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In this simple article, with possible applications in theoretical and applied physics, we suggest
an original way to derive the expression of Shannon’s entropy from a purely variational approach,
using constraints. Based on the work of Edwin T. Jaynes, our results are not fundamentally new but
the context in which they are derived might, however, lead to a remarkably consistent formalism,
where the maximum entropy principle appears naturally. After having given a general definition of
“ignorance” in this framework, we derive the somehow general expected expression for the entropy
using two approaches. In the first, one is biased and has a vague idea of the shape of the entropy
function. In the second, we consider the general case, where nothing is a priori known. The merits
of both ways of thinking are compared.
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I. INTRODUCTION

This work, grounded in Edwin T. Jaynes’ book Probabil-
ity Theory: The Logic of Science [1], could be useful both
for formal or practical purposes [2]. In information theory,
the entropy of a random variable is the average level of “in-
formation”, “surprise”, or “uncertainty” associated with the
possible possible outcomes of the considered variable. It was
first introduced by Claude Shannon in 1948 [3] and shares its
name [6] with the entropy used in thermodynamics and statis-
tical physics while no rigorous formal correspondence between
both of them haw been strictly demonstrated.
In the following, we investigate how it is possible to recover

the expression of the entropy from a low level approach, with
few assumptions about the context, in the spirit of [1]. We also

∗Electronic address: thomas.cailleteau@lpsc.in2p3.fr

consider the axiomatic construction of the notion of “surprise”
[5] and comment on this. We define a quantity we call igno-
rance instead of incertitude as it seems to fit better with the
constraints used in this framework. Imposing that it should be
continuous, symmetrical, and should keep its structure in any
sub-situation, we derive [7] results leading to a clear expres-
sion for the entropy. We investigate some technical subtleties
expressing our (real) “ignorance” to avoid biases in the calcu-
lations. The resulting formalism seems appealing and might
lead to some deeper insights on this question.

II. IGNORANCE

Let us consider a variable x which can take on n different
discrete values (x1, .., xn) corresponding to n different propo-
sitions (A1, .., An). The basic question is:

What probabilities (p1, .., pn) should we assign to the
possibilities (x1, .., xn) ? .

A. What are the available knowledges?

• The sum of all probabilities is equal to one,

n
∑

i=1

pi = 1, (1)

therefore, the ”ignorance of the knowns” associated to
this information is simply 0 and could be expressed as

H [λ, p1, .., pn] = λ0(x)

(

n
∑

i=1

pi − 1

)

, (2)

where h[p1, .., pn] =

(

n
∑

i=1

pi − 1

)

is a constraint ob-

tained after derivation with respect to λ0(x), a general
Lagrange multiplier.

1. At this stage, x is just a set of yet-to-be-determined
variables. In this work we consider the Lagrange
multiplier te be constant or, a least, to be inde-
pendent of the probabilities pi. However, in prin-
ciple, it might be interesting to also consider other
situations which could allow to use the formalism
beyond the maximization of entropy issue.

http://arxiv.org/abs/2107.05008v1
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2. The expression of the ignorance of the knowns given
by Eq.(2) takes a simple form. However, in some
circumstances, one might consider a more general
expression like

H [λ, p1, .., pn] =
1

m
λ0(x)

(

n
∑

i=1

pi − 1

)m

, (3)

for all m ∈ N
∗ (it has to be positive to prevent any

divergence after dividing by the constraint). The

factor
1

m
avoids the need for a rescaling after the

derivation. As will be explained later, one could,
in principle, perform the calculation and rescale it
by the infinity factor (expressed for instance in the
term ln(x + y − 1) as x + y → 1). But whatever
the choice of m > 0, due to constraint, this ig-
norance will always give 0 in the final expression
and we expect that, in this formalism, this will
change nothing to the result: two robots – to refer
to the usual image – carrying out the same cal-
culations with different values of m are expected
to derive the same result for the expression of the
ignorance/probabilities. This will be confirmed at
the end, together with some statements on the pre-
ferred settings.

• Let now assume that we have another knowledge taking
the form of a set of k constraints about the probabilities,
k ≤ n,

fi[p1, ...pn] = 0, ∀0 < i ≤ k, (4)

the associated ignorance, also vanishing, would be as
previously:

H [λi, p1, .., pn] =
k
∑

i=1

λi(x)fi[p1, ...pn]. (5)

For instance, it could be that then p1 = 2p2. What are
the consequences in this formalism ?

B. Requirements on the ignorance

So far we have dealt with known notions, leading to a van-
ishing ignorance. However, we want to consider ignorance in
its literal sense, that is ”lack of knowledge or information”.
The function H , as defined before, is a way to assign a ”de-
gree” about the global situation. The requirement should be:

1. Continuity : H has to be continuous, so that changing
the values of the probabilities by a very small amount
should only change the ignorance by a small amount.

2. Symmetry : H has to be unchanged if the outcomes pi
are re-ordered.

As made clear by the original work of Shannon on the
derivation of the entropy, one could think about igno-
rance/uncertainties as the total expected/average ignorance,
having put all the information we know at the beginning of
the calculations. In [1], Jaynes argues that we should carry
out, at some point, a “variational approach”. This work is a
simple attempt in this direction.

