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GENERIC INJECTIVITY OF THE X-RAY TRANSFORM

MIHAJLO CEKIC AND THIBAULT LEFEUVRE

ABSTRACT. In dimensions > 3, we prove that the X-ray transform of symmetric tensors of
arbitrary degree is generically injective with respect to the metric on closed Anosov mani-
folds, and on manifolds with spherical strictly convex boundary, no conjugate points and a
hyperbolic trapped set. This has two immediate corollaries: local spectral rigidity, and local
marked length spectrum rigidity (building on earlier work by Guillarmou, Knieper and the
second author [GL19, GKL22]), in a neighbourhood of a generic Anosov metric. In both
cases, this is the first work going beyond the negatively curved assumption or dimension 2.

Our method, initiated in [CL21] and fully developed in the present paper, is based on a
perturbative argument of the O-eigenvalue of elliptic operators via microlocal analysis which
turn the analytic problem of injectivity into an algebraic problem of representation theory.
When the manifold is equipped with a Hermitian vector bundle together with a unitary
connection, we also show that the twisted X-ray transform of symmetric tensors (with values
in that bundle) is generically injective with respect to the connection. This property turns
out to be crucial when solving the holonomy inverse problem, as studied in a subsequent
article [CL22].
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1. INTRODUCTION

Let M be a smooth closed n-dimensional manifold, with n > 2. Let M be the cone of
smooth metrics on M. Recall that a metric g € M is said to be Anosov if the geodesic flow
(p¢)ter on its unit tangent bundle

SM :={(x,v) € TM | |v|]y =1}

is an Anosov flow (also called uniformly hyperbolic in the literature), in the sense that is there
exists a continuous flow-invariant splitting of the tangent bundle of SM as:

where X is the geodesic vector field, and such that:

YVt > 0,Vw € Es, | dp(w)] SC’e_M|w|, (1.1)
Vt < 0,Yw € By, |dps(w)| < Ce™ MM, ’

the constants C, A > 0 being uniform and the metric |e| arbitrary. We will denote by M anosov
the space of smooth Anosov metrics on M and we will always assume in the following that it
is not empty".

Historical examples of Anosov metrics were provided by metrics of negative sectional cur-
vature [Ano67] but there are other examples as long as the metric carries “enough” zones
of negative curvature, see [Ebe73, DP03]. As shown in [Conl0], generic metrics have a non-
trivial hyperbolic basic set, i.e. a compact invariant set, not reduced to a single periodic orbit,
where (1.1) is satisfied (but this set may not be equal to the whole manifold though). Certain
chaotic physical systems can also be described by Anosov Riemannian manifolds which are
not globally negatively-curved: for instance, the Sinai billiards which arise as a model in
physics for the Lorentz gas (a gas of electrons in a metal) can be naturally approximated by
Anosov surfaces but these surfaces have a lot of flat areas (they consist of two copies of a
flat tori connected by negatively-curved cylinders which play the role of the obstacles), see
[Koul5, Chapter 6] for instance.

1.1. Generic injectivity of the X-ray transform with respect to the metric: closed
case. We let C be the set of free homotopy classes of loops on M. If g € M anesov, it is known
[K1i74] that for all ¢ € C, there exists a unique g-geodesic v,(c) € c. We will denote by L, the
marked length spectrum of g, defined as the map:

Ly € 7(C),  Lyg(e) := Ly(ng(c)), (1.2)

where £4(y) denotes the Riemannian length of a curve v C M computed with respect to the
metric g.

INote that Manosov (82) = () (see [MP11, Corollary 9.5] for instance), that is to say not all manifolds can
carry Anosov metrics. It is also not known if manifolds carrying Anosov metrics also carry negatively-curved
metrics (the converse being obviously true).
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The closed curve v4(c) on M can be lifted to SM to a periodic orbit (v4(c),34(c)) of (¢1)ier,
the geodesic flow of g. We then define the X-ray transform as the operator:

1 Lg(c)
e /O f(i(av))dt, (1.3)

where (x,v) is an arbitrary point of the lift of v4(c). Its kernel is given by coboundaries,
namely

19 C®(SM) — £2°(C), I9f(c) :=

ker 19| oo (spry = {Xu | uw € C®(SM), Xu € C®(SM)}°.
The restriction of this operator to symmetric tensors appears in some rigidity questions in

Riemannian geometry, as we shall see. We introduce 75, : C*°(M,Q%T*M) — C*(SM), the
natural pullback of symmetric m-tensors, defined by 7, f(z,v) := fz(®™v). We then set

Y=o, (1.4)

Any symmetric tensor f € C°(M,®%T*M) admits a canonical decomposition f = Dp + h,
where D is the symmetrized covariant derivative, p € C*°(M, ®7S”_1T*M), h e C®(M,3T*M)
and D*h = 0, see §2.2.2 for further details. The Dp part is called potential whereas h is called
solenoidal. Using the fundamental relation Xy, = 7 D, we directly see that:

{Dp | p S OOO(M, ®?_1T*M)} C ker]rgn|coo(M’®gLT*M).

If in the place of inclusion we have equality, we say that the X-ray transform of symmetric
m-tensors is s-injective or solenoidally injective, i.e. injective when restricted to solenoidal
tensors. This is known to be true:

e for m = 0,1 on all Anosov manifolds [DS03],
e for all m € Z>( on Anosov manifolds with non-positive curvature [GK80a, CS98],

e and for all m € Z>q on all Anosov surfaces without any assumptions on the curvature
by [Guil7a] (see also [PSU14] for the cases m =0, 1, 2).

Although the s-injectivity of I¥, is conjectured on Anosov manifolds of arbitrary dimension, it
is still a widely open question. The main theorem of this article is a first step in this direction:

Theorem 1.1. There exists an integer kg > 1 such that the following holds. Let M be a
smooth closed manifold of dimension > 3 carrying Anosov metrics. For all m € Z20,3 there
exists an open dense set Ry, C Manosov (for the Cko—topology) such that for all metrics g €
R, the X-ray transform I3, is s-injective. In particular, the space of metrics R := Ny>0Rm
whose X -ray transforms are s-injective for all m € Zx>q is residual in M anosov -

The set R, C M anosov 1S open and dense for the C’ko—topology in the sense that:

e Openness: for all g € R,,, there exists € > 0 such that for all smooth metrics ¢’ with
19" = gllcre <&, 9" € Rins

e Density: if g € Manosov, then for all € > 0, there exists a smooth metric ¢ € R,
such that ||g — ¢'||cx < €.

20f course, the geodesic vector field X depends on g. Note that when the context is clear, we try to avoid
as much as possible the notation X, in order not to burden the discussion.
3For m = 0,1, the s-injectivity is already established [DS03].
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Note that R C M anosov is a countable intersection of open and dense sets, and so in particular
it is dense in the C'*° topology. Observe that the sets R,, and R are invariant by the action
(by pullback of metrics) of the group of diffeomorphisms that are isotopic to the identity,
which we denote by Diffo(M).

As we shall see below, the generic s-injectivity of I, is equivalent to the s-injectivity of
an elliptic pseudodifferential operator II3, introduced in [Guil7a], called the generalized X-
ray transform, which enjoys very good analytic properties. This operator will also naturally
appear below when discussing the twisted case, i.e. when including a bundle £ — M in the
discussion, see §1.3. In particular, this reduction to an elliptic DO will allow us to apply our
technique of perturbation of the 0-eigenvalue of elliptic operators, see §1.4 for further details
on the strategy of proof.

1.2. Application to rigidity problems. We now detail the consequences of Theorem 1.1
on three problems of rigidity.

1.2.1. The marked length spectrum rigidity conjecture. In the following, an isometry class,
denoted by g, is defined as an orbit of metrics under the action of Diffy(M), namely

g:={¢"g | ¢ € Diffo(M)}.
If M is closed, we let Manosoy := M anosov/Diffo(M) be the moduli space of smooth Anosov

metrics modulo the action of Diffy(M). The marked length spectrum introduced in (1.2) is
invariant by the action of Diffy(M) and thus descends as a map

L : Manosoy — £°(C), g — Ly. (1.5)
It is believed to parametrize entirely the moduli space of isometry classes.

Conjecture 1.2. Let M be a smooth n-dimensional closed manifold such that Manosov (M) #
(. Then the marked length spectrum map L in (1.5) is injective.

Originally, the conjecture was only phrased in the context of negatively-curved manifolds
by Burns-Katok [BKS85] but it is believed to hold in the general Anosov case. Despite some
partial results [GK80a, Kat88, CFF92, BCG95, Ham99, CS98, PSU14] and the proof of the
conjecture in the two-dimensional case for negatively-curved metrics [Cro90, Ota90a], this
question is still widely open. Recently, Guillarmou, Knieper and the second author proved
that the s-injectivity of I5° implies that the conjecture holds true locally around go (see [GL19]
and [GKL22, Theorem 1.2]). In particular, by [CS98], this solves locally the conjecture around
an Anosov metric with nonpositive curvature in any dimension (and without any assumptions
on the curvature in dimension two by [PSUI4, Guil7a]). A similar conjecture exists for
the billiard flow of convex domains, see [ASKW17] for the most recent developments. A
straightforward consequence of Theorem 1.1, combined with [GKL22, Theorem 1.3] (and the
remark following [GKL22, Theorem 1.2]), is therefore the following:

Corollary 1.3 (of Theorem 1.1 and [GL19, GKL22]). There exists ko > 1 such that the
following holds. Let M be a smooth n-dimensional closed manifold carrying Anosov metrics.
There is an open and dense set Ry C Manosov (for the C’ko—topology) such that: for all go € Ro,
the marked length spectrum map L in (1.5) is locally injective near go.
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The set Ry is equal to Ry /Diffo(M), where Rs is given by Theorem 1.1 (and this is well-
defined since Ry is invariant by Diffo(A)). By locally injective, we mean the following: for
any gog € go, there exists €9 > 0 such that the following holds: if g1, g2 € M anosov are such that
there exist ¢1, p2 € Diffg(M) such that ||¢7g1 — gollcro + [|0592 — gollcre < €0 and Ly, = Lg,,
then g1 and go are isometric. Except in dimension two, this is the first result allowing to relax
the negative curvature assumption.

1.2.2. Spectral rigidity. Since the celebrated paper of Kac [Kac66] “Can one hear the shape of
a drum?”, investigating the space of isospectral manifolds (i.e. manifolds with same spectrum
for the Laplacian A, on functions, counted with multiplicities) has been an important question
in spectral geometry, see [Mil64, GK80a, GK80b, Vig80, Sar90, GWW92] for instance. It is
known that there exist pairs of isospectral hyperbolic surfaces that are not isometric [Vig80].
On the other hand, by [GK80a], the s-injectivity of I§° implies that (M, go) is spectrally rigid
in the following sense: if (gs) se(—1,1) is a smooth family of isospectral metrics, then they are
isometric, i.e. there exists (¢s)se(—1,1) such that gy = ¢%gs. As a consequence, we obtain the
following:

Corollary 1.4 (of Theorem 1.1). Let M be a n-dimensional closed manifold carrying Anosov
metrics. Then, the open and dense set of isometry classes Ro C Manosov @€ spectrally rigid.

Once again, we conjecture that the previous corollary should actually hold for all Anosov
metrics in any dimension.

1.3. Generic injectivity of the X-ray transform with respect to the connection. We
now consider a smooth closed Anosov Riemannian manifold (M, g) and a smooth Hermitian
vector bundle & — M. We let A¢ be the space of smooth unitary connections on the bundle
E. Contrary to the untwisted case (i.e. £ = C x M), (1.3) might not define a canonical notion
of integration of sections along closed geodesics®. It is therefore more convenient to define a
similar notion via microlocal analysis.

If V€ € Ag and @ : SM — M denotes the projection, we can consider the pullback
bundle 7* & equipped with the pullback connection 7*V¢ and define the operator X :=
(7*VE)x acting on C®(SM,7*E). We then consider the meromorphic extension of the
resolvent operators Ry (z) = (FX — 2)7! : C®(SM,7*E) — D'(SM,7* &) to the whole
complex plane C (here D’ denotes the space of distributions), see §2.3 for further details on
the Pollicott-Ruelle theory. It is known that there is an open and dense set of connections
without resonances at 0 (see [CL21]). When this is the case, we can define the twisted
generalized X-ray transform as:

Y = Ty (R (0) + R_(0))7, (1.6)

acting on sections of @FT*M @& — M, see §2.3.3 for further details. This operator turns out
to be pseudodifferential of order —1 (see [CL.22, Section 7]) and has some very good analytic
properties (such as ellipticity), as we shall see.

4Actually, (1.3) defines an interesting notion if the bundle 7* & — SM is transparent, i.e. the holonomy
with respect to the connection 7* V¢ along closed geodesics is trivial, see [CL22, Section 7.2] for a discussion.
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Symmetric tensors with values in the bundle £ (also called twisted symmetric tensors in
the following) also admit a canonical decomposition into a potential part and a solenoidal
part, see §2.2.3. The twisted potential tensors are always contained in the kernel of HXLS and
we say that the operator is s-injective if this is an equality. We will prove the following:

Theorem 1.5. Let (M, g) be a smooth Anosov manifold of dimension > 3 and let 7g : € — M
be a smooth Hermitian vector bundle. There exists kg > 1 such that the following holds. For
all m € Zso, there exists an open dense set S, C Ag (for the C*o_topology) of unitary
connections with s-injective twisted generalized X-ray transform Hrzg. In particular, the space
of connections S := Ny>0Sm whose twisted generalized X-ray transforms are all s-injective is
residual in Aféo.

We also point out here that a similar result holds for the induced connection on the endo-
morphism bundle, see Theorem 5.11. This plays a crucial role in the study of the holonomy
inverse problem which consists in reconstructing a connection (up to gauge) from the knowl-
edge of the trace of its holonomy along closed geodesics, see [CL22] for further details. We
believe that a similar result should hold in the boundary case and this is left for future
investigation.

1.4. Strategy of proof, organization of the paper. The strategy of both Theorems
1.1 and 1.5 is the same, although the metric case (Theorem 1.1) is more involved due to
complicated computations. The idea is also reminiscent of our previous work [CL21], where
a notion of operators of uniform divergence type was introduced. Let us discuss the metric
case. If the X-ray transform I} is not s-injective for some m € Z>( and go € Manosov (Or
MIZOHOSOV) then, equivalently, the generalized X-ray transform operator II7 is not s-injective.
This operator is non-negative, pseudodifferential of order —1 and elliptic on ker Dy (see
§2.3.2): as a consequence, it has a well-defined spectrum when acting on the Hilbert space

H = L*(M,@%T*M) Nker Dj
which lies in R>o and accumulates to z = 0. The fact that this operator is not s-injective
is equivalent to the existence of an eigenvalue at z = 0. The accumulation of the spectrum
at 0 (due to the compactness of the operator) is a slight difficulty and we first need to
multiply II99 by a certain invertible Laplace-type operator A of order k > 1/2 to obtain
Py, = Tyer Dy, AT ATtyer D3, which is a pseudodifferential operator of positive order (hence
the spectrum accumulates to +00) with the same kernel as ITy. The idea is to show that we
can produce arbitrarily small perturbations g of the metric gy so that P, has no eigenvalue
at 0.

If «v denotes a small circle near 0 in C (such that the interior of v only contains the 0
eigenvalue of P,)) and A, is the sum of the eigenvalues of P, inside v, then by elementary
spectral theory, we know that C* > g Ay is at least C® near gy when ko > 1 is large
enough. Moreover, due to the non-negativity of the operators P, we have d A|4—4, = 0. We
then compute the second variation and show, using an abstract perturbative Lemma 5.2, that
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for all f € C°(M,®%T*M):

d
d? Alg=go (f, f) = Z <<d2P‘9 =90 (f f)u“uZ>L
— (1.7)

2<Pg; dP|g=go(f)uiadP|g=go(f)ui>Lz),

where d is the dimension of ker Py, and (ug,...,u4) is an L?-orthonormal basis of ker Py,.
Writing the perturbation of the metric as g = go + tf, we have )\, = t> d? Ag=go (5 ) +
t3(9(\|f\|%k0) and it thus suffices to find f € C°°(M,®%T*M) such that d* A,y (f, ) > 0.
This means that one of the 0-eigenvalues was ejected for a small perturbation of gy, and
iterating this process, one obtains a metric g close to go such that P, is injective.

For that, we assume that the contrary holds, namely that the second variation is always
zero. We then consider the maps in (1.7), namely f + (d? P|y—g (f, f)ui, ;)2 and f
<Pg_ol d Plg—go (f)ui,d Plg—g, (f)us) 2. We show that these quantities can all be put in the
form (Af, f)r2, for some pseudodifferential operator A. The important point here is to
evaluate the order of A and to compute exactly its principal symbol.

As a consequence, (1.7) can be put in the form (Bf, f);2 = 0 for some ¥YDO denoted by
B € U*(M,®%3T*M — @%T*M)°. Taking (real-valued) Gaussian states for the perturbations
f, we then obtain by an elementary lemma that for all (zg,&) € T*M \ {0} and for all
f e ®iT; M:

(oB(20,%0)f: f>®ZST;OM =0,

where op(z0,&) € End(®@%T; M) denotes the principal symbol of B. In order to conclude,
it is therefore sufficient to contradict the previous equality. This problem turns out to be
of purely algebraic nature and relies on the representation theory of SO(n) via spherical
harmonics, which is treated in the preliminary section §3. We also point out that the operator
B is a priori not elliptic (see Remark 5.8), which prevents us from proving that, at least
locally, there is only a finite-dimensional submanifold of isometry classes with non-injective
X-ray transform.

The main technical ingredients are recalled in §2 but we assume that the reader is familiar
with the basics of microlocal analysis. The proof of the genericity in the connection case
is developed in §5 (with applications to the tensor tomography question for connections in
Corollary 5.10) and the metric case is handled in §6. Applications of our theorems to generic
injectivity of the X-ray transform on manifolds with boundary can be found in §7.

To conclude, let us mention that the approach initiated in [CL21] and developed in the
present paper to study generic properties of elliptic pseudodifferential operators seems new
(here by generic properties we mean for instance the simplicity of the spectrum, non-degeneracy
of nodal sets of eigenfunctions, and so on). It is at least very different from the historical
approach of Uhlenbeck [Uhl76] and others.

