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Abstract

We study a classical model for the atom that considers the movement of n charged particles
of charge −1 (electrons) interacting with a fixed nucleus of charge µ > 0. We show that two
global branches of spatial relative equilibria bifurcate from the n-polygonal relative equilibrium
for each critical values µ = sk for k ∈ [2, ..., n/2]. In these solutions, the n charges form n/h-
groups of regular h-polygons in space, where h is the greatest common divisor of k and n.
Furthermore, each spatial relative equilibrium has a global branch of relative periodic solutions
for each normal frequency satisfying some nonresonant condition. We obtain computer-assisted
proofs of existence of several spatial relative equilibria on global branches away from the n-
polygonal relative equilibrium. Moreover, the nonresonant condition of the normal frequencies
for some spatial relative equilibria is verified rigorously using computer-assisted proofs.

AMS Subject Classification: 70F10, 65G40, 47H11, 34C25, 37G40
Keywords: Coulomb potential, N-body problem, relative equilibria, periodic solutions

1 Introduction

The Thomson problem is a classical model to study a configuration of n electrons, constrained to the
unit sphere, that repel each other with a force given by Coulomb’s law. Thomson posed the problem
in 1904 as an atomic model, later called the plum pudding model [13]. Without loss of generality
we can assume that the elementary charge of an electron is e = −1, its mass is m = 1, and the
Coulomb constant is 1. We wish to analyze another classical model for the atom that considers the
movement of n charged particles with negative charge −1 (electrons) interacting with a fixed nucleus
with positive charge µ. Since electrons and protons have equal charges with different signs, for a
non-ionized atom we consider that µ = n. By supposing that the gravitational forces are smaller
than Coulomb’s forces, the system of equations describing the movement of the charges is

q̈j = −µ
qj

‖qj‖3
+

n−1
∑

i=0 (i6=j)

qj − qi

‖qj − qi‖3
, qj ∈ R

3, j = 0, ..., n− 1, (1)

where the first term of the force represents the interaction with the fixed nucleus.
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Figure 1: Left: A relative equilibrium solutions for n = 8 and k = 4 in the first family, whose exis-
tence has been obtained using a computer-assisted proof (together with tight error bounds). Right:
The first order expansion of the family of periodic solutions arising from the relative equilibrium in
a rotating frame.

This problem is referred to as the charged (n + 1)-body problem [8, 1], the n-electron atom
problem [4] and the Coulomb (n+ 1)-body problem [6] (and the references therein). An interesting
feature of this problem is the existence of spatial relative equilibria, in contrast to the n-body
problem where all relative equilibria must be planar [1]. In this paper we investigate the existence
of bifurcations of spatial relative equilibria arising from the polygonal relative equilibrium. The
existence of bifurcations of spatial central configurations arising from planar configurations has been
investigated previously in [16].

Specifically, we study equation (1) in rotating coordinates uj with frequency
√
ω, qj(t) =

e
√
ωtJ̄uj(t), where J̄ = J ⊕ 0 and J is the standard symplectic matrix in R2. The starting so-

lution of our study is the planar unitary polygon u = a, which is an equilibrium of the equations in
a rotating frame with ω = µ− s1 > 0, where

sk
def

=
1

4

n−1
∑

j=1

sin2(kjπ/n)

sin3(jπ/n)
, k = 0, ..., n− 1.

In Theorem 2.2 we prove that for each k ∈ [2, n/2]∩N, there are two global bifurcations of stationary
solutions (in rotating frame) from the trivial solution u = a at µ = sk. Furthermore, each solution
in the families is a spatial relative equilibrium where the n charges form n/h-groups of regular h-
polygons in the space, where h is the greatest common divisor of k and n (this fact can be observed
in the numerical computations in Figures 1, 2, 3 and 4). By global bifurcation we mean that the
bifurcation forms a connected component that either goes to other relative equilibria, ends in a
collision configuration or its norm goes to infinity. The global property is proved using Brouwer
degree along the lines of the result in [7], which treats the bifurcation of relative equilibria from the
unitary polygon in the n-body problem.

In the rotating frame, the linearized system at a spatial relative equilibrium exhibits many
periodic solutions (normal modes). In the present paper, we prove the persistence of these periodic
solutions in the nonlinear system (see Theorem 2.5). These solutions are referred to as nonlinear
normal modes or Lyapunov families. In the inertial frame they are known as relative periodic
solutions and correspond to periodic or quasiperiodic solutions. Furthermore, we prove the global
property, which in the present context means that a family of periodic solutions, represented by a
continuous branch C in the space of frequencies and 2π-periodic paths, is not compact or comes back
to another bifurcation point. The non-compactness of C implies that either the norm or period of
the solutions from C goes to infinity or C ends in a collision orbit. The proof of the global property
is akin to the proof in [7] regarding the existence of periodic solutions from the polygonal relative
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Figure 2: Left: A relative equilibrium solutions for n = 9 and k = 3 in the first family, whose exis-
tence has been obtained using a computer-assisted proof (together with tight error bounds). Right:
The first order expansion of the family of periodic solutions arising from the relative equilibrium in
a rotating frame.