One might expect the total ignorance to be, in this frame-
work, such that

Htot = Hknowns +Hunknowns. (6)

whith Hknowns = 0 and Hunknowns =
∑

i piHi, the average
of the ignorances. However, at the end, we will relax this
expression, rather setting only Hunknowns =

∑

iHi.

1. At first, Hunknowns =
∑

i
piHi

As somehow explained by Shannon and Jaynes, let us imag-
ine that at first the robot is aware of three propositions
(A1, A2, A3) of unknown probabilities p1, p2 and p3. The ig-
norance of the robots would therefore be

H [p1, p2, p3] =
λ(x)

m

(

3
∑

i=1

pi − 1

)m

+

3
∑

i=1

piHi[pi]. (7)

In the case m = 1, it is just

H [p1, p2, p3] =

λ(p1 + p2 + p3 − 1) + p1H1[p1] + p2H2[p2] + p3H3[p3]

2. After an update

Then, as illustrated below, the robot learns that the third
propositions may in fact be a combination of three (or less
or more) sub-propositions of probabilities (v1, v2, v3) with
v1 + v2 + v3 = p3, with thus vi = p(A′

i|A3). The situation
is represented by the tree below, which is not here a tree dia-
gram of probabilities in the usual sense (

∑

i vi 6= 1).

p1

p2

p3

v1

v2

v3

A

B

The ”sub-ignorance” for the proposition A3 would therefore
be written

p3 ×H3[p3] =
µ(x)

m

(

3
∑

i=1

vi − p3

)m

+
3
∑

i=1

viHi[vi], (8)

leading to an update of the previous ignorance,

H [p1, p2, p3] = (9)

λ(p1 + p2 + p3 − 1) + p1H1[p1] + p2H2[p2]

+µ(v1 + v2 + v3 − p3) + v1H
′

1[v1] + v2H
′

2[v2] + v2H
′

2[v2].

In this case we are dealing with another constraint µ(x), illus-
trating what said previously for the ignorance in Eq.(5).

After the update, the robot is having now five propositions
Ai, 1 ≤ i ≤ 5 in total, of propailities pi, and so has an updated
expected ignorance

H [p1, p2, p3, p4, p5] =
λ(x)

n

(

5
∑

i=1

pi − 1

)n

+

5
∑

i=1

piHi[pi].

(10)
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3. Remarks

Moreover, after dividing the ignorance in Eq.(8) by p3, set-

ting wi =
vi
p3

, therefore
∑

i

vi
p3

=
∑

i

wi = 1, and rescaling the

Lagrange multiplier µ(x) →
µ(x)

p3
, one ”gets back” probabili-

ties such that

H3

[

v1
p3

,
v2
p3

,
v3
p3

]

=
µ(x)

m

(

3
∑

i=1

wi − 1

)m

+

3
∑

i=1

wiHi[wi], (11)

where p3 is considered here as a constant parameter. Igno-
rance in Eq.(11) is simply the one the robot would have if it
does not know about the previous propositions other than A3,
thus its state of knowledge starting at the node B is:

v1
p3

v2
p3

v2
p3

B

4. In a nutshell

Taking into account the possible updates we yet do not
know, the general expression of the “Ignorance” we are dealing
with so far is therefore, as we are biased,

Htot[p1, .., pn] = H [λµ, p1, .., pn] +
n
∑

i=1

piHi

[

v1
pi

, ..,
vr
pi

]

. (12)

In the same way, we could generally has set

Htot[p1, .., pn] = H [λµ, p1, .., pn] +

n
∑

i=1

Hi

[

v1
pi

, ..,
vr
pi

]

, (13)

with, at least in this case,

H [λµ, p1, .., pn] =
1

m
λ(u)

(

n
∑

i=1

pi − 1

)m

= 0 (14)

is the constraint dealing with the information that we know –
associated with no ignorance – and Hi[pi] the local ignorance
about the situation on each branch.
Consequently, we could ask ”what are the probabilities that

minimize/maximize our ignorance ?” which, at first, would
lead us to an expression for the ignorance which should be at
least similar to the one of the information entropy, and then,
to the (usual) expression of the probabilities. Once again, we
simply face the maximum entropy principle.

III. EXTREMIZATION OF THE IGNORANCE

In the following, we study the case where we express the
ignorance for different values of m, first as a training and then
in the general case.

A. Knowing part of the expression of H

From Eq.(14), we consider the constraint

H [λu, p1, .., pn] = λ(u)
1

m

(

n
∑

i=1

pi − 1

)m

= 0 (15)

for m ≥ 1, whose variation with respect to pi gives simply

δH [λu, p1, .., pn] =
∑

w=pi

δwλ(u)

(

n
∑

i=1

pi − 1

)m−1

.

