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TRANSLATES OF S-ARITHMETIC PERIODIC ORBITS AND APPLICATIONS

URI SHAPIRA AND CHENG ZHENG

Abstract. We prove that certain sequences of periodic orbits of the diagonal group in the space

of lattices equidistribute. As an application we obtain new information regarding the sequence of

best approximations to certain vectors with algebraic coordinates. In order to prove these results

we generalize the seminal work of Eskin Mozes and Shah about the equidistribution of translates

of periodic measures from the real case to the S-arithmetic case.

1. Introduction

1.1. Context. Let G be a locally compact second countable topological group and Γ < G a closed

subgroup (usually assumed to be discrete or even a lattice in G). The space X = Γ\G endowed with

the quotient topology is then called a homogeneous space. The group G and its various subgroups

act on X from the left by h · Γg = Γgh−1. In homogeneous dynamics one studies these actions

and tries to understand orbits. Given a closed subgroup H < G the most fundamental question

is to understand topological properties of H-orbits: Which orbits are closed, dense or bounded?

What can be said about orbit closures in general? A fundamental role in the discussion is played

by periodic probability measures. Let P(X) denote the space of Borel probability measures on X

equipped with the weak∗ topology and note that the left action of G on X induces a continuous

left action on P(X) by (g, µ) 7→ gµ where for f ∈ Cc(X),
∫

X f(x)d(gµ) =
∫

X f(g−1x)dµ. An orbit

Hx ⊂ X is called periodic if there exists µ ∈ P(X) which is H-invariant (i.e. hµ = µ for all h ∈ H)

and such that µ(Hx) = 1. The measure µ is unique in this case and will be referred to as the

algebraic or periodic measure on the orbit. It is denoted by µHx or µΓ\ΓgH if x = Γg.

A significant portion of the literature in homogeneous dynamics is devoted to the following:

Problem 1.1. Understand the weak∗-accumulation points (limits) of periodic measures. That is,

what can be said about possible limits of sequences µHnxn where Hnxn are periodic orbits.

Common phenomena related to Problem 1.1 in particular cases are:

(1) There are limit measures in P(X) – this will be referred to as non-escape of mass.

(2) All limit measures are periodic themselves – this will be referred to as rigidity.
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(3) Often, when non-escape of mass and rigidity occurs, if one imposes some mild conditions

on the sequence Hnxn (usually of algebraic nature), then all limit measures must be G-

invariant. Since there is a unique G-invariant measure on X, this actually implies that the

sequence converges to it – a phenomenon which we refer to as equidistribution.

In the general setting described above Problem 1.1 might be too hard to tackle but under various

technical assumptions on the players (G,Γ,Hn, xn) quite a bit is known. A standing assumption

will be that Γ < G is a lattice. We mention two seminal works in this direction:

• In [MS95] Mozes and Shah solve this problem when G,Hn are real Lie groups and the

periodic measure µHnxn is ergodic under the action of a one-parameter unipotent subgroup

of Hn. It is paramount for their consideration that Hn will contain unipotent elements and

thus when Hn is a reductive group - and in particular, a maximal torus - their results do

not apply.

• When G,H are reductive algebraic groups defined over Q, Γ < G is an arithmetic lattice in

G and the centralizer of H does not have any non-trivial Q-characters, then in the seminal

papers [EMS96,EMS97] Eskin, Mozes, and Shah analyze the possible limit points of µgnHx

of deformations of a fixed periodic H-orbit (note that gnHx = gnHg−1
n gnx so this falls into

the above setting).

In applications, it is often required to extend the above results to the S-arithmetic setting. The

situation in the literature regarding [MS95] is satisfactory. In [GO11] Gorodnik and Oh generalize

[MS95] to the S-arithmetic setting. In this paper, we are motivated by an application which require

an S-arithmetic version of [EMS96,EMS97]. As far as we are aware of, there is no published paper

in the literature establishing such a result and so in order to pursue our application we take upon

the endeavour to produce such a proof in a setting general enough for our application. We note

that there is a paper on arxiv [RZ16] in which an S-arithmetic generalization of [EMS96,EMS97]

is given. The formalism there is quite sophisticated and we were not able to understand how to

apply the results from that paper nor to verify its correctness. Eventually we preferred to give a

self contained treatment even on the expense of compromising brevity.

1.2. Motivating example. Let X = Γ\G be the space of homothety classes of lattices in Rd.

Here G = PGLd(R), Γ = PGLd(Z). An element g ∈ G will be represented by a matrix in GLd(R)

which by abuse of notation we also denote by g and the coset Γg represents the homothety class of

the lattice spanned by the rows of1 g, gtZd. Let A < G denote the (connected component of the

identity of the) group of diagonal matrices.

Let K/Q be a totally real number field of degree d. Let σj : K → R (j = 1, . . . , d) be the distinct

embeddings of K into R ordered in some way. Let ϕ : K → Rd be the map ϕ = (σ1, . . . , σd). For

1The alert reader will notice that this identification is not equivariant with respect to the left G-action on X and

the natural left action on the space of lattices. Under this identification if a coset x = Γg represents a lattice Λ ⊂ Rd,

then gx represents the lattice g∗Λ, where g∗ = (g−1)t.
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an ordered basis ~α = (α1, . . . , αd) of K/Q let

g~α =

(

− ϕ(α1) −

...
− ϕ(αd) −

)

(1)

and let x~α = Γg~α. Then, it is well known (see e.g. [LW01]) that the orbit Ax~α is periodic. The

motivating problem which started this paper was to establish the following result which is proved

in §7.

Theorem 1.2. Let K/Q be a degree d totally real number field with basis ~α = (α1, . . . , αd). For

any m ∈ Z (m 6= 0,±1) and for any sequence in = (in,1, . . . , in,d) ∈ Zd consider the sequence ~αn
def
=

(min,1α1,m
in,2α2, . . . ,m

in,dαd). Then, for any choice of elements sn ∈ G the sequence of periodic

orbits snAx~αn
= Γg~αn

As−1
n equidistribute in X as long for any 1 ≤ j < r ≤ d, limn |in,j−in,r| = ∞.

Remark 1.3. Theorem 1.2 attains an appealing form when one chooses the basis 1, β, . . . , βd−1

for β ∈ K which generates the extension. In this case we write xβ for the corresponding lattice.

Given a generator α ∈ K, we may choose in Theorem 1.2 the sequence in = (0, n, 2n, . . . , (d− 1)n)

and obtain that the sequence of periodic orbits Axmnα equidistribute in X.

Theorem 1.2 falls into the setting of Problem 1.1. The sequence of orbits under consideration

is a deformation of a fixed orbit but this deformation is done in an S-arithmetic extension of X

and then projected back to X. This is why the results of [EMS96,EMS97] do not apply and one

needs an S-arithmetic version of them. In the case d = 2 (with sn = e) this equidistribution was

established in [AS18] using different techniques. There the authors used mixing (and hence obtain

effective equidistribution). For d ≥ 3 the strategy of [AS18] fails and one needs to appeal to the

techniques of [EMS96,EMS97] as we do here.

In [AS18] this equidistribution result was applied to deduce statistical information about the

periods in the continued fraction expansions of quadratic numbers of the form mnα as n → ∞. In

§1.3 we apply Theorem 1.2 to obtain new results regarding the statistics of best approximations of

vectors like (mα,m2α2, . . . ,md−1αd−1) where Q(α) is a totally real number field of degree d over

Q.

1.3. An application: Best approximations of algebraic vectors. In this subsection we wish

to demonstrate the significance of Theorem 1.2 to the theory of Diophantine approximaiton. Read-

ers whose interest lies solely in the dynamical aspects can skip this subsection altogether. We briefly

recall some basic concepts from the theory of Diophantine approximation. Given an irrational vec-

tor v ∈ Rd−1 there is a natural correspondence between rational vectors 1
qp (here q ∈ Z,p ∈ Zd−1

and gcd(p, q) = 1) close to v and primitive integral vectors ( pq ) ∈ Zd approximating the line R ·( v1 ).

One defines the sequence of best approximations to v to be a sequence of primitive integral vectors
(

pk
qk

)

∈ Zd defined recursively as follows: q1 = 1 and p1 is (one of the potentially finitely many)

integral vectors satisfying ||p1 − v|| = minp∈Zd−1 ||p − v||. For k > 1, qk is the minimal integer q
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for which

min
{

||qv − p|| : p ∈ Zd−1
}

< ||qk−1v − pk−1||

and pk is then chosen so that

||qkv − pk|| = min
{

||qkv − p|| : p ∈ Zd−1
}

.

A more geometric way to define (and understand) the vectors ( pk
qk ) is as follows: One travels along

the ray {t · ( v1 ) : t ≥ 1} and records the closest integral vectors one sees along the way; that is, one

records an integral vector at a certain (integral) time if its distance to the ray beats the distances

recorded thus far. In this description the distance one uses on Rd is not the euclidean one but

d((w1
r1 ) , (

w2
r2 )) = max {||w1 − w2||, |r1 − r2|} where wi ∈ Rd−1 and ri ∈ R and the norm on Rd−1 is

the euclidean norm (in fact, one can choose any norm on Rd−1 which is of interest). This way, each

irrational vector v ∈ Rd−1 yields a sequence of primitive integral vectors ( pk
qk ) which is referred to

as the sequence of best approximations to the ray R · ( v1 ) or by slight abuse of language, to v.

The sequence of best approximations is a central object of study in Diophantine approximation.

Recently, in [SW], results pertaining to statistical information regarding these sequences in two

cases were established: For Lebesgue almost any v some information about the behaviour of ( pk
qk )

was established and it was shown that they obey certain universal laws. In addition, for certain

vectors v with algebraic coordinates it was shown that the sequence ( pk
qk ) obeys statistical laws

which are different from the universal ones. As an application of Theorem 1.2 we show that if

Q(α) is a totally real field of degree d over Q and if m 6= 0,±1 is an integer then the statistical

laws corresponding to vn = (mnα,m2nα2, . . . ,m(d−1)nαd−1) approach the universal statistical law

as n → ∞. To be more precise we need to define the objects pertaining the random variables which

obey these statistical laws.

To each best approximation vector
(

pk
qk

)

we associate a triple

(Λk, wk,
(

pk
qk

)

) ∈ Xd−1 × Rd−1 × Ẑd

whereXd−1 is the space of lattices of covolume 1 in Rd−1, and Ẑ =
∏

p Zp is the pro-finite completion

of Z. This correspondence is defined in the following way: The lattice Λk is referred to as the

directional lattice of Zd in direction of the k’th best approximation
(

pk
qk

)

. It is defined by

Λk
def
= q

1/(d−1)
k π

(

pk
qk

)

Rd−1 (Zn),

where πw
Rd−1 is the linear projection of Rd onto the hyperplane

{

( u0 ) : u ∈ Rd−1
}

with kernel equal

to R ·w. Thus, Λk is the unimodular lattice of the horizontal hyperplane Rd−1 ×{0} which records

how Zd looks like from the direction of the k’th best approximation to v.

The vector wk ∈ Rd−1 is referred to as the displacement vector of the k’th best approximation
(

pk
qk

)

. It is defined by

wk
def
= q

−1/(d−1)
k (qkv − pk).
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This vector tells us two things: First, its direction wk/||wk|| on the unit sphere Sd−2 is the direc-

tion from which the k’th best approximation approaches the line R · ( v1 ) and second, its length

||wk|| captures (the appropriate scaling of the) quality of approximation. It turns out that the

normalization factor of q
−1/(d−1)
k is the correct one for an interesting limit law to occur.

Finally, in the pro-finite coordinate Ẑd we simply take the integral vector
( pk
qk

)

as it is (embedded

diagonally in the product). This coordinate captures congruence questions regarding the k’th best

approximation.

The whereabouts of the triple (Λk, wk,
( pk
qk

)

) in the product space Xd−1 × Rd−1 × Ẑd and the

statistical properties of the sequence of triples as k changes is very interesting from the perspective

of Diophantine approximation. In [SW] the following theorem is proved:

Theorem 1.4 ([SW]). Let d ≥ 2 and let || · || be either the Euclidean norm or the sup norm on

Rd−1. For an irrational vector v ∈ Rd−1 let
(

pk(v)
qk(v)

)

=
(

pk
qk

)

be the sequence of best approximations

of v. Then

(1) There exists a probability measure νbest ∈ P(Xd−1 × Rd−1 × Ẑd) such that for Lebesgue

almost any v

lim
K

1

K

K
∑

k=1

δ
(Λk ,wk,

(

pk
qk

)

)
= νbest.

(2) If ~α = (α1, . . . , αd−1, 1)
t is a vector whose coordinates span a totally real number field of

degree d over Q then there exists a probability measure ν~α
best ∈ P(Xd−1 × Rd−1 × Ẑd) such

that

lim
K

1

K

K
∑

k=1

δ
(Λk ,wk,

(

pk
qk

)

)
= ν~α

best.