equilibrium a, and is obtained by means of the SO(2)× S1-equivariant degree developed in [10].
The result of Theorem 2.5 holds when some non-resonance assumptions (Definition 2.4) on the

normal frequencies of the spatial relative equilibrium are satisfied. A main contribution of the
present paper is the implementation of computer-assisted proofs to validate global branches of spatial
relative equilibria and also the non-resonance assumption, which is required to obtain the existence
of families of periodic solutions arising from them. In Section 3, we present the general approach
(a Newton-Kantorovich type theorem, see Theorem 3.1) used to obtain the different computer-
assisted proofs. This theorem is used to validate the spatial relative equilibria (in Section 3.1)
and its normal frequencies (in Section 3.2) to verify the conditions of Theorem 2.5. Figures 1 and 2
contain an example of spatial relative equilibria whose existence has been obtained using a computer-
assisted proof (together with tight error bounds) and for which the non-resonance condition has been
rigorously verified. Similar computer-assisted proofs were carried on for each (non black) point in
Figures 3 and 4.

2 Existence of periodic solutions arising from spatial relative

equilibria

We assume that: the gravitational forces are much smaller than Coulomb’s forces, the charge in the
center is µ > 0, the n charges have charge −1, the mass of the charges is m = 1 and the Coulomb
constant is κ = 1. We also assume that the position of the central charge is fixed at the center
and the positions of the n charges are determined by q(t) = (q0(t), ..., qn−1(t)) with qj(t) ∈ R3 for
j = 0, ..., n− 1. Under these assumptions, the system satisfies the Newtonian equation

ü(t) = ∇U(q(t)), (2)

where U(q) is the potential energy given by

U(q)
def

=
n−1
∑

j=0

µ

‖qj‖
−
∑

i<j

1

‖qj − qi‖
,

where the first term represents the interaction with the fixed center.
Let J̄ = J ⊕ 0, where J is the standard symplectic matrix in R2. In rotating coordinates,

qj(t) = e
√
ωtJ̄uj(t), the system of equations becomes üj + 2

√
ωJ̄u̇j = ∇uj

V (u), where V is the
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augmented potential

V (u) =
ω

2

n−1
∑

j=0

∥

∥Īuj

∥

∥

2
+

n−1
∑

j=0

µ

‖uj‖
−

∑

i<j

1

‖uj − ui‖
,

where Ī = −J̄2 = 1⊕ 1⊕ 0. Let u = (u0, ..., un−1) and J̄ = J̄ ⊕ ...⊕ J̄ , the system of equation reads

ü+ 2
√
ωJ̄ u̇ = ∇V (u). (3)

Let Sn be the group of permutations of {0, 1, ..., n− 1} and Dn be the subgroup generated by
the permutations ζ(j) = j + 1 and κ(j) = n− j mod n. We define the action of γ ∈ Sn in R3n as

ρ(γ)(u0, u1, ..., un−1) = (uγ(0), uγ(1), ..., uγ(n−1)). (4)

Notice that this is a left action only if the product on Sn is defined according to the opposite
convention that σ1σ2

def

= σ2 ◦ σ1. Clearly the potential V is Sn-invariant. On the other hand, while
the potential U(u) is O(3)-invariant, the potential V (u) is only invariant under the action of the
normalizer O(2)× Z2 of SO(2) ⊂ O(3).

We conclude that V (u) is G-invariant with

G
def

= Sn ×O(2)× Z2.

The explicit action of the elements θ, κy ∈ O(2) and κz ∈ Z2 in the components of u is given by

θuj = e−J̄ θuj , κyuj = Ryuj, κzuj = Rzuj,

where
Ry = 1⊕−1⊕ 1, Rz = 1⊕ 1⊕−1.

2.1 The polygonal relative equilibrium

The polygon a = (a0, ..., an−1), where

aj =
(

eijζ , 0
)

∈ C× R, ζ
def

= 2π/n,

is a critical point of V (u;ω) for ω = µ− s1 > 0. This follows from the identity

∇uj
V (a) = ωaj − µaj +

n−1
∑

i=0 (i6=j)

aj − ai

‖aj − ai‖3
= aj (ω − µ+ s1) ,

where we have used that

n−1
∑

i=0 (i6=j)

aj − ai

‖aj − ai‖3
= aj

n−1
∑

i=0 (i6=j)

1− eijζ

‖1− eijζ‖3
= aj

1

4

n−1
∑

j=1

1

sin(jπ/n)
= ajs1.