The variation of the total ignorance leads to

δH =
∑

w=pi

δw



λ(u)

(

n
∑

i=1

pi − 1

)m−1

+Hw (x1, .., xn)(16)

−

m
∑

i=1

xi ×
∂Hw

∂xi

(x1, .., xn)

]

,

where vi has been extracted from Hw via xi =
vi
pj

, as it will

be clear in the following. However, we know that
∑

j

xj = 1,

therefore this information should appear at some point. Will
it change something ? To see it, we will set this information on
the xi at two places, with factor p and q taken values in {0; 1}
in Eq.(12) and consider the sub-propositions of probabilities
xi

1. The general equations

Considering the expression

Htot[p1, .., pn] = H [λµ, p1, .., pn] +

n
∑

i=1

piHi

[

v1
pi

, ..,
vr
pi

]

, (17)

from the reasoning in Eq.(11), we could set

Hi [x1, .., xr] =
µ(u)

b





r
∑

j=1

xj − 1





b

+

r
∑

j=1

xjHj [xj ] (18)

=
µ(u)

b





r
∑

j=1

xj − 1





b

+ f [xj ] (19)

as the unknown variable in our calculations is the Hk. More-
over, we could have continued and express again the sub-
ignorance Hj [xj ] further, in terms of the sub-sub-ignorance,
but it would have been redundant as we would process to the
same calculations at each node of the probability tree, again
and again. Therefore here, our unknown variable is simply
f [xj ] which represents the situation from the probability tree
of nodes A and Bi for each pi, shown before.
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δH =
∑

w=pi

δw



λ(u)

(

n
∑

i=1

pi − 1

)m−1

+Hw

[v1
w
,
v2
w
, ...,

vm
w

]

+ w ×

m
∑

i=1

∂
(vi
w

)

∂w
×

∂Hw

∂
(vi
w

)

[v1
w
,
v2
w
, ...,

vm
w

]



 (20)

=
∑

w=pi

δw



λ(u)

(

n
∑

i=1

pi − 1

)m−1

+Hw [xi]−

m
∑

i=1

xi ×
∂Hw

∂xi

[x1, .., xn]



 (21)

=
∑

w=pi

δw






λ(u)

(

n
∑

i=1

pi − 1

)m−1

+






p
µ(u)

b





r
∑

j=1

xj − 1





b

+ f [xj ]






−

m
∑

i=1

xi

∂

∂xi






q ×

µ(u)

b





r
∑

j=1

xj − 1





b

+ f [xj ]












(22)

⇔ 0 = λ(u)

(

n
∑

i=1

pi − 1

)m−1

+ p
µ(u)

b





r
∑

j=1

xj − 1





b

+ f [xi]−

(

r
∑

i=1

xi

)






q × µ(u)





r
∑

j=1

xj − 1





b−1

+
∂f [xi]

∂xi






∀ δw (23)

⇔ 0 = λ(u)

(

n
∑

i=1

pi − 1

)m−1

+ p
µ(u)

b





r
∑

j=1

xj − 1





b

− q × µ(u)

(

r
∑

i=1

xi

)











r
∑

j=1

xj − 1





b−1





+ f [xi]−

r
∑

i=1

xi

∂f [xi]

∂xi

(24)

⇔ 0 = λ(u)

(

n
∑

i=1

pi − 1

)m−1

+
µ(u)

b





r
∑

j=1

xj − 1





b−1 

p(
r
∑

j=1

xj − 1)− bq

(

r
∑

i=1

xi

)



+ f [xi]−
r
∑

i=1

xi

∂f [xi]

∂xi

(25)

leading us therefore to solve in the general case

0 = λ(u)

(

n
∑

i=1

pi − 1

)m−1

+
µ(u)

b





r
∑

j=1

xj − 1





b−1
[

(p− bq)

(

r
∑

i=1

xi

)

− p

]

+ f [xi]−
r
∑

i=1

xi

∂f [xi]

∂xi

(26)

Commentaries and assumptions at this point :

• we put p and q in order to distinguish from where the

information that

r
∑

i=1

xj − 1 = 0 comes from : as it ap-

pears twice in the calculation, it may be redundant to
do so and we may consider that one of the two terms
could be superfluous. However, it could also play a ma-
jor role in the expression of the solution when derived,
and therefore we keep the q in front, as such.

• b = m : not really an assumption as by redundancy it
has to be true [assuming that Ignorance at each node
has the same expression]

• For simplicity, we are looking only at two sub-
propositions of possibilities x and y such that x+ y = 1.
We guess that any sub-situation can be seen as : Ax

”something happens”, Ay ”something does not”, and by
recurrence at each node it should be true. For instance,
from proposition A3 we could have sub-proposition
A3,1 = A3 of probability x = 1.

• Regarding α(pi,m) = λ(u) (
∑n

i=1
pi − 1)

m−1
, it should

be ”just” a constant for f [xj ], that is, xi are considered
now as independent of pj .

Therefore, in the following, we will try to solve

0 = α(m) +
µ

b
(x+ y − 1)b−1 [(p− bq)(x+ y)− p] + f [xi]

−x
∂f [x, y]

∂x
− y

∂f [x, y]

∂y
(27)

This equation is a linear first order PDE we can rewrite as

a(x, y)ux + b(x, y)uy = f(x, y, u) (28)

with u = f(x, y) such that uz = ∂zu =
∂u

∂z
(x, y) for z = x, y,

and

a(x, y) = x,

b(x, y) = y,

f(x, y, u) = α(m) +
µ

b
(x+ y − 1)

b−1
[(p− bq)(x+ y)− p] + u

Using the method of characteristics, we have to solve

dx

a
=

dy

b
=

du

f
(29)

that is

dx

x
=

dy

y
=

du

α+
µ

b
(x+ y − 1)

b−1
[(p− bq)(x+ y)− p] + u

(30)