The following theorem will be proved in §7 as an application of Theorem 1.2 together with a

result from [SW].

Theorem 1.5. Let (α1, . . . , αd−1, 1)
t be a vector whose coordinates span a totally real number field

of degree d over Q. Let in = (in,1, . . . , in,d−1) ∈ Zd−1 be such that for any j 6= r ∈ {1, . . . , d− 1}

both in,r →n ∞ and |in,r − in,j| →n ∞. Let m 6= 0,±1 be an integer and and let

~αn
def
= (min,1α1,m

in,2α2, . . . ,m
in,d−1αd−1, 1).

Then, in the notation of Theorem 1.4, ν~αn

best

n
−→ νbest.

Remark 1.6. Quite a bit is known about the measures νbest, ν
~α
best appearing in Theorem 1.4 and

in particular, about how different from each other they are. For example, it is known that

(i) The projection of νbest to Xd−1 is (not equal to but) in the same measure class as the periodic

SLd−1(R)-invariant measure, while the projection of ν~α
best is singular to it.

(ii) The projection of νbest to Rd−1 is a compactly supported absolutely continuous measure with

respect to Lebesgue measure and if the norm used to define the best approximations is the
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Euclidean one then it is SOd−1(R)-invariant. On the other hand ν~α
best is singular to Lebesgue

and is not SOd−1(R)-invariant.

(iii) The projection of νbest to Ẑd is the normalized restriction of the Haar measure to the compact

open set obtained as the closure of Zd
prim embedded diagonally in Ẑd, while the projection of

ν~α
best is singular to it.

These differences highlight the significance of Theorem 1.5.

1.4. Limiting distributions of periodic orbits. We now state our main results Theorems 1.7, 1.8

and fix the notation of the paper. Let G be a connected (with respect to the Zariski topology)

algebraic group defined over Q. Let S be a finite set of valuations on Q which contains the

Archimedean one, and denote by Sf the subset of non-Archimedean places in S. Let QS =
∏

p∈S Qp

and OS = Z[1/p : p ∈ Sf ]. Denote by

G(QS) =
∏

p∈S

G(Qp), ΓS = G(OS), Γ∞ = G(Z).

For an algebraic group F, we write F0 for the connected component of F in the Zariski topology,

and write F(R)0 for the connected component of F(R) as a Lie group. In this paper, we prove the

following theorem.

Theorem 1.7. Let G be a connected reductive algebraic group defined over Q without nontrivial

Q-characters. Let H be a connected reductive Q-subgroup of G without nontrivial Q-characters,

and suppose that H contains a maximal torus of G. Let H be a subgroup of finite index in H(QS)

and µΓS\ΓSH the natural invariant probability measure supported on ΓS\ΓSH. Let {gi}i∈N be a

sequence in G(QS). Then the sequence g∗i µΓS\ΓSH has a subsequence converging to an algebraic

probability measure µ on ΓS\G(QS).

As a corollary of Theorem 1.7, we deduce the following theorem regarding the equidistribution

of certain arithmetically related periodic orbits in a a real homogeneous space, which we will need

to prove Theorem 1.2.

Theorem 1.8. Let G be a connected R-split reductive Q-group and T a maximal R-split torus

defined over Q in G which is Q-anisotropic. Let S be a finite set of valuations on Q containing

the archimedean one, {gi} a sequence in G(R) and {hi} a sequence in ΓS. Then the set of weak∗

limits of the sequence µΓ∞hiT(R)0g−1
i

is not empty, and contains only algebraic probability measures

on Γ∞\G(R).

Moreover, if for any non-central element x ∈ T(Q), the sequence (gixg
−1
i , hixh

−1
i ) diverges in

G(QS), then µΓ∞hiT(R)0g−1
i

converges to some translate of µΓ∞\G(R)0 .

Remark 1.9. In the context of Theorem 1.8, for any h ∈ G(Q) and any g ∈ G(R), Γ∞hT(R)0g−1

is compact in Γ∞\G(R). The argument for the proof realizes these orbits as projections of certain

deformations of a fixed periodic orbit in the S-arithmetic extension of Γ∞\G(R). In order to apply

Theorem 1.7 we need this new lifted orbit to be an orbit of a group containing a maximal torus.
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For this to hold, we need T to be R-split and this is the reason for the extra conditions appearing

in the statement of Theorem 1.8 on top of the ones appearing in the statement of Theorem 1.7.

1.5. About the proof of the main Theorem 1.7. We follow closely the structure of [EMS96,

EMS97] and divide the argument into two parts:

(i) Establish non-escape of mass.

(ii) Establish algebraicity of limit measures.

We prove non-escape of mass in §3 and then establish the algebraicity of the limit measures in

§5. In order to establish part (i) we go along the lines of [EMS97] but prefer to use the more

robust formalism of (C,α)-good functions a la Klainbock and Margulis [KM98] which was devel-

oped in its S-arithmetic version in [KT07]. To establish part (ii) we follow [EMS96, GO11] and

use linearization and Ratner’s classification theorem of measures invariant and ergodic under one

parameter unipotent flows. Unlike the real case in [EMS96], in which the key observation is that a

limit measure is invariant under a one-parameter unipotent subgroup because it has an invariance

group having a non-trivial nilpotent line in its Lie algebra, over the p-adics, this is not enough.

This is due to the existence of compact unipotent groups. In §4 we deal with this issue and prove

that the limit measures in our discussion are invariant under a full-one parameter unipotent flow

where the challenge is to prove invariance under large unipotent elements rather than just small

ones. This invariance is then used in §5 in conjuction with the S-arithmetic linearization technique

and Ratner’s measure classification theorem to establish (ii).

Remark 1.10. For more details about the S-arithmetic Ratner’s theorem and linearization tech-

nique we refer the reader also to [MT94,Rat98,Tom00]. One of the possible extensions of the results

in this paper is to establish a theorem about limiting distributions of deformations of adelic peri-

odic orbits. For limiting distributions of adelic torus orbits, one can read e.g. [ELMV09,ELMV11,

Kha19, Ven10, Zam10,DS18a, DS18b]. In general, a sequence of deformations of a fixed periodic

adelic torus orbit does not necessarily equidistribute in the ambient space, and one of the obstruc-

tions is the escape of mass phenomenon which leads to the limiting measures being not probability.

One can refer to [AS18, Example 2.11] for an example of this phenomenon for G = PGL2 due to

Ubis. It is interesting to know whether the escape of mass phenomenon disappears when G is of

higher rank.

2. Growth rates of functions

In this section, we study (C,α)-good functions in local fields. The notion of (C,α)-good functions

is introduced in [KM98]. One may read [Kle10,EMS97] for more details. Here we use the definition

in [KT07] for local fields. The goal in this section is Proposition 2.2, which shows that certain

functions are (C,α)-good. At the end of this section, we prove a weak analogue of the intermediate

value theorem for (C,α)-good functions in local fields (Proposition 2.3) which will be important in

the discussion in §4.
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Let k = Qp (p = prime or ∞) with the p-adic valuation | · |p. Let F be a finite extension of k.

Then there exists a unique extension | · |F of | · |p on F such that for any x ∈ F

|x|F = |NF/k(x)|
1

[F :k]
p

where NF/k(x) is the norm of x. Equipped with | · |F , F is a complete field. Note that for any

extensions k ⊂ F ⊂ L, we have NF/k ◦ NL/F = NL/k and [L : F ][F : k] = [L : k]. Hence one can

take the limit over all the finite extensions of k and get a well-defined norm | · |k̄ on the algebraic

closure k of k. In the following, we will use the notation | · |F for the norm on any finite extension

F of k = Qp obtained in this manner. We will write OF := {x ∈ F : |x|F ≤ 1}.

Let F be a complete field with a norm | · |, X a metric space, µ a Borel measure on X and U a

subset of X. Recall [KT07] that a continuous function f : U → F is called (C,α)-good on U with

respect to µ if for any open ball B ⊂ U centered in suppµ, we have

µ({x ∈ B : |f(x)| < ǫ}) ≤ C

(

ǫ

‖f‖µ,B

)α

µ(B)

for any ǫ > 0. Here

‖f‖µ,B = sup{|f(x)| : x ∈ B ∩ supp(µ)}.

In the sequel, we will study the case when X is a product of local fields and the measure µ is the

Haar measure on X.

Lemma 2.1 (C.f. [EMS97, Lemma 2.4]). Let F be a finite extension of Qp. Then there exists γ ∈ N

such that the determinant of the matrix generated by ski e
λjsi (i = 1, 2, ..., n2, j = 1, 2, ..., n, k =

0, 1, 2, ..., n − 1)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eλ1s1 eλ1s2 · · · eλ1sn2

s1e
λ1s1 s2e

λ1s2 · · · sn2eλ1sn2

...
... · · ·

...

sn−1
1 eλ1s1 sn−1

2 eλ1s2 · · · sn−1
n2 eλ1sn2

eλ2s1 eλ2s2 · · · eλ2sn2

s1e
λ2s1 s2e

λ2s2 · · · sn2eλ2sn2

...
...

...
...

sn−1
1 eλns1 sn−1

2 eλns2 · · · sn−1
n2 eλnsn2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i<j

(λi − λj)
mi,j

∏

i<j

(si − sj)φ(λ, s)

where mi,j ∈ N, φ(λ, s) is an analytic function in λ = (λ1, λ2, . . . , λn) ∈ (pγOF )
n and s =

(s1, s2, . . . , sn2) ∈ (pγOF )
n2
, and for any λ ∈ (pγOF )

n, we have φ(λ, s) 6= 0.

Proof. This lemma is proved in [EMS97, Lemma 2.4] for F = C and R. Here we give a proof for

the p-adic case. Indeed, if we expand the determinant and the analytic function φ(λ, s) as power

series of s1, s2, ..., sn2 and λ1, λ2, ..., λn over R, the formula proved in [EMS97, Lemma 2.4] holds

as an identity of power series with rational coefficients. By examining the ranges of convergence

of power series ski e
λjsi (1 ≤ i ≤ n2, 1 ≤ j ≤ n, 0 ≤ k ≤ n − 1) in the p-adic case, one concludes
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that the formula holds for λ1, λ2, ..., λn and s1, s2, ..., sn2 in small neighborhoods of 0 in OF . This

completes the proof of the lemma. �

Proposition 2.2. Let F be a finite field extension of Qp and n ∈ N.

(1) If p is Archimedean, then there exists δ0 > 0 such that for any ci ∈ C, any λi ∈ C (1 ≤ i ≤ n)

and any interval I in R of length at most δ0 > 0, the function f : I → C defined by

f(s) =

n
∑

i=1

n−1
∑

l=0

ci,ls
leλis, s ∈ Zp,

is (C,α)-good for some C,α > 0 depending only on δ0 > 0 and n. The measure on I is

chosen to be the Lebesgue measure.

(2) If p is non-Archimedean, then there exists k ∈ N such that for any ci ∈ F and any distinct

λi ∈ pkOF (1 ≤ i ≤ n), the function f : Zp → F defined by

f(s) =
n
∑

i=1

n−1
∑

l=0

ci,ls
leλis, s ∈ Zp,

is (C,α)-good for some C,α > 0 depending only on F and n. Here we choose the measure

µ on Zp to be the Haar measure on Qp with µ(Zp) = 1.

Proof. The case for the Archimedean place p = ∞ is essentially proved in [EMS97, Corollary 2.10].

Here we give a proof for non-Archimedean places. Denote by

d(s1, s2, . . . , sn2) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eλ1s1 eλ1s2 · · · eλ1sn2

s1e
λ1s1 s2e

λ1s2 · · · sn2eλ1sn2

...
... · · ·

...

sn−1
1 eλ1s1 sn−1

2 eλ1s2 · · · sn−1
n2 eλ1sn2

eλ2s1 eλ2s2 · · · eλ2sn2

s1e
λ2s1 s2e

λ2s2 · · · sn2eλ2sn2

...
...

...
...

sn−1
1 eλns1 sn−1

2 eλns2 · · · sn−1
n2 eλnsn2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let B be an open ball in Zp and define

UB,f,ǫ := {s ∈ B : |f(s)|F < ǫ}.

We may assume µ(UB,f,ǫ) > 0. By computing the volume of p-adic open balls, one can inductively

find n2 points s1, s2, . . . , sn2 ∈ UB,f,ǫ such that for any 1 ≤ i 6= j ≤ n2

|si − sj|p ≥
µ(UB,f,ǫ)

n2
.