51f E,F — M are two vector bundles over M, we denote by ¥*(M,E — F) the standard space of pseudo-
differential operators (of all orders) obtained by quantizing symbols in the Kohn-Nirenberg class p = 1,§ = 0,
see [Shu01] for further details.
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2. TECHNICAL PRELIMINARIES

2.1. Elementary Riemannian geometry. We refer to [Pat99] for further details on the
content of this paragraph. Let (M, g) be a smooth Riemannian manifold. We denote by

SM = {(z,v) € TM | g;(v,v) =1} C TM,

its unit tangent bundle. Let (¢;)tcr be the geodesic flow generated by the vector field X. If 7 :
SM — M denotes the projection, we define V := ker d 7 to be the vertical subspace. Recall the
definition of the connection map K : T(SM) — TM: consider (z,v) € SM,w € T(, ,(SM)
and a curve (—e,e) > t — 2(t) € SM such that z(0) = (x,v),2(0) = w; write z(t) =
(z(t),v(t)); then K, ,)(w) := Vipv(t)|i=o, where V denotes the Levi-Civita connection of
(M, g). The Sasaki metric ggas on SM is defined as follows:

gsas(w,w') := g(dm(w), dr(w')) + g(K(w), K(w")).
Write H := ker KN (R - X )L for the horizontal subspace and Hiy, := RX @ H for the total
horizontal space. Then we have the following splitting:
T(SM)=R-X &t VaelH, (2.1)

where @+ denotes orthogonal sum with respect to gg,s. We will denote by mg, 7w, ., 7v the
orthogonal projections onto the respective spaces H, Hio, V. We denote by V52 the gradient
of the Sasaki metric. The splitting (2.1) gives rise to a decomposition of the gradient

VS (f) = X f- X + Vaf + Vv,

where f € C®°(SM), and Vi f € C*(SM,H),Vyf € C°(SM,V).
The geodesic vector field X is a contact vector field with contact 1-form « such that
a(X) =1,1xdo =0 and « has the expression:

Q3 0) (f) = gx(d(m,) 7'('(6),’[)), f S T(x’U)SM. (2.2)

We have ker « = H®'V and da is non-degenerate on ker « (it is a symplectic form). Moreover
dolgxm = dalyxy = 0. The space ker « is equipped with a canonical almost complex structure
J defined in the following way: if Z € C*°(SM, ker «v), we write Z = (Zy, Zv) to denote its
horizontal Zy = dn(Z) and vertical Zy = K(Z) parts; then JZ = (—Zy, Zn), see [Pat99,
Section 1.3.2]. For such Z, the following relation between the contact form and the Sasaki
metric holds (see [Pat99, Proposition 1.24]):

tzdo(e) = —gsas(JZ, e). (2.3)
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We will denote by div©* := (V588)* the divergence operator with respect to the Sasaki metric.
When clear from context, we will drop the Sasaki superscript. Then we have:

VZ € C°(SM, T(SM)),Vf € C*(SM), div(fZ)= fdiv(Z)— Zf. (2.4)
Equivalently, the divergence operator is defined by
div(Z)dvoly,, = — Lz(dvoly, ),

where Lz is the Lie derivative along Z and dvolgy, _ is the volume form of the Sasaki metric.
With our conventions, the following formal adjoint formula holds:

VZ € C*(SM,T(SM)), Z*=-Z+div(Z). (2.5)
The Sasaki volume form satisfies the property that (see [Pat99, Exercise 1.33])
1 o
dVOIQSas = mﬂf A\ (dOé) 1. (26)
When the metric g € Manosov 18 Anosov, the following crucial property is known [K1i74]:
E;NnV={0}, E,NV={0}. (2.7)

As we shall see, this property is essential in proving the pseudodifferential nature of certain
operators, see §4. This also implies that the manifold has no conjugate points, namely:

Vt£0, VNde(RX @ V) ={0}. (2.8)

2.2. Symmetric tensors. This material is standard but it might be hard to locate a com-
plete reference in the literature. Further details can be found in [DS10, GL21, Lef19b, CL21].

2.2.1. Symmetric tensors in Euclidean space. Let (E,gg) be a n-dimensional Euclidean space
and (er,...,e,) be an orthonormal basis. Let e := ggr(e;,®) be the covector given by the
musical isomorphism. We denote by ®™E*, the space of m-tensors and ®¢'E* the space of
symmetric m-tensors, namely f € ®¢E* if and only if

Y1, ..., € B, Vo € &, f(Ul, ...,Um) = f(va(l)v ...,UU(m)).

Here G,,, denotes the permutation group of {1,... ,m}. Given K = (ki,..., k), we write
ey = e, ®..®e; . The metric gp induces a natural inner product on ®™E* given by:
<e§<, e*K,>®mE* = 5k1k’1"'5kmk$n'
The symmetrization operator S : ™ E* — ¢ E* defined by:
1
S @ ... @0y = - Z No(1) @ - & No(m)
O'EGm
is the orthogonal projection onto @ E*. We introduce the trace operator 7 : @TE* —
®m—2E* .
e :
n
Tf = Z f(ei7 €, ®, ..., .)7
i=1

and this is formally taken to be equal to 0 for m = 0,1. We say that a symmetric tensor is
trace-free if its trace vanishes and denote by @@ E*|o_1; this subspace. We let J : @ E* —
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®?+2E* be defined by J(f) := S(gp®f) which is the adjoint of the trace map 7 (with respect
to the standard inner product previously defined on symmetric tensors). The operator 7 o J
is a scalar multiple of the identity on ®% E*|o—1y. Moreover, the total space of symmetric
tensors of degree m breaks up as the orthogonal sum:

®7Sn, * ®k20j2k <®7Sn—2kE*|0_Tr> )

We define P,,,(E) to be the set of homogeneous polynomials of degree m; H,,(E), the subset
of harmonic homogeneous polynomials of degree m. There is a natural identification A, :
REE* — Py, (FE) given by the evaluation map A, f(v) := f(v,...,v) (where v € E). Moreover,
Am : @TE*o—1e = Hy(E) is an isomorphism and

Am : QPE* = @0 T (®?_2kE*’O—Tr) — Bp0[v) Hy_on(E), (2.9)
is a graded isomorphism (it maps each summand to each summand isomorphically). We let
S"=1 = {v € E | gg(v,v) = 1} be the unit sphere in E and r : C*(E) — C*®(S""1) be the

operator of restriction. Define 7}, := 7 o A, Ty its adjoint, and denote by Q,,(E) the
spherical harmonics of degree m, namely

Qm(E) = ker(Aan + m(m +n— 2))’000(Sn71),

where Agn-1 denotes the induced Laplacian on the sphere, and S,,(E) 1= @r>0Qm—2k(E),
where Q(E) = {0} for k < 0. It is well-known that

is a graded isomorphism.

2.2.2. Symmetric tensors on Riemannian manifolds. We now consider a Riemannian manifold
(M,g). Given f € C®°(M,R%T*M), we define its symmetric derivative

Df:=8oVfeC®M,ET* M),

where V is the Levi-Civita connection. The operator D is an elliptic differential operator
of degree 1 and is of gradient type, i.e. its principal symbol is injective (see [CL21, Section
3] for instance). When the geodesic flow is ergodic, its kernel is given by ker(D) = {0} for
m odd, and ker(D) = R - Sz (g) for m even. Its adjoint is denoted by D*f = —Tr(Vf) €
C>(M, ®?_1T*M) and is of divergence type.

Any symmetric tensor f € C*°(M,®%T*M) can be uniquely decomposed as

f=Dp+h,

where h € C%°(M, ®3T*M)Nker D* is the solenoidal part and we have p € C°°(M, ®% 1 T* M)
(and Dp is the potential part). We denote by 7y p the L?-orthogonal projection onto the
first factor and by mer p+ = 1 — Tyan p the L?-orthogonal projection onto the second factor.
Both are pseudodifferential operators of order 0, namely in W°(M, RET*M — QFT*M). The
latter is given by the expression:

Ter p+ = 1 — D(D*D) ™' D*. (2.10)
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We use here the convention introduced in §2.5 for (D*D)~! as D* D has some non-trivial kernel
for m even. The principal symbol of D is given by op(z,§) = ije where je = iS({ ® o) and
i is the imaginary unit satisfying 2 = —1, whereas that of D* is given by op«(x,&) = — gt
where 1,, is the contraction by w. The space ®¢T; M breaks up as the orthogonal sum:

RETEM = ran(je) ©F ker Igt

The principal symbol of e p« is then given by the orthogonal projection onto the second
summand, namely

O-ﬂ-kcr D* (x7 é.) = Tker Z‘Eﬁ : (211)
We have the important relation, proved originally in [GK80b, Proposition 3.1]:
Xmy, =7y 1 D. (2.12)

The spherical harmonics introduced previously in §2.2.1 allow to decompose smooth functions
f € C®(SM) as f = 3,50 fm, where f,, € C°°(M,Qy,) is the projection onto spherical
harmonics of degree m and

Qu(z) := ker (Ay(z) + m(m +n — 2)) |coe (s, 1)

where Ay(z) : C®(S, M) — C*°(S;M) denotes the vertical Laplacian acting on functions
on SyM (i.e. the round Laplacian on the sphere). We call degree of f (denoted by deg(f))
the highest non-zero spherical harmonic in this expansion (which can take value 4+00) and
say that f has finite Fourier content if its degree is finite. We will say that a function is
even (resp. odd) if it contains only even (resp. odd) spherical harmonics in its expansion, i.e.
for+1 = 0 for all k € Z>¢ (resp. for, = 0 for all k € Z>(). The operator X acts on spherical
harmonics as:
X :C®(M, Q) = C®°(M, Q1) & C(M,Qpp41),

and therefore splits into X = X_ + X, where X, denotes the projection onto the 2,11
factor. The operator X is of gradient type and thus, for each m € N, ker X |ceo(pr0,,) 18
finite-dimensional, and we call elements in this kernel Conformal Killing Tensors (CKTs).

Eventually, we will also use another lift of symmetric tensors to the unit tangent bundle
via the following map, which we call the Sasaki lift:

mSas - O (M, @FT M) — C*(SM,R§T*(SM)),
T asf (§15 - &m) = f(d (&), .., dm(€m))-
We note that the pullback 7, ¢, is different from 7, introduced in §2.2.1.

" (2.13)

2.2.3. Twisted symmetric tensors. The previous discussion can be generalized in order to in-
clude a twist by a vector bundle & — M, see [CL21, Section 2.3] for further details. We
let (e1,...,e,) be a local orthonormal frame of £ (defined around a fixed point xg € M).
The smooth sections of the pullback bundle 7* & — SM can also be decomposed into
spherical harmonics, namely f € C®(SM,n* &) can be written as f = > -, fm, where
fm € C°(M, 2, ®E) and a similar notion of degree is defined, as well as the evenness /oddness
of a section.

If V¢ is a unitary connection on &£ given in a local patch of coordinates U > zo by V& = d+T,
where I' is a connection 1-form with values in skew-Hermitian endomorphisms, (I'(0y,))ke =
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Ffé, and we consider a twisted symmetric tensor f € C*°(M,®¥T*M ® £), which we write
locally as f = >} _; up®ej, with uy, € C°(U, ®§T*U), we can define its symmetric derivative

D¢ <§T: U & €k> = ET: (Duk + ET: EH:F?ES(UE & da;,)) & ek. (2.14)

k=1 k=1 =1 i=1
As in §2.2.2, twisted symmetric tensors can be uniquely decomposed as f = Dgp + h, where
p € C®(M,@%'T*M ® £) and h € C®°(M,®3T*M ® £) is solenoidal, i.e. in ker(Dg)*.
The pullback operators extend as maps

T, C°(M,QFT* M ® E) = Bp>0C (M, Qyp_or @ E).

More precisely, in the local orthonormal frame (e;);_;, for a section f written locally as above
as f = > urp @ ek, we have 75 f(z,v) == Y mhuk(z,v)ep(xz) € E(x), where on the
right hand side 7, acts on symmetric tensors as introduced in §2.2.1. For simplicity, we keep
the same notation for both twisted and non-twisted pullbacks and note that the two agree
in the case £ = M x C. The bundle 7* £ — SM is naturally equipped with the pullback
connection 7*V¢ and we set X := (7*V¢)x which is a differential operator of order 1 acting
on C®°(SM,n*E). We still have the relation:

X = Trmy1De, (2.15)
and X decomposes as:
X:C®M,QpRE) = C°(M, Q1 @E)DC(M, Qi1 @E), (2.16)

that is X splits as X = X_ + X, where X, is of gradient type. Elements in ker X are called
twisted Conformal Killing Tensors. Non-existence of twisted CKTs is a generic property of
connections as proved in [CL21].

2.3. Pollicott-Ruelle theory. The theory of Pollicott-Ruelle resonances which is briefly
recalled below has been widely studied in the literature, see [Liv04, GL06, BL0O7, FRS08,
FS11, FT13, DZ16]. We also refer to [Guil7a, CL21, Lef19b] for further details on these
paragraphs. In what follows, we will make the running assumption that (M, g) is a closed
Anosov manifold.

2.3.1. Meromorphic extension of the resolvents. Let £& — M be a Hermitian bundle over
M equipped with a unitary connection V€. We consider the pullback bundle 7* & — SM
equipped with the pullback connection 7*V¢ and set X := (W*Vg )x. Defining the domain

D(X):= {u € L*(SM,n*€) | Xu € L*(SM,7* &)} Y,

the differential operator X (of order 1) is skew-adjoint as an unbounded operator with dense
domain D(X) and has absolutely continuous spectrum on iR (with possibly embedded eigen-
values).

6The scalar product on L? is given by (f, f') 2 := fSM h(f(z,v), f’(:cm))gz d p(z,v), where h denotes the

Hermitian metric on £ and p is the Liouville measure on SM.
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We introduce the positive (resp. negative) Ry (z) (resp. R_(2)) resolvents, defined for for
R(z) > 0 by:

+o0
Ri(2) = (FX -2)7' = —/ eFre X dt.
0

Note that given (z,v) € SM and f € C®(SM,7* &), we have that e X f(z,v) € &, is
the parallel transport of f(¢_¢(z,v)) along the flowline (¢s(2))sej—¢,0) With respect to the
connection 7*V¢.

These resolvents initially defined on {#(z) > 0} can be meromorphically extended to C by
making X act on anisotropic Sobolev spaces. More precisely, there exists a scale of Hilbert
spaces H?% (where s > 0) and a constant ¢ > 0 such that

{R(z) > —cs} 5 z— Ru(z) € Hi,

are meromorphic families of operators with poles of finite rank. These spaces are defined so
that f € H% (resp. H?) implies that f is microlocally in H® near I (resp. H® near E)
and microlocally H™® near E (resp. H™® near E}). The poles are called the Pollicott-Ruelle
resonances: they are intrinsic to the operators X and do not depend on any choices made in
the construction of the spaces. Moreover, these operators are holomorphic in {R(z) > 0} and
thus all the resonances are contained in {(z) < 0}.

2.3.2. Generalized X-ray transform. When & = C x M, X = X is nothing but the vector field
and we use the notations R4 (z) for the resolvents. In this case, there is a single resonance on
1R located at z = 0. It is a pole of order 1 and the resolvents have the expansion near z = 0:

II
Ri(z) = —7i — R:I:,O — Ri,lz + 0(22),

for some operators Ry 1, Ry : HEL — HE, bounded for any s > 0. Moreover, the spectral
projection at 0 (i.e. the residue at z = 0) is

Iy =1I_ = (e, u)1, (2.17)

where p is the normalized Liouville measure i.e. so that (1, u) = 1, see [Guil7a] for instance.
We record a few useful relations involving II4+ and R4 o:

XR_F,() = R+70X =1-1I4, XR_7() = R_7()X =—-14+1II_, ik,_’o = R_7(),

XRi1=Ry1X=—-R,py, XR_;=R_1X=R_) (2.18)
We introduce the operator
IT:=Rio+R_o+I1I, (2.19)
and define the generalized X-ray transform by:
I = mp I, (2.20)

which is an operator acting on sections of the bundle ®'¢T*M — M of symmetric tensors.
When clear from context, for the simplicity of notation we will drop the superscript g in II7,.
We say that II,, is s-injective if II,, is injective when restricted to ker D*. The following
provides a relation with the X-ray transform I,,:
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Lemma 2.1. Assume that (M,g) is a closed Anosov manifold. Let u € C*°(M,ET*M).
Then Il,u = 0 if and only if there exists v.e C*°(SM) such that 7w = Xv. Moreover, I,
s s-injective if and only if 1L, is s-injective.

Proof. The first part follows from [Guil7a, Theorem 1.1], and the following observation.
Note that our convention is different from [Guil7a] who writes IT := R, o + R_( and uses
this operator instead of Z in definition (2.20); however, both II and II; are non-negative
operators (see e.g. [CL21, Lemma 5.1]) and so II,,u = 0 is equivalent to IIz} u = 0 and
IIi 7} u = 0. By (2.17), the latter condition gives that the average of 7 u is zero, so [Guil7a,
Theorem 1.1] indeed applies.

The second part is then the consequence of the smooth Livsic theorem (see e.g. [Lef19b,
Lemma 2.5.4]). O

By the preceding Lemma, the study of I,,, is reduced to the study of II,, and as we shall see
in §4, 1I,,, enjoys very good analytic properties. In other words, in order to prove our main
Theorem 1.1, it suffices to show that I3, is generically s-injective with respect to the metric.

2.3.3. Twisted generalized X-ray transform. We now go back to the case of a Hermitian vector
bundle &€ — M. For the sake of simplicity, we assume that ker X = {0} but the discussion
could be generalized, see the footnote at the beginning of §5. We introduce:

Ivé‘ = R+ + R_,
where Ry := —Ry (2 =0) and R_ := —R_(z = 0), and define the twisted generalized X-ray
transform by:

0V = rp Toent, (2.21)

Similarly to the first part of Lemma 2.1, the following was shown in [CL21, Lemma 5.1]:

Lemma 2.2. Let u € C®(M,@%T*M ® £). Then HXLSU = 0 if and only if there exists
veC®(SM,n*E) such that w)u = Xv.

2.4. Properties of the resolvent under perturbations. The generalized X-ray trans-
form operators IIf, (we now add the index g to insist on the metric-dependence) and H,,Vf
introduced in the previous paragraphs depend on a choice of metric g and/or connection
V¢. In the following, we will consider perturbations of these operators with respect to these
geometric data. For £, F — M, two smooth Hermitian vector bundles over M, and s € R,
the spaces of pseudodifferential operators W*(M,E — F) are Fréchet spaces (see [GKIL22,
Section 2.1] for instance) where the seminorms are defined thanks to local coordinates by
taking the seminorms of the full local symbol in the charts. Let us also mention that it is also
possible to consider pseudodifferential operators obtained by quantizing symbols with limited
regularity (see [Tay91]): actually, all the standard arguments of microlocal analysis (such as
boundedness on Sobolev spaces for instance) involve only a finite number of derivatives of the
full symbol, and this number depends linearly on the dimension. As a consequence, for k& > n
(where n is the dimension of M), we can consider the space \Pfk)(M ,& = F) of pseudodif-

ferential operators obtained by quantizing C*-symbols (satisfying the usual symbolic rules of
derivation).
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Lemma 2.3. The following maps are smooth:
Manosoy 29— %, € U1 (M, @ET*M — QTT*M),
C°(M,T*M ® Endg(€)) oV » IV, € U~ Y(M,@2T*M © £ — QGT*M ® £).

More precisely, for every k € Z>o, k" € Z>1, there is k' > max(n, k) such that the following
maps are C*:
MIZlnosov Bg = Hgn S \I/(_kl”)(M7 ®gn *M — ®TSn *M)7
’ % £ _ * *
C¥ (M, T*M ® Endy(€)) 3VE = 1Ly € Wiy (M, @5T"M © € = @§T* M Q).

Lemma 2.3 will be used in §5 and §6 in order to perturb the generalized X-ray transforms
with respect to the connection/metric. For k = 0, Lemma 2.3 is precisely the content of
[GKL22, Proposition 4.1]. Inspecting the proof, one can see that it also works for higher
order derivatives. The heart of the proof is based on understanding the differentiability of
the resolvent map

C>®(SM,T(SM)) x C> (Y,z) = (FY —2)~' € L(H),

where H5 is the scale of anisotropic Sobolev spaces (which can be made independent of the
vector field by [Bon20]), and Y is a vector field close to X. This perturbation theory is now
standard and we refer to [Bon20, DGRS20, CDDP22] for further details.

2.5. Notational convention. Throughout the paper (see for instance (5.8) below), if A is

I on a half-space

an operator on a Hilbert space H with meromorphic resolvent (A4 — z)~
R(2) > —e (for some £ > 0), we use the convention that A~! denotes the holomorphic part

of the resolvent at 0. More precisely, close to z = 0 we can write
YA
—_ )= k')
(A—z)"' = RA+Z:1 — +0(2),
J:

for some finite rank operators (Aj)évzl and we set A~! := Ry4. In particular, if z = 0 is not in
the spectrum of A, A~! is the inverse for A.

