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GENERIC INJECTIVITY OF THE X-RAY TRANSFORM

MIHAJLO CEKIĆ AND THIBAULT LEFEUVRE

Abstract. In dimensions ≥ 3, we prove that the X-ray transform of symmetric tensors of

arbitrary degree is generically injective with respect to the metric on closed Anosov mani-

folds, and on manifolds with spherical strictly convex boundary, no conjugate points and a

hyperbolic trapped set. This has two immediate corollaries: local spectral rigidity, and local

marked length spectrum rigidity (building on earlier work by Guillarmou, Knieper and the

second author [GL19, GKL22]), in a neighbourhood of a generic Anosov metric. In both

cases, this is the first work going beyond the negatively curved assumption or dimension 2.

Our method, initiated in [CL21] and fully developed in the present paper, is based on a

perturbative argument of the 0-eigenvalue of elliptic operators via microlocal analysis which

turn the analytic problem of injectivity into an algebraic problem of representation theory.

When the manifold is equipped with a Hermitian vector bundle together with a unitary

connection, we also show that the twisted X-ray transform of symmetric tensors (with values

in that bundle) is generically injective with respect to the connection. This property turns

out to be crucial when solving the holonomy inverse problem, as studied in a subsequent

article [CL22].
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1. Introduction

Let M be a smooth closed n-dimensional manifold, with n ≥ 2. Let M be the cone of

smooth metrics on M . Recall that a metric g ∈ M is said to be Anosov if the geodesic flow

(ϕt)t∈R on its unit tangent bundle

SM := {(x, v) ∈ TM | |v|g = 1}

is an Anosov flow (also called uniformly hyperbolic in the literature), in the sense that is there

exists a continuous flow-invariant splitting of the tangent bundle of SM as:

T (SM) = RX ⊕ Es ⊕ Eu,

where X is the geodesic vector field, and such that:

∀t ≥ 0,∀w ∈ Es, |dϕt(w)| ≤ Ce−tλ|w|,
∀t ≤ 0,∀w ∈ Eu, |dϕt(w)| ≤ Ce−|t|λ|w|, (1.1)

the constants C, λ > 0 being uniform and the metric |•| arbitrary. We will denote by MAnosov

the space of smooth Anosov metrics on M and we will always assume in the following that it

is not empty1.

Historical examples of Anosov metrics were provided by metrics of negative sectional cur-

vature [Ano67] but there are other examples as long as the metric carries “enough” zones

of negative curvature, see [Ebe73, DP03]. As shown in [Con10], generic metrics have a non-

trivial hyperbolic basic set, i.e. a compact invariant set, not reduced to a single periodic orbit,

where (1.1) is satisfied (but this set may not be equal to the whole manifold though). Certain

chaotic physical systems can also be described by Anosov Riemannian manifolds which are

not globally negatively-curved: for instance, the Sinäı billiards which arise as a model in

physics for the Lorentz gas (a gas of electrons in a metal) can be naturally approximated by

Anosov surfaces but these surfaces have a lot of flat areas (they consist of two copies of a

flat tori connected by negatively-curved cylinders which play the role of the obstacles), see

[Kou15, Chapter 6] for instance.

1.1. Generic injectivity of the X-ray transform with respect to the metric: closed

case. We let C be the set of free homotopy classes of loops onM . If g ∈ MAnosov, it is known

[Kli74] that for all c ∈ C, there exists a unique g-geodesic γg(c) ∈ c. We will denote by Lg the

marked length spectrum of g, defined as the map:

Lg ∈ ℓ∞(C), Lg(c) := ℓg(γg(c)), (1.2)

where ℓg(γ) denotes the Riemannian length of a curve γ ⊂ M computed with respect to the

metric g.

1Note that MAnosov(S
2) = ∅ (see [MP11, Corollary 9.5] for instance), that is to say not all manifolds can

carry Anosov metrics. It is also not known if manifolds carrying Anosov metrics also carry negatively-curved

metrics (the converse being obviously true).
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The closed curve γg(c) onM can be lifted to SM to a periodic orbit (γg(c), γ̇g(c)) of (ϕt)t∈R,

the geodesic flow of g. We then define the X-ray transform as the operator:

Ig : C∞(SM) → ℓ∞(C), Igf(c) := 1

Lg(c)

∫ Lg(c)

0
f(ϕt(x, v)) d t, (1.3)

where (x, v) is an arbitrary point of the lift of γg(c). Its kernel is given by coboundaries,

namely

ker Ig|C∞(SM) = {Xu | u ∈ C∞(SM),Xu ∈ C∞(SM)} 2.