Now by interpolation formula, we have

f(s) =
n2
∑

j=1

f(sj)
d(s1, . . . , sj−1, s, sj+1 . . . , sn2)

d(s1, s2, . . . , sn2)
,
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and by Lemma 2.1

f(s) =

n2
∑

j=1

f(sj)

∏

i 6=j(s− si)φ(λ, s1, . . . , s, . . . , sn2)
∏

i 6=j(sj − si)φ(λ, s1, . . . , sn2)

for some analytic function φ. Here φ(λ, s) 6= 0 for λ in a small neighborhood (plOF )
n of 0. This

implies that for any s ∈ B

|f(s)|F ≤ max
1≤j≤n2

{∣

∣

∣

∣

∣

f(sj)

∏

i 6=j(s− si)φ(λ, s1, . . . , s, . . . , sn2)
∏

i 6=j(sj − si)φ(λ, s1, . . . , sn2)

∣

∣

∣

∣

∣

F

}

≤ Cǫ
µ(B)n

2−1

(µ(UB,f,ǫ)/n2)n2−1

for some constant C > 0 depending only on n and φ. Hence

µ(UB,f,ǫ) ≤ n2C
1

n2−1

(

ǫ

sups∈B |f(s)|F

)
1

n2−1

µ(B).

We finish the proof of the proposition by letting α = 1/(n2 − 1) and replacing n2C
1

n2−1 by C. �

We conclude this section by proving the following proposition, which is a weak analogue of the

intermediate value theorem in the p-adic case.

Proposition 2.3 (Weak intermediate value theorem). Let F be a finite extension of Qp with norm

| · |F and f : Zp → F be a continuous (C,α)-good function. Then there exists a constant C ′ > 0

depending only on C, α and p such that for any n ∈ N we have

sup
s∈pn+1Zp

|f(s)|F ≥ sup
s∈pnZp

|f(s)|F/C
′.

In particular, if f(0) = 0 and |f(u)|F ≥ ρ for some u ∈ Zp and ρ > 0, then one can find v ∈ Zp

such that ρ/C ′ ≤ |f(v)|F < ρ.

Proof. For any n ∈ N, we denote by Sn := sups∈pnZp
|f(s)|F . By the (C,α)-good property of f , for

any ǫ > 0

µ({s ∈ pnZp : |f(s)|F < ǫ}) ≤ C

(

ǫ

Sn

)α

µ(pnZp).

Let

ǫn = Sn

(

µ(pn+1Zp)

2Cµ(pnZp)

)
1
α

=
Sn

(2Cp)
1
α

and we have

µ({s ∈ pnZp : |f(s)|F < ǫn}) ≤
1

2
µ(pn+1Zp).

This implies that there exists v ∈ pn+1Zp such that

|f(v)|F ≥ ǫn =
Sn

(2Cp)
1
α

.

We finish the proof of the first statement by taking C ′ = (2Cp)
1
α .
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For the second statement, by continuity of f , one can find n ∈ N such that

sup
s∈pnZp

|f(s)|p ≥ ρ and sup
s∈pn+1Zp

|f(s)|p < ρ.

Now we can apply the first statement and obtain

sup
s∈pn+1Zp

|f(s)|F ≥ sup
s∈pnZp

|f(s)|F /C
′ ≥ ρ/C ′.

This implies that there exists v ∈ pn+1Zp such that ρ/C ′ ≤ |f(v)|F < ρ. �

As a corollary, we deduce the following result.

Corollary 2.4. Let F be a finite extension of Qp with norm | · |F . Let C,α > 0 and {fi}i∈N

a sequence of continuous (C,α)-good function from Zp to F . Suppose sups∈Zp
|fi(s)|F → ∞ as

i → ∞. Then there is a sequence {si} in Zp such that si → 0 and fi(si) → ∞.

Proof. Let C ′ be the constant as in Proposition 2.3. Since limi→∞ sups∈Zp
|fi(s)|F = ∞, one can

find a sequence {ki} in N such that

ki → ∞ and lim
i→∞

1

C ′ki
sup
s∈Zp

|fi(s)|F = ∞.

By Proposition 2.3, for each i ∈ N, we have

sup
s∈pkiZp

|f(s)|F ≥ sup
s∈Zp

|f(s)|F /C
′ki .

Hence, for each i ∈ N, there is si ∈ pkiZp such that

|f(si)|F ≥ sup
s∈Zp

|f(s)|F /(2C
′ki).

Then the sequence {si}i∈N satisfies our requirement. �

3. Nondivergence

In this section, we study the non-escape of mass of S-arithmetic periodic orbits. The arguments

in this section will rely on the results in [KM98, KT07, TW03]. Since G is a reductive Q-group

without non-trivial Q-characters, we can embed G into SLn for some n ∈ N.

3.1. (C,α)-good maps and Nondivergence. Let X be a metric space with a locally finite

measure µ and S a finite set of places of Q. A map

φ : (X,µ) → SLn(QS), x ∈ X 7→ φ(x) = (φp(x))p∈S ∈ SLn(QS),

where φp(x) ∈ SLn(Qp) (p ∈ S), is called (C,α)-good if there exist constants C and α > 0 such

that for every place p ∈ S, each entry of φp is a (C,α)-good function from X to Qp.
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For any p in the finite set S of places of Q, let Lie(SLn(Qp)) denote the Lie algebra of SLn(Qp),

and let expp be the associated exponential map which is defined in a neighborhood of identity in

Lie(SLn(Qp)). We write expS for the product map

(expp)p∈S :
∏

p∈S

Lie(SLn(Qp)) →
∏

p∈S

SLn(Qp)

and logS for the inverse of expS , whenever these maps are defined. For any set W in
∏

p∈S SLn(Qp),

we denote by logS(W ) the image of W under the map logS. We write Lie(F ) for the Lie algebra

of a (p-adic) Lie group F .

Let p ∈ S and {Xp
1 ,X

p
2 , ...,X

p
l } a basis of the Lie algebra Lie(H(Qp)) in a small neighborhood of

0 where the exponential map expp is defined. By Jordan decomposition, we can write Xp
i = Y p

i +Zp
i

where Y p
i is semisimple, Zp

i is nilpotent and Y p
i and Zp

i commute. Then by Proposition 2.2, the

map s 7→ expp(sX
p
i ) = expp(sY

p
i ) expp(sZ

p
i ) (s ∈ Zp) is (C,α)-good for some C and α > 0.

Consequently, by [KT07, Corollary 3.3], the map

Φp : (s1, s2, ..., sl) 7→ expp(s1X
p
1 ) expp(s2X

p
2 ) · · · expp(slX

p
l )

is (C,α)-good. Since the map Φp is a local diffeomorphism from a neighborhood of 0 in Lie(H(Qp))

to H(Qp), the Lebesgue measure on a neighborhood of 0 in Lie(H(Qp)) maps to a measure on

H(Qp) which is absolutely continuous to the Haar measure on H(Qp).

Now we introduce the notation in [KT07]. Let Qn
S be the QS-module

∏

p∈S Qn
p = {(xp)p∈S : xp ∈

Qn
p}. Denote by M(QS ,OS , n) the space of discrete OS -modules in Qn

S , which can be identified as

{

g−1∆ : g ∈ GLn(QS),∆ is a OS-submodule in On
S

}

.

Note that any discrete OS-module in Qn
S is a free OS-module. We write ΩS,n for the space of

lattices in Qn
S defined by

ΩS,n :=
{

g−1On
S : g ∈ GLn(QS)

}

∼= GLn(OS)\GLn(QS).

For any v ∈ S, the valuation | · |v induces a norm ‖ · ‖v on Qn
v . The metric on Qn

S, which is

induced by the metrics ‖ · ‖v (v ∈ S) as a product metric, will be denoted by ‖ · ‖. The content

c(x) of x = (xv)v∈S ∈ Qn
S =

∏

p∈S Qn
p is defined to be the product of ‖xv‖v (v ∈ S), and will be

used in §3.2.

Let

GL1
n(QS) = {x = (xp)p∈S ∈ GLn(QS) :

∏

p

|det(xp)|p = 1}.

Define the space of unimodular lattices in Qn
S by

Ω1
S,n := {∆ ∈ ΩS,n : cov(∆) = 1} ∼= GL1

n(OS)\GL1
n(QS).

Here we refer to [KT07] for the definition of the covolume cov(∆) of a discrete OS-module ∆ in

Qn
S.
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As G is embedded into SLn for some n ∈ N, we have

XS = G(OS)\G(QS) ⊂ GL1
n(OS)\GL1

n(QS)

and XS can be identified with a subspace of OS-modules of covolume one in Qn
S . Note that the

embedding above is a proper map.

In the following, we prove the non-divergence of the orbits Γ\ΓHg−1 for g ∈ G(QS), where H

is a subgroup of finite index in H(QS). We take a neighborhood of identity U∗ =
∏

p∈S Up in H

(Up ⊂ H(Qp)) such that the exponential map is defined on Up (∀p ∈ S) and Up is a subgroup of

H(Qp) (∀p ∈ Sf ). For convenience, in the proof of Theorem 3.1, we denote by µ the Haar measure

on Rl ×
∏

p∈Sf
Ql

p (l = dimH). The proof is similar to that of [EMS97, Theorem 3.4].

Theorem 3.1. Let G be a reductive algebraic group defined over Q, which does not admit nontrivial

Q-characters. Let H be a reductive Q-subgroup of G admitting no nontrivial Q-characters. Let S

be a finite set of places of Q containing the Archimedean place, H a subgroup of finite index in

H(QS) and g ∈ G(QS). Assume that there exists a compact subset K0 in XS = ΓS\G(QS) such

that for any h ∈ G(QS),

ΓS\ΓSU
∗h−1 ∩K0 6= ∅.

Then for any ǫ > 0, there exists a compact subset K ⊂ XS such that

µΓS\ΓSHg−1(K) ≥ 1− ǫ.

Proof. Let Ω be a fundamental domain of ΓS\ΓSH in H, µH the Haar measure on H, and let δ0

be as in Proposition 2.2. Let W be a compact subset in Ω such that

µH(W )/µH(Ω) ≥ 1− ǫ

We can construct a finite open cover U of W in H, which consists of translates of U∗ {Bi}
N
i=1 =

{U∗hi}
N
i=1, and here it is harmless to assume that the diameter of U∗ is equal to δ0 > 0. Note that

the number N depends only on Ω and ǫ > 0.

By the discussion in this section, for any Bi (1 ≤ i ≤ N), there is an open ball Ui of radius at

most δ0 > 0 in Rl such that one can find a (C,α)-good map

φi : Ui ×
∏

p∈Sf

Zl
p → Bi

where C and α are uniform for all 1 ≤ i ≤ N . Note that for each i = 1, 2, . . . , N , the map φi(s)
−1

(s ∈ Ui ×
∏

p∈Sf
Zl
p), which is the composition of φi with the inversion in the group H, is also

(C,α)-good.

Now we prove the non-escape of mass of µΓ\ΓHg−1 . We know that there is a compact subset K0

in ΓS\G(QS) such that ΓS\ΓSBig
−1 intersects K0 for every 1 ≤ i ≤ N . By [KT07, Theorem 8.8,

Lemma 9.2 and Lemma 8.6], this implies that there exists ρ > 0 depending only on K0, n and S
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such that for any 1 ≤ i ≤ N , and for any submodule ∆ ⊂ On
S

sup
s∈Ui×

∏

p∈Sf
Zl
p

cov(gφi(s)
−1∆) ≥ ρ.

Then we apply [KT07, Theorem 9.3] and for any ǫ > 0, there exists a compact subset Qǫ such that

for each i = 1, 2, . . . , N

µ({s ∈ Ui ×
∏

p∈Sf

Zl
p : gφi(s)

−1On
S /∈ Qǫ}) ≤

ǫ

N
µ(Ui ×

∏

p∈Sf

Zl
p).

Now we compute

µH({s ∈ Ω : ΓSsg
−1 /∈ Qǫ})

≤
N
∑

i=1

µH({s ∈ Bi : ΓSsg
−1 /∈ Qǫ}) + µH(Ω−W )

≤C1

N
∑

i=1

µ({s ∈ Ui ×
∏

p∈Sf

Zl
p : gφi(s)

−1On
S /∈ Qǫ}) + ǫ

≤
C1ǫ

N

N
∑

i=1

µ



Ui ×
∏

p∈Sf

Zl
p



+ ǫ ≤ CǫµH(Ω) + ǫ = (C + 1)ǫ

where C1 and C depend only on Ω, ǫ > 0 and the local diffeomorphisms φi (i = 1, 2, ..., N).

Hence we have µΓS\ΓSHg−1(Qc
ǫ) ≤ Cǫ, for some constant C > 0. This completes the proof of the

theorem. �

3.2. Translates of a maximal torus visiting a compact subset. Let H ⊂ G be connected

reductive algebraic groups defined over Q without nontrivial Q-characters and suppose that H

contains a maximal torus of G. Let H be a subgroup of finite index in H(QS). Let U
∗ =

∏

p∈S Up

in H (Up ⊂ H(Qp)) be defined as in §3.1, which is a neighborhood of identity in H such that the

exponential map is defined on Up (∀p ∈ S) and Up is a subgroup of H(Qp) (∀p ∈ Sf ). In this

subsection, we prove the following theorem.

Theorem 3.2. There exists a compact subset K in ΓS\G(QS) such that for any g ∈ G(QS)

ΓS\ΓSU
∗g ∩K 6= ∅.