1. From the two first ones, we get

dx

x
=

dy

y
⇔ y = c1x, (31)

and so c1 =
y

x
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2. From the second ones, setting (1 + c1)x = cx,

dx

x
=

du

α(m) +
µ

b
(cx− 1)b−1 [cx(p− bq)− p] + u

(32)

⇔
dx

x
=

du

α(m) +
µ

b
(cx− 1)

b−1
[(p− bq)cx− 1] + u

(33)

⇔
du

dx
=

α(m) +
µ

b
(cx− 1)

b−1
[(p− bq)cx− 1] + u

x
(34)

⇔
du

dx
−

u

x
=

α(m) +
µ

b
(cx− 1)

b−1
[(p− bq)cx− p]

x
(35)

3. Multiplying both side by
1

x
, we get

1

x

du

dx
−

u

x2
=

d

dx

(u

x

)

=
α+

µ

b
(cx− 1)

b−1
[(p− bq)cx− p]

x2

(36)

and we have therefore to solve

u(x, y)

x
=

∫ x

a

α+
µ

b
(cξ − 1)

b−1
[(p− bq)cξ − p]

ξ2
dξ + c2

( y

x

)

(37)

= β(x, y) −
α

x
+

µ

b
c

∫ cx

ca

dw

w2
(w − 1)b−1((p− bq)w − p) (38)

where β(x, y) = c2

(y

x

)

+constants , a is a constant and

we set w = cξ for more simplicity.

We can therefore express the ”solution” as

u(x, y) = β
(y

x

)

x− α(m) +
µ(cx)

b
(pI1 − bqI2) (39)

where

I1 =

∫ cx

ca

dw

w2
(w − 1)b (40)

I2 =

∫ cx

ca

dw

w
(w − 1)b−1 (41)

2. What are the results of b = 1 or b = 2 ?

a. case where b = 1

In this case, setting m = b = 1, we have α(m) = λ the
Lagrange multiplier (here considered as constant). Regarding
the integrals,

I1 =

∫ cx

ca

dw

w2
(w − 1) =

∫ cx

ca

dw

(

1

w
−

1

w2

)

(42)

= ln(cx) +
1

cx
+ const (43)

I2 =

∫ cx

ca

dw

w
= ln(cx) + const (44)

and therefore

u(x, y) = β
(y

x

)

x− λ+ µ(cx)

(

p×

(

ln(cx) +
1

cx

)

− q · ln(cx)

)

= β
(y

x

)

x− λ+ µp+ µ(p− q)(cx)ln(cx) (45)

from which we could say that

• if u(x, y) = constant×(x+y), as the constraints x+y =
cx → 1 will be applied at the end, this will lead u(x, y)
to be only a constant, and we could rescale it in order
to absorb it. However, the drawback of this formulation
is also that .. ln(cx) → 1 as we will talk later.

• as p = 1, then we have a α− µ term, which corresponds
to, as αb=1 = λ(u), λ(u)−µ(u). Our guess would be that
at each node and sub-nodes, we have the same ”kind of
information”, and therefore we would put λ(u) = µ(u),
leading λ(u)−µ(u) to be zero. In the other way around,
we would just have either to rescale by removing the
constants, or either express any quantity in terms of
H [p]−H0[P ] where H0[p] is a reference value (the min-
imum, maximum, .. of the ignorance).

• if p = q, the logarithm term will disappear, at least for
the case b = 1. As we would like ignorance to decrease
when the probabilities are known to be 0 or 1, either

– we set p = 0 and q = 1, and we have with the
choice of µ > 0 the kind of expression we need
(after rescaling the expression due to terms as α),

– or we set p = 1, q = 0 and choosing µ < 0 (equiva-
lent to µ (1−

∑

i xi) ) would give us

u(x) = βx+ µ(cx)ln(cx) (46)

u(x, y) = β
(y

x

)

x+ β

(

x

y

)

y + µ(x+ y)ln(x+ y) (47)

b. case where b = 2

In this case

I1 =

∫ cx

ca

dw

w2
(w − 1)2 =

∫ cx

ca

dw

(

1−
2

w
+

1

w2

)

(48)

= cx− 2ln(cx)−
1

cx
+ const (49)

=
(cx− 1)(cx+ 1)

cx
− 2ln(cx) (50)

I2 =

∫ cx

ca

dw

w
(w − 1) =

∫ cx

ca

dw

(

1−
1

w

)

(51)

= cx− ln(cx) (52)

and therefore, the ignorance would be

u(x, y) = βx− α+
µ(cx)

2
×

[

p
(cx− 1)(cx+ 1)

cx
− 2q(cx)

]

+
µ(cx)

2
× [−2pln(cx)− 2q(−ln(cx))] (53)

thus

u(x, y) = βx − α+
µ

2
×
[

p(cx− 1)(cx+ 1)− 2q(cx)2
]

−µ(p− q)(cx)ln(cx). (54)

We could say also that
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• regarding −α+
µ

2
p(cx− 1)(cx+ 1), as we would expect

that m = b = 2, then

α(pi) = λ(u)

(

n
∑

i=1

pi − 1

)

∼ λ× (cp− 1) (55)

both terms are constraints in cξ − 1 and so will vanish.