The restriction of this operator to symmetric tensors appears in some rigidity questions in

Riemannian geometry, as we shall see. We introduce π∗m : C∞(M,⊗m
S T

∗M) → C∞(SM), the

natural pullback of symmetric m-tensors, defined by π∗mf(x, v) := fx(⊗mv). We then set

Igm := Ig ◦ π∗m. (1.4)

Any symmetric tensor f ∈ C∞(M,⊗m
S T

∗M) admits a canonical decomposition f = Dp + h,

whereD is the symmetrized covariant derivative, p ∈ C∞(M,⊗m−1
S T ∗M), h ∈ C∞(M,⊗m

S T
∗M)

and D∗h = 0, see §2.2.2 for further details. The Dp part is called potential whereas h is called

solenoidal. Using the fundamental relation Xπ∗m = π∗m+1D, we directly see that:
{
Dp | p ∈ C∞(M,⊗m−1

S T ∗M)
}
⊂ ker Igm|C∞(M,⊗m

S T ∗M).

If in the place of inclusion we have equality, we say that the X-ray transform of symmetric

m-tensors is s-injective or solenoidally injective, i.e. injective when restricted to solenoidal

tensors. This is known to be true:

• for m = 0, 1 on all Anosov manifolds [DS03],

• for all m ∈ Z≥0 on Anosov manifolds with non-positive curvature [GK80a, CS98],

• and for all m ∈ Z≥0 on all Anosov surfaces without any assumptions on the curvature

by [Gui17a] (see also [PSU14] for the cases m = 0, 1, 2).

Although the s-injectivity of Igm is conjectured on Anosov manifolds of arbitrary dimension, it

is still a widely open question. The main theorem of this article is a first step in this direction:

Theorem 1.1. There exists an integer k0 ≫ 1 such that the following holds. Let M be a

smooth closed manifold of dimension ≥ 3 carrying Anosov metrics. For all m ∈ Z≥0,
3 there

exists an open dense set Rm ⊂ MAnosov (for the Ck0-topology) such that for all metrics g ∈
Rm, the X-ray transform Igm is s-injective. In particular, the space of metrics R := ∩m≥0Rm

whose X-ray transforms are s-injective for all m ∈ Z≥0 is residual in MAnosov.

The set Rm ⊂ MAnosov is open and dense for the Ck0-topology in the sense that:

• Openness: for all g ∈ Rm, there exists ε > 0 such that for all smooth metrics g′ with

‖g′ − g‖Ck0 < ε, g′ ∈ Rm,

• Density: if g ∈ MAnosov, then for all ε > 0, there exists a smooth metric g′ ∈ Rm

such that ‖g − g′‖Ck0 < ε.

2Of course, the geodesic vector field X depends on g. Note that when the context is clear, we try to avoid

as much as possible the notation Xg in order not to burden the discussion.
3For m = 0, 1, the s-injectivity is already established [DS03].
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Note that R ⊂ MAnosov is a countable intersection of open and dense sets, and so in particular

it is dense in the C∞ topology. Observe that the sets Rm and R are invariant by the action

(by pullback of metrics) of the group of diffeomorphisms that are isotopic to the identity,

which we denote by Diff0(M).

As we shall see below, the generic s-injectivity of Igm is equivalent to the s-injectivity of

an elliptic pseudodifferential operator Πg
m introduced in [Gui17a], called the generalized X-

ray transform, which enjoys very good analytic properties. This operator will also naturally

appear below when discussing the twisted case, i.e. when including a bundle E → M in the

discussion, see §1.3. In particular, this reduction to an elliptic ΨDO will allow us to apply our

technique of perturbation of the 0-eigenvalue of elliptic operators, see §1.4 for further details

on the strategy of proof.

1.2. Application to rigidity problems. We now detail the consequences of Theorem 1.1

on three problems of rigidity.

1.2.1. The marked length spectrum rigidity conjecture. In the following, an isometry class,

denoted by g, is defined as an orbit of metrics under the action of Diff0(M), namely

g := {φ∗g | φ ∈ Diff0(M)} .
If M is closed, we let MAnosov := MAnosov/Diff0(M) be the moduli space of smooth Anosov

metrics modulo the action of Diff0(M). The marked length spectrum introduced in (1.2) is

invariant by the action of Diff0(M) and thus descends as a map

L : MAnosov → ℓ∞(C), g 7→ Lg. (1.5)

It is believed to parametrize entirely the moduli space of isometry classes.

