variational optimization.
And we leave this to a future study.

Appendix D: Fidelity estimation for mixed state

Our method is not restricted to pure state. In variational quantum state preparation, even the target state is some
pure state, noise in the preparation circuit could make the final state in experiments a mixed state. We can use
the shallow circuit classical shadow tomography to efficiently estimate the quantum fidelity between final prepared
quantum state ρP and the target quantum state ρT . Fast access to this quantity is crucial for variational quantum
state preparation, error mitigation and etc. As an example, we consider the noisy preparation of a perfect GHZ state
with Z errors occurs at probability p. The prepared state can be expressed as

ρP = (1− p)|ψ+
GHZ〉〈ψ

+
GHZ|+ p|ψ−GHZ〉〈ψ

−
GHZ|, (D1)

where |ψ±GHZ〉 = 1√
2
(|0⊗N 〉 ± |1⊗N 〉). We compare the performance between random Pauli measurement and shallow

circuit shadow tomography with 3 layers of local random unitaries. Experiments are performed on a 9-qubit system
and 5000 classical snapshots are collected for both random Pauli shadow tomography and shallow circuits shadow
tomography. The result is shown in Fig. 16. As we can see, for 5000 experiments, the quantum fidelity estimated
using random Pauli measurement has huge error bar, indicated by the blue shaded region. However, same amount of
data collected after shallow circuit evolution can give accurate estimation of quantum fidelity, and error bar is almost
four times smaller. Practically, this makes the usage of shallow circuits more appealing.
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L = 3

FIG. 16. Fidelity estimation between mix state and target state. 5000 experimental classical snapshots are prepared for both
random Pauli measurement (L = 0) and shallow random unitary circuit (L = 3). Error bar indicates 3 standard deviation.

Appendix E: Approximated unitary ensemble and purification

In the main text, we have seen when the measurement channel M in data acquisition and the reconstruction
channelM−1 in classical post-processing mismatch, the reconstructed density matrix 1

M

∑
σ̂∈Eσ|ρM

−1[σ̂] may not be

positive-definite. And it results in biased prediction of physical quantities. In Fig. 5 (a) and Fig. 11, we have seen the
biased prediction of fidelity that is larger than one. In Fig. 17, we plot the eigenvalues of reconstructed density matrix
of 7-qubit GHZ state using DQIM ensemble with T/TTh = 1.38. In the main text, we have seen the DQIM ensemble
with one period of evolutional time or T/TTh = 1.38 is not sufficient to achieve the local scrambling assumption, such
that there is mismatch between data acquisition channel M and reconstruction channel M−1. We see the spectrum
of density matrix contains some negative eigenvalues.

DQIM J = 1,T /TTh = 1.38
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FIG. 17. Eigenvalues of reconstructed density matrix ρ̃ of 7-qubit GHZ state using mismatched channels. The unitary ensemble
is single instance of DQIM ensemble with J = 1, and T/TTh = 1.38. Under this condition, the unitary ensemble is not locally
scrambled.

In addition, the approximate shadow tomography based on locally scrambling Hamiltonian evolution, such as DQIM
ensemble or GUE2 ensemble, is approximately unbiased when local scrambling is approximately satisfied or frame
potential gap is vanishingly small. In Fig. 11, we have seen they all can give unbiased prediction of quantum fidelity
when T ≥ 10TTh. We directly visualize the reconstructed density matrix using approximated DQIM ensemble in
Fig. 19 and Fig. 20. As we see in Fig. 20, at T/TTh = 1.95, the locally scrambling assumption is not satisfied, and
reconstructed density matrix is biased. In contrast, at T/TTh = 25.3 (Fig. 19), the reconstructed density matrix using
a single instance of DQIM Hamiltonian is perfect, justifying the validity of our approach when the locally scrambling
assumption is approximated satisfied.

Further more, for biased reconstruction, in order to make it positive definite, we can nonlinear project the recon-
structed ρ to the convex set of physical states C = {ρ|ρ � 1,Tr(ρ) = 1} by minimizing

ΠC(σ) = arg min
ρ∈C

Tr((ρ− σ)2), (E1)

which is the method mentioned in Ref. [30]. If we have more prior knowledge about the quantum state, such as it is
a pure state, then we can further impose those assumptions into the projection. Here, as an illustration, we utilize
the knowledge that the target quantum state is pure, and we project the reconstructed ρ to a pure state ρ̃ in C by
choosing the eigenstate of ρ with the largest eigenvalue. As shown in Fig. 18, for the approximated ensembles, the
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FIG. 18. Fidelity estimation of approximated unitary ensemble after purification. After around T ∼ 10TTh, the fidelity is
around 0.99. Same data are used as Fig. 11

GUE2 and DQIM are biased in the short time region, and projected state ρ̃ has a fidelity less than one. And when
locally scrambling assumption is approximately satisfied, the projected ρ̃ will have fidelity that is approximately 0.99.
With these checks:

• unbiased prediction of physical quantities, see Fig. 11

• high fidelity of reconstructed density matrix projected back to physical space, see Fig. 18

we confirm the approximated shadow tomography can perform unbiased reconstruction.
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FIG. 19. Unbiased reconstruction of a 7-qubit GHZ density matrix, using a single instance of Hamiltonian in the DQIM
ensemble at T/TTh = 25.3 (after the local scrambling condition is achieved).
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FIG. 20. Biased reconstruction of a 7-qubit GHZ density matrix, using a single instance of Hamiltonian in the DQIM ensemble
at T/TTh = 1.95 (before the local scrambling condition is achieved).
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