We know that H contains a maximal torus in G. It implies that H contains a maximal torus

T of G which is defined and anisotropic over Q [PR72]. In the rest of this section, we will fix this

maximal torus T. Now we take a small neighborhood of identity Ω in T(QS) such that Ω ⊂ U∗.

Then it suffices to prove the following

Theorem 3.3. There exists a compact subset K ⊂ ΓS\G(QS) such that for any g in G(QS)

ΓS\ΓSΩg ∩K 6= ∅.

In order to prove Theorem 3.3, we need the following proposition.
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Proposition 3.4. There exists a subset Yp of G(Qp) such that

(1) G(Qp) = YpT(Qp)

(2) For any linear representation of G(Qp) on a vector space V over Qp, there exists a constant

c > 0 such that

sup
t∈Ω

‖yt.v‖ ≥ c‖v‖, ∀v ∈ V, ∀y ∈ Yp.

Proof. The case p = ∞ is essentially proved in [EMS97, Proposition 4.4]. Here we give a proof

for the p-adic case. Let F be a Galois extension of Qp such that T is F -split. By Iwasawa

decomposition, there exists a compact subgroup KF of G(F ) and a unipotent subgroup UF of

G(F ) such that

G(F ) = KFUFT(F ).

Let {σ1, σ2, ..., σn} = Gal(F/Qp) and define

S = {x ∈ T(F ) : σ1(x)σ2(x)...σn(x) = e}.

We prove that ST(Qp) is a subgroup of finite index in T(F ). We know that T(Qp)
n is a subgroup

of finite index in T(Qp). Let

E = {x ∈ T(F ) : σ1(x)σ2(x) · · · σn(x) ∈ T(Qp)
n}.

Then E is a subgroup of finite index in T(F ). Now for any x ∈ E, there exists w ∈ T(Qp) such

that

σ1(x)σ2(x) · · · σn(x) = wn

and hence w−1x ∈ S, x ∈ ST(Qp). This implies that E = ST(Qp) and ST(Qp) is a subgroup of

finite index in T(F ).

Let Λ be a finite set of representatives of T(F )/(ST(Qp)) in T(F ). Since Λ normalizes UF , we

have

G(F ) = KFUFΛST(Qp) = (KFΛ)UFST(Qp) = KUFST(Qp)

whereK is the compact subsetKFΛ inG(F ). Let Yp = (KUFS)∩G(Qp). ThenG(Qp) = YpT(Qp).

We prove that the subset Yp satisfies the second claim in the proposition. Let ρ be a representation

ofG(Qp) on a space V over Qp, and we extend it to a presentation ofG(F ) over F . Let y = kus ∈ Yp

for k ∈ K, u ∈ UF and s ∈ S. Then assuming Lemmas 3.5 and 3.6 below, we have for any v ∈ V

sup
t∈Ω

‖yt.v‖ = sup
t∈Ω

‖kust.v‖ ≥ c1 sup
t∈Ω

‖ut.(s.v)‖ ≥ c2 sup
t∈Ω

‖(t−1ut).(s.v)‖

≥ c2c3‖s.v‖ ≥ c2c3c4‖v‖.

Hence we only need to prove the following lemmas.

Lemma 3.5. There exists a constant c3 > 0 such that for any v ∈ V

sup
t∈Ω

‖(t−1ut).v‖ ≥ c3‖v‖



16 URI SHAPIRA AND CHENG ZHENG

Proof. Let Φ be the root system of (G(F ),T(F )) and Φ+ the set of positive roots. Let α1, α2, . . . , αn

be the positive simple roots of T(F ) in Φ+. Then there is an isomorphism fΦ : T(F ) → (F×)
n

which maps x ∈ T(F ) to

fΦ(x) := (α1(x), α2(x), . . . , αn(x)).

Write u = exp(u) where

u =
∑

α∈Φ+

uα ∈
∑

α∈Φ+

gα.

Note that for t ∈ Ω, t−1ut.v = exp(
∑

α∈Φ+
α(t)uα). Since the positive roots are generated by simple

roots, it follows that the set {t−1ut : t ∈ Ω} is the image of the map f defined by

(α1(t), α2(t), . . . , αn(t)) 7→ exp(
∑

α∈Φ+

α(t)uα).

We conclude that {t−1ut : t ∈ Ω} is the image of a polynomial map f defined on fΦ(Ω) which maps

s = (s1, s2, . . . , sn) ∈ fΦ(Ω) to

f(s1, s2, . . . , sn) := exp(
∑

α∈Φ+

α(s1, s2, . . . , sn)uα)

where α(s1, s2, . . . , sn) is a polynomial in s1, s2, ..., sn without constant term.

To finish the proof of the lemma, it is enough to prove that there exists a constant c3 > 0 such

that

sup
s∈fΦ(Ω)

‖f(s).v‖ ≥ c3‖v‖.

Since f is a polynomial map on each variable si with a uniformly bounded degree, by [KT07,

Corollary 3.3], f is (C,α)-good for some C and α. We also have f(0) = e, so f(0).v = v. Now

choose a bounded region D in Fn containing fΦ(Ω), and by the (C,α)-good property, there are

constants c3 > 0 depending only on C, α and fΦ(Ω) such that

µFn({s ∈ D : ‖f(s).v‖ ≤ c3‖v‖}) ≤
1

2
µFn(fΦ(Ω))

where µFn denotes the Haar measure on Fn. Hence there is s ∈ fΦ(Ω) such that ‖f(s).v‖ ≥ c3‖v‖.

This completes the proof of the lemma. �

Lemma 3.6. There exists a constant c4 > 0 such that for any v ∈ V

‖s.v‖ ≥ c4‖v‖.

Proof. We write the weight space decomposition for VF over F as

V =
∑

α

Vα

and for any v ∈ V we write v =
∑

α vα. Then s.v =
∑

α α(s)vα and

σi(s.v) = σi(s).v =
∑

α

α(σi(s))vα.
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We know that ‖ · ‖ and ‖σi(·)‖ are equivalent norms on the vector space VF over F , and for any

v ∈ VF , there exists a constant κ > 0 such that

1

κ
‖v‖ ≤ ‖σi(v)‖ ≤ κ‖v‖

1

κ
max
α

‖vα‖ ≤ ‖v‖ ≤ κmax
α

‖vα‖.

For any v ∈ V , let vβ = max ‖vα‖. Then

‖s.v‖ ≥
1

κ
‖σi(s).v‖ ≥

1

κ2
‖β(σi(s)).vβ‖

‖s.v‖n ≥
1

κ2n
‖β(

n
∏

i=1

σi(s))‖‖vβ‖
n ≥

1

κ3n
‖v‖n.

This implies that ‖s.v‖ ≥ c4‖v‖ for some constant c4 > 0. �

This completes the proof of the proposition. �

Proof of Theorem 3.3. We embed G in SLn for some n, and hence

G(OS)\G(QS) ⊂ SLn(OS)\SLn(QS) ⊂ GL1
n(OS)\GL1

n(QS)

where GL1
n(OS)\GL1

n(QS) is the space of unimodular lattices Ω1
S,n in Qn

S. Note that the group

action of G(QS) on GL1
n(OS)\GL1

n(QS) is defined by

∆ 7→ h−1∆, ∀h ∈ G(QS), ∀∆ ∈ Ω1
S,n.

For any p ∈ S, let Yp be the subset of G(Qp) in Proposition 3.4 and we have G(Qp)=T(Qp)Y
−1
p .

For g ∈ G(QS), we can write g = (tpy
−1
p )p∈S where tp ∈ T(Qp) and yp ∈ Y −1

p and we have

ΓS\ΓSΩg = ΓS\ΓS(tp)p∈SΩ(y
−1
p )p∈S .

Since T is Q-anisotropic, T(OS)\T(QS) is compact and there exists s ∈ T(QS) in a compact

fundamental domain of T(OS)\T(QS) such that ΓS(tp)p∈S = ΓSs. Let y = (yp)p∈S . We have

ΓS\ΓSΩg = ΓS\ΓSsΩy
−1.

Let ρk be the representation of G(QS) on the k-th exterior product space Vk of Qn
S (1 ≤ k ≤ n).

Then by Proposition 3.4, for any v ∈ Vk

sup
t∈Ω

c((yt)s.v) ≥ C0c(s.v)

for some constant C0 > 0. Here c(v) denotes the content of the element v. This implies that for

every submodule ∆ ⊂ On
S

sup
t∈Ω

cov((yt)s.∆) ≥ C0 cov(s.∆) ≥ C1 cov(∆)

for some constant C1 > 0, as s is in a fixed compact subset. Since Ω is an image of a (C,α)-good

map, by [KT07, Lemma 8.2], we can apply [KT07, Theorem 9.3] and there is a compact subset K

in Ω1
S,n depending only on n, Ω, S, C and α such that ytsOn

S ∈ K for some t ∈ Ω. This implies

that for any g ∈ G(QS), ΓS\ΓSΩg ∩K 6= ∅. �
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We conclude this section by the following thoerem, which is a corollary of Theorems 3.1 and 3.2.

Theorem 3.7. Let G be a reductive algebraic group defined over Q, which does not admit nontrivial

Q-characters. Let H be a reductive Q-subgroup of G without nontrivial Q-characters, which contains

a maximal torus of G. Let S be a finite set of places of Q containing the Archimedean place, H

a subgroup of finite index in H(QS) and {gi} ∈ G(QS). Then after passing to a subsequence, the

sequence of probability measures g∗i µΓ\ΓH converges to a probability measure.

4. Auxiliary results in group theory

In this section, we prove some auxiliary lemmas for several arguments in §5.

Recall that H is a subgroup of finite index in H(QS). For any p ∈ Sf , we denote by Hp a small

open compact subgroup of H(Qp) contained in H, where the exponential map expp is defined. The

subgroup Hp could be considered as a closed subgroup in SLn(Qp) for some n ∈ N. Note that all

the eigenvalues of elements in Hp stay in a small neighborhood of 1 ∈ Qp. In the following, for

a sequence {Wi}i∈N of subsets in SLn(Qp), we say {Wi} is unbounded if for any compact subset

K ⊂ SLn(Qp), there are infinitely many Wi such that Wi 6⊂ K. Otherwise, we say {Wi} is bounded.

Lemma 4.1. Let {γi} be a sequence in SLn(Qp). Suppose {Ad γi(Hp)} (i ∈ N) is unbounded.

Then for any N > 0, after passing to a subsequence, there exists a sequence hi ∈ Hp such that

hi → ep, Ad γi(hi) → u (i → ∞)

for some unipotent element u in SLn(Qp) with |u|p ≥ N .

Proof. Since {Ad γi(Hp)} is unbounded, by passing to a subsequence, there is xi = exp(Xi) in Hp

with Xi ∈ Lie(SLn(Qp)) such that Ad γi(xi) → ∞. By Proposition 2.2 and [KT07, Lemma 3.1],

we know that the function fi : Zp → R defined by

fi(s) = ‖γi(exp(sXi))γ
−1
i − ep‖p, s ∈ Zp

is a (C,α)-good function with some C,α > 0 uniformly for any i ∈ N. Our choices of xi’s then

imply fi(1) → ∞ as i → ∞. By Corollary 2.4 we can find si ∈ Zp so that

siXi → 0, fi(si) → ∞.

Therefore, by replacing Xi with siXi, we may assume Xi → 0. Now for any N > 0, one can

find k ∈ N such that C ′k ≥ N where C ′ is the constant in Proposition 2.3. Since fi(0) = 0 and

fi(si) → ∞ as i → ∞, we apply Proposition 2.3 with ρ = C ′k+1, and one can find vi ∈ Zp such that

fi(vi) ∈ [C ′k, C ′k+1].

Let hi = exp(viXi). Then by passing to a subsequence, we have

hi → ep, Ad γi(hi) → u

for some u ∈ SLn(Qp) with |u− ep|p ∈ [C ′k, C ′k+1]. Since hi → ep, all the eigenvalues of Ad γi(hi)

converges to 1. It follows that u is a unipotent element with |u|p ≥ N . �
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Lemma 4.2. A closed subgroup of SLn(Qp) containing arbitrarily large unipotent elements has a

one-parameter unipotent subgroup.

Proof. The exponential map exp(X) can be defined for nilpotent elements X in the Lie algebra

of SLn(Qp), and the log function log(u) can be defined for unipotent elements u in SLn(Qp).

Moreover, the sets of nilpotent elements and of unipotent elements are both closed. Now let {ui}

be a sequence of unipotent elements in a closed subgroup M with ui → ∞. We take Xi = log ui

and we have Xi → ∞. By passing to a subsequence, |Xi|pXi converges to a nilpotent element X

with |X|p = 1. Now we prove that the one-parameter unipotent subgroup

s ∈ Qp 7→ exp(sX)

is contained in M .

For s 6= 0 and i sufficiently large, since Z = Zp, one can find mi ∈ Z such that

|mi − s|Xi|p|p ≤
1

i|Xi|p
.