• Now, with this in mind, comparing Eq.(45) et Eq.(54),
as we expect the ignorance to remain the same what-
ever the choice of the power m = b of the constraint,
we would expect no terms in q(cx)s for different values
of s depending on b. So, if this has to be true, then,
we should set q = 0 for the theory to remain coherent.
However, setting p = 0 and q = 1 gives a µ(cx)ln(cx)
term as for the case where b = 1. However, as such, we
would have to consider µ < 0 in order for the ignorance
to behave correctly.

• The case q = 0, p = 1 and µ > 0 is of interest as it leads
to the expression for the ignorance, after the constraint
being applied, to be similar to Eq.(47), that is

u(x, y) = β
( y

x

)

x+ β

(

x

y

)

y − µ(x+ y)ln(x+ y) (56)

As a consequences of the choices before, the expression for
the total ignorance in Eq.(12) would be somehow

H =
λ(u)

2

(

n
∑

i=1

pi − 1

)2

(57)

+
n
∑

i=1

pi ×

[

β

[

v1
pi

,
v2
pi

]

+ λ

(

v1
pi

+
v2
pi

)

ln

(

v1
pi

+
v2
pi

)]

(58)

with x =
v1
pi

, y =
v2
pi

and v1 + v2 = pi, µ = λ.

When we will apply it to a situation, the constraint will be
fulfilled and so H will reduce roughly to

H = [0] + [1] + λ

n
∑

i=1

pi × ln

(

v1
pi

+
v2
pi

)

(59)

as for the case where b = 1. Here [X ] means terms linear in X ,
and so having no consequences as the constrained are applied,
and after rescaling.

Commentaries :

• the case b = 2 is appealing in the sens that for a varia-
tional problem in physics, H would be similar to a La-
grangian/Hamiltonian where velocities of potential en-
ergies are globally in ξ2. However, here it seems to be
independent of the power, therefore this analogy is just
to say.

• More importanlty, in order to apply the same logic
at each node of the tree diagram, from Eq.(8) with

vjHj [vj ], to Eq.(11) with
vj
pi
Hj

[

vj
pi

]

, we did a mixed-up

change of variables which, even if it was logic regarding
Eq.(10), was also done in Hj . Consequently, due to the
1

pi
factor, differentiating with respect to pi, we obtained

a negative sign which leads to a logarithm solution for
the ignorance (not obtained by a plus sign). But we ar-
tificially pass from

∑

j vj = pi to
∑

j xj = 1, i.e. from

v1+v2 = p3 to x+y = 1, and so to pi×ln

(

v1
pi

+
v2
pi

)

in-

stead of pi×ln(pi) as expected. One way to cure it would
have to look at H = ... + piHi[pi] = ... + vjHj [vj ] →

..+ pi
vj
pi
Hj

[

pi ×
vj
pi

]

but differentiating w.r.t pi would

give much more complicated equations, and this would
have been a patch to an artificially ill defined solution,
as the next part shows a better way of doing it.

Relately, as shown in Eq.(56), we see a logarithm term
which should

a) go to zero as x+ y = 1 (except if we multiply it by
pi as said just before)

b) at this sub-node where a proposition is separated
in more sub-propositions of possibilities x and y,
also give us the relation

β(x, y) + (x+ y)ln(x+ y) → xln(x) + yln(y). (60)

As β(x, y) has not yet specified, we could take a
specific value to remove the unwanted term, but
this is again an artificial way of doing.

As a consequence, as this first approach seems unsatisfying
in our opinion, and as we expect similar expression for the
entropy for all value of m = b, we will stop here and look at a
more general and promising way at this point.

B. Specifying nothing about Hi

1. Derivation of the solution

Starting from the general expression

H [p1, p2, ..., pn] =
λ(x)

m

(

n
∑

i=1

pi − 1

)m

+

n
∑

i=1

Hi

[

v1
pi
, ..,

vr
pi

]

(61)
where we only require Hi on the r ”sub”-probabilities at each
sub-node for each pi (to recall, this is more coherent as each
sub-tree is a probability tree, and as usual, the probabilities
are multiplied from branch to branch the more we know about
sub-situations, i.e. sub-propositions). As before,

δH =
∑

w=pi

δw



λ(u)

(

n
∑

i=1

pi − 1

)m−1

+
∂

∂w

(

Hw

[v1
w
, ..,

vr
w

])



(62)

=
∑

w=pi

δw






λ(u)

(

n
∑

i=1

pi − 1

)m−1

+ p
µ(u)

b





r
∑

j=1

(vj
w

)

− 1





b

+

r
∑

j=1

∂
(vj
w

)

∂w

∂

∂
(vj
w

)






q
µ(u)

b





r
∑

j=1

(vj
w

)

− 1





b

+Hw

[vi
w

]












(63)

where we put the constraints on
vj
w

inside (with q) or outside

(p) the derivation in order to keep it general and see how they
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impact the results.

δH =
∑

w=pi

δw






λ(u)

(

n
∑

i=1

pi − 1

)m−1

+ p
µ(u)

b





r
∑

j=1

(vj
w

)

− 1





b

−
1

w

r
∑

j=1

(vj
w

)






qµ(u)





r
∑

j=1

(vj
w

)

− 1





b−1

+
∂Hw[v/w]

∂
(vj
w

)












(64)

= 0 ⇔ ∀w [..] = 0, (65)

that is, setting xj =
vj
w

r
∑

j=1

xj

∂H [xj ]

∂xj

= w × λ(u)

(

n
∑

i=1

pi − 1

)m−1

(66)

+w
µ(u)

b





r
∑

j=1

xj − 1





b−1

×

(

(

p−
bq

w

) r
∑

l=1

xl − p

)

.