3. ON SPHERICAL HARMONICS

We record here some facts about spherical harmonics. We keep the notation (E, gg) for a
Euclidean vector space of dimension n.

3.1. The restriction operator. In the following, we will need to understand how the degree
of a function is changed when restricting to a hypersphere. For £ € E*\ {0}, define 7i(&) := %
If S~ denotes the unit sphere in E, we introduce Sg_z = {vesS"!|(,v) =0}. Any
vector v € S"1\ {£7(¢€)} can be uniquely decomposed as v = cos(¢)ii(€) + sin(p)u, where
v € (0,m),u € S?_2 (the diffeomorphism is singular at the extremal points ¢ =0 and ¢ =7
but since they form a set of measure 0, this is harmless in what follows). The round measure

d S(v) on S ! is then given in these new coordinates by

d S(v) = sin"?(p) d pd Se(u), (3.1)
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where d S¢(u) denotes the canonical round measure on the (n — 2)-dimensional sphere 82_2.

3.1.1. Standard restriction. We start with the following:

Lemma 3.1. Assumen > 2. Let w € C®(S"™1). Then w has degree < m if and only if the
restriction w ‘ngz to any hypersphere 82_2 has degree < m.

Proof. We start with the easy direction. If w € €2,,(S*!) is a spherical harmonic of degree
m, then:

W |S?72 S @kZOQm_Qk(S?_2).

This fact follows from the following observation: if w € €,,(S*~1), then w is the restriction
of a harmonic homogeneous polynomial P € H,,(F) defined on E. For any £ € E*\ {0},
let H = ker({) C E denote the codimension 1 hyperplane determined by . Then P|y is
still a homogeneous polynomial of degree m (it may not be harmonic, though) and thus its
restriction to Sg_2 is a sum of spherical harmonics of degree < m (and with same parity as

We now show the converse. The case m = 0 is obvious so we can always assume that
m > 1. Note first that we may split w into odd and even terms, w = wWogqq + Weven- We have
(w |§g*2)0dd = Wodd |S272 and (w |S272)Cvon = Weven |S272, and so for every &, both Weyen |S272
and woqq ‘ngz are of degree < m. Thus, we may assume w is either pure odd or pure even, and

that moreover this is the parity of m (if m and w have distinct parities, then the hypothesis
of the Lemma is true for m — 1).

The conclusion is now implied by the following claim : let w € C*°(E \ {0}) be an m-
homogeneous function (since m > 0 it is at least continuous at = 0) such that the restriction
w | to any hyperplane H C FE is a homogeneous polynomial of degree m. Then w is a
homogeneous polynomial of degree m.

First of all, we start by proving that w is smooth at z = 0. Let (eq, ..., €,,) be an orthonormal
basis of E' and write x = > " | z;e;. We claim that 8;7;‘“ w = 0on E. Indeed, fix: € {1,...,n},
fix z € E and consider a hyperplane H containing both x and e; (which forces the condition
n > 2). Then f|y is a polynomial of degree m. In particular, it is smooth and satisfies:

I w(z) = O w(z + tey)|i=o = 0,

since it is polynomial. Actually, a}gi w =0 as long as k > m + 1. In particular, Pw =0 on F,
where P =" | 8:%:” As P is elliptic and w continuous, this gives that w is smooth on E.
We now write by Taylor’s theorem:

w(z) = Z iazo‘ -0y w(0) + R(x),

laj<m

1
where R(z) = O(|z|™*!) as |z| — 0 and define S(z) = 2 lal<m Jaza <09 w(0). Taking any

xT

hyperplane H, we obtain:
Wl (x) = S|u(z) = O(jz|™ ).
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The left-hand side is a polynomial of degree < m so it implies that it is equal to 0. This
gives that R|y = 0. Since this holds for every hyperplane H, this implies R = 0 and w is a
polynomial of degree < m. Using m-homogeneity of w, it is homogeneous of degree m. O

Remark 3.2. We observe that the proof actually gives a stronger statement which is: assume
w € C®(E \ {0}) is m-homogeneous and a polynomial of degree m when restricted to any
plane (and not hyperplane), then it is a polynomial of degree m on E.

3.1.2. Differentiated restriction. The following lemma will be used for the generic s-injectivity
with respect to the metric. We will denote by V the gradient with respect to the spherical
metric on S*L.

Lemma 3.3. Assumen >3 and let m € Z>o and w € C°°(S"™1) such that deg(w) > m + 1.
Then, there exists & € E*\ {0} such that (&, VW(O)HSg—z has degree > m (seen as a function

on Sg_z).

This Lemma will be applied later in each fibre £ = T, M and V will be the vertical gradient
Vy; we will take &€ € T M. If m = 0, degree > 0 also implies non-zero.

Proof. We assume the degree of (€, VW(O)>|SE72 is always < m (for all £ # 0) and show that
this forces w to be of degree < m. In fact, we may assume without loss of generality that w
is either pure odd or pure even, and of the same parity as m + 1. Let us deal with the m > 2
case first.

First of all, we extend the smooth function w to an (m — 1)-homogeneous function on F
(which we still denote by w). In particular, this extension is smooth on £\ {0}. We now claim
that for every &, dw(gﬂ) is a homogeneous polynomial of degree < m — 2 on ker. Indeed,
consider a point v € ker¢ \ {0}. The total gradient on FE is

Vielf = Zaxlf Oy, = V[ +d f(7).7i

1=1
where 77 := ﬁ, V denotes the gradient of f restricted to the spheres and (z;);; are the
coordinates induced by an orthonormal basis (e;)_; of E. Hence, for v € ker £, we have:

(&, Vw( Zgz Dz, w(v) — dw(id).(&,7i) = dw(&P), (32)

where &;. denotes multiplication by &-. Therefore, (£, Vw(v))|ker¢ is @ homogeneous function
of degree m — 2 whose restriction to the sphere 82_2 is of same parity as m, and thus has
degree < m — 2. As a consequence, it is a homogeneous polynomial of degree m — 2 on ker €.

We now fix an arbitrary vgp € E'\ {0} and consider the Taylor-expansion of w at this point:

wv)= > (v—w0)*(a!)7'g f(vo) +R(v), (3-3)

ja|<m—1

P(v):=

where R(v) = O(|v — vp|™). We consider v; € E \ {0}, w € Span(vg,v1)*. If we differentiate
(3.3) in the w-direction and then restrict to the hyperplane w', then we know by the previous
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discussion that d w(w)|,, . is a polynomial of degree < m — 2, and so is d P(w)|,, .. Moreover,
from Taylor’s theorem d R(w) = O(|v — vp|™ 1). As a consequence: d(w —P)(w)|,. =
d R(w)|,+ is a polynomial of degree < m — 2 which vanishes to order m — 1 at wp; it is
therefore constant equal to 0. Evaluating at vy, this shows that d R(w) = 0 at vy.

We now introduce G,, C SO(n), the isotropy subgroup of vy, i.e. the subgroup of rotations
fixing the vy axis. By the previous discussion, R satisfies the following (see Figure 1): given
a sphere S"1(r) := {jv] =7}, Y*R = R for all v € G,,.

Vo

U1

FI1GURE 1. The function R is constant along the red orbits which correspond to the rotation
around the vg-axis.

We restrict this equality to the unit sphere S*~! and observe that (3.3) implies W |gn-1 =
Quo + Suy, Where gy, € Q<1 = Pp>0m—1-% is a sum of spherical harmonics of degree
< m —1 and §,, is invariant by the action of G,,. Note that vy is arbitrary and taking
some other vy, we see that S, — Sy, € Q<;m—1. As each j is a representation of SO(n)
by pullback, in particular it is invariant by G,,. This gives that for all v € G,,, one has:
Y Sp; — Y Svy = Sy — VY Suy € Q<m—1. Hence, for all v € Gy, ,v*Syy — Sy € Q<pm—1. Taking
v € G,, for some other arbitrary vy, we see that (7/)*v*Sy, — (7/)* Sy, € Q<m—1 and since we
also have (7/)*Sy, — Sy, € Q<im—1, this gives that (v/)*v*Sy, — Sy, € Q<m—1. By induction,
for any 71, ... ,7¢ belonging to isotropy subgroups of SO(n), we have:

Y - Svo — Sup € Q<m—1.

As products of isotropy subgroups generate SO(n), we deduce that for all v € SO(n),v*S,, —
Svo € Q<m—1. Decomposing Sy, = > ;~¢(Su )k into spherical harmonics, we then see that
Y*(Suy )k = (Suy )i for all k > m and v € SO(n). As €y is irreducible [Hel00, Theorem 3.1],
this implies that (Sy,)r = 0. Hence Sy, is of degree < m — 1 and w |gn—1 = ¢y, + Sy, is also
of degree < m — 1. This completes the proof of the m > 2 case.

Finally, if m = 0,1, then (3.2) implies that d w(&*)|ker¢ = 0. Then taking R(v) := w(v) in
(3.3), it is straightforward that d R(w) = 0 at v; where w,v; are as before. The remainder
of the proof works the same to show that w|gn—1 is invariant under the isotropy subgroups,
hence constant, contradicting that deg(w) > 0. O
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3.2. The extension operator. In this paragraph, we study an operator of extension from
a hypersphere 82_2 to the whole sphere S"~1. First of all, for m € Zx1, we introduce the
constant:

I'(3)
L)’

Cp, = /07r sin™ p)dp =7 (3.4)

where I' is the usual Gamma function. Given a smooth function f € COO(SQ_2) or more
generally, one can take a section f € COO(S?_Q, 7* &), where 7 : S"~1 — {0} is the projection,
we define its extension of degree k € N to the whole sphere S*~! by the formula:

Eff € LA(S" 1,7+ &), ng(cos(gp)ﬁ(g) + sin(p)u) = sin® (o) f(u). (3.5)
Note that Eg extends to L2(Sg_2, 7* &) by continuity since by definition and (3.1)
Hng”zLQ(Sn*l,n* &~ C2k+n—1Hinz(ng2Jr* &) (3’6)
Moreover, we have (cf. [Lef19b, Lemma B.1.1]):

Lemma 3.4. For any [ € COO(SQ_2,7T* E) and f' € ®g~”’/E* ® &, and all m € Z>q, we have:
| L T e S0 = i T B D) g e @7
Proof. The left hand side of (3.7) equals, after using (3.4):
/ng /07r <sinm(<,0)f(u),77;51,771(0%zﬁ I’ (cos(p).7i(€) + sin(gp).u)>g
sin" "% (¢).de.dSe (u)
= [ B e £ = (i, Tt ) ) e

where in the first line we used that (£, u) = 0 on 82_2 by definition and in the second equality
we used the Jacobian formula (3.1). This concludes the proof. O

We have the following result on the degree:

Lemma 3.5. For all £ € E*\ {0}, the following holds. Let f € 000(82_2) such that deg(f) >
m+1. Then, deg(Eg*(f)) = m + 1.

Proof. We argue by contradiction. We assume that Eg” (w) has degree < m. In particular, it is
smooth. Moreover, observe that its (m — 1)-th jet vanishes at the North pole N := {p =0} =
i(€). We can therefore compute its differential of degree m. Let 0 # Z € TNS" !, Z =rZ’,
where |Z’'| = 1. Note that in the (p, u)-coordinates, Z’ corresponds to d, at (¢ = 0,u) where
u=272¢€ Sg_z. Then:

A" B (W)N (2, ey Z) = 7O (EE ())(0, 1)

= PO (S () W g2 (u)) =l x 1w |ga). (3:8)
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There is a natural identification between TnS"~! and ker¢ = 7i(€)*, and with this iden-
tification d™ Ef"(w)y defines a symmetric m-tensor on ker¢. Then (3.8) says W|S?72 =

%ﬂ':n(dm Eg*(w)n) has degree < m, which is a contradiction. O

3.3. Multiplication of spherical harmonics. We end this section with standard results
on multiplication of spherical harmonics:

Lemma 3.6. Let m,k € Z>¢ and assume without loss of generality that m > k. If f €
Qn(E), ' € Qr(E), then:

fxf ek Qumirou(E).

Proof. First of all, extending f and f’ by m- and k-homogeneity to E, respectively, we directly
see that f x f’ is a homogeneous polynomial of degree m + k and so by (2.9):

3 " € Bosolv B —2e(E).
The only non-trivial part is to show that the projection onto

B>k |0 Hippp—20(E)

is zero. For that it suffices to show that A’(f x f’) =0 as long as £ > k + 1. Observe that:

A% f)) = (AF) x f +2VF -V + fx (AF) =23 0 f x 0, f',

i=1
and thus by iteration:
Afx [y =20 O3f x 03 f',
|ar|=¢
which clearly vanishes for £ > k + 1 as f’ is a polynomial of degree k. O

In the particular case where k = 1, the previous lemma shows that f € Q;(F) gives rise
to two operators fi defined in the following way: if w € Q,,(E), then f xw = f_w+fiw
with fow € Qp41(F). Moreover, by extending f and w as 1- and m-homogeneous harmonic
polynomials denoted by the same letter, we get (V denotes the total gradient of E)

1

f_W:n+2(m—1)(

Vf-Vw)lgnt. (3.9)

In fact, for non-zero f the map f_ : Q,,(F) — Q,—1(E) is surjective, implying also that
fr i Qn(E) = Q41 (F) is injective (see [CL21, Lemma 2.3]).

Lemma 3.7. Assumen > 2 and let m,k € Z>g. Consider w € C°°(S"~1) such that deg(w) >
m. Then, there exists f € Si(E) such that deg(f.w) > m + k.

Equivalently, there exists [ € ®I§E* such that deg(m; f.w) > m + k.

Proof. We first prove the case k = 1; the cases m = 0 or £ = 0 are trivial so we assume
m > 1 from now on. We write w = Z(;io wj, where w; € €);, and denote by the same letter
the harmonic extension of w; (as a j-homogeneous polynomial) to R". Take £ > m such that
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we # 0, and assume for any ¢ = 1,... ,n that (v;)4+ ws+(v;)— wero = 0, which by (3.9) is
equivalent to:

(0 + 200+ 1)) 710y, Wi +vs we —[o2(n + 20 — 1)), wy = 0.
Multiplying by v; and summing over i, we obtain using Euler’s formula (i.e. homogeneity)

{42 n+0—2
_— W _— @ @ @ @ @ @
nt20+1) T nr20—1)
Applying A, this contradicts the fact that w, # 0.
For general k € Z>1, by iteratively applying the case kK = 1 above, there exist f1,..., fr €

Q1 (E) such that deg(fg---fiw) > m+ k. Since f := fr--- f1 € Sg(E), this completes the
proof. O

o> w .

Note that there is a straightforward extension to the bundle case (just by applying the
previous lemma coordinate-wise), that is, when considering sections of a trivial bundle 7* & —
S"~1, where 7 : S*~! — {0} is the constant map. We record it here and leave the proof as an
exercise for the reader:

Lemma 3.8. Let m,k € Z>q. Consider w € C®°(S"1, 7% &) such that deg(w) > m. Then,
there exists f € Si(FE) ® Endg(E) such that deg(f.w) > m + k.

4. PSEUDODIFFERENTIAL NATURE OF PERTURBED GENERALIZED X-RAY TRANSFORMS

Under a weaker form, the results of this section can be found in [Guil7a, GL21] and in
[Lef19b, Chapter 2] where the principal symbol of the generalized X-ray transform is computed
in details. We here need a more general result where we “sandwich” (pseudo)differential
operators (we recall that the constants Cy were defined in (3.4)):

Proposition 4.1. Let Pr, Py, : C®°(SM,7* &) — C®°(SM,n*E) be differential operators of
degree mp,my, > 0 and fix m1,ms € Ng. Then the operator

*

Apg P, = Ty Prlye Prm,,,

is a classical” pseudodifferential operator of order m == mp +mgr, — 1 in
Appp, € VM, QT M ®E = @'T"M ®E).
Moreover, its principal symbol satisfies, for any f € @E*TiM @ E, and f' € Q' TiM @ E,:
<UAPR,PL (z,8)f, f/>®’;1T*M,C®€x
=2 {om((w), (e, w) (5, (), 03 (2 0), a1, 0) (s /()

= E S?’Q (4.1)
d Se(u),

Eao

7See below (4.7) for a definition.
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where &z, u) = & (dy . 7(e)). More explicitly, the principal symbol of Ap, p, is given by the
formula, for any m € Ny:

OApp.Pp. (m,f)f

_2m

) (4.2)
— mCm1+m+n—1ﬂ-k°r o ﬂml*EgL [UPLPR (LZ', u, 5]1-]1(1'7 U)) (7Tm2 Tker Let f)] .

Remark 4.2. This was originally proved with P;, = Pr = 1 in [Guil7a], see also [Lef19b].
Note that one could actually take Pgr, P, in Proposition 4.1 to be pseudodifferential of arbi-
trary order (that only makes the proof slightly longer but the idea is the same).

In the following, we will refer to this result as the sandwich Proposition 4.1. In the case
where € = C x M, the formula reads (using that op: =&p,):

<O-APR7PL (% f)fa f/>®g” T*MyRE s
2

= T4 B O-PR(($7U)7£H(337u))JPL((x7u)7£H($vu))'7r:ng (u)ﬂ-:n,lf/(u)
€l Jsp-2

We will only prove Proposition 4.1 in the case of the trivial line bundle with trivial connection
in order to simplify the discussion; the generalization to the twisted case is straightforward
modulo some tedious notation. We also make the following important remark:

Remark 4.3. Proposition 4.1 can also be generalized by considering differential operators
Pr: C*(SM,@*T*(SM)) — C*(SM),
P : C®(SM) = C*(SM,®"'T*(SM)),

(of degree mp, my, > 0) and looking at the operator:

*

App. Py = Tmy Sas, PLLPRT 5 Sas

where 7, .. denotes the Sasaki lift introduced in (2.13). The same proof shows that this

operator is pseudodifferential of order mp + myp — 1 with principal symbol satisfying:

(O Apgp, @, ) gmipen,

- ’26_7[‘- §n—2 OPr ((-Z', U)7 6H(m7 u)) (ﬂ-:nz,Sasf(u))’UPz ((x, U), f]]—]](l’, u)) (W:In,Sasf/(u)) (43)
13

d S¢(u),
where Eu(x,u) =& (dy, m(e)). We leave this claim as an exercise for the reader.

First of all, let us fix ¢ > 0 and a cut off function x € C§°(R;[0,1]), symmetric around

zero, such that

g €

Sl oxw =01z

=1, ¢t [——,
x(t) €| 33

We set (here e/ = p}):
+e
I = / x(t)etX dt.
—€
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Lemma 4.4. The following property holds:
Tmy o PLLPRT = Ty JPLLPrTy,, € O F(M, @ T*M — @ T*M).

Proof. Recall that Z = Ry o+ R_ o+ 11 and the term II, will only contribute to a smoothing
operator. We first derive an auxiliary identity; we start by the following

/0 Y (#)e ) d = —1d + </0 x(t)e HEFX) dt) o(X +2), z2€C,

where we integrated by parts in the equality. Composing on the right by (X + 2)~! with
z # 0 close to zero, using the meromorphic extension and taking the bounded terms at z = 0
we get:

Rio :/ x(t)e X dt — / X (e X dt [ oRy o+ </ tx’(t)dt) Iy, (44)
0 0 0

R:=

where for the last term we used that ¢*,II4 = II; since II; is the orthogonal projection
onto constant functions; integrating by parts the multiplier in the last term simplifies to
fooo tx'(t)dt = — fooo x(t)dt. Using the analogous formula for R_ (, and that Il is smooth-
ing, we see it suffices to prove that the middle term of (4.4) contributes to a smoothing
operator, that is,

K := Ty JPLRRy 0Py, € U™°(M, @2 T*M — QT T* M).