2.2 Bifurcation of spatial relative equilibria

Hereafter we assume that ω = µ − s1 and we denote the dependence of the potential V in the
parameter µ as V (u;µ). Thus the polygon u = a is a trivial solution of ∇V (u;µ) = 0 with isotropy
group Ga generated by

ζ̃ = (ζ, ζ, e) , κ̃y = (κ, κy, e) , κ̃z = (e, e, κz) ∈ Sn ×O(2)× Z2,
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where e represents the identity element. As a consequence of the continuous action of SO(2), the
orbit of the polygonal equilibrium a is one dimensional. Thus the generator of the SO(2)-orbit of a
is −J̄ a, which belongs to the kernel of D2V (u).

Given that Ga fixes a, then D2V (a) is Ga-equivariant and, by Schur’s lemma, it has the same
eigenvalue in each irreducible representations under the action of Ga. The spatial irreducible repre-
sentations of Ga are obtained in section “8.4. The problem of n-charges” in the paper [8]. Define
Vk as the subspace generated by

vk =
(

v0k, , ..., v
n−1
k

)

∈ R
3n,

where vjk = (0, 0, cos jkζ) for k ∈ [0, n/2] ∩ N and vjk = (0, 0, sin jkζ) for k ∈ (n/2, n− 1] ∩ N, then
the irreducible Ga-representations are given by Vk for k = 0, n/2 and Vk ⊕Vn−k for k ∈ [1, n/2)∩N.

Specifically, using the isomorphism

avk + bvn−k ∈ Vk ⊕ Vn−k → a+ ib ∈ C,

the action of ζ̃, κ̃y, κ̃z ∈ Ga in z = a+ ib ∈ C is given by

ζ̃z = eikζz, κ̃yz = z̄, κ̃zz = −z. (5)

For k = 0, n/2 the action in Vk ≃ R is the same as before but with z ∈ R. For instance, for
k ∈ (0, n/2) ∩ N we have that

ζ̃ (avk + bvn−k) = e−J̄ ζζ · (avk + bvn−k)

= {(0, 0, a cos(jk + k)ζ − b sin(jk + k)ζ)}nj=1

= (a cos kζ − b sinkζ) vk + (b cos kζ + a sin kζ) vn−k.

Hence, we obtain that

ζ̃z = (a cos kζ − b sinkζ) + i (b coskζ + a sin kζ) = eikζz.

In section “8.4. The problem of n-charges” in the paper [8] is proven that the eigenvalue of
Hessian D2V (a) in each irreducible representation Vk for k = 0, n/2 and Vk ⊕ Vn−k is −µ + sk.
For sake of completeness we present a short proof of this fact. For k ∈ {0, ..., n − 1}, we define
Tk : R → Wk as

Tk(w) = (0, 0, n−1/2eikζw, ..., 0, 0, n−1/2enikζw) with

Wk = {(0, 0, eikζw, ..., 0, 0, enikζw) ∈ C
3n : w ∈ R}.

Since Wk = Vk ⊕ iVn−k, the result follows from the invariance of the subspaces Wk of D2V (a) with
the following computation.

Proposition 2.1. For k ∈ {0, ..., n− 1}, we have

D2V (a)Tk(w) = Tk((−µ+ sk)w).

Proof. Let Aij be the 3 × 3 minor blocks of the Hessian D2V (a) = (Aij)
n
ij=1. The fact that a is a

planar configuration implies that the matrices Aij are block diagonal

Aij = diag(Aij , aij),
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where Aij is a 2 × 2 matrix. For our purpose we only need to compute the numbers aij . Let
dij = |ui − uj | be the distance between ui = (xi, yi, zi) and uj = (xj , yj , zj). For i 6= j we have that
∂zi(d

−1
ij ) = −∂zj (d

−1
ij ) and

aij = −∂zj∂zid
−1
ij |u=a = ∂2

zid
−1
ij |u=a = −d−3

ij |u=a = − (2 sin((i − j)ζ/2))
−3

. (6)

For i = j the number aii satisfies

aii = ∂2
zi

(

µ

‖uj‖

)

uj=aj

−
n−1
∑

j=0 (j 6=i)

(

∂2
zid

−1
ij

)

uj=aj

= −µ−
n−1
∑

j=0 (j 6=i)

aij .

Now we need to denote to the component wi ∈ C3 of the vector w = (w0, ..., wn−1) ∈ C3n as
[w]i = wi. From the definitions we have that

[D2V (a)Tk(w)]l =



0, 0, n−1/2
n−1
∑

j=0

alje
ijkζw



 .

Since alj = a0(j−l) with (j−l) ∈ {0, ..., n−1}modulus n. From the equality alje
ijkζ = eilkζ

(

a0(j−l)e
i(j−l)kζ

)

we have that
[D2V (a)Tk(w)]l =

(

0, 0, n−1/2eilkζbkw
)

= [Tk(bkw)]l ,

where

bk =

n−1
∑

j=0

a0je
ijkζ = −µ+

n−1
∑

j=1

(

eijkζ − 1
)

a0j ,

because a00 = −µ−∑n−1
j=0 a0j . Finally, using (6), we obtain that

n−1
∑

j=1

(

eijkζ − 1
)

a0j =
n−1
∑

j=1

2 sin2(kjζ/2)

23 sin3(jζ/2)
= sk.