Looking again at two sub-propositions Aw,1 and Aw,2, with

x =
v1
w

and y =
v2
w

s.t x+ y = 1, we derive the solution.

Using for short α(p,m) = λ(u) (
∑n

i=1
pi − 1)

m−1
, and the

method of characteristics as Eq.(31) giving y = c1x ⇔ x+y =
(1 + c1)x = cx, we have to solve, as for Eq.(32),

dx

x
=

du

w × α(p,m) + w
µ

b
(cx− 1)b−1

((

p−
bq

w

)

cx− p

) (67)

du

dx
=

wα

x
+

cwµ

b

(

p−
bq

w

)

(cx− 1)b−1 −
wµp

b

1

x
(cx− 1)b−1 (68)

and so, a being a constant, β(x, y) having also constants (like
the ones from a), we have

u(x, y) = c2

( y

x

)

+ w × α(p,m)

∫ x

a

dξ
1

ξ
(69)

+
cwµ

b

(

p−
bq

w

)∫ x

a

dξ(cξ − 1)b−1 −
wµp

b

∫ x

a

dξ
(cξ − 1)b−1

ξ
(70)

that is,

u(x, y) = β
(y

x

)

+ wα(m, p)ln(x) +
cwµ

b

(

p−
bq

w

)

I1 −
wµp

b
I2 (71)

Again, if m ≥ 2, then, as a constraint we will have α =
λ(u)(cp − 1) → 0 and so this term with a logarithm vanishes
when we consider the constraint in the final expression of the
Ignorance. However, as the expression of I2 shows, there is
another logarithm term which should appear.

2. case where b = 1

A really interesting case because it is the simplest one which
leads to what we expect, and even more, in what we think a
coherent way.

I1 =

∫ x

a

dξ(cξ − 1)b−1 =

∫ x

a

dξ = [ξ]x → x (72)

I2 =

∫ x

a

dξ
(cξ − 1)b−1

ξ
=

∫ x

a

dξ
(1

ξ
= [ln(ξ)]x → ln(x) (73)

our solution is now

u(x, y) = β
(y

x

)

+ w[α(m) − pµ]ln(x) + wµ

(

p−
bq

w

)

(cx)

(74)
Commentaries

• At the end, in the ignorance, constraints will play no
major role as they do not influence it. However, we see
that they appear here within the solution u(x, y) via
their Lagrange multiplier, and also via cx for the last
term. For this term in cx, as the constraint are satisfied
when applying the solution, we have cx → 1, but not
ln(x) → 0 ! As a consequence, this leads to the constant
wµp− µq in the expression of the ignorance.

• In fact, at the end, this expression wµp − µq will play
no role, as it leads in Eq.(61) to the term

n
∑

i=1

(pi × µp− µq) = µp

n
∑

i=1

pi − µq

n
∑

i=1

1 → µp− µqn (75)

after applying the constraint and setting back w ≡ pi.
Giving always n propositions at start, this former term
is just a constant. In fact, all term linear in w will be
considered at the end as a constant due to the summa-
tion and the constraint.

• Moreover, assuming that all constraints are implemented
in a same way, we would set m = b = 1, leading to
α(1) = λ(u), but also that λ(..) = µ(..). As a conse-
quence, the remaining term, the logarithm one, becomes

wλ(..)(1 − p)ln(x). As x =
v1
w
,

wλ(..)(1 − p)ln(x) = λ(..)(1 − p)w(ln(v1)− ln(w))(76)

= (1 − p)λ(..)(−w × ln(w) + w × ln(v1)) (77)

1. As we considered in our derivation that vj are in-
dependent of w, the last term is linear in w and
therefore, as for µpw, will lead to a constant in the
final expression of the ignorance when constraints
are applied.

Moreover, as w = v1+v2, terms like w× ln(v1) will
have mixed terms as (v1 + v2)ln(v1). This is again
linked to Eq.(60) where we encountered a similar
problem, which is a consequence of the form p ×
ln(p).

2. Then, dealing with the last term (except for β(x, y)
which condense the constants and help to restore
the symmetry of the ignorance as u(x, y) = u(y, x)),
we see a factor 1 − p. As p = 0 or 1, the only way
to keep the logarithm of w is to set p = 0 : this is
interesting because it was set artificially to consider
the constraint on vi from outside (vi make sens only
in Hi[pi]), and therefore it is better as this leads to
no consequences on what we expect.

In fact, with what we said previously, we see that whatever
the value of q ∈ {0; 1}, it has also no consequences on the
expression of the ignorance which varies : At the end, it is
like the obtained solution is given w.r.t pi but we used its
consequences on sub-proposition to solve the equation w.r.t
them. We could therefore have solved two equations from
Eq.(66) where q = 0 or q = 1, leading to similar solutions in
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wln(w) but it makes sens to consider q = 1 as it considers the
situation on the sub-node. Therefore

0 = wλ − qλ× (x+ y)− x
∂H

∂x
− y

∂H

∂y
(78)

⇔ 0 = λ(w − q(x + y))− x
∂H

∂x
− y

∂H

∂y
(79)

⇔ u(x, y) = β
( y

x

)

+ λwln(x) − qλ(cx) (80)

u(x, y) → −2λw × ln(w) + [w] + [cx → 1] (81)

as we restore the symmetry by setting β
( y

x

)

∼ λwln(y) and

as ln(x) + ln(y) = ln(v1) + ln(v2)− 2ln(w).
However, if we generalize it with more than 2 sub-

propositions, as r sub-propositions, we get u(x, y, ..) ∼
−rλwln(w), and so, from Eq.(61), we obtain

H [p1, .., pn] = λ(u)

(

n
∑

i=1

pi − 1

)

−

n
∑

i=1

λ(r)(piln(pi)) + λ[1]

(82)
where [1] condense all the constants.