Conjecture 1.2. LetM be a smooth n-dimensional closed manifold such that MAnosov(M) 6=
∅. Then the marked length spectrum map L in (1.5) is injective.

Originally, the conjecture was only phrased in the context of negatively-curved manifolds

by Burns-Katok [BK85] but it is believed to hold in the general Anosov case. Despite some

partial results [GK80a, Kat88, CFF92, BCG95, Ham99, CS98, PSU14] and the proof of the

conjecture in the two-dimensional case for negatively-curved metrics [Cro90, Ota90a], this

question is still widely open. Recently, Guillarmou, Knieper and the second author proved

that the s-injectivity of Ig02 implies that the conjecture holds true locally around g0 (see [GL19]

and [GKL22, Theorem 1.2]). In particular, by [CS98], this solves locally the conjecture around

an Anosov metric with nonpositive curvature in any dimension (and without any assumptions

on the curvature in dimension two by [PSU14, Gui17a]). A similar conjecture exists for

the billiard flow of convex domains, see [dSKW17] for the most recent developments. A

straightforward consequence of Theorem 1.1, combined with [GKL22, Theorem 1.3] (and the

remark following [GKL22, Theorem 1.2]), is therefore the following:

Corollary 1.3 (of Theorem 1.1 and [GL19, GKL22]). There exists k0 ≫ 1 such that the

following holds. Let M be a smooth n-dimensional closed manifold carrying Anosov metrics.

There is an open and dense set R2 ⊂ MAnosov (for the Ck0-topology) such that: for all g0 ∈ R2,

the marked length spectrum map L in (1.5) is locally injective near g0.
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The set R2 is equal to R2/Diff0(M), where R2 is given by Theorem 1.1 (and this is well-

defined since R2 is invariant by Diff0(M)). By locally injective, we mean the following: for

any g0 ∈ g0, there exists ε0 > 0 such that the following holds: if g1, g2 ∈ MAnosov are such that

there exist φ1, φ2 ∈ Diff0(M) such that ‖φ∗1g1 − g0‖Ck0 + ‖φ∗2g2 − g0‖Ck0 < ε0 and Lg1 = Lg2 ,

then g1 and g2 are isometric. Except in dimension two, this is the first result allowing to relax

the negative curvature assumption.

1.2.2. Spectral rigidity. Since the celebrated paper of Kac [Kac66] “Can one hear the shape of

a drum?”, investigating the space of isospectral manifolds (i.e. manifolds with same spectrum

for the Laplacian ∆g on functions, counted with multiplicities) has been an important question

in spectral geometry, see [Mil64, GK80a, GK80b, Vig80, Sar90, GWW92] for instance. It is

known that there exist pairs of isospectral hyperbolic surfaces that are not isometric [Vig80].

On the other hand, by [GK80a], the s-injectivity of Ig02 implies that (M,g0) is spectrally rigid

in the following sense: if (gs)s∈(−1,1) is a smooth family of isospectral metrics, then they are

isometric, i.e. there exists (φs)s∈(−1,1) such that g0 = φ∗sgs. As a consequence, we obtain the

following:

Corollary 1.4 (of Theorem 1.1). Let M be a n-dimensional closed manifold carrying Anosov

metrics. Then, the open and dense set of isometry classes R2 ⊂ MAnosov are spectrally rigid.

Once again, we conjecture that the previous corollary should actually hold for all Anosov

metrics in any dimension.

1.3. Generic injectivity of the X-ray transform with respect to the connection. We

now consider a smooth closed Anosov Riemannian manifold (M,g) and a smooth Hermitian

vector bundle E →M . We let AE be the space of smooth unitary connections on the bundle

E . Contrary to the untwisted case (i.e. E = C×M), (1.3) might not define a canonical notion

of integration of sections along closed geodesics4. It is therefore more convenient to define a

similar notion via microlocal analysis.