According to [8], for k ∈ [2, n/2), the Hessian D2V (u; sk) has no additional zero-eigenvalues to
the double zero-eigenvalue corresponding to the subspace Vk ⊕ Vn−k and the simple zero-eigenvalue
corresponding to the generator of the xy-rotations −J̄ a. That is,

kerD2V (a; sk) = Vk ⊕ Vn−k ⊕ J̄ a.

In order to prove the existence of solutions ∇V (u;µ) = 0 bifurcating from the trivial solution u = a
when the parameter µ crosses sk, we consider the fixed point spaces of two subgroups

H1 = Z2 (κ̃y) , H2 = Z2 (κ̃yκz) .

That is, let ∇V Hj : Fix(Hj) → Fix(Hj) be the restriction of ∇V to the fixed point space of Hj

for j = 1, 2, we will show that the restricted maps ∇V Hj for j = 1, 2 have the advantage that the
zero-eigenvalue −J̄ a is not present in D2V Hj and that the double zero-eigenvalue −µ+ sk becomes
simple.

The fixed point space of R3n under the action of H1 satisfies the symmetries

u0 = Ryu0, un/2 = Ryun/2, uj = Ryun−j , (7)

and of H2

u0 = RzRyu0, un/2 = RzRyun/2, uj = RzRyun−j . (8)
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Theorem 2.2. For each k ∈ [2, n/2]∩N, there are two global bifurcations of solutions of ∇V (u;µ) =
0 from the trivial solution u = a at µ = sk, one denoted by Fk

1 with symmetries (7) and another
denoted by Fk

2 with symmetries (8). Furthermore, the relative equilibria in both families are formed
by n/h-groups of regular h-polygons, where h is the greatest common divisor of k and n.

Proof. We look for bifurcation of solutions of ∇V H1(u;µ) = 0 from the trivial solution u = a at
µ = sk. Using that kerD2V (a; sk) = Vk ⊕Vn−k ⊕ J̄ a, it is easy to see that vn−k ∈ Vn−k and J̄ a do
not satisfy the symmetry (7), which implies that they do not belong to Fix(H1). Thus the kernel of
D2V H1(a; sk) is one dimensional and generated by vk ∈ Vk. The eigenvalue −µ+ sk corresponding
to the eigenvector vk ∈ Vk crosses zero at µ = sk. Using Brouwer degree as in section “3. Bifurcation
theorem” in [7], we can prove the existence of a global bifurcation of solutions of ∇V H1(u;µ) = 0
from the trivial solution u = a at µ = sk. Furthermore, since ζ̃n/h leaves the subspace Vk fixed,

because ζ̃n/hz =
(

eik2π/n
)n/h

z = z according to (5), then the family of solutions Fk
1 arising from

µ = sk is fixed by the group Z̃h generated by ζ̃n/h. This implies that the solution is formed by
n/h-polygons (see [7] for details). The proof in the case k = n/2 and H2 is analogous, the only key
difference is that

kerD2V H2(a; sk) = kerD2V (a; sk) ∩ Fix(H2) = Vn−k,

because vk ∈ Vk and J̄ a do not satisfy the symmetry (8), and they do not belong to Fix(H2).

The polygon a is a relative equilibrium only when ω = µ − s1 > 0, which requires that µ > s1.
In a slightly different context it was noticed by R. Moeckel [15] that the condition µ = n > s1
holds only for n < 473. An interesting consequence of this fact is that for a non-ionized atom the
n-polygon is a relative equilibrium only for an atomic number less than 473. We obtain numerically
the additional inequalities s1 < n < s2 for n = 3 and n ≥ 12, s2 < n < s3 for n = 4, 5, 8, 9, 10, 11
and s3 < n < s4 for n = 6, 7. Since the bifurcations of relative equilibria arising from the polygons
at µ = sk are subcritical, for instance, one can deduce from these inequalities that it is unlikely to
find a relative equilibrium with µ = n in the bifurcation from s1 for the cases n = 4, ..., 11.

2.3 Periodic solutions arising from spatial relative equilibria

Now we turn the attention to the analysis of non-trivial 2π/ν-periodic solutions of (3) arising from
a spatial relative equilibrium (u0;µ0), which for the present paper belongs to the families Fk

1 or
Fk
2 . For the validation of the hypotheses necessary to obtain the periodic solutions we will use

the computer-assisted proof technique of Section 3. These hypotheses are easier to verify in the
equivalent system

(

u̇
v̇

)

=

(

v
−2

√
µ− s1J̄ v +∇V (u;µ)

)

. (9)

The linearization of equation (9) at a spatial relative equilibrium (u0;µ0) is

(

u̇

v̇

)

= L(u0;µ0)

(

u

v

)

, L(u0;µ0)
def

=

(

0 I
D2V (u0;µ) −2

√
µ0 − s1J̄

)

.