Commentaries about λ(r) : As we said before, we used the
sub-propositions to get the equation we need to solve. In
our case, we ”knew” that it exists r sub-propositions, but
someone may have known that only r − 1 sub-propositions in
the same case, thus leading to a factor r − 1 instead of r. We
could ”cure” this reasoning saying that a priori we do not
know the r sub-propositions, except that a proposition Aw

has at least two sub-propositions which are a sub-proposition
and its contrary (Aw = A + Ā) of probability x and y such
that x + y = 1. We could say that Aw = A of probability
x = 1, and so r = 1. However, a concern comes from that Aj ,
j 6= 1 constitute Ā1, so it would lead to a mix between the
probabilities.
However, just saying that there is one sub-proposition which

is the proposition (of probability x = 1), leads simply to r = 1
in general (but also ln(x) = 1 ...) , leading to the solution

H [p1, .., pn] = λ(u)

[(

n
∑

i=1

pi − 1

)

−

n
∑

i=1

(piln(pi)) + [1]

]

(83)

• We can always rescale H [p] and deal with h[p] such that
H [p] = λh[p] as λ is an arbitrary choice and the igno-
rance has to be the same for every individu with same
knowledge on the situation : this expression has there-
fore to be invariant as such.

• We can also take care of the constants in [1] by always
expressing information in terms of H [p] − [1] , or ig-
norance relatively to maximum/minimum ignorance as
H [p]−Hm[pm] for instance.

When constraints are applied, the ignorance, also known as
the information entropy would therefore correspond to

h[p1, .., pn] ≡ −
∑

w=pi

w × ln(w) (84)

as expected.

3. cases where b ≥ 2

As said previously, in these cases, we would have, roughly
speaking,

α(b, p) = λ(u)

(

n
∑

i=1

pi − 1

)b−1

→ [0] (85)

when applying the constraint. Moreover, I1 will have the gen-
eral form

I1 =

b
∑

v=1

γ1(v, c)× (cx)v (86)

where γ1(v) are numerical coefficients obtained after integrat-
ing (b = 2, γ1(1) = −1 and γ1(2) = − 1

2c
). And for I2, we

obtain

I2 =

b−1
∑

v=1

γ2(v)× (cx)v − ln(x) (87)

The solution can thus be expressed as

u(x, y) = β
(y

x

)

+ [0]λ +

b
∑

v=1

Γ(v, c)(cx)b +
wµp

b
lnx (88)

which becomes when applying the constraints (cx − 1) and
restoring the symmetry

u(x, y) = [0]λ + [1]µ +
wµp

b
(lnx+ lny) (89)

or in general, doing the same simplifications as the case b = 1,

u(x, y) = [0]λ + [1]λ,µ +
pµr

b
× wlnw (90)

Commentaries : from this last equation, we could say that

• we can also rescale this expression in order to absorb the

[0]λ + [1]λ,µ terms, and considering λ =
µ

b
we could also

rescale as in Eq.(83),

• λ does not play a role at all, except to add constants via
the I1 term. Instead, it’s really µ : b = m and λ = µ
seem to be irrelevant in the final expression,

• p = 1 is important, that is the constraint we add ”out-
side”, artificially. The constraint ”inside”, with q, which
would make more sens in our opinion as it represents
the sub-nodes, makes no effect (except for adding a con-
stant) as in the first approach in this case.

• we need to take µ̄ = −µ, or the constraint to be as µ(1−
∑

i vi), in order for the ignorance to behave correctly,

• and then, with these modifications, in these cases too,
we obtain the expected expression for the ignorance to
correspond to the information entropy, for any value of
b (but in a less appealing way).
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IV. DISCUSSION AND COMMENT

Going back Eq.(83) concerns may raise about this expres-
sion where, constraints as λ(u)) lost its purpose if we express
H [p1, .., pn] as such. Indeed, the aim of λ was here to take
into account the fact that, normally,

∂

∂λ
H [p1, .., pn] =

n
∑

i=1

pi − 1 = 0 ⇔

n
∑

i=1

pi = 1 (91)

which would not be the case here.
One would rather assign different Lagrange multiplier such

that, if we keep the general form similar as the one in Eq.(82),

H [p1, .., pn] = λ(u)

(

n
∑

i=1

pi − 1

)

+

n
∑

i=1

λ(i)(−piln(pi) + [1])

(92)
one would obtain the following Equations of Motion

∂H

∂λ
=

n
∑

i=1

pi − 1 = 0 ⇔

n
∑

i=1

pi = 1 (93)

∂H

∂λ(i)
= −piln(pi) + [1] = 0 ⇔ piln(pi) = value (94)

∂H

∂pi
= λ(u) + λ(i)(−ln(pi)− 1) = 0 (95)

⇔ pi = exp

[

λ(u)

λ(i)− 1

]

(96)

In the case where λ(u) = λ and λ(i) = 1, with the help of
Eq.(93), one would have

n
∑

i=1

pi = 1 ⇔

n
∑

i=1

(eλ−1) = (eλ−1)× n = 1 (97)

⇔ pi = eλ−1 =
1

n
(98)

which is, of course, the case of equiprobability where we only
know only few things about pi. In the case where for instance
we know that p2 = 2p1, one would be able to deal this situation
by looking at the different λ(i).