If ∇E ∈ AE and π : SM → M denotes the projection, we can consider the pullback

bundle π∗ E equipped with the pullback connection π∗∇E and define the operator X :=

(π∗∇E)X acting on C∞(SM,π∗ E). We then consider the meromorphic extension of the

resolvent operators R±(z) := (∓X − z)−1 : C∞(SM,π∗ E) → D′(SM,π∗ E) to the whole

complex plane C (here D′ denotes the space of distributions), see §2.3 for further details on

the Pollicott-Ruelle theory. It is known that there is an open and dense set of connections

without resonances at 0 (see [CL21]). When this is the case, we can define the twisted

generalized X-ray transform as:

Π∇E
m := πm∗(R+(0) +R−(0))π

∗
m, (1.6)

acting on sections of ⊗m
S T

∗M⊗E →M , see §2.3.3 for further details. This operator turns out

to be pseudodifferential of order −1 (see [CL22, Section 7]) and has some very good analytic

properties (such as ellipticity), as we shall see.

4Actually, (1.3) defines an interesting notion if the bundle π∗ E → SM is transparent, i.e. the holonomy

with respect to the connection π∗∇E along closed geodesics is trivial, see [CL22, Section 7.2] for a discussion.
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Symmetric tensors with values in the bundle E (also called twisted symmetric tensors in

the following) also admit a canonical decomposition into a potential part and a solenoidal

part, see §2.2.3. The twisted potential tensors are always contained in the kernel of Π∇E
m and

we say that the operator is s-injective if this is an equality. We will prove the following:

Theorem 1.5. Let (M,g) be a smooth Anosov manifold of dimension ≥ 3 and let πE : E →M

be a smooth Hermitian vector bundle. There exists k0 ≫ 1 such that the following holds. For

all m ∈ Z≥0, there exists an open dense set Sm ⊂ AE (for the Ck0-topology) of unitary

connections with s-injective twisted generalized X-ray transform Π∇E
m . In particular, the space

of connections S := ∩m≥0Sm whose twisted generalized X-ray transforms are all s-injective is

residual in Ak0
E .

We also point out here that a similar result holds for the induced connection on the endo-

morphism bundle, see Theorem 5.11. This plays a crucial role in the study of the holonomy

inverse problem which consists in reconstructing a connection (up to gauge) from the knowl-

edge of the trace of its holonomy along closed geodesics, see [CL22] for further details. We

believe that a similar result should hold in the boundary case and this is left for future

investigation.

1.4. Strategy of proof, organization of the paper. The strategy of both Theorems

1.1 and 1.5 is the same, although the metric case (Theorem 1.1) is more involved due to

complicated computations. The idea is also reminiscent of our previous work [CL21], where

a notion of operators of uniform divergence type was introduced. Let us discuss the metric

case. If the X-ray transform Ig0m is not s-injective for some m ∈ Z≥0 and g0 ∈ MAnosov (or

Mk0
Anosov) then, equivalently, the generalized X-ray transform operator Πg0

m is not s-injective.

This operator is non-negative, pseudodifferential of order −1 and elliptic on kerD∗
g0 (see

§2.3.2): as a consequence, it has a well-defined spectrum when acting on the Hilbert space

H := L2(M,⊗2
ST

∗M) ∩ kerD∗
g0 ,

which lies in R≥0 and accumulates to z = 0. The fact that this operator is not s-injective

is equivalent to the existence of an eigenvalue at z = 0. The accumulation of the spectrum

at 0 (due to the compactness of the operator) is a slight difficulty and we first need to

multiply Πg0
m by a certain invertible Laplace-type operator ∆ of order k > 1/2 to obtain

Pg0 = πkerD∗
g0
∆Πg0

m∆πkerD∗
g0

which is a pseudodifferential operator of positive order (hence

the spectrum accumulates to +∞) with the same kernel as Πg0
m . The idea is to show that we

can produce arbitrarily small perturbations g of the metric g0 so that Pg has no eigenvalue

at 0.

If γ denotes a small circle near 0 in C (such that the interior of γ only contains the 0

eigenvalue of Pg0) and λg is the sum of the eigenvalues of Pg inside γ, then by elementary

spectral theory, we know that Ck0 ∋ g 7→ λg is at least C3 near g0 when k0 ≫ 1 is large

enough. Moreover, due to the non-negativity of the operators Pg, we have dλ|g=g0 = 0. We

then compute the second variation and show, using an abstract perturbative Lemma 5.2, that



GENERIC INJECTIVITY OF THE X-RAY TRANSFORM 7

for all f ∈ C∞(M,⊗2
ST

∗M):

d2 λ|g=g0(f, f) =
d∑

i=1

(〈
d2 P |g=g0(f, f)ui, ui

〉
L2

− 2
〈
P−1
g0 dP |g=g0(f)ui,dP |g=g0(f)ui

〉
L2

)
,

(1.7)

where d is the dimension of kerPg0 and (u1, ..., ud) is an L2-orthonormal basis of kerPg0 .