It is sufficient to prove that if f € D'(M,®¢*T*M), one has K f € C>°(M,®F"T*M). For
that, we will use the wavefront set calculus of Hormander [Hor03, Chapter 8].

Using the notation of §2.1, define the subbundles H*, V* C T*(SM) such that H*(H® R -
X) =0,V*(V) = 0. Observe that since 7, is a pullback operator, we have WF (7, f) C V*
(see also [Lef19a, Lemma 2.1] for a detailed proof). Since Pp is a differential operator, we have
WF(Pgr7;,, f) C V*. We then use the characterization of the wavefront set of the resolvent
Ry in [DZ16, Proposition 3.3], namely®:

WF' (R4 o) CA(T*(SM)) U Q4 UE; x EX, (4.5)
where A(T*(SM)) is the diagonal in T*(SM) x T*(SM), and
Q4 = {((I)t(zvg)v 275)) ‘ t =0, <€7X(Z)> = 0}
is the positive flow-out and ®; : T*(SM) — T*(SM) is the symplectic lift of the geodesic

flow (¢)ier, given by ®(z,€) = (¢i(2),dp; ' (2)(€))". From (4.5) we obtain using [Hor03,
Theorem 8.2.13]:

(
(

WF(R+7QPR7T:n2f) cV'u EZ Ut>0 @t(V* N ker Zx). (46)

Next, we show that since R is given by integration along the flow, it is microlocally smooth-
ing outside kerux (i.e. it is smoothing in the elliptic set of X). For that, fix an arbitrary

8We use the standard conventions, namely if B : (M) — D'(M) is a linear operator with kernel
K € D/(M x M), we define WF'(B) = {(z,,y,7) € T°M x T*M | (,£,y, ~1) € WF(Kp)}.
9We use ~ " to denote the inverse transpose.
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k € Z>1, and let B € WY(M) be arbitrary microlocally equal to Id near keruyx (where
M = SM), that is, WF(Id —B) does not intersect a conical neighbourhood of kerzx. We
will show that R(Id —B) is smoothing for any such B. By ellipticity, there are E € ¥~¥(M)
and F' € U~>°(M) such that

X*E=1d-B+F.

Therefore we can compute, for an arbitrary u € D'(M) that
R(Id —B)u + RFu :/ X ()" X*Budt :/ (OF ) ()" Eudt,
0 0

where in the last equality we used that ¢*, X* = (—0;)*¢*, and integrated by parts k times.
Since RFu € C®(M), and E € ¥~*(M) where k could be chosen arbitrary, we conclude
that R(Id —B) € W~°°(M), proving the claim. Therefore, by (4.6) and by the behaviour of
the wavefront set under pullbacks (see [Hor03, Theorem 8.2.4]):

WEF(PLRR o Pr7yy,, f) € WE(RR, 0Py, f)
C Upele/2,e) Pt (V* Nkerax) U By Uyere /oo Pe(VF Nkerax).
Next, as 7y, , is a pushforward, we obtain (see [Mel03, Proposition 4.12]):
WF(K f)
C{(2,6) e T"M | Fv € 5o M, £(d(y,) 7(®)) € B Uelejo, ®o(V* Nkerax)},
where we note that (d(, ) 7(e)) € V*(z,v). As a consequence, the lemma is proved if we can

show that V* N (E} Ups[c/a, P«(V* Nkerix)) = {0}. But this follows from (2.7) and (2.8),
completing the proof. O

We now turn to the sandwich Proposition 4.1. For that, it is convenient to use the historical
characterization of pseudodifferential operators [Hor65, Definition 2.1] which we now recall:
P is a pseudodifferential operator of order m € R if P : C*°(M) — C°°(M) is continuous,
and there exists a sequence sp = 0 < s1 < ... of real numbers converging to +oo such that for
all f € C®(M), S € C*°(M) such that d.S # 0 on supp(f), there is an asymptotic expansion:

“+oo
eTRP(feR) ~ B ST Pi(f, S)h. (4.7)
j=0

By this, we mean that for every integer N > 0, for every compact set 'O K of real-valued
functions S € C°°(M) with d S # 0 on supp(f), for every 0 < h < 1, the following holds: the
error term

N-1
posvtm [ =i p ( fei%) N Py(f, Skt (4.8)
j=0
belongs to a bounded set in C*°(M) with bound independent of h and S € K. In particular,

P is classical if and only if in the sum (4.7) the s;’s take integer values.

10A set A € C*°(M) is bounded if there exists a sequence (Ak)kezs, such that for all f € A, || fllor ary < Ak

It is known that A is compact if and only if it is closed and bounded.
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Proof of Proposition /J.1. We first note that the formula (4.2) is an immediate consequence
of (4.1) and Lemma 3.4; henceforth we focus on (4.1). We divide the proof in two steps.

1. Principal symbol computation. For the moment, let us assume that the operator is
pseudodifferential and compute its principal symbol. By Lemma 4.4, we can replace Z by
Z. in the definition of the operator, that is, it suffices to compute the principal symbol of
Wml*PLIePRT":nT

Take a Lagrangian state fj := e’%f, where S € C°(M) is a real-valued, smooth phase
such that S(zo) = 0, d S(zg) = &, f € C(M, ®¢*T*M) and flzo) = f € ®¢* Ty M, and
further assume that d .S does not vanish on the support of f As Pg is a differential operator,
we have:

.mo S ~
Prmy,, fn = Pr <€Z%7T:nzf>
.3 S ~
= 0 (opy (o, () 3, F(0) + Oose ()
where Sg(7,v) :=d; S ody,) 7. Hence:

IapRﬂ;knz fh(x, U)

+e i
_ h—mRezS(W(Wt(l‘vv)))X(t)

x (orn (el 0), Sa(pu(w, ) mi, (01w, 0)) + Ocm () dt,
and thus:
PLIEPRT";LZ fh (ZE, 'U)

+e .
— / h_(mR+mL)eES(7T(4Pt(ZB,U)))X(t) <UPR ((pt(x7 'U), SH(QOt(‘Ta ’U)))

—&

x oy (2,0), S (2, 0)) T, F 1@, 0)) + Ocoo (B) ) dt,

where SH(E) (z,v) :=dg Sod (g Todw) ¢ (and S[(HIO) = Sy). This gives for m = mpr+mp —1
and any f' € @' Ty M:

(O, (00,0 F iy aa = i W™ (Ap fi)@0). )i ua
h—0

+e ; 4.9
= }llim h‘l/ / ezs(ﬂ(sot(ro,v)))x(t)ﬂ;«mf/(v) (4.9)
—0 SagM J—¢

— lim A / (PP, f) (20, 0) o P (0, 0) d Sag (0)
SugM

% |opa(p1(w0,v), Si(e(30,v))).0r, (@0, v), S (20,0)) T, Fli(0,v))
+Oceo(h)]dtd Sy, (v),

where d S, stands for the round measure on the sphere S, M. As we shall see, the term h~*
comes from the fact that we will perform a stationary phase over a two-dimensional space.
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We define the (real) phase ® : (—¢,¢) X Sy, M — R by

O(t,v) := S(m(pe(zo,v))). (4.10)

We recall (see §3.1) the diffeomorphism, singular at the poles, 820_2 x (0,7) 2 (u,p) —
v(u,p) = cos(p)ii(&o) + sin(p)u € Sy, M. Observe that for fixed u € 820_2, the phase
P, : (—€,e)x(0,7) = R defined by ®,(t, ) := ®(t,v(u, )) has a critical point at t = 0, = 7
and the determinant of the Hessian at this point is equal to —|d S(zo)|? = —|&|? (see the
proof of [GL21, Theorem 4.4] or [Lef19b, Theorem 2.5.1] for further details). Hence by the
stationary phase lemma [Zwo12, Theorem 3.16], for any u € 820_2, writing v = v(u, ¢):

Jim b~ / /_ F Ay (075 T (). (O (h)

+ 0 (1(w0,0), Saa(e(@0, v))) -0, (0,0, S (0,0)) 71, Flipe o, )
sin"2(p)dtd e

(4.11)

:é—Z\UPR((UcmU)aSH(%,U))-UPL((”:O’“)’SH(H;O’U))'W:”Q (), J'(0)-

Using that this limit is uniform in « and integrating over 820_2, inserting into (4.9), as well as
recalling the Jacobian formula (3.1), completes the proof.

2. Pseudodifferential nature. By the characterization (4.7) of ¥DOs via the asymptotic
expansion, the proof is very similar to the first point except that one needs to go to arbitrary
order in the expansions. For the sake of simplicity, we assume that m; = mg = 0 (this does
not change the nature of the proof). By Lemma 4.4, it suffices to show that mp, PrZ. Pr7) is
a pseudodifferential operator of order m. Consider an arbitrary f € C°°(M) and a compact
set K C C°(M) of (real) phases S such that dS # 0 on supp(f).

Since Pg is differential, we can write

. 5 S MR . . TS
Prmt (Feit) = homeet 5 YD PR i g S = b gy,
j=0

=:fn

where P (7T0f 559)(x,v) depends on the jet of order < j of f at z (and on the (mp — j)-th
jet of the phase S). Then:

i« (pois —mn [ imSente,
ZPu (£6F) () = W [ AT 0 )

—&

which gives:

P17, Prm; (fei%> (z,v)

+e
i) [ S 03 R () )
—e
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and thus:

0. PLZ. PR (fei%) (z)

(4.12)
mR+mL/ / ermS(e @),y thp<k X f, e X758) (z,v) dt d v,
M J—¢

We now split to cases according to the location of x and the value of dS(z) as follows.
Since K C C°°(M) is compact, and dS # 0 on supp(f), there is an open neighbourhood N
of supp(f) and § = 6(K) > 0 such that

dS(z)| > 6, V€ N.

We introduce ¢ := d.S(z) and first consider the case x € N. We will use the coordinates
(u,) € 82_2 x (0,7) on Sy;M as in the previous step, and write ®,(t,¢) for the phase
introduced in (4.10). It is possible to compute the derivatives of ®, at ¢t = 0 as follows:

0y ®u(0,0) = cos(p)|dS(z)],  0,Pu(0,¢) =0,
0,0:2u(0, ) = —sin(p)[dS(z)|, 02Lu(0,9) =0, FL,(0,5) = Hess(S) o,z (u, ),

where Hess(S) denotes the Hessian of S in the (¢, ¢) coordinates. Therefore, the only critical
point of ®, on {t = 0} is at (¢,¢) = (0, 5), and here the Hessian of ®, is non-degenerate.
It follows that (0, %) is an isolated critical point, and moreover using Taylor’s theorem that
there is a C' > 0 depending only on K such that the derivative d®,(t, ) vanishes only at
(0, %) for

(t.p) €S = {(t,¢) € (—e,e) x (0,m) | [t| + |5 — ¢l < C|dS(z)[*} .

Let ¢ € C§°(R) be a cut off function such that ¢(t) =1 for [t| < 8 := min(£, T, §|dS(z)[?)
and ¥ (t) = 0 for |t| > 203, such that it is bounded uniformly in C°°(R) depending on S € K;
here it is important to note that by assumption |dS(z)| > d(K) > 0. We also note that this
construction of 1 can be made to depend smoothly on x € U for an open set U C N of points
close to z; we note that ¢ in this case encodes the distance to the equator ker(dS(z)) NS, M.
For simplicity, we drop x from the notation of .

Using the formula (3.1) and writing v = v(u, ¢) we obtain:

70« PrZ: PR, (er%) (7) = B~ (mr+mr)

/Sn s / TS (OOl — 5) + (- wlie ~ 5)

x th (¢ S X5 S) (2, 0) sin 2 (p) dtd o d Se(u)

_ 2
_ p—(mrtmr) / 2 </ / Fm5S (e (w0 (u m)))ZFi(x,u, gp,t)dtdcp) d Se(u),
Sn

1=1
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where the terms Fj(z,u, ¢, t) for i = 1,2 represent the terms appearing in the second line (in
the order of appearance). We study each term separately. For F; (which may be also seen as
a smooth function on (—¢,¢e) x SU), as in (4.11), for x € U and £ = dS(z ) and u € S"_2 we
apply the stationary phase lemma [Zwo12, Theorem 3.16] at t = 0, ¢ = %, which glves

N—
p(matme—1) / ¢ <Z ht Agg(2, u, Dy, Do) Fy (wu go) + hNR;V(x,u)> d Se(u)

n—2
3 =0

h
N—1 -
X ( ht /n2 Agp(x,u, Dy, Dy) Fy <x,u, 5,0) d Se(u) + hNRN(a;)) .
(4.13)

Here, for any ¢ € N, Ag(x,u, Dy, D;) is a differential operator of degree < 2¢ depending
smoothly on z € U and u and Ry satisfies the bound
RN [lco(sunkerasy < CnlIFillcan+a((—ec)xs0)s
where SU denotes the unit tangent bundle of U (where F} is defined). The order 2N + 3 =
2N + 2+ 1 comes from the remainder term in [Zwol2, Theorem 3.16]. After integration in
the variable u, i.e. setting Ry(z) = fsg” R\ (z,u)d S¢(u), this gives:
[BNlcowy < OnIF1lean+s(suys (4.14)

and one can control higher order derivatives of Ry in the same fashion (up to increasing the
order of the norm on the right-hand side of (4.14)).
Next, observe that by definition:

Fl(xaua Q07t)

= sin" % () x ()1 (

wm

mpg ) _
ZP<k XN PP (s foms SN e XS | (2, 0(u, 0))hE,
j=0

which implies that the C¥-norms of F} are controlled by the C* -norms of f and S (for some
k' > k), that is, the remainder Ry is indeed negligible in the sense of (4.8). Also note
that Agy(x,u, Dy, D) Fi(z,u, 5,0) depends only on a finite number K (£) of derivatives of the
function f and the phase S at z. Hence (4.13) shows that the term corresponding to F} has
the correct asymptotic expansion.

For the term Fj in (4.13), it is more convenient to go one step back and to write it as

p—(mr+me) / / - S (pe (,0)) x(t) (1= y(®)v(3 — ) F(t,z,v)dtdo, (4.15)

where the coordinate ¢ is encodes the distance to ker(dS(x)) NS, M (as explained above).
Now, assume that the phase ® (introduced in (4.10)) has a critical point (t,v) € R x S, M,
that is,

dS(y(#)) (dm(pe(w,v)) X (@i (2, 0))) =0,  dS(y(t))(dm(er(x,v))depr(z,v)V) =0,
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where v(t) = 7(pi(x,v)), for any vertical vector field V' € V(x,v). Then either ¢t = 0, in
which case we have v € S?—z and the cut off in (4.15) is zero, or t # 0, so by the absence
of conjugate points (see (2.8)), we conclude that dS(y(t)) = 0 and therefore F(t',z,v) = 0
for [t' — t| uniformly small independent of S € K (using that Pp g are differential operators
and |dS| > § on N). It follows, upon applying the (non-)stationary phase lemma similarly to
the argument in the previous paragraph, that the expression in (4.15) equals O¢ge (h*°) for
x € U, with the seminorms uniformly bounded as S € K. This completes the discussion for
the case x € N and show the required asymptotic expansion.

Finally, it remains to deal with the case = ¢ N; for that we go back to (4.12). Then in
particular f = 0 near x (with the neighbourhood independent of S € K') and by the analysis of
the phase function ® from the previous step (note that in this case the integrand vanishes for
|t| small enough uniformly in S € K) we conclude similarly using the (non-)stationary phase
lemma that near = the expression (4.12) contributes to Ogee (h*°) with seminorms uniformly
bounded with respect to S € K. This completes the proof. O

Remark 4.5. Note that in the above proof the fact that Pr, g are differential operators gets
used in the last two paragraphs through their locality. In the more general case of arbitrary
pseudodifferential operators Pr g, this has to be replaced by pseudolocality and a similar
proof applies.

5. GENERIC INJECTIVITY WITH RESPECT TO THE CONNECTION

We now prove Theorem 1.5 in this section. This case is much less technical than the metric
case but still provides a good insight on the argument. In what follows, differentiation will
be mostly carried out without recalling that the objects depend smoothly on the parameter
and we refer the reader to §2.4, Lemma 2.3 for further details.

5.1. Preliminary remarks. Consider an Anosov Riemannian manifold, denoted by (M, g),
with a Hermitian vector bundle & — M, equipped with a unitary connection V€. Consider
a linear perturbation V¢ + 7T" for some skew-Hermitian I' € C°°(M,T* M ® Endg(£)) and
7 € R, and the operator X, := 7*(V¢ 4 7I')x, where we recall that 7 : SM — M is
the footpoint projection. We set X := X. For the sake of simplicity, let us assume that
ker X|coo(sar,e) = {0}'", which is generically true by [CL21]. We will consider the operator

. T
Pr = Tier D AolLy, AoTier D

Hpe following arguments can be generalized to the case where ker X consists of stable elements of degree
0 (equivalently, we will say that ker X is stably non-empty): by stable, we mean that any perturbation of the
operator will still have the same resonant space at 0 and that this space only contains elements of degree 0.
This is the case for the operator X acting on functions as it always has C-1 (the constant sections) as resonant
space at z = 0; this is also the case for (W*VE“d(g))X as it always contains C - 1¢ and is generically equal to
C- 1g by [CL21] (where VE4(®) is the induced connection on End(€)). Instead of taking the resolvent at 0,
one needs to work with the holomorphic part of the resolvent. This is done in the metric case, see §6. For the
sake of simplicity, we assume in this section that ker X is trivial.
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where II], = m,.(RT +R7 )7, Ag is an elliptic, formally self-adjoint, positive, pseudodiffer-
ential operator with diagonal principal symbol of order k£ > 1/2 that induces an isomorphism
on Sobolev spaces H*® for any s and D, denotes the twisted (with respect to V€ 4 7T") sym-
metric derivative on tensors, as in §2.2.3. Here R} := — R’ (z = 0) is the (opposite of)
resolvent at zero of X, as defined in §2.3.3. It is important to note that

T __

Tker D* Hm

H;—nﬂ'kor Dx = 117,

m

and that by continuity we have:

Lemma 5.1. For any given s € R, for |7| small enough, the map T — ||Ter D ||Hs—ms is
continuous. Moreover, for all s € R, there exists € = e(s) > 0 and C = C(s) > 0 such that
for |T] <e:

Vfe HH(M,@FT*M @ E), ||mier D2 AoTker = fl| s > C|ier D= f || o5 (5.1)

Hence for any s € R, for all |T| < €, where ¢ = £(s) > 0 is small enough, the following maps
are isomorphisms:

Tker D DoTker Dy © ker DgnN HF 5 ker DInNH?,
Tker Dg Do Tker D @ ker Din H*F 5 ker DgnH®.
Proof. The first claim follows from the formula (see (2.10)):
Tker Dz = 1 — Do (DfD;) "' D}, (5.2)

once we show that 7 + |[(D:D;)" | gs_pst2 is well-defined and continuous for |7| small
enough. Firstly, note that if Dyf = 0, then X7} f = 0 by (2.15) and this implies f = 0 by
our assumptions, so the map DjDy is invertible on Sobolev spaces.'? Using the identity

D:D, = DiDy [ 1 — (DyDy) Y (DyDy — DXD;) |,
—_——
TS, =

and the fact that ||S;||gs+2_gs+1 = O(1) as 7 — 0 (which follows upon applying the formula
(2.14) and its adjoint), we conclude by inverting this identity that (D} D,)~! is an isomorphism
H?® — H*2 for |7| small enough, and moreover by using Neumann series that
* - * — * - * — -1 * -
(D7D-) = (D5 Do) b= 7(DyDo) 'S, (]1 — 7(Dy Do) 157) (DgDo) Y= Opgapgrs(7).