V. CONCLUSION

1. We have included constraints not as λ
∑

i pi as done for
instance in [1], but as λ(

∑

i pi − 1). This allows us to
define what we call Ignorance H , where

H = Hknowns +Hunknowns (99)

where Hknowns encodes the ignorance due to the con-
straints, therefore of zero ignorance.

2. In the first approach, we dealt with a quasi-known ex-
pression of the expression, i.e. with the factor pi in front
of Hi. In this case, it was like maximizing/minimizing
the expected value of ”local” sub-ignorance (at each
branch of pi) but leading to a final expression not really
convincing as the logarithm term has to vanish when the
constraints are applied. This was due, in our opinion, to
the ill way of defining what happens at each sub-node

such that,roughly speaking, piHi[pi] → pi ×
vj
pi
Hi

[

vj
pi

]

.

But we may have set it wrong and a more coherent way
is possible.

3. However, we found way to cure this, starting from even
before, not knowing at all the expression for the igno-
rance but just that it has also to apply in the same way
at each node. Then we were able to get the expected
expression for the Shannon entropy, but still with some
interrogations linked to the same ones in the first ap-
proach.

4. Mathematically, we have started from A but included
sub-nodes as B in order to implement the fact that it
has to be similar at each node. This helped us to ob-
tain the correct expression for the differential expressions

with the differentiation of the
1

pi
factors, leading to an

expression in w ln(w) primitive of ln(w) + 1 and so the
role of the exponential.

5. Moreover, we have also seen (at least partially) that the
expression of the ignorance was somehow independent of
the power taken for the constraints. In fact, the simplest
case of power 1 seems in our opinion even better as we
were able to obtain Eq.(84) in a coherent way, the higher
power needing some adjustments.

6. In this way, the Maximization Entropy Principle makes
naturally sense as it is just the procedure to minimize
our ignorance. It helped us to derive first the expres-
sion of the ignorance one has to obtain in order to be
coherent, and secondly, knowing the expression but not
the probabilities inside, to obtain these probabilities as
usual and shown for instance in [1].

7. Regarding the Lagrange multiplier, we were able to in-
corporate their subjectivity in an invariant way as the
final expression of the Ignorance has to be the same
whatever the choice of the multipliers. However, due
to the presence of constants [1], it would be better to
express any quantity with respect to a reference value
(as for temperature), that is, using H [p] − Hm[pm] for
instance, in order to keep only the meaningful parts of
the ignorance.

8. It is worth mentionning again the notion of ’surprise’
S(p) function of the probabilities [5] and whose construc-
tion is similar as what we were looking at. It is based
on axioms such that

(a) S(1) = 0 : no surprise if we know the outcome,
that is, the ignorance is null.

(b) S is a decreasing function of p :
if p < q, then S(p) > S(q).

(c) S(p) is a continuous function of p.

(d) Consider two independents events E and F , of re-
spective probabilities p and q. The surprise of the
event EF of probability P (EF ) = pq would fulfill
the equation

S(pq) = S(p) + S(q), (100)

i.e. surprises are additive.

The function which satisfies these axioms is

S(p) = −c× ln(p) (101)
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and the entropy is defined as the expected amount of
surprise

H(X) = −
∑

i

piln(pi). (102)

These axioms are shared by both approaches, and igno-
rance and surprise can be seen as the same object but
with two ways of doing (the resolution of the surprise
is however way shorter than the one for the ignorance
where open issues still remain) and thinking : in our
opinion, the surprise deals with independent events in a
more ”drastic” but direct way than what we did, and the
fourth axiom constraints directly the shape of the solu-
tion. In our second approach, we just assumed additivity
and updates (related also to independents propositions)
and the key was to find the expression which minimize
the ignorance dealing with constraints. As a results, we
saw that it was similar to look at the expected amount of
surprise : the subtleties are of course minimalistics, and
we can consider both to be the same, just the framework
and the way of thinking appear to be not present some
differences.

To summarize :

Having knowledge on what we should have expected, we
were biased but this helped us to start from zero and look at
the situation from another perspective : having some notions

about constraints and variational problems, reading the nice
construction of the theory [1] and on the maxmization entropy
principle, gave us thoughts about including constraints on the
probability in such a way that it could make sens.

As a consequence, we have defined general what we call ”ig-
norance” and the procedure was ”only” to try to minimize
it (at least) and see if we could get back the correct expres-
sion for Shannon entropy: this is just the application of the
maxmization entropy principle which appears naturally in this
framework.

To conclude, an extension of this work, at least in the way it
has been done, may be helpful for instance in decision theory
where one would define a quantity like the average risk, and
try to minimize it as done here. This, however, will be kept
for further researches.
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