Notice that λ is an eigenvalue of L(u0;µ0) with eigenvector (u, v) if and only if v = λu and

−2
√
µ0 − s1J̄ v +D2V (u0;µ0)u = λv.

This condition is equivalent to u ∈ ker M̃(λ), where

M̃(λ) = −λ2I − 2
√
µ0 − s1λJ̄ +D2V (u0;µ0).

7



Remark 2.3. Since M̃(λ) = M̃(−λ)T , then det M̃(λ) = det M̃(−λ) is an even real polynomial in
λ. Thus λ̄,−λ,−λ̄ are eigenvalues of L(u0;µ0) if λ ∈ C is an eigenvalue of L(u0;µ0). Actually, this
is an immediate consequence of the fact that the matrix L(u0;µ0) is a reformulation, as first order
system for positions and velocities, of a Hamiltonian matrix [14].

The purely imaginary eigenvalues λ = iν0 of L(u0;µ0) give the (normal) frequencies of the
periodic solutions of the linearized system. The periodic solutions of the linearized system persist
in the nonlinear system (non-linear normal modes) under the assumptions of the Lyapunov center
theorem [14]. The main assumption is that iν0 is non-resonant, which means that the eigenvalue iν0
is a simple eigenvalue of L(u0;µ0) and ilν0 is not an eigenvalue of L(u0;µ0) for any integer l 6= 1.

The classical Lyapunov center theorem cannot be applied directly because the equilibrium a is
not isolated and zero is always an eigenvalue of L(u0;µ0) due to the SO(2)-action. Other equivariant
versions of the Lyapunov theorem consider these circumstances such as [10] and [19]. In order to
use a simple version of those results, we make the following definition.

Definition 2.4. We say that iν0 is a SO(2)-nonresonant eigenvalue of L(u0;µ0) if iν0 is a simple
eigenvalue of L(u0;µ0), 0 is a double eigenvalue of L(u0;µ0) due to the action of the group SO(2),
and ilν0 is not an eigenvalue of L(u0;µ0) for integers l ≥ 2.

In the case that iν0 is a SO(2)-nonresonant eigenvalue of L(u0;µ0) with eigenvector (u, v), the
first order asymptotic expansion of the family of periodic solutions is given by

u(t) = u0 + εRe(eiν0tu) +O(ε2).

We use this fact to produce the illustrations of the periodic solutions in Figures 1 and 2.

Theorem 2.5. A relative equilibrium (u0;µ0) has a global family of 2π/ν-periodic solutions arising
from u0 with initial frequency ν = ν0 when L(u0;µ0) has a SO(2)-nonresonant eigenvalue iν0.

Proof. Looking for 2π/ν-periodic solutions of the equation ü+2
√
µ− s1J̄ u̇ = ∇V (u;µ) is equivalent

to look for zeros x(t) = u(tν) of the map

F(x;µ, ν) = −ν2ẍ− 2
√
µ− s1J̄ νẋ+∇V (u;µ) : H2

2π × R
2 → L2

2π.

We consider that µ = µ0 is fixed, then u0 satisfies F(u0;µ0, ν) = ∇V (u0;µ0) = 0. The linearization
DF(u0;µ0, ν) in Fourier components x =

∑

xle
ilt is DF(u0;µ0, ν) =

∑

l∈Z
M(lν)xle

ilt, where

M(ν) = M̃(iν) = ν2I − 2
√
µ0 − s1iνJ̄ +D2V (u0;µ0)

is a self-adjoint matrix. Thus, the assumption that iν0 is SO(2)-nonresonant implies that kerM(0)
is generated by J̄ a, ν0 is a simple zero of detM(ν0) and M(lν0) is invertible for integers l ≥ 2.

Therefore, the kernel of the linearized operator DF(u0;µ0, ν0) consists exactly of J̄ a and the
real and imaginary parts of eitw with w ∈ kerM(ν0). These are the necessary hypotheses in order
to prove the bifurcation theorem in Section 6 in [8]. We proceed analogously: Let σ be the sign of
the determinant of D2V (u0;µ0) in the orthogonal complement to J̄ a (the generator of the SO(2)-
orbit). Under the non-resonance assumption, we have that σ 6= 0. Let n(ν) be the Morse index of
the self-adjoint matrix M(ν). Since M(lν0) is invertible for integers l ≥ 2, according to Section 6 in
[8], we have that the SO(2)× S1-equivariant index of F(x;µ0, ν) at the orbit of u0 is σn(ν)(Z1). In
[10] is proven that a global bifurcation of periodic solutions exists if this index changes. The result
follows from the fact that ν0 is a simple root of the polynomial detM(ν) = 0, i.e. the Morse index
n(ν) necessarily changes at ν0.