From here we deduce using (5.2)

Ter D — Tker D3 = (Do — D7)(Dg Do)~ Do + D- (D5 Do) ™' = (DxD;)~") D (5.3)
+ DT(D:-DT)_l(DS — D7) = Opspgs+1(7),

as 7 — 0, where the constant depends on s; the claim follows.
Next, since A is an isomorphism on Sobolev spaces H®, we have that || Ao f|lzs > Cs|| fl grs++
for some Cy > 0. Using the identity

Tker D A0Tker D = [Tker Dx — Tker D > 20| Tker D= + [Tker D A0 Tker D + AoTker D,

121f ker X is not empty but stably non-empty, this argument also works.
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as well as that [Tier Dz — Tker Dxs Do) = Opstr-1,:(1) as 7 — 0 (which follows from (5.3)
with possibly a different constant, by replacing s there with s — 1 and s + k£ — 1), we obtain
the estimate

|1 Tker Dx f || st < Cs||AoTyer D2 f 1 15 (5.4)

< Cl(HﬂkerDiAOTrkerDifHHs + ||7TkerD.’;fHHS+k*1) .
for some constant C' = C’(s) > 0 independent of 7. To show (5.1), we argue by contradiction
and assume there is a sequence f, € ker Dy with || fu | gs+x = 1 and |7y, p_ Ao fallms — 0.
We assume 7, — 0 (but the same argument works if 7,, — 7 for some 7 # 0). By compactness,
we may assume f,, converges in H*T#~1. In fact, by (5.4) we have:

I fr = Finllgser < ||7TkerDin (fa = fo)llgs+r + | (Tker D2, — Tker D2, ) fin Il s

™ m
< C/Hﬂ-kerD;fnA(]ﬂ-keer;nmeHs + C,Hﬂ'keer;n (fn - fm)”Herk*l
+o(1)
< O'mker D2, Ao fmllms + C'|[(Tker Dz, — Ther Dz, )0 fin | 115

+ C'||Tker Dz, Do(Tker Dz, — Ther Dz, ) fmllEs +0(1) = o(1).

as m,n — oo. In the second line, we used that e, D, — TkerDz = Oprs+k_ rs+k (1) (which
follows from (5.3) with possibly a different constant, by replacilglg s there with s + k) and
[ fmllgrs+x =1, (5.4), and the fact that |7, p Aofnllrs = o(1). In the last line, we also
used the assumption that f, converges in H*T#~1. Therefore, (f,)nen is a Cauchy sequence
in H**% and it converges to some f € H*™ with || f||gs+x = 1, D§f = 0 and myer ps Ao f = 0.
Using that [mier Dz, Aolf = —Aof and the fact that [mer pg, Ao] € Uk=1 implies by elliptic
regularity that f € H5T++1 Bootstrapping we get f € C* and so

0 = (Tker Dz Do f, fr2 = (Dof, L2,

which means that f = 0 as Ay was chosen to be positive. This contradicts that || f||gsrx =1
and proves (5.1).

Finally, by the first point we have ||Tyer Dz — Tker Dz || s ms = 05(1) as 7 — 0, so by (5.1)
for small |7| depending on s we get

||7Tkeer;A07TkerD*f||H5 > ||7TkerD*A07TkerD*fHHS
0 0 0

- ||(7Tker Dy — 7"'kerD_’;)AOﬂ-ker DSfHHS (5‘5)

- C(s)
- 2

H7TkerD3fHHS+k-

Similarly, using (5.1) for |7| small enough we obtain:
C(s)
2

Estimates (5.5) and (5.6) show that the operators mye, Dy A0Tker Dy Ther D DoTker Dy are in-
jective and have a closed range for |7| small enough, and then the surjectivity follows since

| Tker Dz AoTker D f1| s > [ 7ker D f || rs+5- (5.6)

their L2-adjoints are injective. This completes the proof. O
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Next, using Proposition 4.1, the fact that Ag acts diagonally to principal order and the
equation (2.11), we obtain that for £ € Tx>M \ {0}:
27

U(PT)(xaf) = ’6‘

Note that here we simply use Proposition 4.1 to compute the symbol of IL,,, and then the
pseudodifferential nature and the symbol of P, follow from the usual pseudodifferential cal-

Cimina10 (80)* (@, ) Mher sy Tma Ty Ther sy © L,

culus. Therefore, the symbol of P, at (x,§) is invertible on kem£ﬁ and by standard microlocal
analysis for each 7 there exist pseudodifferential operators ), and R, of respective orders
1 — 2k and —oo (cf. [Lefl9b, Lemma 2.5.3]) , such that

QTPT = Tker D} + R

Using that 117, > 0 we get P > 0 and it follows that (P, +1)~!: L? Nker D§ — L% Nker D}
is compact and thus the spectrum of P, is well-defined. It is discrete, non-negative and
accumulates at infinity, and the eigenfunctions of P, are smooth. Moreover, by Lemma 5.1
and again using that II7, > 0, for small |7| we have that

. ~ T
Tker D* A0Tker D © Ker Pr|ceonker px — ker II7 | oo nker D*
T 0 0 0

is an isomorphism. Therefore we see that for each 7, 0 is an eigenvalue of II7, if and only if
0 is an eigenvalue of P-.

5.2. Variations of the ground state. We assume that ker Py|ceenker D is d-dimensional,
for some d > 1, and spanned by uy, ..., uq € C®(M,RET*M®E)Nker D with (u;, u;) 2 = ;.
Let II, be the L?-orthogonal spectral projector

1 _

M= o 'y’(z — Pz, (5.7)

where 7/ is a small circle centred around 0 and not containing any other eigenvalue of Py in

its interior. In particular, we have Il,—_g = Ele(o, ui)r2u; and by ellipticity of Py on ker D
we have the meromorphic expansion close to zero, valid on S := L? N ker Dyg

(s P! = % _ P4 2H, 4 O(2), (5.8)

for some maps P, L H, : S — S, where we recall our notational conventions were explained
in §§2.5. These maps satisfy the relations (cf. (2.18)):

PPyl =Py'Py=1d Ty, PyH,=—Fy', TyP;! = Py 1, =0. (5.9)
We introduce \; as the sum of the eigenvalues of P, inside 7'
Ar = Tr(PI1;). (5.10)

Note that both 7 + I, € £(L?) and 7 + A\, € C are smooth by standard elliptic theory
(see [CL21, Section 4]). Observe that A\;—g = 0 and as P, > 0, we have A\; > 0. Our goal
is to produce a small perturbation V¢ 4 7T (where T is skew-Hermitian) such that A, > 0
for 7 # 0. This will say that at least one of the eigenvalues was ejected from 0 and that
ker P, is at most (d — 1)-dimensional (for 7 # 0). Iterating the process, we will then obtain
a perturbation of V€ with injective (twisted) X-ray transform.
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We make the easy observation that the first variation is zero, as A,—g = 0 is a local minimum
of the smooth function 7+ A;:
Ar—o =0. (5.11)
Next, we note that since Pru; = 0 and II7, > 0, we have II7, Agu; = 0. Therefore, by Lemma
2.2, there exists v; € C*°(SM, E) such that

W;Aoui = XVZ', H+V2‘ =0. (512)
By the mapping properties of X (see (2.16)), we have that if m is even then v; may be chosen

odd and vice versa, if m is odd then v; may be chosen even.

5.2.1. Second order variations. We now compute Ar—o. For simplicity, when clear from the
context we will drop the 7 = 0 subscript and simply write A and A. We start with an abstract
lemma, valid in a more general setting (this will also get used in the metric case, see Lemma
6.9 below):

Lemma 5.2. The following variational formula holds:

)\7-:0 = TI‘(P()H()) —2 TI'(H()P()PO_1PQHQ).

Proof. We compute:

. 1 . . .
HO = 2—7” % (2 — Po)_lpo(z — P())_le = — (HQPQP()_l + P0_1POHO) )
,\//
.. 1 . .
Il =2 x —z (z — PO)_lp(](Z — P(])_lp(](z - P(])_ldz
T ~!
R
+ - (z Po) Po(z Po) dZ.
271 Joy

.
We expand the second formula using (5.8) to get:

m:4m%m%m+m%gﬁwﬁ+m%m%m+gﬁmﬁmﬁ
P PPy Bl + Hy Pyl Pyl | — (To PPy + Py ' Bollo ) (5.13)
Therefore, we compute using (5.9):
&mpﬂmyﬂ@%ohg%4+3#%mQ—ﬂﬁﬂﬂﬁum—myﬂwgmh (5.14)

which implies that, using the cyclicity of the trace (here and below, we use the fact that
Tr(AB) = Tr(BA) for two bounded operators A, B on a Hilbert space H, as soon as one of
them has finite rank, see [DZ19, Appendix B.4]) and (5.9):

Tr (PO]jO) =2Tr (P()H()P()PO_1> =2Tr (H()PQPO_lPQH()) .
Finally, we obtain using once more the cyclicity of the trace:

5\ =Tr (P()H() + 2P()ﬂ() + Poﬁo) =Tr (pOHO) —2Tr <H0P0P0_1P0H0> .
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Next, we compute Py, Py and apply Lemma 5.2. Before doing that, note that by Lemma
5.1, on ker D we have

Pyt = (Mier s AoTker ;)™ T (Mier g AoTker 7)™ (5.15)

where IT.! stands for the holomorphic part of the resolvent at zero as defined in §2.5 that is,
if (I, —2)~' = @ + Rm(z), where I, o is the orthogonal projection onto ker Il [ker pg
zero and R,,(z) holomorphic close to z = 0 then II..! := R,,(0).

Lemma 5.3. We have:
d
I e(miT.v;), mTwv
Z:: v 1 4 1 Z> (5.16)
— (I i Zye (n0 ;) T I (mITVi)) o
Proof. We start with the first term in (5.16). For the variation of the resolvent, recalling that
(similarly to the metric case in (2.18))

XR_. =R X=-1, XR,=R,X=1, R:=R_, (5.17)

as z = 0 is not a resonance by assumption, and the notation of §2.3.3 (v is a small loop
around zero), we have:

.. 1 1
Ry =0%,0— ]4 —(z+ X))z = 9 —oX; ! = 2R M TR, 7T Ry,
271 v Z

. L 1 /1 _ (5.18)
2 - 1
Ro=(Ry)" =07|r—0— 7{ —(2 = X;)7ldz

= 02|,—o(-X,;) ' =2R_7TR_mTR_.

We remark that here we strongly use the facts that X, is linear in 7 (so 92X, = 0) and
that X, is invertible with inverse denoted by X ! (as we shall see below in Lemma 6.9 this
signficantly complicates in the case of metrics and more terms appear). Therefore

Py = 27jer Dz Ao (R T TRy M TRy +R_mTR_7mTR_) 7w, AgTker D;

and we obtain, using that Xv; = 7} Agu; (see (5.12)):

Mg

Tr(PIlp) =2 {((RymTRym TR +R_mTR_7mTR_)Xv;, Xv;)

@
Il
—

(5.19)

||
.M&

@
Il
—_

<IV5(7T1F vi), il V2>L27

using (5.17) in the second line, as well as that I" is skew-Hermitian.
For the second term of (5.16), we first observe that similarly to (5.18)
Ry =0;|—oX-'=—-Ry TR, R_=0;|,—0(-X,) '=R_7nTR_.
Therefore it holds that
Py = Mer g Ao (— Ry miT Ry + R_ T RO) ), AgTrier 1 (5.20)
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and we finally obtain that, using (Py)* = Py:

Tr (Mo PPy FoTly

I
.M&

@
Il
—_

<P0_1P0Ui, lt.’oui>L2

(5.21)

I
.M&

@
Il
—

<P0_17Tker Dg A()IVS (ﬂ'TF.Vi) , Tker D} Aozvg (7TTF.V0>L2

I
.M&

Il
—

(I s Tge (7 Tv3), TnaZge (w1 0vi)) 1o -

(2
Here in the second line we used (5.20) and (5.12); in the final line we used (5.15). This proves
the announced result. O

5.2.2. Properties of the operators involved in the second variation. First of all we note that by
Proposition 4.1, II,,, and hence IT, 'y, Dy, are pseudodifferential operators of orders —1 and 1,
respectively. More precisely, recall IT;! was defined just below (5.15) as the holomorphic part
of (I, — z)~! at zero and is thus a pseudodifferential operator; e, Dy isa pseudodifferential
operator using the formula analogous to (2.10). It follows that, for (x,&) € T*M \ 0 (cf.
[Lef19b, Lemma 2.5.3)):

2
—1
O1l,, ($7 5) = Cn—1+2mmﬂ-ker1§u 7rm*77:n,7rkerz§u & ]lc‘fxy

€l

O-H;Llwker D} (‘T7 6) = Cn—l+2m%(ﬂ-kcrz

(5.22)
¢t Wm*ﬂrnﬂkerzgu )_lﬂkerzgﬁ ® ]lé'x-
We now fix v e C®°(SM,n* £) and introduce the multiplication map

M, : C*(SM,7*End(€)) - C*(SM,7* &), M,A:= Awv.

Its adjoint is given by M} w = (e, v)e ® w, for any w € C>°(SM,7* E). Next, we show that
the terms appearing in the formula for A in Lemma 5.3 have pseudodifferential nature:

Lemma 5.4. For allv € C®(SM,n* &), the operator
Qv := T Tge My} € U1 (M, T*M @ End(&) — @UT*M @ £) (5.23)
is pseudodifferential of order —1 with principal symbol for (x,&) € T*M \ {0}
g, (x,§) € Hom(Ty M ® End(&,), ®GTiM ® &),

given by, for B € Ty M ® End(E,):

0Qy ($7£)B = 077—11+2m‘?77ker25u 71-m>»<E%n <7TT(7Tkerz§u B)-V($7 .)> .

Proof. This follows directly from Proposition 4.1. U

2
!
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Lemma 5.5. For any v € C*°(SM,n* ), the operator
Ly := m M Tge Myni € UH (M, T*M @ End(§) — T*M @ End(£)) (5.24)
is pseudodifferential of order —1 with principal symbol for (x,§) € T*M \ {0}
or.(z,§) € End(Ty M ® End(&,))
given by:

— 27 * * *
O-Lv(xaf) = Cn_11+2mm7rkor2€ﬁ7rl*Mv (Egn) EgnMvﬂ'lﬂ'korzgﬁ-

Proof. Once more, this follows from Proposition 4.1 and the formula, for B € T M @ End(€):

27
N @ Sg* <

1 2m
n—l+2mm

(op,(2,£)B, B) s T B(u).v(z,u), 7y B(u).v(z,u)) dSe(u)

<E£” (m] B.v), E?(WIB.V»LZ (71 7% £4)

— 2m * * *
- Cn_11+2mm<7r1*Mv(Eg”) E'M,7iB,B),,.
In the second line we used the Jacobian formula (3.1). O

5.3. Assuming the second variation is zero. If A\ = 0 for all linear variations V¢ + 7T as
in §5.2, where I' is skew-Hermitian, by Lemma 5.3 and using the notation of (5.23), (5.24),
this implies:

d d

VL € C®(M,T*M @ Endg(€)), Y (Ly,T, D)2 = Y (I,'Qu.T, Qu,T) 2. (5.25)

i=1 i=1
The idea is to apply the equality (5.25) (which is of analytic nature) to Gaussian states in
order to derive an algebraic equality. Let ep(zo,&) be a Gaussian state centered at (zg,&y) €
T*M \ {0}, that is, a function which has the form in some local coordinates around z"*:

1 |z —g|?

en(wo,&o)(z) = (Wh)%eiﬁofw—mo)— . (5.26)

We will use the following standard technical lemma:s:

Lemma 5.6. Let P € V™ (M, E — F) be a pseudodifferential operator of order m € R acting
on two Hermitian vector bundles E,F — M. Let e € C*°(M,E) and f € C*°(M,F). Then:

lim (WP (Ren (0, €0)).€ ) Rlen(zo,0))-f )

h—0 L2(M,F)

- %<UP(ZEO,£O)€($O)7f($0)>on + %<UP(51707 —&o)e(wo), f (o)) p, -

13A1ternatively, a Gaussian state is an h-dependent function whose semiclassical defect measure is a point
(z0,&) € T*M, see [Zwol2].
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We cannot directly apply (5.25) to ep(xqg,&p).I' where I' € C°°(M, T* M ®@Endg,(£)) because
en(zo,&o).I' is not skew-Hermitian. However, applying (5.25) to R(ep(zo,&p)).I" and using
Lemma 5.6, as well as the principal symbol formulas in (5.22), Lemmas 5.4 and 5.5 (and that
in particular these symbols are invariant under the antipodal map (z,&) — (z, —¢)), taking
h — 0 we obtain:

d
Z <Egg(7TTFVz)a Egg(ﬂ-fr'vi»lg(gn—lﬂr* Exp)
i=1

U

B (5.27)
! E™(miT

7T chrZﬁ 7Tkorzu7rm*7r 7Tkorzgﬁ] chrzgﬁ Tmx 50(771 'Vi)7
=1 0

Eg)l (ﬂ'TPVZ ) > L2 (Snfl J* “:JU()) .

Since (7%, Tker » ) = Ter s Tms in the L? sense, we have the orthogonal decomposition:
0 0
L2(Sn_17 * gxo) = F:n( ®rsn ker Zgg ® 8960 ) @J- ker (TrkC”Eﬁ Wm*’LZ(gn—l)) . (528)
0
In particular, if we define w; := E* ((7T.v;)|gn—2), then we can write
o 1 SEO

where T; € ®{ ker 2t ® Exo and h; € ker(myey et Fm*‘Lz(gn—l)). We also define
0

% * —1 .
Pm = T Tkera g [ﬂ'korz g 'm0, Tker o ﬁ] Tkert 4 Tmx -
€0 ) £o €0
LAS™ L n*&,,) = L2(SV 1t &)
) xo ) xo )

and observe that P2 = P,,, P} = P,,, so P,, is the orthogonal projection onto the first factor
of (5.28). In particular 7}, T; = P, w; and (5.27) reads:

d d
Z ” W H%Z(Snflﬂr* gﬂ”o) = Z HPm W; ”2L2(S”*1,7r* 5’”0)' (530)

i=1
As a consequence, in order to obtain a contradiction in (5.30), it is sufficient to exhibit a T’
such that hy # 0 (where hy is given in (5.29)). Since h; € ker(wkerl?Eﬁ Tms) and ker(7mp,,) C
ker(mger et Tms ), 1t is sufficient to show that the orthogonal projection of wi onto ker(m,,|2)
is not zero, that is, it is sufficient to show that wy = E(7{I'.v1) has degree > m + 1

Lemma 5.7. There exists o € M, & € Ty M \ {0} and I € T; M ® Endg(Ez,) such that
deg(Eg (niT.v1)) = m + 1.

Proof. For that, we will need the following claim:
V1<i<d, wehave deg(v;)>m+1.