This implies that

miXi = (mi − s|Xi|p)Xi + s|Xi|pXi → sX.

Since exp(miXi) = umi

i ∈ M and M is closed, we have exp(sX) ∈ M . This completes the proof of

the lemma. �

The following is an immediate corollary of Lemmas 4.1 and 4.2.

Proposition 4.3. Let {µi} be a sequence of probability measures on Γ\G(QS) which weakly con-

verges to a measure µ, and p a non-Archimedean place in S. Suppose that each measure µi is

invariant under Ad(γi)Hp for some γi ∈ G(Qp), and {Ad(γi)Hp} is unbounded. Then µ is invari-

ant under a one-parameter unipotent subgroup.

Now we consider the case when {Ad(γi)Hp} is bounded.

Proposition 4.4. Let γi ∈ G(Qp). The sequence {Ad(γi)Hp} is bounded if and only if γiZG(H)(Qp)

is bounded in G(Qp)/ZG(H(Qp)).

Proof. The set of semisimple elements in Hp is Zariski dense in H(Qp), so one can pick a finite

number of semisimple elements αi ∈ Hp such that

ZG(α1) ∩ ZG(α2) ∩ ... ∩ ZG(αn) = ZG(H(Qp)).

Consider the action of G(Qp) on itself by conjugation. Under this action, the stabilizer of αi in

G(Qp) equals ZG(αi). This induces a map βi : G(Qp)/ZG(αi) → G(Qp) defined by

α(gZG(αi)) = gαig
−1.

By [BT65,Bor91] or [MT94, Proposition 1.6], this map is a homeomorphism betweenG(Qp)/ZG(αi)

and the conjugacy class of αi.
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Suppose {Ad(γi)Hp} is bounded. Then the sequence {Ad(γi)αk} is bounded (∀k = 1, 2, ..., n).

The homeomorphism βi then implies that the sequence {γiZG(αk)} is also bounded inG(Qp)/ZG(αk).

Consequently, this implies that γiZG(H(Qp)) is bounded in G(Qp)/ZG(H(Qp)). Conversely, if

{γiZG(H(Qp))} is bounded in G(Qp)/ZG(H(Qp)), then one can find a compact subset K in G(Qp)

such that γi ∈ KZG(H(Qp)). Then Ad(γi)Hp is contained in the compact subset KHpK
−1. �

The following is an analogue of the previous results over R which can be proved in a similar

manner.

Proposition 4.5. Let {γi} be a sequence in G(R). Consider the operator

Ad γi : Lie(ZG(H)(R)) → Lie(G(R)).

Then we have

(1) If the sequence {‖Ad γi‖} is unbounded, then by passing to a subsequence, there exists a

one-parameter unipotent subgroup {u(t) : t ∈ R} in G(R) satisfying the following condition:

for any s ∈ R, one can find a sequence wi ∈ ZG(H)(R)0 such that γiwiγ
−1
i → u(s).

(2) The sequence {‖Ad(γi)‖} is bounded if and only if γiZG(H)(R) is bounded in G(R)/ZG(H)(R).

Here ‖ · ‖ denotes the operator norm.

Similarly, we obtain the following

Proposition 4.6. Let {µi} be a sequence of probability measures on Γ\G(QS) which weakly con-

verges to a measure µ. Suppose that each measure µi is invariant under Ad(γi)ZG(H)(R)0 for

some γi ∈ G(R), and the norms of the operators Ad(γi) : Lie(T(R)) → Lie(G(R)) are unbounded.

Then µ is invariant under a one-parameter unipotent subgroup.

5. Measure rigidity: proof of Theorem 1.7

In this section, we prove Theorem 1.7 using S-arithmetic Ratner’s theorem. We will mainly

follow the frameworks and the presentations of [EMS96,GO11].

In order to prove Theorem 1.7, we make the following reduction. We know that the sequence

g∗i µΓS\ΓSH converges to a probability measure µ. Then there exist ai ∈ H, γi ∈ ΓS and g ∈ G(QS)

such that πS(g) ∈ supp(µ) and γiaig
−1
i → g. We have

γ∗i µΓS\ΓSH = (γiaig
−1
i )∗(gi)

∗µΓS\ΓSH → g∗µ.

Therefore, to prove that µ is an algebraic measure, it suffices to study the sequence of probability

measures γ∗i µΓS\ΓSH where {γi} is a sequence in ΓS . Now for each γi ∈ ΓS , we denote by ρi(x) :=

γixγ
−1
i the conjugation of γi in G. Then

γ∗i µΓS\ΓSH = µΓS\ΓSρi(H)

is the Haar measure on the finite-volume orbit ΓS\ΓSρi(H) ⊂ ΓS\G(QS). Without loss of gener-

ality, we may assume that µΓS\ΓSρi(H) converges to a probability measure µ.
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Let T be a maximal torus in G which is defined and anisotropic over Q, and contained in H.

Suppose that there are infinitely many i ∈ N such that γiHγ−1
i is contained in a connected Q-

subgroup F of dimension smaller than dimG. By [EMS97, Lemma 5.1] and the condition that

T ⊂ F, F is reductive and has no non-trivial Q-characters. Since

T(C) ⊂ F(C) and γiT(C)γ−1
i ⊂ F(C),

and both T(C) and γiT(C)γ−1
i are maximal tori in F(C), there exists an element hi ∈ F(C) such

that hiT(C)h−1
i = γiT(C)γ−1

i . Hence h−1
i γi is in the normalizer of T(C). Let W be a finite set

of representatives of Weyl group in G(C). Then h−1
i γi ∈ T(C)W . This implies that there exists

wi ∈ W such that γiw
−1
i ∈ F(C). By passing to a subsequence, we may assume that w−1

i = w for

all i ∈ N. Now let δi = γiγ
−1
1 and H′ = γ1Hγ−1

1 . Then we have

δi = γiw(γ1w)
−1 ∈ F(C) ∩G(OS) = F(OS)

and {δiH
′δ−1
i } = {γiHγ−1

i } is contained in the Q-reductive group F. If we write the conjugation

by δi as ρ
′
i(x) := δixδ

−1
i and H ′ = γ1Hγ−1

1 , then

µΓS\ΓSρi(H) = µγiHγ−1
i

= µδiH′δ−1
i

= µΓS\ΓSρ
′

i(H
′)

is actually a sequence of probability measures on F(OS)\F(QS). Therefore, without loss of gen-

erality, we may assume that G is the smallest Q-subgroup containing the sequence {γiHγ−1
i } and

γi ∈ G(OS).

Moreover, it is harmless to replace ΓS by a subgroup of finite index Γ in ΓS , and consider the

homogeneous space Γ\G(QS). Let Z(G) be the center of G. Then by passing to the quotient space

G/Z(G), we may further assume that G is semisimple. We will denote by πS : G(QS) → Γ\G(QS)

be the natural quotient map.

Theorem 5.1. Let G be a connected semisimple algebraic group defined over Q. Let H be a

connected reductive Q-subgroup without nontrivial Q-characters, and assume that H contains a

maximal torus in G. Let ρi : H → G(i ∈ N) be a sequence of Q-homomorphisms defined by

ρi(x) = γixγ
−1
i (γi ∈ Γ) where Γ is a subgroup of finite index in ΓS, such that there exists no proper

Q-subgroup M containing infinitely many ρi(H). Let H be a subgroup of finite index in H(QS).

Suppose that the sequence {µΓ\Γρi(H)} converges to a probability measure µ as i → ∞. Then µ is

an algebraic measure on Γ\G(QS).

Theorem 1.7 is then an immediate corollary of Theorem 3.7 and Theorem 5.1. The rest of this

section will be devoted to the proof of Theorem 5.1.

5.1. Prerequisites. Let M be an algebraic vareity defined over Q, and S a finite set of places of

Q containing the Archimedean place. The Zariski topology on M(QS) =
∏

p∈S M(Qp) is defined

to be the product of the Zariski topologies on M(Qp) (p ∈ S). On the other hand, the topologies

on the local fields Qp (p ∈ S) induce a topology on M(QS) =
∏

p∈S M(Qp), which we will refer to

as Hausdorff topology on M(QS).
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In the following, a map f : M(QS) → QS of the form f = (fp)p∈S , where fp is a Qp-valued

function on M(Qp), will be called a QS-valued function on M(QS) =
∏

p∈S M(Qp). The space of

QS-valued functions on M(QS) is a QS-module. A QS-valued function on M(QS) is called regular

if fp is regular for every p ∈ S.

The following lemma could be verified by [Bor91, Ch.1].

Lemma 5.2. Let ρi : H → G (i ∈ N) be a sequence of Q-homomorphisms defined by ρi(x) =

γixγ
−1
i , and V an affine variety on which G acts morphically. Then for any regular QS-valued

function f on V(QS), the maps f(ρi|H(QS)w) (w ∈ V(QS), i ∈ N) span a finitely generated QS-

module in the space of QS-valued functions on H(QS).

The following is an immediate corollary of [PR94, Theorem 7.9].

Lemma 5.3. Let H be as in Theorem 5.1, and S a finite set of places of Q containing the

Archimedean place. Then there exists an open neighborhood of identity WSf
in H(QSf

) such that

H(Q) is dense in H(R)×WSf
.

5.2. Invariant measures for unipotent flows and linearization. In this subsection, we briefly

discuss invariant measures for unipotent flows and linearization in the S-arithmetic setting. One

can refer to e.g. [MT94,MT96,Rat95,Rat98,Tom00,GO11] for more details. Here we will follow

the notation and the formulations in [GO11].

We say that a connected Q-subgroup P of G is in class F ralative to S if the radical of P is

unipotent and every Q-simple factor of P is Qv-isotropic for some v ∈ S. A closed subgroup L of

G(QS) is in class H if there exists a connected Q-subgroup P in class F relative to S such that

L has a finite index in P(QS) and Lu acts ergodically on Γ\ΓL with respect to the L-invariant

probability measure. Here Lu is the subgroup in L generated by unipotent subgroups.

For a closed subgroup L of G(QS), the Mumford-Tate subgroup, denoted by MT (L), is defined

to be the smallest connected Q-subgroup G such that

L̄0 ⊂
∏

v∈S

MT (L)(Qv)

where L̄0 denotes the identity component of the Zariski closure of L in G(QS).

Let XS = Γ\G(QS). Let W be a closed subgroup of G(QS) generated by one-parameter unipo-

tent subgroups. For each L ∈ H, define

N (L,W ) = {g ∈ G(QS) : W ⊂ g−1Lg}, S(L,W ) =
⋃

M∈H,MT (M)(MT (L)

N (M,W )

TL(W ) = πS(N (L,W )− S(L,W ))

where πS : G(QS) → Γ\G(QS) denotes the canonical projection. Note that we have

N (L,W ) = {g ∈ G(QS) : W ⊂ g−1MT (L)(QS)g},
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and for any P,Q ∈ H with MT (P ) = MT (Q),

N (P,W ) = N (Q,W ), S(P,W ) = S(Q,W ), TP (W ) = TQ(W ).

By [GO11, Lemma 6.10], for any P,Q ∈ H, either TP (W ) ∩ TQ(W ) = ∅ or TP (W ) = TQ(W ).

Let F∗ be the collection of Γ-conjugacy classes of Mumford-Tate subgroups of L ∈ H. For each

[L] ∈ F∗, choose one subgroup L ∈ H with MT (L) = L, and the collection of such L’s will be

denoted by H∗.

Let L ∈ H∗. Let g and l denote the Lie algebras of G and MT (L) respectively. For d = dim l,

consider the representation

∧d Ad : G → GL(VL)

where VL = ∧dg. Let VL(QS) =
∏

p∈S VL(Qp) and pL ∈ ∧dl(Q) ∈ VL(QS). Then we have a map

ηL : G(QS) → VL(QS) defined by

ηL((gp)p∈S) = (∧d Ad(gp)pL)p∈S .

Let ΓL := {γ ∈ G(OS) : γ
−1MT (L)γ = MT (L)} and denote by

Γ0
L := {γ ∈ G(OS) : ηL(γ) = pL} = {γ ∈ ΓL : det(Ad(γ)|l) = 1}.

By definition, we have ηL(ΓL) ⊂ O×
S · pL where O×

S denotes the group of units in OS .

Recall the notion of S(v0)-small subsets of VL(QS). Fix δ > 0 such that for any w ∈ S, if α ∈ O×
S

satisfies maxv∈S\{w} |1 − α|v < δ, then α = 1. Now let v0 ∈ S. A subset C =
∏

v∈S Cv ⊂ VL(QS)

is S(v0)-small if for any v ∈ S \ {v0} and α ∈ K×
v , αCv ∩ Cv 6= ∅ implies that |1 − α|v < δ. Note

that for any α ∈ O×
S and any S(v0)-small subset C of VL(QS), αC ∩ C 6= ∅ implies α = 1.

If −pL /∈ ηL(ΓL), we set VL(QS) := VL(QS); otherwise, set VL(QS) := VL(QS)/{1,−1}.