Remark 2.6. The local existence of the family of periodic solutions can be proven using Poincaré
sections as in [19]. It is also possible to use equivariant degree theory to prove the existence of the
family of periodic solutions even for SO(2)-resonant eigenvalues, but for validating the hypotheses
with computer-assisted proofs it is simple to consider the case of SO(2)-nonresonant eigenvalues.
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3 Computer-assisted proofs of relative equilibria

In this section, we use a pseudo-arclength continuation method (e.g. see [11]) to numerically compute
branches of steady states in the families Fk

1 and Fk
2 . Along with the numerical continuation, we obtain

computer-assisted proofs of the equilibria and we verify the hypotheses of Theorem 2.5 to conclude
the existence of families of periodic orbits. This is done using a Newton-Kantorovich type theorem,
which is similar to the Krawczyk operator’s approach [17, 12] and the interval Newton method [18].
The presented formulation is inspired by the so-called radii polynomial approach (e.g. see [5, 9, 2]),
which is also a variant of the Newton-Kantorovich Theorem.

Consider a finite dimensional Banach space X (in our context X = RN or X = CN , for some
N ∈ N). Choose a norm ‖ · ‖X on X . Given a point y ∈ X and a radius r > 0, denote by
Br(y) = {x ∈ X : ‖y − x‖ < r} the open ball of radius r centered at y. Similarly, denote by Br(y)
the closed ball.

Theorem 3.1. Let U ⊂ X be an open set. Consider a Fréchet differentiable mapping F : U → X
and fix a point ū ∈ U (an approximate zero of F ). Let A be an approximate inverse of the Jacobian
matrix DF (ū) (that is ‖I − ADF (ū)‖B(X) ≪ 1), where I is the identity on X and where ‖ · ‖B(X)

denotes the operator/matrix norm induced by the norm ‖ · ‖X on X. Fix r∗ > 0. Suppose that the
bounds Y, Z = Z(r∗) > 0 satisfy

‖AF (ū)‖X ≤ Y and sup
z∈Br∗ (ū)

‖I −ADF (z)‖B(X) ≤ Z.

Define
p(r) = (Z − 1)r + Y. (10)

If there exists r0 ∈ (0, r∗] such that p(r0) < 0, then there is a unique ũ ∈ Br0(ū) such that F (ũ) = 0.

Proof. Define the Newton-like operator T : U → X by

T (u) = u−AF (u),

and note that DT (u) = I − ADF (u). The idea of the proof is to show that T : Br0(ū) → Br0(ū) is
a contraction. Consider r0 ∈ (0, r∗] such that p(r0) < 0. Then Zr0 + Y < r0, and since r0 is not
zero, we have that Z ≤ Z + Y

r0
< 1. For x, y ∈ Br0(ū) we use the Mean Value Inequality to get that

‖T (u)− T (v)‖X ≤ sup
z∈Br0

(x̄)

‖DT (z)‖B(X)‖u− v‖X

= sup
z∈Br0

(ū)

‖I −ADF (z)‖B(X)‖u− v‖X

≤ sup
z∈Br∗(ū)

‖I −ADF (z)‖B(X)‖u− v‖X

≤ Z‖u− v‖X .

Since Z < 1, T is a contraction on Br0(ū). To see that T maps the closed ball into itself (in fact in
the open ball) choose u ∈ Br0(ū), and observe that

‖T (u)− ū‖X ≤ ‖T (u)− T (ū)‖X + ‖T (ū)− ū‖X
≤ Z‖u− ū‖X + ‖AF (ū)‖X
≤ Zr0 + Y = p(r0) + r0 < r0,
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which shows that T (u) ∈ Br0(ū) for all u ∈ Br0(ū). It follows from the contraction mapping theorem
that there exists a unique ũ ∈ Br0(ū) such that T (ũ) = ũ ∈ Br0(ū). Since Z < 1, we get

‖I −ADF (ū)‖B(X) ≤ sup
z∈Br∗(ū)

‖I −ADF (z)‖B(X) ≤ Z < 1,

and hence ADF (ū) is invertible. From this we get that A is invertible. By invertibility of A and by
definition of T , the fixed points of T are in one-to-one correspondence with the the zeros of F . We
conclude that there is a unique ũ ∈ Br0(ū) such that F (ũ) = 0.

In practice, we perform the rigorous computation of the bounds Y and Z with interval arithmetic
[18] in MATLAB using the library INTLAB [20].

3.1 The first family of spatial relative equilibria

To proceed with the computer-assisted proof of the relative equilibria we need to find an explicit
representation for ∇V H1 : Fix(H1) → Fix(H1). For this purpose, we define the subspace

X1 =
{

ũ = (ũ0, ũ1, ...., ũ[n/2]) ∈ R
3 × ...× R

3 : ũj = (xj , 0, zj) ∈ R
3, j = 0, n/2

}

and the isomorphism
ι1 : X1 → Fix(H1), ι1(ũ) = (u0, u1, ...., un) ,

given by uj = ũj for j ∈ [0, n/2]∩N and uj = Ryũn−j for j ∈ (n/2, n− 1]∩N. Therefore, the zeros
of ∇V H1 : Fix(H1) → Fix(H1) correspond to the zeros of

F1
def

= ι−1
1 ◦ ∇V H1 ◦ ι1 : X1 → X1.