Indeed, assuming the contrary, since v; has opposite parity as m this would force deg(v;) <
m — 1, that is, v; = 7, _,V; for some v; € C®(M, ®?_1T*M). Recalling 7} Agu; = Xv;
by (5.12) and using the relation (2.12), this implies Agu; = Dgv,;. Hence WkengAOUi =0,
implying u; = 0 which is a contradiction.
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Now we select zg according to vy, that is, we take xy such that at this point, the degree of v
in the fibre over x( is > m+1. This also implies that 77T".v; has degree > m+1 (actually, the
degree is at least m + 2 but we do not need this) for some choice of I' € T;; M ®@ Endg(E4,)
by Lemma 3.8 applied with & = 1. Then, by Lemma 3.1, we know that there exists a
§o € Ty M\ {0} such that deg(ﬂff.vl\gggz) > m + 1 and then it suffices to apply the

extension Lemma 3.5 to get that

deg <E§g(ﬁf.v1]snz)> >m+ 1,
o
concluding the proof when n > 3. O
This allows to complete the proof of Theorem 1.5:

Proof of Theorem 1.5. Define S, to be the set of smooth unitary connections with s-injective
twisted generalized X-ray transform Hzg. It follows from Lemma 2.3 that this set is open
with respect to the C*o-topology (for some ky > 1 large enough) namely, for all V& € S,,,
there exists ¢ > 0 such that for all smooth V¢ with ||V¢€ — V’EHCkO <&, V¥ eSn,.

In order to show density, let £ > 0 and V¢ be a smooth unitary connection not in S,,. By
[CL21] we know that the set of connections for which ker(7*V¢) x|ce = {0} is dense, so we
may assume that V¢ satisfies this property. By the perturbative argument above (Lemmas
5.3, 5.7 and (5.30)), there exists I' € C°(M,T*M ® Endg(£)) such that for all 7 > 0 small
enough, V¢ + 7T satisfies dim (ker anfJ”F) < dim(ker anf); as usual, all the kernels here and
in what follows are assumed to be restricted to the space of divergence free tensors. Take

7 > 0 small enough such that T’y := 7" has C*° norm strictly smaller than 8 := m.

Iterating finitely many times this construction (N times where N < dim(ker Hzg)), we can
find I'y,...,I'y € C®°(M, T*M ® Endg(€)), each one with C*0 norm less than f3, such that

ker HXS+F1+”'+F’V = {0},

that is V€ + Ty + ... + 'y € S,,, and also
H(Vg +0 4+ ... +TN) — V“:HCkO <eg,
which proves density and concludes the proof of Theorem 1.5. O

Remark 5.8. As mentioned in the introduction, Lemma 5.3 and (5.25) show that the sec-
ond order derivative d2 \(I',T") is of the form (BT',T");2, where B is some pseudodifferential
operator (and the same will occur in the metric case). However, this operator is a priori not
elliptic. More precisely, the proof only shows that there exists a point zy € M (where v; has
degree m + 1) where the principal symbol of B is non-zero. Had we been able to show the
ellipticity of B, we would have obtained that locally the space of connections (up to gauge)
with non-injective X-ray transform is finite-dimensional (and its tangent space would have
been equal to the kernel of B).

Remark 5.9. Our proof does not give generic injectivity when n = 2. More precisely, Lemma
5.7 does not work in that case, since Egg(ﬂff.vl) always has degree equal to m. Therefore,
the equality (5.30) always holds and our proof shows that the pseudodifferential operator
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Ly, — i‘,iH,_levi appearing in (5.25) is in fact of order —2, as opposed to the case n > 3
where we show that this operator is strictly of order —1. However, we believe that in the
former case the second variation should also be non-zero, and that this should be provable
using the method in §4 directly.

To conclude this paragraph, we point out that Theorem 1.5 also allows to answer positively
to the tensor tomography problem for generic connections:

Corollary 5.10 (of Theorem 1.5). There exists kg > 1 such that the following holds. Let
(M,g) be a smooth Anosov manifold of dimension > 3 and let mg : € — M be a smooth
Hermitian vector bundle. There exists a residual set S' C Ag (for the C*-topology) such that
if V€ € 8, the following holds: let f,u € C(SM,7* £) such that Xu = f and deg(f) < oo;
then deg(u) < max(deg(f) —1,0).

We let U be the open dense set of unitary connections on V¢ such that X has no resonances
at z = 0 (density follows from [CL21]). The set S’ in Corollary 5.10 is the intersection of the
set S in Theorem 1.5 with U.

Proof. Let V€ € &' :=UNS. Consider the transport equation Xu = f, where deg(f) < oo
and both u and f are smooth. We aim to show that deg(u) < max(deg(f) — 1,0) and u =0
if deg(f) = 0.

Up to decomposing v and f into odd and even parts, we can already assume that f is even
and u is odd for instance. Let m := deg(f). Then f = ﬁnf and by applying m,,,Z to the
transport equation, we obtain

0V f = mpInt f = mpaIXu = 0.
By s-injectivity of anf, we get that f =0ifm =0, or f = Dg¢p for some twisted tensor
p € C®(M, ®?_1T*M ® &) if m > 1. In the former case, we get Xu = 0 and thus u = 0 as
X has no resonance at z = 0. In the latter case, we get X(u— 7}, _;p) =0 (using (2.15)) and

thus uw = 7, _;p has degree < m — 1. This concludes the proof. O

5.4. Endomorphism case. We conclude this section with a discussion of the endomorphism
case. More precisely, if £ — M is a Hermitian vector bundle, we let End(£) — M be the
vector bundle of endomorphisms. If V¢ is a unitary connection on &, it induces a canonical
connection VF*(€) on End(£) defined so that it satisfies the Leibniz rule:

[vEnd(g)u] f p— V‘g(u(f)) — U(ng)7

for all f € C®°(M,E), u € C*°(M,End(£)). Similarly to §2.3.3, one can define a twisted

X-ray transform 1E2E) with values in the endomorphism bundle End(£). More precisely,
the operator W*Vind(g) always contains C- 1¢ in its kernel and its kernel is generically reduced

to C.1¢ (see [CL21], such a connection is also said to be opaque). We then set:
Hand((‘:) = 7"-mnk(]:_{'—l- +R_ + H(C.]lg)ﬂ-;w

where Ilc 1, denotes the L?-orthogonal projection onto C.1g and R is (the opposite of) the

holomorphic part of the resolvents of W*Vind(g) at z = 0.
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For m = 1, the solenoidal injectivity of the operator H?nd(s) appears to be crucial when
studying the holonomy inverse problem on Anosov manifolds, namely: to what extent does the
trace of the holonomy of a connection along closed geodesics determine the connection? We
proved in a companion paper [CL22] that this problem is locally injective near a connection
VEd(€) such that its induced operator H}fnd(‘g) is s-injective. Similarly to Theorem 1.5, this

turns out to be a generic property:

Theorem 5.11. There exists ko > 1 such that the following holds. Let (M,g) be a smooth
Anosov manifold of dimension n > 3, g : € — M be a smooth Hermitian vector bundle
and let m € Z>o. Moreover, assume that the X-ray transform I, with respect to (M, g)
is s-injective. Then, there exists an open and dense set S,, C Ag (for the C*o-topology)
of unitary connections with s-injective twisted generalized X-ray transform HXEM(S) on the
endomorphism bundle.

Note that the main difference with Theorem 1.5 is that we need to assume that I,, is
s-injective; this is known for m = 0,1 on all Anosov manifolds [DS03] and this is a generic
condition with respect to the metric by our Theorem 1.1.

Proof. We just point out the main differences with the proof of Theorem 1.5. If V¢ is a fixed
unitary connection and V& + T (for T € C®(M,T*M ® Endg(£))) is a perturbation, the
induced connection on the endomorphism bundle is VE2d(E) 4 [[", o]. Then, in the computations
of §5.2, each time that a term 7{I".v; appears, it has to be replaced by [7T", v;] and the v;’s are
now elements of C*°(SM, m*End(£)), where v; satisfy a version of (5.12) for X := 7*VEnd,

Now, each v; can be (uniquely) decomposed as v; = f;.1g + vil, where f; € C*°(SM) and
v € C°°(SM,7*End(€)) is a (pointwise) trace-free endomorphism-valued section. One still
has that Xv; is of degree m and v; is of degree > m+ 1. In fact, we claim that v;- is of degree
> m + 1. Indeed, assume that this is not the case, that is deg(vﬁ) < m; then f; has to be of
degree > m + 1 and

Xv; = (X f;).1g + Xvi

is of degree m. As (Xf;).1¢ and Xv; are pointwise orthogonal as elements of 7*End(€)
(since Xv; is trace-free), this forces each of them to be of degree < m and thus X f; is of
degree < m, and deg(f;) > m + 1. But then the assumption that I, is s-injective rules out
this possibility.

Lemma 5.7 is then modified in the obvious way: one chooses a point xg such that deg(vi-) >
m + 1 and it suffices to find a I' € T;, M ® Endg(£4,) such that

[T, vi] = [T, vy ]

has degree > m + 1. For that, we choose an orthonormal basis (ey, ..., ;) of £, and write in
that basis VZ-L = (mje)1<je<r- By assumption, there is an element mj, with degree > m + 1.
Without loss of generality, we can assume it is in the first column ¢ = 1. If it is obtained for
some jo # 1, then taking a real-valued o € Qq such that c.mj,; has degree > m+ 1 (which is
possible by Lemma 3.7), and setting I' := ia x e; ® e}, we get easily that [T, vi] has degree
>m+ 1.
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If it is obtained for jo = 1, then we write

L (m b7
()

where my; € C°(SM) has degree > m + 1, b,c are vectors of length » — 1 and d €
C>®(Sy, M, End(C"1)). Note that Tr(vi) = 0 = mq; + Tr(d). Moreover, writing d =
(mje)a<je<r, there is an element my,;, on the diagonal of d such that, if f>,,41 denotes the
projection of a function f onto Fourier modes of degree > m + 1, one has (mjyj,)>m+1 #
(m11)>ms1 (indeed, if not, this would contradict Tr(v;-) = 0). Without loss of generality, we
can assume that jo = 2. Then, taking

-
=5 %),
—v 0
where 7 is a vector of length 7 — 1 and v = (0, ...,0) and a € € is real-valued, we obtain:

[miT, v = (* v'd—muat
R 2

=\ * ) ) ’YTd - mll-’YT = ((mag — ma1).o, %, ... %) .

By assumption, moo —mq1 has degree > m+1 and it thus suffices to choose a real a € 1 such
that (meg —mq1 ). has degree > m + 1. The existence of such an « is once again guaranteed
by Lemma 3.7. This completes the proof. O

6. GENERIC INJECTIVITY WITH RESPECT TO THE METRIC

We now prove Theorem 1.1. As we shall see, the computations follow from the same
strategy as in the connection case, except that they are more involved.

6.1. Preliminary computations. A first point to address is that the unit tangent bundle
now varies if we perturb the metric.

6.1.1. Scaling the geodesic vector fields on SM. The metric g := gg is fixed and we consider
a smooth variation (gr);¢(—1,1) of the metric. Each 7 € (—1,1) defines a unit tangent bundle

SM; :={(z,v) € TM | g;(v,v) =1} C TM,

and we write SM := SM,. Each metric g, induces a geodesic vector field H, defined on the
whole tangent bundle TM (which is tangent to SM;, for every 7 € (—1,1)). We let

O, : SM — SM;, (z,v) — (m, ﬁ) , (6.1)
gr

be the natural projection onto SM,.. We consider the family X, := ®*H, = (1), H, €
C>®(SM,T(SM)), which depends smoothly on 7 and is defined so that X,—o = X is the
geodesic vector field of the metric go. Note that (X;);¢(—1,1) is a smooth family of Anosov
vector fields on SM. In what follows, when clear from context we will drop the subscript
when referring to derivatives at 7 = 0. We will use § : T*(SM) — T(SM) to denote the
musical isomorphism with respect to the Sasaki metric.
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Lemma 6.1. We have:

. 1 .. 1 .- -
Xr—0 = —5m29- X + §J [Vy(759) + Vi (739)] (6.2)

— T (V75 505) (X, 751(9))) + 75 50 (X, 751 (0)) .

Proof. Write S, (x,v)(§) = (v, dn(x,v)€)g, (z) for the contact 1-form on SM.. Writing o, :=
7 Br and a := Py, and using m o &, = 7, we obtain for any £ € T(, ,,)SM:

047-(1', U)(S) = ‘U‘;TIQT(U7 dﬂ-(‘rv ’U)(f))

Differentiating in 7 and restricting to 7 = 0, we obtain the relation:

. 1 .. .

&=~ gm0 o glv, dn(z, v)(e)). (6.3)
The pullback vector field X is uniquely determined by the relations: ¢tx o, =1 and tx da, =
0. Differentiating, we get ¢y + tx& = 0 and thus using (6.3), a(X) = —%71’2*9. Since we can

decompose X = a(X)X 4 Y for some Y orthogonal to X this gives the first term in (6.2). It
remains to compute Y.
For that, we introduce the 1-form, defined for (z,v) € SM as

A(z,v)(0) = g(v, d7(z,v)(e)) = 73 5059 (X, @),
using the Sasaki lift introduced in (2.13). The first step is to compute txdA and we claim:
LxdA = _d(ﬂ-;g) + (V%SWS,Sasg)(Xv THot (.)) - Trz,Sasg(Xa JWV(.))' (64)

Recall here that Hi,x = H & R - X denotes the total horizontal space, as explained in §2.1,
and 7p,,, is the orthogonal projection onto this space (with respect to the Sasaki metric).

Note that A defines a 1-form on T'M and we will first compute txdA on T'M. Then txdA
on SM is just the restriction. For W, Z € C*°(TM,T(TM)), we have the formula:

dAW, Z) = W - (75,5059(X, Z)) = Z - (13,8059(X, W) — 75 50s9(X, [W, Z]). (6.5)

We now fix a point p € M and take a geodesic orthonormal frame (E1, ..., E,,) around p, i.e.
such that Vg, Ej(p) = 0. Let X; be the horizontal lift of E;. We have that V%SX is vertical
(see [Pat99, Lemma 1.25]) and V585X; is also vertical at p (as 7 is a Riemannian submersion).
Hence by (6.5), at the point p:

LXdA(XZ) = (vSasﬂ_z’Sasg) (X7 Xl) + W;,Sasg(viasX7 Xl) + F;,Sasg(Xv V%(?SXZ)
- X 7-‘-;9 - Trz,Sasg(Xv [X7 XZ] )
N——
=V X -V X
= (V73 5059) (X, Xi) — X; - 134.
Introducing Y; := JXj, it can also be checked that [X,Y;] = JY; = — X, at the point p (this

is an immediate consequence of the fact that [X;,Y;] = 0 at p, see [Pat99, Exercise 1.26]).
Thus by (6.5), at p:

LXdA(Y;) =X 7T;,Sasg()(? Y;) - Y; ' (WS,Sasg(Xv X)) - F;,Sasg(Xv [X7 YVZ])
=-Y- ﬂ-;g - 7132’(,82159()(7 JY;)

(6.6)

(6.7)
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Combining (6.6) and (6.7) immediately yields (6.4) and proves the claim.
Hence, combining (6.4) with (6.3), we get

1 1
Lxdda = —§X(7T§g).oz + §d(775‘g) +1xdA

1 * - 1 * - as__* . * .
- —§X(7T2g).04 - §d(ﬂ'29) + (V?{ 772,Sasg)(X7 THot (.)) - 7T2,Sasg(X7 JT(V(.))’
Using txdé + 1 ydo = vxdé + 1y do = 0 together with (2.3), we get:
. 1 * . * . as_* .
Y = —J(xda) = 37 (Vumsg + Vamsg) = J (VRT3 5009) (X, (@)’

+ J (WS,Sasg(Xa JT[-V(.)))ﬁ .

Note here that we used (V%?Sﬂ;sasg)(X, mr(e)) = (V§;‘Sw§7Sasg)(X, TH,, (®)) — X (73 ).« valid
since X (m5g) = (V%asw;’sas 9)(X, X). The last term in the expression for Y can be simplified as
73 5as9 (X mr(e))? (which boils down to the identity Jry.J = —7mg on ker o), which completes
the proof. O

The last two terms of (6.2) vanish for a conformal perturbation. We introduce the differ-
ential operator A € Diff! (SM,C — Tc(SM)) of order one

A(f) 2= 5 (~FX + T [Vof + Vif). (6.8)
We also introduce A2 € Diff'(SM, @4T*(SM) — Tc(SM)) of order one by:
A (f) = =T (V)X mi(0))” + (X7 (o)) (6.9)

By construction X = AN (5 £) + Aaniso(wisas f). In order to manipulate compact notations,
we will write X := A(m5 f), although there is some abuse of notations here as there are two
distinct lifts of f to SM.

We now compute the symbols of AcnHaniso  They will be useful in the perturbation argu-
ments in the following sections.

Lemma 6.2. For any (x,v,§) € T(SM), we have:
O(A™)(,v,6) = T (@, 0)(mt + o) = LI, ) (€ — E(X (2, 0)). X (x,0)).

Proof. Consider the Lagrangian state ei%f, where S(z,v) = 0,d S(z,v) = § and f(z,v) = 1.
By (6.8), we compute
1 .s

G _§eiz { X — % fI(VuS + VyS) — J(Vuf + Vv f )]. (6.10)

We may directly read off the principal symbol from this expression:

o)z, 0,€) = Jim B (€15 £) a0

= %J(VHS + VyS)(z,v) = %’J(az,v)(ﬂ]ﬂﬁﬁ + m/gﬁ).
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We have:
Lemma 6.3. For any (z,v,§) € T(SM) and f € @%T}, »(SM), we have:

(A™5) (2,0, €) f = —il€, X (2,0)).J (2, 0) (F(X (2, v), 7m ()’

Proof. We see that it suffices to compute the principal symbol of the first term in (6.9) as the

second term is of lower order. We take a Lagrangian state eiTS»f with S(z,v) = 0,d S(z,v) =&
and f € C°(SM,®%T*(SM)), f(z) =: fo. We have:

U(Aaniso)(x’ v, é)fO
: aniso/ i2
= lim hA™ ('R f) (, v)

= lim —hJ(z,v) <%XS- [F(X, ma(o))f + 'R [(VR=1)(X, m<->>}ﬁ> (z,v)

= i€, X (2,0)).d (2, 0) ( fo(X (z,v), 7 (s)))".

O
Eventually, we compute the divergence of X in a geometric way. We prove:
Lemma 6.4. The following formula holds:
div(X) = X(wf; Try, (§) — gw;g). (6.11)

In local coordinates (z;)1<i<n, Where go and ¢ are identified with n x n symmetric matrices,
we have Tr,, (9) = Tr(gp " 9)-

Proof. Write €, := dvolg,s 4. for the Sasaki volume form of g, in SM; and Q := Qy. Write
Jr for the Jacobian of ®, (where we recall @, was introduced in (6.1)), i.e. ®XQ. = J.Q.
Observe that

—div(X,)Q = Lx, Q = 5Ly, (T 0 071.9,)) = T X, (T 1).0.

It follows that div(X,) = —J,. X, (7 ') = J- 1. X, J; (the second equality follows from the
product rule) and differentiating at 7 = 0 and using Jy = 1:

div(X) = XJ. (6.12)
In what follows we compute 7. We will use that
dvolgas g, (x,v) = Tdvoly, (x,v) A dvolg,m, (v).
We need the following auxiliary lemma:

Lemma 6.5. Let Ay and A; be two symmetric, positive definite matrices, and denote by
Szzl ={z € R" | (Ajx,z) = 1} C R™ the unit sphere with respect to the metric induced by
A;; denote by dvoly, the induced volume form on Szzl. If R(x) = \/(Ai—m,@ is the scaling

map between the two spheres, then for x € SZQI:

[det A n
R*dvolg, (x) = ( SZEA;.(Alx,@_?)dvolAO(x). (6.13)
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Proof. We first show the claim for Ay = Id. Denote A; = A and write R*dvoly = j.dvolgn-1
for some function j on S”~!. Observe that dvola(x) = v/det Ay g ldz] for z € S%1, where
we write |dx| = dxy A ... A dx,, e; for the standard basis vectors of R™ identified with 0;;
>; Tie; = x is the outer unit normal to Sz_l at x. It is straightforward to compute:

Vimln =1, de,Rler) = ORle,) = <= (ei - en.A—m> |

This shows the claim at x = ¢,:
R*(dvola)(en)(e1y... ,en_1)

=+vVdetAa_en dxi N...Ndx, <, (ei — e > ,>

nn

3

= (—=1)"'Vdet A.(Ae,, en) 2.