Denote by η̄L the composition map of ηL with the quotient map VL(QS) → VL(QS). Denote by

AL the Zariski closure of η̄L(N (L,W )) in VL(QS). Then η̄−1
L (AL) = N (L,W ). For D a compact

S(v0)-small subset of AL for some v0 ∈ S, we define

S(D) = {g ∈ η̄−1
L (D) : γg ∈ η̄−1

L (D) for some γ ∈ Γ− ΓL}.

We finish this subsection by proving the following lemma.

Lemma 5.4. Let M be a connected Q-group in class F , and M ∈ H a subgroup of finite index in

M(QS). Suppose that M(R)0 is generated by one-parameter unipotent subgroups. Then

Γ\Γ(M(R)0 × {ef}) = Γ\ΓM.

Proof. By [Tom00, Theorem 2], we have Γ\ΓM(R)0 = Γ\ΓF for some F ∈ H and M(R)0 ⊂ F.

This implies that MT (M) ⊂ MT (F ). On the other hand, we also have

Γ\ΓF = Γ\ΓM(R)0 ⊂ Γ\ΓM.

So by [GO11, Lemma 6.7], MT (F ) ⊂ MT (M). This implies that MT (L) = MT (M) = M. Hence

by [GO11, Lemma 6.7], Γ\ΓF = Γ\ΓM. This completes the proof of the lemma. �
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5.3. An Auxiliary Proposition. Let H be as in Theorem 5.1. Let ρi : H → G(i ∈ N) be a

sequence of Q-homomorphisms defined by ρi(x) = γixγ
−1
i (γi ∈ Γ) where Γ is a subgroup of finite

index in ΓS, such that there exists no proper Q-subgroup M containing infinitely many ρi(H).

Now for the group H, suppose that the sequence of subsets {ρi(H)} in
∏

p∈Sf
G(Qp) is bounded,

and the norms ‖Ad γi‖ of the operators Ad γi : Lie(T(R)) → Lie(G(R)) are bounded. Then by

Proposition 4.4 and Proposition 4.5, for each p ∈ S, we can find a bounded sequence γi,p ∈ G(Qp)

and a sequence ti,p ∈ ZG(H)(Qp) such that γi = γi,pti,p. Therefore,

πS(ρi(H)) = Γ\ΓHγ−1
i = Γ\Γ(t−1

i,p )p∈SH(γ−1
i,p )p∈S .

Since µΓ\Γρi(H) converges to a probability measure, the sequence {Γ(ti,p)p∈S} is bounded in the

space Γ\ΓZG(H)(QS). Let

Γ(t−1
i,p )p∈S = Γ(ai,p)p∈S

where (ai,p)p∈S is a bounded sequence in ZG(H)(QS). Then

πS(ρi(H)) = Γ\ΓH(ai,pγ
−1
i,p ).

By passing to a subsequence, the limiting measure of µΓ\Γρi(H) is a translate of the periodic measure

µΓ\ΓH . Theorem 5.1 then follows in this case.

Now we assume that either the sequence {ρi(H)} is unbounded in
∏

p∈Sf
G(Qp) or the norms

‖Ad γi‖ of the operators Ad γi : Lie(T(R)) → Lie(G(R)) are unbounded. Then by Proposition 4.3

and Proposition 4.6, after passing to a subsequence, the limiting probability measure µ of µΓ\Γρi(H)

is invariant under a one parameter unipotent subgroup W .

We continue the notation and the discussion in the previous subsection. According to [GO11,

Theorem 6.11], there is some subgroup L ∈ H∗ such that µ(TL(W )) > 0 and µ(S(L,W )) = 0.

Then one can find a compact subset C∗ ⊂ TL(W ) such that µ(C∗) = α > 0. Since η̄L never takes

the zero vector in every place p ∈ S, we may take the compact subset C∗ so that the subset

CL := η̄L(C
∗) ⊂ AL

is contained in a subset
∏

v∈S Cv of VL(QS) which is S(v0)-small for every v0 ∈ S.

Let Ω be a fundamental domain of Γ\ΓH in H, and µH the Haar measure on H. Let Ωc be a

compact subset in Ω such that

µH(Ω− Ωc) ≤ ǫ0µH(Ω)

where ǫ0 < α/2. Let {Bk}
N
k=1 be a cover of Ωc with open boxes of diameter δ0, where δ0 is as in

Proposition 2.2. Moreover, we assume that for any Bk (1 ≤ k ≤ N), one can find an element gk ∈

G(QS) and an open box Uk of radius at most δ0 > 0 around 0 in Lie(H(QS)) =
∏

p∈S Lie(H(Qp))

such that expS(Uk) = Bkg
−1
k . The orbit Γ\Γρi(H) is then equal to

Γ\Γρi(H) =

N
⋃

k=1

Γ\Γρi(Bk) ∪ Γ\Γρi(Ω− Ωc).
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Note that N depends only on ǫ0 and Ωc. By Proposition 2.2, [KT07, Corollary 3.3] and the

discussion in §3, for each ρi and Bk, one can find a bijective (C,α)-good map

φi : Uk → ρi(Bk)

where C and α are uniform for all i ∈ N and 1 ≤ k ≤ N .

Write AL as
∏

p∈S V (f
(p)
1 , f

(p)
2 , . . . , f

(p)
n ), where f

(p)
i (1 ≤ i ≤ n) are polynomials on VL(Qp)

(p ∈ S) and V (f
(p)
1 , f

(p)
2 , ..., f

(p)
n ) is the zero set of f

(p)
i (i = 1, 2, ..., n). We define

Wp(R,α) = {x ∈ VL(Qp) : ‖x‖p ≤ R, |g
(p)
i (x)|p ≤ α}.

Define R0 := supx∈CL
d(x, 0). Then

∏

p∈S Wp(R0, α) is a compact neighborhood of CL in VL(QS).

Proposition 5.5. Let CL = η̄L(C
∗) ⊂ AL and φi defined as above. Fix Bk for some 1 ≤ k ≤ N

(φi(Uk) = ρi(Bk)). Then there exists a closed subset S in πS(S(L,W )) satisfying the following

property: for a given compact subset K in XS − S, one of the following holds:

(1) For any ǫ > 0 there exists a neighborhood Ψ of CL such that

µ({x ∈ Uk : πS(φi(x)) ∈ K ∩ πS(η
−1
L (Ψ))}) ≤ ǫµ(Uk)

for infinitely many i ∈ N.

(2) There exists R > 0 such that for any α > 0 and for all large enough i ∈ N, one can find

wi ∈ Γp̄L with

ρi(Bk)wi ⊂
∏

p∈S

Wp(R,α).

Proof. Suppose that the second claim does not hold. Let ǫ > 0, and take R > 0 sufficiently large

such that R0/R ≤ ǫ. Then we can find α > 0 such that for infinitely many i ∈ N

ρi(Bk)w 6⊂
∏

p∈S

Wp(R,α)

for any w ∈ Γp̄L. In the sequel, we fix such an R.

For any p ∈ S define

D(p) =
∏

v 6=p

Cv ×Wp(R,α).

Then D(p) is a compact S(p)-small subset which contains
∏

v∈S Cv. Let S :=
⋃

p∈S S(D(p)). For

each p ∈ S we take a small neighborhood of D(p)

Ψ(p) =
∏

v∈S

Ψv(p)

as in [GO11, Proposition 6.16], and define

Ψ = (
∏

p∈S

Wp(R0, ǫα)) ∩
⋂

p∈S

Ψ(p).

We show that the subset Ψ satisfies the first claim in the proposition.
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Fix a compact K in XS − S. For p ∈ S, denote by

Fp = {w ∈ Γp̄L : ρi(Bk)w 6⊂
∏

v∈S,v 6=p

VL(Qv)×Wp(R,α)}.

By our assumption,
⋃

p∈S Fp = Γp̄L and we have

µ({x ∈ Uk : πS(φi(x)) ∈ K ∩ πS(η
−1
L (Ψ))})

=µ({x ∈ Uk : πS(φi(x)) ∈ K, φi(x)Γp̄L ∩Ψ 6= ∅})

≤
∑

p∈S

µ({x ∈ Uk : πS(φi(x)) ∈ K, φi(x)Fp ∩Ψ 6= ∅}).

In the sequal, we will estimate

µ({x ∈ Uk : πS(φi(x)) ∈ K, φi(x)Fp ∩Ψ 6= ∅})

for each p ∈ S.

For convenience, for any v ∈ S, we write πv for the natural projection Lie(H(QS)) → Lie(H(Qv)),

and πv for the natural projection from Lie(H(QS)) to Lie(H(QS\{v})). We denote by µv the Haar

measure on Lie(H(Qv)), and µS the Haar measure on Lie(H(QS)).

Case 1: p ∈ Sf . Define

Sp = {y ∈ Lie(H(QS\{p})) : ∃x ∈ Uk such that πS(φi(x)) ∈ K, φi(x)Fp ∩Ψ 6= ∅, πp(x) = y}.

For y ∈ Sp and w ∈ Fp, let

Iw(y) = {s ∈ Lie(H(Qp)) : ∃x ∈ Uk such that πS(φi(x)) ∈ K, φi(x)w ∈ Ψ, πp(x) = y, πp(x) = s}.

For any s ∈ Iw(y), we denote by Bs,w(y) the maximal ball in Uk ∩ Lie(H(Qp)) containing s such

that

(1) φi(Bs,w(y))w ⊂ Ψp(p).

(2) There exists s′ ∈ Bs,w(y) with φi(s
′)w ∈ Ψp(p) \Ψp(p).

By definition of Fp, such Bs,w(y) exists and by [GO11, Proposition 6.16]

{Bs,w(y) : w ∈ Fp, s ∈ Iw(y)}

is a collection of disjoint balls in Uk ∩ Lie(H(Qp)), which we rewrite as {Bi(w, y)}i∈N. Now since

φi|Uk
is (C,α)-good, for y ∈ Sp and w ∈ Fp

µp(Iw(y))

≤
∞
∑

i=1

µp({s
′ ∈ Bi(w, y) : ∃x ∈ Uk such that φi(x)w ∈ Ψ, πp(x) = s′, πp(x) = y})

≤
∞
∑

i=1

ǫµp(Bi(w, y)).

Then we have

µS({x ∈ Uk : π(φi(x)) ∈ K, φi(x)Fp ∩Ψ 6= ∅})
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≤
∑

w∈Fp

µS({x ∈ Uk : π(φi(x)) ∈ K, φi(x)w ∈ Ψ})

=
∑

w∈Fp

∫

y∈Sp

µp(Iw(y))dy ≤

∫

y∈Sp

∑

w∈Fp

∞
∑

i=1

ǫµp(Bi(w, y))dy

≤

∫

y∈Sp

ǫµp(Uk ∩ Lie(H(Qp)))dy ≤ ǫµS(Uk).

Case 2: p = ∞. Define

S∞ = {y ∈ Lie(H(QS\{∞})) : ∃x ∈ Uk, πS(φi(x)) ∈ K, φi(x)F∞ ∩Ψ 6= ∅ such that π∞(x) = y}.

For y ∈ S∞ let

I(y) = {s ∈ Lie(H(R)) : ∃x ∈ Uk, π(φi(x)) ∈ K, φi(x)F∞ ∩Ψ 6= ∅, π∞(x) = s, π∞(x) = y}.

Now fix y ∈ S∞ and choose s0 ∈ I(y). By [GO11, Proposition 6.16], one can find w0 ∈ Γp̄L such

that

πS(φi(s0, y)) ∈ K, φi(s0, y)w0 ∈ Ψ

and for other w ∈ Γp̄L − {w0}, we have φi(s0, y)w /∈ Ψ(∞). We split I(y) into two subsets

I(y,F∞ − {w0}) := {s ∈ Lie(H(R)) : (s, y) ∈ Uk, πS(φi(s, y)) ∈ K, φi(s, y)(F∞ − {w0}) ∩Ψ 6= ∅},

and

I(y,w0) := {s ∈ Lie(H(R)) : (s, y) ∈ Uk, πS(φi(s, y)) ∈ K, φi(s, y)w0 ∈ Ψ}.

We first consider I(y,F∞ − {w0}). Let ~v ∈ Lie(H(R)) and ‖~v‖ = 1. Define

Is0(~v) := {x ∈ [0, δ0] : s0 + x~v ∈ Uk ∩ Lie(H(R))}.

For w ∈ Γp̄L − {w0}, define

Is0,w(~v) := {x ∈ Is0(~v) : πS(φi(s0 + x~v, y)) ∈ K, φi(s0 + x~v, y)w ∈ Ψ}.

For any x ∈ Is0,w(~v), we denote by Bx,w(~v) the maximal interval in Is0(~v) containing x such that

(1) φi(s0 +Bx,w(~v)~v, y)w ⊂ Ψ(∞).

(2) There exists x′ ∈ Bx,w(~v) with φi(s0 + x′~v, y)w ∈ Ψ(∞) \Ψ(∞).