More explicitly, we have that

F1 = (f0, f1, ...., f[n/2]) : X1 → X1, (11)

where

fj(ũ;µ) = (µ− s1) Īuj − µ
uj

‖uj‖3
+

∑

0≤i≤n/2(i6=j)

uj − ui

‖uj − ui‖3
+

∑

0<i<n/2

uj −Ryui

‖uj −Ryui‖3
.

This fact can be verified directly. We conclude that the families of solutions of F1(ũ;µ) = 0 are the
critical solutions of V (u;µ) with u = ι1 (ũ) ∈ Fix(H1).

To compute numerically the family Fk
1 (that is solutions of F1(ũ;µ) = 0), we apply the pseudo-

arclength continuation method [11], which we now briefly review. Denote N
def

= 3([n/2] + 1) − 2,
so that X1

∼= R
N . Using that notation, F1 : R

N+1 → R
N . The idea of the pseudo-arclength

continuation is to treat the parameter µ as a variable, to set U
def

= (ũ;µ) ∈ RN+1 and perform a
continuation with respect to the pseudo-arclength parameter. The process begins with a solution U0

(exact or numerical given within a prescribed tolerance). To produce a predictor, which will serve
as an initial condition to Newton’s method, we compute a tangent vector U̇0 (of unit length) to the
curve at U0. It can be computed using the formula

DUF1(U0)U̇0 =

[

DũF1(U0)
∂F1

∂µ
(U0)

]

U̇0 = 0 ∈ R
N .

Denoting the pseudo-arclength parameter by ∆s > 0, set the predictor to be

Û1
def

= U0 +∆sU̇0 ∈ R
N+1.
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The corrector step then consists of converging back to the solution curve on the hyperplane perpen-
dicular to the tangent vector U̇0 which contains the predictor Û1. The equation of this plan is given
by E(U)

def

= (U − Û1) · U̇0 = 0. Then, we apply Newton’s method to the new function

U 7→
(

E(U)
F1(U)

)

(12)

with the initial condition Û1 in order to obtain a new solution U1 given again within a prescribed
tolerance. We reset U1 7→ U0 and start over. At each step of the algorithm, the function defined in
(12) changes since the plane E(U) = 0 changes. With this method, it is possible to continue past
folds. Repeating this procedure iteratively produces a branch of solutions.

We initiate the numerical continuation from the trivial solutions ũ = ι−1
1 (a) at µ = sk. More

explicitly, at the beginning, we set U0 = (ι−1
1 (a), sk) ∈ RN+1. Then, along the continuation, we use

Theorem 3.1 to verify the existence (with tight rigorous error bounds) of several solutions of F1 = 0
(with F1 defined in (11)), hence yielding spatial relative equilibria in the family Fk

1 . See Figure 3 for
plots of several continuations.

A similar analysis and numerical implementation have been implemented for the family of solu-
tions Fk

2 satisfying the symmetry (8), by using instead the map

F2(ũ;µ) = (f0, f1, ...., f[n/2]) : X2 → X2,

X2 =
{

ũ = (u0, u1, ...., u[n/2]) : uj = (xj , 0, 0) ∈ R
3, j = 0, n/2

}

,

where

fj(ũ;µ) = (µ− s1) Īuj − µ
uj

‖uj‖3
+

∑

0≤i≤n/2(i6=j)

uj − ui

‖uj − ui‖3
+

∑

0<i<n/2

uj −RzRyui

‖uj −RzRyui‖3
.

See Figure 4 for plots of several continuations in the family Fk
2 .

Remark 3.2 (Colour coding for Figures 3 and 4). The colour coding for the presentation of the
relative equilibrium solutions in Figures 3 and 4 is as follows. Each branch going from green to red
represents the main branch, while each cyan to purple branch portrays a branch born from a secondary
bifurcation from the main branch. The points in the following colours were not successfully validated
with computer-assisted proofs for three reasons: (Blue) unable to verify the relative equilibria, (Black)
unable to verify the eigenvalues and (Orange) unable to verify the nonresonance of the eigenvalues.

Remark 3.3. All the spatial relative equilibria are unstable near the polygon because the polygon
is unstable according to the computations obtained in [8]. Unfortunately, we were not able to find
linearly stable solutions from the numerical exploration carried on for the branches, so all the relative
equilibria that we computed are unstable.