For general z € S"~!, consider a B € SO(n) such that B(e,) = x. Using that B : S%}QB —

Sz_l is an isometry and the previous computation, the formula (6.13) for Ay = Id follows.
For general Ay, simply consider a linear coordinate change given by B with BT AgB = Id

and apply the previous result to A = BT A;B. This completes the proof. O
Using Lemma 6.5, we see that in local coordinates:

Q7 (m*dvoly, Advolg, ) = m*dvoly, API(dvolg, . )

deth * —n
= Vdetgr[dz| Ay | m-(ﬂzgr) 2dvols, i

det g e a_m
= detgg.(WQgT) 2. dvolg, Advolg, rr .
This shows that J, = jﬁzgg.(wé‘gT)_%, so taking the derivative at 7 = 0 and using (6.12)
completes the proof and shows (6.11). O

In what follows, we will frequently use the operators, defined for a distribution v € D'(SM):
Vu e C*(SM), Myu:=vu, YZeC®(SM,T(SM)), N Z:=Zv. (6.14)
Sometimes u or Z will also be singular, in which case we will have to justify the extension of

the corresponding operator to such functions.

6.1.2. Metric-dependent generalized X-ray transform. For each 7 € (—¢,¢) small enough,
we can consider the positive resolvent C 3 2 + (=X, — z)~! and the negative resolvent
C 3z (X; —2)"'. Since we have X, = (®,)*H,, the resolvents satisfy on C*°(SM) that
(£X, — 2)71 = (®,)*(+£H, — 2)"}(®,). and therefore also

Ry = (D) RIG(®r)s, IIET = (@0) T (1), (6.15)

where the superscript denotes the vector field with respect to which the resolvent is taken,
% 0 1s its holomorphic part at zero and II% is the orthogonal projection to the resonant space
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at zero. From now on we drop the ¢ = X superscript and simply write 7 instead. By (2.17)
we have
b=(opur)l, (6.16)
where 1 is the constant function and w, is the pullback by ®, of the normalised Liouville
measure on SM; such that (1,pu,) = 1.
Let (w7 )* : C°(M,®@%T*M) — C°°(SM;) be the canonical pullback operator; we write

7k = (m)*. We may then compute, for a symmetric m-tensor f:

(@) (585)" f (2,0) = (x85)" S <x v )

7 ‘U‘QT

= fo < - - > = ’U’;Tmﬂjnf(xvv)'

ol Toly,
We denote x,(z,v) = |v|,", so that by the previous equality:

XrTm = ()" (757)", (mm)uXr = (777 )5 (P17 ), (6.17)
where the lower star denotes the pushforward, that is the L? adjoint of the pullback operator.
We are in position to introduce the generalised X-ray transform with respect to H, and study
its properties under re-scaling by (6.15) and (6.17):

I, = (%) (R + BRI + ) (190)" = e (Rp + R o + ey (6.18)

I7:=

Moreover, the family
(—e,6) D1 115, € UM, @FT*M — @FT*M)

depends smoothly on 7 as stated in Lemma 2.3.
We keep the same strategy as in §5 and define

Pr = myer pg Aolly, AoTker D 5 (6.19)

where Ag is an elliptic, formally self-adjoint, positive, pseudodifferential operator of order
k > 1/2 with diagonal principal symbol that induces an isomorphism on Sobolev spaces. As
in Lemma 5.1 (more precisely, apply Lemma 5.1 to the trivial vector bundle &€ = M x C
equipped with the trivial unitary connection d, and note that as explained in Footnote (11)
the kernel of X is stably non-empty, so the lemma applies in our setting), the maps:

Tker D AoTer s ker D N H¥ (M, @§T*M) — ker DX N H* *(M, @ T*M),

Tker Dy DoTer Dz < ker D N H* (M, @GT*M) — ker DV H* (M, @§T* M),
are isomorphisms for 7 small enough depending on s € R. In particular, as before, II7 is
solenoidal injective (i.e. injective on symmetric tensors in ker DY) if and only if P is solenoidal
injective. In what follows we assume that (ui)le is an L2-orthonormal basis of eigenstates

of Py at 0. As in (5.10), we let A; be the sum of the eigenvalues of P; inside a small contour
near 0.

6.2. Variations of the ground state. We now compute the variations with respect to .
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6.2.1. First order variations. As in the connection case, the first order variation of A, at
7 =01is A\;—g = 0 and the second order variation is given by Lemma 5.2. We thus need to
compute each term involved in the second derivative 5\720, namely Py and P,y. More precisely,
the goal of this section is to compute Zle(PO_ L Pyus, Poui) po.
We assume that g, = g + 7f, where f € C°(M,®%T*M) is a perturbation such that
g = f. We write
HT
(=X, —2) =+ X)) = 7* +RT o+ 2R, + 2°RY 5+ O(2%), 620,

T

II
—(XT — Z)_l = (Z — Xq—)_l = 7_ + R7;70 + ZRZJ + Z2R7;72 + 0(23),

for the meromorphic expansion of the resolvents at zero. First of all, we compute the deriva-
tives of x, at 7 = 0:

Xr=0(7,v) = _%g(vﬂj) = _%ﬂ';f(‘%v)?
o (6.21)
frmo(@,v) = 7 (5 +1) [/, v).

In the following we recall that II7. = II” (see (6.16)). We now turn to the first order variation
of the resolvent:

Lemma 6.6. We have 11, = —HiXR+,0 and:

Rig=-— <R+,0XR+,0 + H+XR+,1> . Roo=+ (R—,OXR—,O + H_XR_,1) :

Proof. Let us deal with the second equality (the third one is similar). By (6.20), we have
(recall that the contour ~ around zero was defined in §2.4):

S
Rio=5— j{(ZJFXT)

and differentiating with respect to 7, we get:

—1%, (6.22)

. 1 . dz
= X)X+ x)1 2
Rip 9 j{(z +X)7 X(z+X) .

- — (R+,0XR+7O + H+XR+71 + R+71XH+) .

To conclude, it suffices to observe that XII, = 0 as X is a vector field and the range of II
is always the constant functions C - 1.
As far as the derivative of the spectral projection is concerned, one starts with the equality
1

o, = — X,)~td 2
+ 7 omi V(ZJF ) dz (6.23)

and then differentiates with respect to 7 similarly as above; we omit the details. O
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Therefore, recalling (6.18), by (6.21) and Lemma 6.6 we obtain at 7 = 0:

I = T (—% (m3fZ+ZIrsf) +I> T,
m * * y y
- wm*( - = (I +Imsf) - (R+,0XR+,0 n H+XR+71) (6.24)

+ (Ro0XRog+T-XR_ ) ~TL. X R0 7,

Next, we observe that for m odd, 7,1 = 0 and also m,.(75 f) = 0 and as a consequence,
the terms in (6.24) involving IT1 disappear; when m is even, this simplification no longer
occurs. Recalling the definition (6.19) of Py, we obtain from (6.24) the general expression
(valid for m odd or even):

m

5 (75.f.(R+0 + R—0) + (R0 + R_ )75 f)

Py = Tker D A0 ( -
—R+70XR+,0 + R_70XR—,0> T A0 Tker D§

+ &(m) Ter D DoTmx

_Eﬂ-;fH‘F —EH_F’]T;f - H+XR+,1 + H_XR_,l - H+XR+70

S(r3f):=
7T;knA07Tker Dg»

where e(m) = 0 for m odd and ¢(m) = 1 for m even. This last term is isolated on purpose
because as we shall see, it only contributes to a smoothing remainder in the following argument
and will therefore disappear in the principal symbol computations.

We let u; € C®°(M,RFT*M) N ker D§ be one of the elements in the kernel of Fy. Note
that the operator 11, being real, we can always assume that the u;’s are real-valued. This
implies using Lemma 2.1 that (as in §5)

T AoTer p3ui = Xvi,  for some v; € C*(SM) with Ilyv; =0, (6.25)

which can also be chosen real-valued (since X is real). Hence, using (2.18) and the fact that
(Ryo+ R_0)X =0, XII; =111 X = XII| =0, and recalling that X = A(73 f), we obtain:
5 m * *
Pou; = — 3 Mher D AT (7T2f.(R+70 +R_o)+ (Ryo+ R_70)7T2f)XVi
+ Tker D} Aoﬂ'm*( — R+70X R+70X Vi + R_70X R_70X Vi)
S~—— S~——

:]1—H+ :—]1+H,
m . 6.26
+ e(m)Mer Dy Do <—§7T2f-ﬂ++5(ﬂ2f)> Xvi (6.26)
m * *
= —Tker D§ Aoﬂm*(R+,o + R_,()) |:§7T2f.XVi + A(WQf)Vi]

+ &(m)Tker Dy Ao S (13 f) X i
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Let us introduce shorthand notation for the operators arising in (6.26), for any v € C*°(SM)
and any symmetric 2-tensor h € C*°(M,@%T*M):

Byoh = T S(T5h) X Vi, Quh = mmu(Ry o + R_g) [%wgh.Xv v A(w;h)v} . (6.27)
By using the facts that P U= (Tier D AoTer Da«)_ll'[;ll(wker D AoTer D;;)_l on ker D and

the equalities D7y« (Ry0 + R—0) = D{mmS(m5f) = 0, we obtain from (6.26) (similarly to
(5.21)):

<PO_1P0U2'7 Pouz'>L2 = <H7711sz'fv QVz‘f>L2 +e(m) <H;"blBVif’ BVif>L2
— 2€(m)3? ((Qvl,ﬂ BVif>L2) .

We now prove that the operator By introduced in (6.27) is in fact smoothing:

(6.28)

Lemma 6.7. By, € V"°(M,®@%T*M — QUT*M) is a smoothing operator.
Proof. Similarly to the proof of Lemma 4.4, it suffices to show that B,, maps
D'(M,@%T*M) — C™(M,Q5T* M)

boundedly. For that, let h € D'(M, ®%T*M). By [Lef19a, Lemma 2.1] we have WF(73h) C V*
and WF(734,.h) C V* (as in the proof of Lemma 4.4). By resolvent identities (2.18) and
using XTI, = 0, we have:

S(moh)Xv, = —%H_i_(ﬂgh.XVi) + I A(m5h)(Ry o + R_0)vi — LIy A(m5h)v;. (6.29)

By (2.17), the first term in (6.29) i.e. —FII; (75h.Xv;) = =5 (m5h.Xv;, 1)1 is clearly smooth.
Similarly, the last term —IIyA(73h)v; is also obviously smooth.

We now deal with the remaining term. Define v := (R4 o+R_ ¢)v;. Since v; is smooth, this
has wavefront set in £, U E} by the characterization of the wavefront set of the resolvent, see
(4.5). Hence, the one-form d v} has also wavefront set in E;UE? and thus by the multiplication

rule of distributions (see [Hor03, Theorem 8.2.10] for instance), the inner product A(73h)vi =

i
WA(xyh) d vy s allowed (since V* N (B U EY) = {0} by the absence of conjugate points, see
(2.8)). As a consequence

L A(m3h) (R0 + R-0)Vi = (ta(mgn) A Vi, p)1
is smooth, which proves the lemma. ]

We have an analogous statement to Lemma 5.4:

Lemma 6.8. For all v e C*(SM),
Qv € VUM, @(T*M — QET*M),

is a pseudodifferential operator of order 0 with principal symbol for (z,£§) € T*M \ {0},
00, (z,£) € Hom(®%T; M, @FTM), given by:
_ i * *
0. (z,)h = C 1, sam Jg Mherig T g ((§v, Vyv).msh) . h € @Ti M,

where &y(x,v) € HY (2,v) is defined by &y(w,v)(e) = E(Kyu(0).



50 M. CEKIC AND T. LEFEUVRE

Observe that the main difference with Lemma 5.4 is that the operator is now of order 0
instead of —1: this is due to the fact that the operator A is of degree 1 (it costs derivatives of
order 1in f). Also note that the principal symbol of @ now satisfies o¢, (z, —§) = —oq, (z,¢);
this will not be a problem as @, will always appear twice in the brackets (hence the two minus
signs will eventually give a plus).

Proof. We may re-write the operator )y in a sandwich form as follows:

m *
Qv = _Wm*(R—l-,O + R—,O)MXVWQ + 7I-m>»<(R—|—,0
2 . (6.30)
+ R_70)Nv(Aconfﬂ'; + Aamsoﬂ-;,Sas)’

where we use the notation of (6.14). By the sandwich Proposition 4.1 (and Remark 4.3 below),
it follows that @), is pseudodifferential of order 0 and the first term of (6.30) is of order —1.
By Lemma 6.2, the principal symbol of N,A®™ is given by, on co-vectors &g = & o Ay

J(NVAconf)(x, v, &u(z,v))

= Sdaav (o) (€l ) = X(@,0)-6,0)) (6:31)
— % <vw(x,@), (0, — v.({,v>)> = % (&v(z,v), Vyv(z,v)).

Similarly, by Lemma 6.3, we have:
o (NA) (2,0, €, 0))h = i€, X (@,0)) o ov (T (X, 7 (#))°)
= —i(&,v).dg v (J(h(X, ﬁH(O)))ﬁ> .

It then suffices to apply Proposition 4.1 and Remark 4.3 to conclude the proof. Note that

(6.32)

the principal symbol of N,A*"$° does not appear as the expression in Remark 4.3 involves
integration over the sphere {({,v) =0} = Sg_z. O

To summarise the content of this section, we obtain from (6.28) using Lemmas 6.7 and 6.8:

(PO_IPO’LLZ', P’LLZ'>L2

M=

=

! . (6.33)
= Z(QiiH;vaif, Prerezreay + (Ow- (D), ) r2ne21m) -
i=1

6.2.2. Second order variations. We now turn to the second variation of the resolvents which
will allow us to compute Z?:1<P0ui, u;) 2. Similarly to Lemma 6.6, we have:

Lemma 6.9. We have ]j:t = 2HiXRi70XRi,0 F HiXRi,o and:
Rig=2 <HiXRi,0XRi71 + e XRy 1 XRep+ Ri,oXRi,oXRivo)

F <H:|:XR:|:71 + Rj;oXRi,o) . (6.34)
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Proof. We prove the claims for the (X, + z)~! resolvent, the other claim follows analogously.
Differentiating the expression (6.22) twice at 7 = 0, we obtain the formula:

. 1 . . d
Rig=— ?{(X F )X (X 4 2) X (X 42t
T o z

)

1 i} d
S d (X )X (X )
271 ~ z

The equation (6.34) now follows by the residue theorem and the expansion (6.20), using the
relations X1I; = XTII, = 0 to cancel the extra terms.
For the derivative of the spectral projector, by differentiating the formula (6.23) twice:

. 1 ) )
I, = — ]é(X +2) T X (X 4 2) 7 X (X 4 2) 7z
™
.
1 .
—— (X 421X (X + 2) 7z,
2mi J,
and the final result again follows from the expansion (6.20). O

Next, differentiating (6.18) and inserting (6.21), we obtain at 7 = 0:

L, = (% (% n 1) [(75£)2.T + T(w3f)?]

o L (6.35)
—m [w; FI+Ins f} + 1+ omf Im f> o~

We can already make some simplifications in the term (Pu,,u,> 12, where u; is one of the
eigenstates at 0 of Py. Recalling (6.25) and using ZX = XZ = 0, from (6.35) we get at 7 = 0:

(Powi, ui) 2 = <7Tker D Aollin AoTker Dy Ui Ui>L2(M,®7S”T*M)

. . . 2
= <<—m |:7T§f.I—|—I7T;f] +7+ %ﬂ';flﬂ';f) XVZ',XVZ'> . (6.36)
L2(SM)

Similarly to §6.2.1, some terms will disappear when m is odd while in the case where m is even,
they will only contribute up to a smoothing remainder. First of all, let us assume that m is
odd. We make the simple observation that (heyven, hodd)r2 = 0 for any heven, hodqa € C°°(SM)
with even and odd Fourier content, respectively. Therefore, the terms involving IT1 in (6.36)
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obtained after using Lemmas 6.6 and 6.9 to expand Z,Z vanish, and we get:
(Pyui, u) 2
= —m(|mf. (R-0X R0~ R0 X Ry )
+ (R_,OXR_,O ~ Ry oX Ry o) 75 f] Xv,, XVZ->L2
+ <[2 <R+,0XR+,0XR+,0 +R_oXR_,XR )

~RyoXRig+ R_,OXR_Q] Xv;, sz->

L2
m2
+ 2 (Reg + R ) (3 Xvi), 3 XV

Using the resolvent relations (2.18), the terms involving X cancel each other:

<(—R+,0XR+,0 + R_70XR_,0> Xv;, XVi>L2(SM) =0

Therefore, we get using again (2.18), the fact that involved quantities are real, recalling that
Jsas vidvolg, =0, and using (2.5):

(Pyug, ui) 2

=—m <— <7T§f.(R+,0 + R_,O)XVZ', XVi>L2(SM)

+ <X(R+,0 + R—,O)(ﬂ';f'Xvi)’Vi>L2(SM)>

-2 <X(R+70 + R_70)XVZ', Vi>L2(SM)

+ 7< (Ryo+ R_p) (m5f.Xvi), W;f-XVi>L2(SM)
=2m <772* (XVZ-.(R+,0 + R_70)XVi) ’f>L2
—(0)
-m <772* (XV,'.(R+,0 +R_p) (div(X).v,-)) ,f>
—0)
+2 <(R+,o + R_o)Xvi, XV,->L2 ) <(R+70 +R_g)Xv;, div(X).vi>

(6.37)

L2

L2

=:(II) =:(I1I)
m2
+ 7<7T2*(XV7:'(R+70 + R-,O)(ﬂ;f'XVi))vf>L2 .

=:(IV)

(The expression for (I) runs on two lines.) In the general case (where m is either even or
odd), the previous equality still holds by adding on the right-hand side the extra term (V)
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which is equal to:

(V) := e(m) <—m (T3 f I X (Rig+ Rop— 1)vi, Xvi)

L2

2 (6.38)

O (L (3£ X0) X))
Here again we used (6.36) along with Lemmas 6.6 and 6.9 to expand the terms containing
IT; we also used (2.18) and XTI} = X IT, = 0 to simplify the expression.