By definition of F∞ and our choice of s0 and w0, such an interval Bx,w(~v) exists, and by [GO11,

Proposition 6.16]

{Bx,w(~v) : w ∈ F∞ − {w0}, x ∈ Is0,w(~v)}

is a collection of intervals which cover Is0(~v) at most twice. We rewrite this collection as {Bi(w,~v)}i∈N.

Now since φi|Uk
is (C,α)-good, for any y ∈ S∞ and ~v ∈ S1

∑

w∈F∞−{w0}

µ(Is0,w(~v)) ≤
∑

w∈F∞−{w}

∞
∑

i=1

µ({x′ ∈ Bi(w,~v) : φi(s0 + x′~v, y)w ∈ Ψ})

≤
∑

w∈F∞−{w}

∞
∑

i=1

ǫµ(Bi(w,~v)) ≤ 2ǫµ(Is0(~v)) ≤ 2ǫδ0.
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We have

µ(I(y,F − {w0})) ≤
∑

w∈F∞−{w0}

∫

S1

∫

r∈[0,δ0]
χIs0,w(~v)(r)r

l−1drd~v

≤

∫

S1

∑

w∈F∞−{w0}

µ(Is0,w(~v))δ
l−1
0 d~v ≤ 2ǫδl0 = 2ǫµ(Uk ∩ Lie(H(R)))

where l = dimH.

For I(y,w0), by our assumption on F∞, one can find s1 ∈ Uk such that φi(s1, y)w0p̄L /∈ Ψ(∞).

We can then repeat the arguments above by replacing s0 and F∞ − {w0} with s1 and {w0}, and

obtain µ(I(y,w0)) ≤ 2ǫµ(Bk). Therefore, we have

µ({x ∈ Uk : π(φi(x)) ∈ K, φi(x)F∞ ∩Ψ 6= ∅})

≤µ({x ∈ Uk : π(φi(x)) ∈ K, φi(x)(F∞ − {w0}) ∩Ψ 6= ∅})

+ µ({x ∈ Uk : π(φi(x)) ∈ K, φi(x)w0 ∈ Ψ})

≤

∫

y∈S∞

µ∞(I(y,F − {w0}))dy +

∫

y∈S∞

µ∞(I(y,w0))dy

≤

∫

y∈S∞

4ǫµ∞(Uk ∩ Lie(H(R)))dy ≤ 4ǫµS(Uk).

Combining Case 1 and Case 2, we have

µ({x ∈ Uk : π(φi(x)) ∈ K ∩ π(η−1
L (Ψ))})

≤
∑

p∈S

µ({x ∈ Uk : π(φi(x)) ∈ K, φi(x)Fp ∩Ψ 6= ∅})

≤
∑

p∈Sf

ǫµ(Uk) + 4ǫµ(Uk) ≤ 4ǫ|S|µ(Uk).

We complete the proof of the proposition by replacing 4ǫ|S| with ǫ. �

5.4. Proof of Theorem 5.1. We will follow the arguments in [EMS96, §4] and [EMS98]. Let µ be

the limiting measure of µΓ\Γρi(H). We continue the assumption that either the sequence {ρi(H)}

is unbounded in
∏

p∈Sf
G(Qp) or the norms of the operators Ad γi : Lie(T(R)) → Lie(G(R))

are unbound. Then µ is invariant under a one-parameter unipotent subgroup W . Let L be a

subgroup in H∗ such that µ(TL(W )) > 0 and µ(S(L,W )) = 0. Then one can find a compact subset

C ⊂ TL(W ) such that µ(C) = α > 0, and CL := η̄L(C) ⊂ AL is contained in a subset
∏

v∈S Cv of

VL(QS) which is S(v0)-small for every v0 ∈ S.

Let K be a compact neighborhood of C. The positivity of the measure µ(C) implies that the

first claim in Proposition 5.5 does not hold for some Bk (1 ≤ k ≤ N). In other words, there exist

Bk, αi → 0 and wi ∈ Γ such that

ρi(Bk)wip̄L ⊂ Φi

where Φi =
∏

p∈S Wp(R,αi) is a decreasing sequence of relatively compact subsets in V̄L with

∩∞
i=1Φi ⊂ AL.
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Let S be the collection of all QS-valued functions on Bk of the form

ω = (ωp)p∈S 7→ (fp(ρi(ωp)wpL))p∈S , ω ∈ Bk

where w ∈ Γ, i ∈ N and fp is a linear functional on VL(Qp) for each p ∈ S. By Lemma 5.2, S spans

a finitely generated QS-module in the space of functions on Bk. Therefore, by [EMS97, Lemma 4.1],

there exists a finite set Σ ⊂ Bk such that for any QS-valued function {φp}p∈S ∈ S, if {φp : p ∈ S}

vanishes on Σ, then {φp}p∈S = 0 on Bk. Note that since φp (p ∈ S) are regular and Bk are Zariski

dense in H(QS), this indeed implies {φp}p∈S = 0 on H(QS). By Lemma 5.3, H(Q) ∩ Bk is dense

in Bk. So we may assume that Σ ⊂ H(QS) ∩Bk.

Now for any s ∈ Σ and i ∈ N, ρi(s)wipL ⊂ Φ1. One can find k ∈ N such that

{ρi(s) : i ∈ N, s ∈ Σ} ⊂ G(
1

k
OS).

Since G( 1kOS)wipL is a discrete subset of V̄L(QS) and Φ1 is bounded, by passing to a subsequence,

we have ρi(s)wipL = ρ1(s)w1pL for all i ∈ N and s ∈ Σ. Therefore, by our choice of Σ, for all

ω ∈ H(QS), we have ρi(ω)wipL = ρ1(ω)w1pL. Now set ω = eS , we have wipL = w1pL. Thus

ρi(ω)w1pL = ρ1(ω)w1pL

for all i ∈ N and ω ∈ H(QS). Consequently, w−1
1 ρ1(ω)

−1ρi(ω)w1 ∈ N(MT (L)) for all i ∈ N and

ω ∈ H(Q), where N(MT (L)) is the normalizer of MT (L) in G.

Without loss of generality, in the following, one may assume w1 = eS . Therefore

ρ1(ω)
−1ρi(ω) ∈ N(MT (L)), ω ∈ H(Q).

We prove that N(MT (L)) equals G. Let F be the smallest algebraic subgroup of G containing

ρ1(ω)
−1ρi(ω) (ω ∈ H(Q)). Then F is defined over Q. Let ω1, ω2 ∈ H(Q). We compute

ρ1(ω1)
−1(ρ1(ω2)

−1ρi(ω2))ρ1(ω1) = (ρ1(ω2ω1)
−1ρi(ω2ω1))(ρ1(ω1)

−1ρi(ω1))
−1 ∈ F(Q).

This implies that ρ1(H) ⊂ N(F) where N(F) is the normalizer of F, and ρ1(H)F is a Q-subgroup.

Since ρi(H) ⊂ ρ1(H)F for all i ∈ N and G is the smallest Q-group containing ρi(H) (i ∈ N), we

have G = ρ1(H)F. Hence F is normal in G.

By the definition of AL, we know that ρi(ω) ∈ N (L,W ) (ω ∈ H(QS)). We have

G(QS) = F(QS)ρ1(H(QS)) ⊂ F(QS)N (L,W ) = N (L,W ).

Let P be the closed subgroup generated by gWg−1 (g ∈ G(QS)). Then we have

Γ\ΓP = Γ\ΓL.

For any ω ∈ H(Q), ρ1(ω) normalizes P and hence

P ⊂ ρ1(ω)Lρ1(ω)
−1, Γ\ΓP ⊂ Γ\Γ(ρ1(ω)Lρ1(ω)

−1).

This implies that ρ1(ω)MT (L)ρ1(ω)
−1 = MT (L) and hence MT (L) is normal in G.

Since µ(πS(S(L,W ))) = 0, by [GO11, Theorem 6.11], every W -ergodic component of µ is L-

invariant, and hence so is µ. Since G is Q-semisimple, MT (L) is an almost direct product of
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Q-factors of G. Since L is a subgroup of finite index in MT (L)(QS), we may choose L0 a subgroup

of finite index inMT (L)(QS) such that L0 is normal inG(QS) and L0 ⊂ L. Hence µ is L0-invariant.

Now consider the quotient space X = (Γ/(Γ ∩ L0))\(G(QS)/L0), and denote by µΓ\Γρi(H) the

pushforward of the measure µΓ\Γρi(H) via the map Γ\G(QS) → X. Since H is connected, we have

ρi(H)/(L0 ∩ ρi(H)) ⊂ ρi(H(QS))/(ρi(H(QS)) ∩ L0) ⊂ G(QS)/MT (L)(QS)

and the measure µΓ\Γρi(H) is indeed supported on the space (Γ/(Γ ∩ L0))\(G(QS)/MT (L)(QS)).

We complete the proof of Theorem 5.1 by induction on dimG.

6. Correspondence between Γ∞\G(R) and ΓS\G(QS): Proof of Theorem 1.8

In this section, we prove Theorem 6.4 which is a sharpening of Theorem 1.7 in the sense that it

gives explicit algebraic conditions on the deforming sequence that ensures equidistribution in the

ambient space. This is done in a special case where G an R-split semisimple group defined over

Q and H a maximal R-split and Q-anisotropic torus in G. As a corollary of Theorem 6.4, we will

deduce Theorem 1.8.

6.1. Theorem 1.7 for an R-split semisimple group G and H a maximal R-split and Q-

anisotropic torus. In the rest of this section, we will assume that G is an R-split semisimple

group defined over Q and T is a maximal R-split and Q-anisotropic torus in G.

Lemma 6.1. Let G be an R-split semisimple group and S a maximal R-split and Q-anisotropic

torus in G. Let F be a connected Q-subgroup of G containing S. Then F is reductive and has no

non-trivial Q-characters.

Proof. By [EMS97, Lemma 5.1], F is reductive. Let χ be a Q-character of F. Then χ = 1 on

S, as S is Q-anisotropic. Moreover, χ = 1 on any one parameter unipotent subgroup. Since S is

maximal, F is generated by S and unipotent subgroups. Hence χ = 1 on F. �

Lemma 6.2. Let G be an R-split semisimple group and S a maximal R-split and Q-anisotropic

torus in G. Let F be a connected algebraic subgroup of G containing S. Let W be a set of

representatives of the Weyl group of S(R) in G(R). Suppose that for some γ ∈ G(R), γS(R)γ−1 ⊂

F(R). Then there is w ∈ W such that γw ∈ F(R).

Proof. By [EMS97, Lemma 5.1], F is a reductive subgroup of G. Now both S(R) and γS(R)γ−1

are maximal R-split tori in F(R), so there is x ∈ F(R) such that γS(R)γ−1 = xS(R)x−1. This

implies that γ−1x is in the normalizer of S(R) in G(R). Since the Weyl group of S(R) is the

normalizer of S(R) modulo S(R), one can find w ∈ W and y ∈ S(R) so that γ−1x = wy. Hence

γw = xy−1 ∈ F(R). This completes the proof of the lemma. �

Let Λ be a subgroup of finite index in T(Z) ∩ T(R)0. We think of Λ and T(Z) ∩ T(R)0 as

subgroups of
∏

p∈Sf
G(Qp) by diagonal embedding. Since the closure of T(Z) ∩T(R)0 is compact

in
∏

p∈Sf
G(Qp), we can choose Λ so that it is contained in a small neighborhood of identity in
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∏

p∈Sf
G(Qp) where the exponential map of p-adic Lie groups are defined for p ∈ Sf . We denote

by F the closure of Λ in
∏

p∈Sf
G(Qp) and H the group generated by ΓS ∩T(QS) and T(R)× F .

By strong approximation, H is a subgroup of finite index in T(QS) and

ΓS\ΓSH = ΓS\ΓS(T(R)× F ).

By Theorem 1.7, one can conclude that for any {gi} ⊂ G(QS), the sequence (gi)
∗µΓS\ΓSH has

a subsequence converging to an algebraic probability measure µ on ΓS\G(QS). In order to prove

Theorem 1.8, we have to review the arguments in §5 and analyze the limiting algebraic measure µ.

Lemma 6.3. The closure ΓS\ΓST(R)0 of ΓS\ΓST(R)0 in ΓS\G(QS) is equal to ΓS\ΓS(T(R)0×F ).

Proof. By diagonal embedding, we know that Λ is a lattice in (T(R)0 × F ) and ΓS(T(R)0 × F ) is

closed in ΓS\G(QS). Now let Ω be a fundamental domain of Λ\T(R)0. Then for any x ∈ T(R)0,

one can find x′ ∈ Ω and γ ∈ Λ such that x = γ−1x′, and

ΓS(x, ef ) = ΓS(γ
−1x′, ef ) = ΓSγ(γ

−1x′, ef ) = ΓS(x
′, γ).

Note that x′ and γ vary in T(R)0 and Λ respectively, and Λ is dense in F . So we have

ΓS(T(R)0, ef ) = ΓS(T(R)0 × F ).