3.2 A computer-assisted validation of the spectra

The existence of non-trivial 2π/ν-periodic solutions of (3) arising from a spatial relative equilibrium
(u0;µ0) relies on the validation of the hypotheses of Theorem 2.5; namely, to verify the existence of a
SO(2)-nonresonant eigenvalue of L(u0;µ0) (see Definition 2.4). Now we turn our attention to prove
this hypothesis by means of Theorem 3.1. Recall from Remark 2.3 that λ̄,−λ,−λ̄ are eigenvalues
of L(u0;µ0) if λ ∈ C is an eigenvalue of L(u0;µ0). Thus, if we prove the existence of a unique
eigenvalue λ0 in a neighbourhood Bε(iν̄) ⊂ C, then λ0 = iν0 for some ν0 ∈ R (i.e. λ0 must be purely
imaginary).
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(a) n = 5, k = 2 (b) n = 7, k = 2

(c) n = 7, k = 3 (d) n = 8, k = 3

(e) n = 8, k = 4 (f) n = 9, k = 3

(g) n = 9, k = 4 (h) n = 10, k = 2

Figure 3: Continuation of equilibria in the family Fk
1 for different values of n and k. The colour

coding in the figure is presented in Remark 3.2
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(a) n = 5, k = 2 (b) n = 7, k = 2

(c) n = 7, k = 3 (d) n = 8, k = 2

(e) n = 8, k = 3 (f) n = 9, k = 3

(g) n = 9, k = 4 (h) n = 10, k = 2

Figure 4: Continuation of equilibria in the family Fk
2 for different values of n and k. The colour

coding in the figure is presented in Remark 3.2.
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Recall that the existence of the relative equilibria u0 ∈ Br0(ū0) is known via a successful ap-
plication of Theorem 3.1, where ū0 is a numerical solution and r0 > 0 is the rigorous error bound.
The validation of the eigenvalues of L(u0;µ0), which follows the approach [3], begins by finding nu-
merically the eigenvalues of L(ū0;µ0). Denote by λ̄1, . . . , λ̄6n the numerical eigenvalues of L(ū0;µ0)
(computed using the function eig.m in MATLAB, which returned the eigenvalues and their corre-
sponding eigenvectors v̄1, . . . , v̄6n). Fix j ∈ {1, . . . , 6n}. Then, in order to obtain local isolation of
the eigenpairs (λj , vj) ∈ C× C6n, we rescale the eigenvector vj as follows. Denote by k = k(j) the
component of v̄j with the largest magnitude, that is

|(v̄j)k| = max
ℓ=1,...,6n

{|(v̄j)ℓ|} .

Note that k may not be unique. Then, the phase condition imposed to isolate the eigenpair (λj , vj) is
(vj)k = (v̄j)k, where recall that v̄j ∈ C6n is the numerical approximation for vj . The corresponding
zero finding problem is setup in the following way

Feig(v, λ)
def

=

(

L(u0;µ0)v − λv
v · ek − (v̄j)k

)

= 0, (13)

where λ and v are the eigenvalue and eigenvector, respectively, and ek is the kth vector of the
canonical basis of R6n. Without loss of generality, denote by λ1 = λ2 = 0 the two zero eigenvalues of
L(u0;µ0) due to the action of the group SO(2). For each j ∈ {3, . . . , 6n}, the rigorous enclosure of
the eigenpair (λj , vj) is obtained by validated the existence of a solution of Feig = 0 (where the map
is defined in (13)) using Theorem 3.1. Denote by rj > 0 the radius of the ball Brj (λ̄j , v̄j) ⊂ C×C6n

which contains the unique eigenpair with v · ek = (v̄j)k, which we denote simply by (λj , vj).
For j = 3, . . . , 6n, denote by

Dj
def

=
{

z ∈ C : |zj − λ̄j | ≤ rj
}

⊂ C

the disk which contains the true eigenvalue λj . Assume that numerically, two eigenvalues are given
by ±iν̄0, for some ν̄0 > 0. Without loss of generality, denote by λ3 and λ4 the true eigenvalues such
that

|λ3 − iν̄0| ≤ r3 and |λ4 + iν̄0| ≤ r4.

By unicity, the true eigenvalues satisfy λ3 = iν0 and λ4 = −iν0, for some ν0 > 0 since otherwise the
disk D3 and D4 would contain more eigenpairs by the comment above (see also Remark 2.3). Hence
λ3 = iν0 ∈ D3 and λ4 = iν0 ∈ D4. Denote

D def

=

6n
⋃

j=5

Dj

which contains rigorously λ5, . . . , λ6n. The other four eigenvalues are given by 0, 0,±iν0. For each
spatial relative equilibria rigorously proven in Section 3.1, we verified rigorously that D ∩ iν0Ñ = ∅
(where Ñ

def

= {ℓ ∈ Z : ℓ ≥ 2}), hence showing rigorously that the eigenvalue iν0 is a SO(2)-
nonresonant eigenvalue. All of the computations were carried out in MATLAB using the library
INTLAB [20].
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