As before, we will see that each term in the previous equality can be written in the form
(Af, ) L2(M,@%T* M) for some pseudodifferential operator A. In order to shorten the compu-
tations, it is important to understand the order of these operators: when taking Gaussian
states, only the terms of highest order will remain. Also observe that (6.33) involves an op-
erator of order 1: we therefore expect to find operators of order at most 1. First of all, we
deal with the term (V) (appearing only when m is even):

Lemma 6.10. There exists B, € W~°(M,®3T*M — ®%T*M) such that:
(V) = e(m)(By, £, f)r2- (6.39)
Proof. Tt follows from (6.38) that (6.39) holds with:
B, =,

Vi

m? . (6.40)
<_m‘MXViH+N(R+,0+R’0)ViA + m.MXViH+NViA + 7MXV7;H+MXV¢> Up)

The last two terms in (6.40) are obviously smoothing, while exactly the same wavefront set
arguments as in Lemma 6.7 apply to show that the first term is smoothing. g

We then prove (recall that &y(x,v)(e) = &(ICs4(0))):
Lemma 6.11. There exist pseudodifferential operators A\(,Ii),A\(,IZ.I),A\(,IZ.H) and A\(,IZ.V) in the pseu-
dodifferential algebra W*(M, ®2ST*M — ®%T*M) of respective order 0, 1, 0 and —1 such that
(recall (%) was defined in (6.37)):

(x) = (AW, F)p2, (6.41)
for x € {IILIIL,IV}. Moreover, we have for (z,§) € T*M \ {0} and h € Q:TM:
(0400 (@, )R, ) g2 1

_ %c,;_lm,n | B (m3h(e) (v (. @), Vovia, o)lg; 2|

Proof. Term (IV). Using the notation of (6.14), we observe that (6.41) holds for x = IV with:

2 (6.42)

L2(S, M)

2

m *
AS,IZ.V) = 7772*MXW (R+,o + R—,O)MXV@“?

By the sandwich Proposition 4.1, this is a YDO of order —1.
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Term (I). Next, using the formula for the divergence in Lemma 6.4 together with My, Xu =
X(My,u) —Mxy,uand (Ryo+R_0)X =0=X(R;s o+ R_p), we see from (6.37) that (6.41)
holds for * = I with:

A‘(,I) = 2m.7T2*MXVi(R+70 + R_70)NviA7T;

. ) n (6.43)
+ m.my. My, (Ry0 + Reo)Mxv, <7T0 Ty, (o) — 5wz(.)) .

By Proposition 4.1, the first term in (6.43) is of order 0 as A is of order 1, and the second
term is of order —1.

Term (III). By Lemma 6.4 and using My, Xu = X (My,u) — Mx,u, we get from (6.37):

AU — (25, 70, — n.ma, )My, (Rio + R_o) Ny, Ary,

Vi

where jg, denotes the multiplication by go, that is jg,u := u.gg for v € C°°(M). By Proposi-
tion 4.1, this is a pseudodifferential operator of order 0.

Term (II). Finally, for the term (II), we write from (6.37):

A\(/IZI) - (71.2* (Aconf> + T2 Sas, (Aaniso)*)
Ny (R o+ R o) Ny, (Al 4 A0S g, ),

Aconfvaniso) * denotes the formal adjoint of the first order differential operators Aconf,aniso

where (

Once more, applying Proposition 4.1 and Remark 4.3 shows that A\(,IZ.I) is a WDO of order 1 with
the principal symbol given by (6.42), where we also use (6.31) and (6.32) to compute the prin-
cipal symbols of N, At and Ny, A0 and (3.6) to extend the formula to S, M. Note that
Ny, A®5° does not contribute to the principal symbol as its symbol (see (6.32)) is proportional
to (£, v) and the formula of Remark 4.3 involves integration over {(&,v) = 0} = S?_2. O

As a consequence, (6.37) and the previous two lemmas show that:
d

d
Z<P0ui7ui>L2 = Z<waa ez + (Op-< () f, f)re, (6.44)
i=1 i=1
where Ry, = A&? + A&If) + A&ﬂ“’ + AQ)’) is a pseudodifferential operator of order 1, whose
principal symbol is given by that of A&IP and determined by (6.42).

6.3. Assuming the second variation is zero. We now assume that for any variation of
the metric g = g + 7f with f € C*(M, ®%T*M ), the second derivative A = 0 vanishes.
Using Lemma 5.2, this implies that:

d d

Z(Poui, Ui>L2 (M’®gLT*M) =2 Z(P(]_lpoui7 Poui>L2(M,®ng*M)' (645)
i=1 i=1

In §6.2.1 and §6.2.2, we saw that both the right-hand side and the left-hand side can be
written as quadratic forms in f, with pseudodifferential operators of order 1 acting on f.
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More precisely, combining (6.33) and (6.44), we have that (6.45) implies:

Vf € C°(M,23T*M),
d (6.46)
Z <(va - ZQ;H;}QW) f7 f>L2(M,®2ST*M) = <O\I/*0<>(1)f7 f>L27
i=1

where the remainder has this form by Lemmas 6.7 and 6.10 and appears only when m is even.

We then consider a real Gaussian state f, = R(ep(z,€))f (see (5.26) for the notation),
where f € C®(M, ®%T*M) is a smooth section such that flz) =: fand &€ € TXM \ {0}
Note that similarly to §5 we can only allow real perturbations of the metric, hence the need
for the real part of the Gaussian state. Nevertheless, this will not be a problem insofar as the
principal symbols of R, and Qi‘,iH;llei are preserved by the antipodal map in the fibres.
We thus obtain by applying (6.46) to the Gaussian state h.f;, and taking the limit as h — 0,

using Lemma 5.6:

2

Cr:—ll+2m% g HE%” (7r§f(0). (Ev(z,0), Vyvi(z,e)) |§g*2) ‘ L2(5, )

d
= 2 Z <0Hml7rker D6 (x7 g)o-Qvl (‘T7 €)f7 O-QV,L. (x7 g)f>
i=1

RUTEM
1 ™
= Cn—1+2m m

d
—1
* *
X Z < (Wker Le Tom s T, Tker Zgﬁ) Tker Lt Wm*Egn <7T2f'<£V7 VVVZ'> |§2*2) ’
=1

Tker 2 7Tm*E%n <7T;f <€V, VVVZ'> ‘Sgﬁz> >

QuTs M
-1 ™
n—1+2m@
d
> <PmEg” <7T§f-<£v, vvvi>|ggf2) P (wé‘f.(ﬁv, wv@->lggﬂ) >®MT*M,
. s

=1
where we used Lemmas 6.8 and 6.11 to compute the symbols of R,, and Qf,iH,_leVi, and we

introduced the following map:

-1
L * *
Pm = Tm chrzgﬁ (Wkerzgﬁ Wm*ﬂmﬂkorzgn) Tker o4 s+

eft

Note that P, is the L2-orthogonal projection onto ran (7, myer Zsﬁ) in L2(S,M) and so it holds
that (cf. (5.28)):

L*(S,M) = ran(ﬂfnwkeméu) ot ker(wkerzgﬁ Toms)-
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Thus, we get cancelling the constant terms (similarly to (5.30)):

Zz; HE? <7T§f-(5v, VVVZ'>|§2*2) ‘ .

Fsan (6.47)

- i |z (w3160, Tovilsp=) [

L2(S. M)

As ker () C ker(mger et Tms), to obtain a contradiction it is sufficient to show that the L2-

orthogonal projection onto ker(m,.) of the function E" <7T§ (&, VVV1>|S272> is non-zero,

that is, it suffices to show the following:

Lemma 6.12. There exists v € M, € T:M \ {0} and f € @4T; M such that:
deg (Eg” (ng.(ﬁv, VVV1>|S?72>> >m+ 1. (6.48)

Proof. Similarly as in the proof of Lemma 5.7, we know that v; has degree > m + 1. Indeed,
by the mapping properties of X and using equation (6.25), parity of v1 is opposite to m and so
if deg(v1) < m—1 we could write vi = 7, _;v; for some smooth v;. This would imply (using
(2.12)) that Dvy = Aguy and hence also 7y p Agug = 0, so u; = 0 which is a contradiction.

Observe that by Lemma 3.3, since vi has degree > m + 1 at some point x € M, there
exists £ € TxM such that <§V,VVV1>’8272 has degree > m. Then, by Lemma 3.7 (observe

here that the musical map is an isomorphism from ker(¢, ) C T, M to ker s C T; M), there
exists f € @%(kerug) such that 73 f.(Sy, VVV1>‘S?—2 has degree > m + 2. Note that f can be

naturally extended as a symmetric tensor in ®%T; M by setting f(£F, ) = f(e,£F) = 0. Thus
we can apply Lemma 3.5 to obtain (6.48). O

This allows to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. The same proof as for Theorem 1.5 applies verbatim. O

Remark 6.13. When n = 2, similarly as in Remark 5.9 our proof does not work. More
precisely, the equality (6.47) always holds, which shows that the symbol of Ry, — QQQH;}QW
appearing in (6.46) is zero, hence this operator is of order 0, as opposed to the case n > 3
where we show it is strictly of order 1.

7. MANIFOLDS WITH BOUNDARY

In this section we outline some applications of the previous results to the injectivity of
X-ray transform on manifolds with boundary.

7.1. Generic injectivity on manifolds with boundary. We now turn to the case of a
smooth Riemannian manifold (M, g) with boundary. We define the incoming (resp. outgoing)
tail I'_ (resp. I'}) as the set of points (x,v) € SM such that ¢, (z,v) is defined for all ¢ > 0
(resp. t < 0); the trapped set is defined as K = I'_ NT';. We further assume that (M, g)
satisfies the following assumptions:
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e Strictly convex boundary: the boundary is strictly convex in the sense that the
second fundamental form is strictly positive;

e No conjugate points: the metric has no conjugate points;

e Hyperbolic trapped set: there exists a continuous flow-invariant Anosov decom-
position as in (1.1) on the trapped set K.

We will use the short notation SNH for such manifolds. Typical and well-studied examples
are provided by simple manifolds which are diffeomorphic to balls, without conjugate points
and no trapped set; SNH manifolds are a generalization of these, see [MP11, Guil7b] for
further references.

Embedding of SNH manifolds into closed Anosov manifolds was recently established in
[CEG23] under the extra assumption that the manifold has boundary components diffeomor-
phic to spheres "1, or S' x S"72. As we will rely on [CEG23], we therefore introduce the
following terminology: we say that a smooth n-dimensional manifold M with boundary is
admissible if it has boundary components diffeomorphic to S?~! or St x S*~2. As pointed
out to us by on the referees, in dimension n > 3, SNH manifolds with spherical boundary
components are presumably diffeomorphic to balls.

Given a manifold M, we let Mgnu be the set of all smooth SNH metrics. As in the
closed case, this set is invariant by the action of a gauge group Diffo(M) which is the set of
diffeomorphisms fixing the boundary oM.

Given z € OM, we let v(x) be the outward-pointing normal unit vector to the boundary
and

0+ SM := {(z,v) € SM, x € OM,+g(v,v(x)) > 0}

be the incoming (-) and outgoing (+) boundary. The X-ray transform is defined as the
operator

ly(z0)
I9:C®(SM) — C®(0_-SM\T_), If(z,v) := /0 floi(z,v))dt,

where £ (z,v) denotes the exit time of (z,v) € SM, namely the maximal positive time for
which the geodesic flow is defined. As in the closed case, the X-ray transform of symmetric
tensors is defined as Ij}, = I9 o ¥,; a similar decomposition f = Dp + h between potential
and solenoidal parts holds by requiring the extra condition p|gy; = 0. It is then easy to check
that such potential tensors are in the kernel of I, and it is conjectured that this should be
the whole kernel of the X-ray transform. The s-injectivity is known to be true in a lot of cases
but not in full generality:

e On simple manifolds: s-injectivity was proved for m = 0,1 in any dimension [AR9I7];
further assuming non-positive sectional curvature, it was obtained for all m € Z> in
[PS87]; and for all m € Z>( on surfaces, without any curvature assumption, it was
obtained in [PSU13]; generic s-injectivity was obtained for m = 2 in [SU05, SU08] (by
proving s-injectivity for real analytic metrics);

e On SNH manifolds: in dimension n > 3, s-injectivity was proved on all SNH manifolds
for m = 0,1 and all SNH manifolds with non-positive sectional curvature for m > 2
in [Guil7b]; it was obtained on all SNH surfaces for all m € Z>g in [Lef19a],
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e On manifolds admitting a global foliation by convex hypersurfaces: s-injectivity was
obtained in any dimension > 3 for all m € Z>¢ in [UV16, SUV18, dHUZ19].

We will then derive the following;:

Corollary 7.1 (of Theorem 1.1 and [CEG23]). There exists an integer ko > 1 such that
the following holds. Let M be a smooth admissible manifold of dimension > 3 carrying SNH
metrics. For all m € ZZOM, there exists an open dense set R., C Msnu (for the C*o-topology)
such that for all metrics g € R.,, the X-ray transform I}, is s-injective. In particular, the
space of metrics R' := Ny>oR,, whose X-ray transforms are all s-injective is residual in

MSNH .

Once again, the sets R,, and R are invariant by the action of Diffo(M). We believe that
the assumption that the boundary components are diffeomorphic to S*~! or S' x S*=2 could
be removed (for that, one would need to avoid the use of [CEG23, Theorem 1] and follow

directly the proof of Theorem 1.1 in the case of a manifold with boundary).

7.2. Marked boundary distance function. Let (M, g) be an SNH manifold with bound-
ary. For each pair of points z,y € M and each homotopy class [y] of curves joining z to v,
it is well-known that there exists a unique geodesic in that class. We let dg(z,y, [y]) be the
length of that unique geodesic (it minimizes the length among all curves in the [v]) and call
the map d, the marked boundary distance function. When M is simple (it is diffeomorphic
to a ball), there is only a single geodesic joining x to y; we may then drop the [y] and we
call dy the boundary distance function. This function is invariant by the action of the gauge-
group Diffg(M) (it descends on the moduli space) and it is conjectured that this is the only
obstruction to recovering the metric:

Conjecture 7.2. Simple manifolds are boundary distance rigid and, more generally, SNH
manifolds are marked boundary distance rigid in the sense that the marked boundary distance
function:

d: Mgny := MSNH/DiHQ(M) > g dg (7.1)
1S 1njective.

This conjecture is known in a certain number of cases but it still open in full generality, and
was originally stated for simple manifolds by Michel [Mic82]. We refer to [Muk77, Muk81,
MR78, Cro91, Mic82, Gro83, Ota90b, PU05, BI10, SUV18] for further details. Similarly to
the closed case, it was shown in [SU05] that the local boundary distance rigidity of a metric
g can be derived from the s-injectivity of its X-ray transform I§. This was extended to SNH
manifolds (not necessarily spherical) in [Lef20]. As a consequence, we obtain:

Corollary 7.3 (of Corollary 7.1 and [Lef20]). There exists ko > 1 such that the following
holds. Let M be a smooth admissible n-dimensional manifold carrying SNH metrics. There is
an open dense set R, C Mgnu (with respect to the C*o-topology) such that: for all go € RY,
the marked boundary distance function d in (7.1) is locally injective near gy.

Here R/, = RY,/Diffo(M), where R, is given by Corollary 7.1.

MFor m = 0, 1, the s-injectivity is already established [Guil7b].
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7.3. Proofs. This section is devoted to the proof of Corollary 7.1.

Proof of Corollary 7.1. We fix an integer m € Z>p. As in the closed case, the s-injectivity
of I}, is equivalent to the s-injectivity of the normal operator (Ij,)" Ij}, which has the same
microlocal properties as the generalized X-ray transform IIj,, see [Guil7b] for instance. Hence
the fact that R/, is open is an immediate consequence of elliptic theory so it suffices to show
that R/, is dense in Mg‘f\IH We let g € M’g‘f\IH By [CEG23], the manifold (M, g) can be
embedded into a closed Anosov manifold (M, geyt) such that gext|ar = g and by Theorem
1.1, we can perturb the metric gext (in the C*-topology) to a new metric g/, such that this
metric has injective X-ray transform If}%’“ on M In order to prove Corollary 7.1, it then
suffices to show that gl ;|a restricted to the manifold with boundary M has injective X-ray
transform. In other words, it suffices to prove the following:

Lemma 7.4. Let (M, g) be a closed Anosov manifold and let (N, g|n) C (M,g) be an SNH
manifold with boundary. If the X-ray transform I3, on the closed manifold is s-injective on
M, then the X-ray transform Ig@‘N on the manifold with boundary is also s-injective on N.

Proof. We let f € C*°(N,®%¥T*N) such that Irgrle = 0. First of all, by [Sha02, Lemma 2.2],
we can write f = Dp + h, where p|sy = 0,2,h = 0 in a neighborhood of ON (where v is the
outward-pointing unit vector and is extended in the inner neighborhood of 9N by flowing
along the geodesics), 1, is the contraction by the vector v and both tensors p, h are smooth.
Observe that 9V f = 0 = I9INh. We claim that d%h = 0 for all k > 0, that is h vanishes to
infinite order on the boundary. For k = 0, this is contained in [Sha02, Lemma 2.3]. The proof
is a simple observation: if h,(v,...,v) is non-zero for some x € M and v € T,ON then it is
also true in a small neighboorhood of (z,v) and 7, h has constant sign there; without loss
of generality we can take it to be positive. Using short geodesics in a neighborhood of the
boundary (with unit speed vector almost equal to v) we then get that I,,h(z,v) > 0, which
is a contradiction. Hence we can write h = rh/,; where r(x) := d(x,0N) is defined locally
near the boundary and extended to an arbitrary positive function inside N. Then the same
argument of positivity applies to A’ and by iteration, we get that h = O(r*°) at ON. Hence we
can extend h by 0 outside N to get a smooth tensor (still denoted by h) in C°°(M,FT*M).

We now claim that I;,h = 0 on M, that is the integral of 7% h along closed geodesics in M
is zero. Indeed, let v C SM be a closed orbit of the geodesic flow of length ¢(vy), then:

19 h(y) = ﬁ /OM 7 by (z,0)) d t = ﬁ </1 T h ot /Jﬂfnh> ,

where I C [0, ¢(v)] is the union of intervals of times ¢ such that 7(p;(x,v)) ¢ N, 7: SM — M
denotes the projection and J is the complement of I. Observe that the integral over [ is zero
since h was extended by 0 outside V. Now, .J splits as a union of subintervals, each of them
corresponding to a segment of geodesic in N. By assumption, the integral of 7 ,h over all
these segments is 0. Hence I;,h = 0.

Since I}, is s-injective, we deduce that h = Du, for some tensor v € C°°(M, @™ T*M),
that is 75, h = Xm) _ju is a coboundary. We now want to show that u|sppr = 0. We let
(x0,v0) € SM be a point on the boundary 04 SN such that both forward (¢¢(xo, vo))iers, and
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backward (¢¢(xo,v0))ter., orbits are dense in SM and we let ¢ := 7, _;u(xg,vg). Observe
that the following holds: if t; > 0 denotes the first positive time such that Py (x0,v0)
intersects 0_SN° (that is, it is an inward pointing vector that is not tangent to the boundary
of N), then 7, u(y(zo,v0)) is constant equal to ¢ for all ¢t € [0,¢;]. There is then a time
t7 > t; such that Pyt (z0,v0) € 0+ SN. For t € [t],t]), the value of 7% u(p:(zo,v0)) is
unknown but one has 7rfn_1u(<,0t1+ (zo,v0)) = c since:

+
tl

[9|Nh((pt1(x0,vo)):/ 7 h(pe (2o, v0)) d t

2
=0= ﬂ':n—lu(@tf (x0,v0)) — ﬂ'fn_lu((pt; (0, v0))-

Since the orbit of O(xg,vp) of (zg,vg) is dense in SM, the set A := O(zg,vp) N (O_SN U
0+SN) is also dense in 0_SN U 0+ SN. Moreover, iterating the previous argument shows
that 7% _ u|4 = ¢ and thus 7}, _ ulo_snus, sy = ¢. If m is even, m — 1 is odd and this forces
¢ to be 0 (just use the antipodal map (z,v) — (z,—v)); if m is odd, then changing at the
very beginning u by u + Ag®™~D/2 for some X\ € R allows to take ¢ = 0. Hence, we conclude
that u|spny = 0. This gives that f = Dp+ h = D(p + u), where p + u vanishes on ON. O

This concludes the proof of Corollary 7.1. O
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