This completes the proof of the lemma. �

At the end of §5, we prove that if µ is the limiting measure of (gi)
∗µΓS\ΓSH , then µ is a translate

of the M -invariant probability measure µΓS\ΓSM for some subgroup M in G(QS). Moreover, there

is a Q-subgroup M of G containing T which does not have nontrivial Q-characters such that

M ⊂ M(QS) is of finite index. Due to the condition that T is R-split, by Lemmas 5.4 and 6.3, and

reviewing the induction argument in §5, we have M(R)0 ⊂ M and

ΓS\ΓSM = ΓS\ΓSM(R)0.

Furthermore, suppose that for any non-central element x ∈ T(Q) the sequence gixg
−1
i diverges

in G(QS). We prove that M = G. By the discussion in §5, it is enough to prove that G is the

smallest group containing the sequence γiTγ−1
i (i ∈ N) where γi is defined at the beginning of §5.

Note that since for any non-central element x ∈ T(Q) the sequence gixg
−1
i diverges in G(QS), the

same is true for γixγ
−1
i .

Suppose on the contrary that there is a subgroup H in G such that H contains infinitely many

γiTγ−1
i . By [EMS97, Lemma 5.1] and Lemma 6.1, H is reductive and has no non-trivial Q-

characters. Since

T(R)0 ⊂ H(R) and γiT(R)0γ−1
i ⊂ H(R),

by Lemma 6.2, there exists a finite subset W ⊂ G(R) such that for every γi, one can find wi ∈ W

with γiwi ∈ H(R). By passing to a subsequence, we may assume that wi = w for all i ∈ N. Now

let δi = γiγ
−1
1 and T′ = γ1Tγ−1

1 . Then we have

δi = γiw(γ1w)
−1 ∈ H(R) ∩G(OS) = H(OS)
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and {δiT
′δ−1
i } = {γiTγ−1

i } is contained in the Q-reductive group H. Since G is R-split and T′ is

a maximal R-split torus, there is a non-central element x in T′ such that x is in the center of H.

This implies that δixδ
−1
i = x for any i, which contradicts the assumption that γixγ

−1
i diverges in

G(QS).

Hence we proved the following

Theorem 6.4. Let {gi} be a sequence in G(QS). Let µΓS(T(R)0×F ) be the periodic probability

measure supported on ΓS\ΓS(T(R)0 × F ). Then the sequence (gi)
∗µΓS(T(R)0×F ) has a subsequence

converging to a periodic probability measure µ on ΓS\G(QS).

Moreover, assume that the measure µ is a translate of the M -invariant probability measure

µΓS\ΓSM for some subgroup M in G(QS). Then there is a Q-subgroup M of G containing T

which does not have nontrivial Q-characters such that M(R)0 ⊂ M , M ⊂ M(QS) is of finite in-

dex and ΓS\ΓSM = ΓS\ΓSM(R)0. If for any non-central element x ∈ T(Q) the sequence gixg
−1
i

diverges in G(QS), then M = G.

6.2. Proof of Theorem 1.8. Let S be a finite set of places of Q containing the Archimedean one.

We denote by

KS :=
∏

p/∈S

G(Zp), KS :=
∏

p∈Sf

G(Zp) and Kf :=
∏

p 6=∞

G(Zp).

We write ep, eS and ef for the identity in G(Qp),
∏

p∈S G(Qp) and
∏

p∈Sf
G(Qp) respectively. If

necessary, for an S-arithmetic element g ∈
∏

p∈S G(Qp), we will index g to indicate its coordinates

in the set of places S, that is, g = (gp)p∈S where gp is the coordinate of g at the place p.

It is well-known that ΓS\G(QS) is a finite disjoint union of closed G(R)KS-orbits

ΓS\G(QS) =
⋃

i

ΓS\ΓSxiG(R)KS

for some x1 = eS , x2, . . . , xn ∈ G(QS). One can define a natural projection map from the closed

orbit ΓS\G(R)KS to X∞ = Γ∞\G∞ by sending

G(OS)g = G(OS)(g∞, gf ) ∈ G(OS)\G(OS)G(R)KS

where g∞ ∈ G(R) and gf ∈ KS , to the point Γ∞g∞ in Γ∞\G(R). We denote it by

̟∞(ΓSg) = Γ∞g∞.

Note that the map ̟∞ is well-defined on ΓS\G(R)KS , and intertwines with the actions of G(R)

on the spaces ΓS\G(R)KS and Γ∞\G(R). For a probability measure µ defined on ΓS\G(R)KS ,

we denote by ̟∗
∞(µ) the pushforward of µ on Γ∞\G∞.

Since T(Z) is a subgroup of the compact group
∏

p∈Sf
G(Zp), one can choose a subgroup Λ

of finite index in T(Z) ∩ T(R)0 such that Λ is contained in a small neighborhood of identity in
∏

p∈Sf
G(Qp) where the exponential map of p-adic Lie groups are defined for p ∈ Sf . Let F be the

closure of Λ in
∏

p∈Sf
G(Qp).
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Lemma 6.5. For any h ∈ ΓS and g ∈ G(R),

̟∞(ΓS(T(R)0 × F )(g−1, h−1)) = Γ∞hT(R)0g−1.

Proof. By Lemma 6.3, we know that

ΓST(R)0 = ΓS(T(R)0 × F ).

Now for any g ∈ G(R) and h ∈ ΓS

ΓS(T(R)0 × F )(g−1, h−1)) = ΓS(T(R)0g−1 × h−1) = ΓS(hT(R)0g−1 × ef ).

By continuity of ̟∞, we have

̟∞(ΓS(T(R)0 × F )(g−1, h−1)) = ̟∞(ΓS(hT(R)0g−1 × {ef}) = Γ∞hT(R)0g−1.

This completes the proof of the lemma. �

Lemma 6.6. Let µ be a probability measure on ΓS\G(QS) supported on ΓS\G(R)KS . Suppose

that for some subgroup H0 in G(R), µ is H0-invariant and ̟∗
∞(µ) is supported on an H0-orbit xH0

in Γ∞\G(R). Then ̟∗
∞(µ) = µxH0 . In particular, for any g ∈ G(R) and h ∈ ΓS

̟∗
∞((g, h)∗µΓS(T(R)0×F )) = µΓ∞hT(R)0g−1 .

Proof. Since µ is H0-invariant, the probability measure ̟∗
∞(µ) is also H0-invariant and hence equal

to the Haar measure µxH0 on xH0. The second claim follows from Lemma 6.5. �

The next lemma is straightforward.

Lemma 6.7. Suppose that a sequence of measures µi on ΓS\G(QS) converges weakly to ν. Then

̟∗
∞(µi) converges weakly to ̟∗

∞(ν).

Deduction of Theorem 1.8 from Theorems 1.7 and 6.4. By Theorems 1.7 and 6.4, we know that

after passing to a subsequence, (gi, hi)
∗µΓS(T(R)0×F ) converges to some algebraic measure µ. Here

the measure µ is supported on ΓS\ΓSMg for some g ∈ G(QS) and M a subgroup of G(QS).

Moreover, there is a Q-subgroup M of G which does not have nontrivial Q-characters such that

M(R)0 ⊂ M and ΓS\ΓSM = ΓS\ΓSM(R)0. Since

ΓS\ΓS(T(R)0 × F )(g−1
i , h−1

i ) = ΓS\ΓS(hiT(R)0g−1
i × {ef}) ⊂ ΓS\ΓSG(R)KS ,

the support ΓS\ΓSMg of the limiting measure µ is also contained in ΓS\ΓSG(R)KS . Hence there

exist γ ∈ ΓS and x = (x∞, xf ) ∈ G(R)×
∏

p∈Sf
G(Zp) such that g = γx. We have

ΓS\ΓSMg =ΓS(M(R)0 × {ef})(γx) = ΓS(γ−1M(R)0γ × {ef})x

and

̟∞(ΓS\ΓSMg) = Γ∞(γ−1M(R)0γ)x∞.

Since Γ∞(γ−1M(R)0γ)x∞ is closed and of finite volume, by Lemmas 6.6 and 6.7, we conclude that

µΓ∞hiT(R)0g−1
i

converges to the x−1
∞ (γ−1M(R)0γ)x∞-invariant probability measure µΓ∞(γ−1M(R)0γ)x∞

.

This finishes the proof of Theorem 1.8. �
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7. Proof of Theorems 1.2,

We end the paper by showing how Theorem 1.2 follows as an application of Theorem 1.8 and

then proving Theorem 1.5.

Proof of Theorem 1.2. Let m, ~α, in, ~αn, g~αn
and sn be as in the statement. We use the notation

of §1.4. Let Sf be the set of primes dividing m and S = Sf ∪ {∞}. Let G = PGLd, Γ∞ = G(Z),

and X = Γ∞\G(R). Let A be the connected component of the identity (in the hausdorf topology)

of the group of diagonal matrices in G(R). We need to prove that the sequence of periodic orbits

Yn
def
= Γ∞g~αn

As−1
n

equidistribute in X. The proof is an application of Theorem 1.8. In order to apply Theorem 1.8

we need to find a Q-anisotropic maximal torus defined over Q, T < G and elements hn ∈ ΓS, gn ∈

G(R) such that Yn = Γ∞hnT(R)0gn and such that for any non-central x ∈ T(Q) the sequence

(gnxg
−1
n , hnxh

−1
n ) ∈ G(QS) diverges.

Since Γ∞g~αA is periodic, the intersection Γ∞ ∩ g~αAg
−1
~α is a co-compact lattice in g~αAg

−1
~α . We

denote its Zariski closure by T < G. Thus, T is a Q-anisotropic Q-torus and A = g−1
~α T(R)0g~α and

Yn = Γ∞g~αn
As−1

n = Γ∞ diag
(

mi
(n)
1 , . . . ,mi

(n)
d

)

g~αAs
−1
n = Γ∞ diag

(

mi
(n)
1 , . . . ,mi

(n)
d

)

T(R)0g~αs
−1
n .

So if we denote hn = diag
(

mi
(n)
1 , . . . ,mi

(n)
d

)

∈ ΓS and gn = g~αs
−1
n ∈ G(R), then the equidistribu-

tion sought follows from Theorem 1.8 once we show that for any non-central x ∈ T(Q) we have

that hnxh
−1
n → ∞ in

∏

p∈Sf
G(Qp). Let x ∈ T(Q) be a non-central element and by abuse of nota-

tion, identify x with a rational matrix in GLd(Q). We may assume by passing to a subsequence if

necessary that the order between the coordinates of the vector i is fixed. For simplicity we assume

that for all n, i
(n)
1 < i

(n)
2 < · · · < i

(n)
d . In this case for 1 ≤ j < r ≤ d such that xjr 6= 0, the (j, r)’th

coordinate of the conjugation hnxh
−1
n equals m(i

(n)
j −i

(n)
r )xjr which goes to ∞ in Qp for any p ∈ Sf

by our assumption that |i
(n)
j − i

(n)
r | → ∞ and our assumption on the order. We conclude that the

proof will be concluded once we show that x cannot be lower triangular. If x is lower triangular

then since g−1
~α T(R)g~α is the group of diagonal matrices in G(R) we get a (rational) diagonal matrix

a such that

xg~α = g~αa.

Recalling the definition of g~α in (1) and comparing the first rows of the matrices in both sides of

this equation we see (since x is assumed to be lower triangular) that

(x11σ1(α1), x11σ2(α1), . . . , x11σd(α1)) = (a11σ1(α1), a22σ2(α1), . . . , addσd(α1)).

As σj(α1) 6= 0 we get that ajj = x11 which means that a is a scalar matrix. This in turn implies

that x itself (which is conjugate to a) is a scalar matrix – a contradiction to our assumption that

x is non-central. �
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Proof of Theorem 1.5. Let

~αn
def
= (min,1α1,m

in,2α2, . . . ,m
in,d−1αd−1, 1)

be as in the statement. Let K ⊂ R be the totally real number field generated by the coordinates of

the vectors ~αn. Let ϕ = (σ1, . . . , σd−1, idK) be an ordering of the different embeddings of K into R

so that the last embedding is chosen to be the identity. Using similar notation as in (1), consider

the homothety class x~αn
of the lattice in Rd spanned by the rows of the matrix

g~αn
=















− min,1ϕ(α1) −
...

− min,d−1ϕ(αd−1) −

− ϕ(1) −















.

Theorem 1.2 tells us that for any choice of real matrices sn, the periodic orbits snAx~αn
equidistribute

in the space of homothety classes of lattices in Rd with respect to the uniform measure on that

space. We can now apply [SW, Theorem 14.2], which says that in this case,

ν~αn

best −→ νbest. (2)

In fact, [SW, Theorem 14.2] only needs as an input the fact that the orbits snAx~αn
equidistribute

for a specific sequence of invertible real matricces sn but since we know this for any such choice,

there is no need to dwell on the particular formula of sn that appears there. �
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