Writing the perturbation of the metric as gt = g0 + tf , we have λgt = t2 d2 λg=g0(f, f) +

t3O(‖f‖3
Ck0

) and it thus suffices to find f ∈ C∞(M,⊗2
ST

∗M) such that d2 λg=g0(f, f) > 0.

This means that one of the 0-eigenvalues was ejected for a small perturbation of g0, and

iterating this process, one obtains a metric g close to g0 such that Pg is injective.

For that, we assume that the contrary holds, namely that the second variation is always

zero. We then consider the maps in (1.7), namely f 7→ 〈d2 P |g=g0(f, f)ui, ui〉L2 and f 7→
〈P−1

g0 dP |g=g0(f)ui,dP |g=g0(f)ui〉L2 . We show that these quantities can all be put in the

form 〈Af, f〉L2 , for some pseudodifferential operator A. The important point here is to

evaluate the order of A and to compute exactly its principal symbol.

As a consequence, (1.7) can be put in the form 〈Bf, f〉L2 = 0 for some ΨDO denoted by

B ∈ Ψ∗(M,⊗2
ST

∗M → ⊗2
ST

∗M)5. Taking (real-valued) Gaussian states for the perturbations

f , we then obtain by an elementary lemma that for all (x0, ξ0) ∈ T ∗M \ {0} and for all

f ∈ ⊗2
ST

∗
x0
M :

〈σB(x0, ξ0)f, f〉⊗2
ST

∗
x0

M = 0,

where σB(x0, ξ0) ∈ End(⊗2
ST

∗
x0
M) denotes the principal symbol of B. In order to conclude,

it is therefore sufficient to contradict the previous equality. This problem turns out to be

of purely algebraic nature and relies on the representation theory of SO(n) via spherical

harmonics, which is treated in the preliminary section §3. We also point out that the operator

B is a priori not elliptic (see Remark 5.8), which prevents us from proving that, at least

locally, there is only a finite-dimensional submanifold of isometry classes with non-injective

X-ray transform.

The main technical ingredients are recalled in §2 but we assume that the reader is familiar

with the basics of microlocal analysis. The proof of the genericity in the connection case

is developed in §5 (with applications to the tensor tomography question for connections in

Corollary 5.10) and the metric case is handled in §6. Applications of our theorems to generic

injectivity of the X-ray transform on manifolds with boundary can be found in §7.

To conclude, let us mention that the approach initiated in [CL21] and developed in the

present paper to study generic properties of elliptic pseudodifferential operators seems new

(here by generic properties we mean for instance the simplicity of the spectrum, non-degeneracy

of nodal sets of eigenfunctions, and so on). It is at least very different from the historical

approach of Uhlenbeck [Uhl76] and others.

5If E ,F → M are two vector bundles over M , we denote by Ψ∗(M, E → F) the standard space of pseudo-

differential operators (of all orders) obtained by quantizing symbols in the Kohn-Nirenberg class ρ = 1, δ = 0,

see [Shu01] for further details.
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2. Technical preliminaries

2.1. Elementary Riemannian geometry. We refer to [Pat99] for further details on the

content of this paragraph. Let (M,g) be a smooth Riemannian manifold. We denote by

SM := {(x, v) ∈ TM | gx(v, v) = 1} ⊂ TM,

its unit tangent bundle. Let (ϕt)t∈R be the geodesic flow generated by the vector fieldX. If π :

SM →M denotes the projection, we define V := ker dπ to be the vertical subspace. Recall the

definition of the connection map K : T (SM) → TM : consider (x, v) ∈ SM,w ∈ T(x,v)(SM)

and a curve (−ε, ε) ∋ t 7→ z(t) ∈ SM such that z(0) = (x, v), ż(0) = w; write z(t) =

(x(t), v(t)); then K(x,v)(w) := ∇ẋ(t)v(t)|t=0, where ∇ denotes the Levi-Civita connection of

(M,g). The Sasaki metric gSas on SM is defined as follows:

gSas(w,w
′) := g(dπ(w), dπ(w′)) + g(K(w),K(w′)).

Write H := kerK ∩ (R · X)⊥ for the horizontal subspace and Htot := RX ⊕ H for the total

horizontal space. Then we have the following splitting:

T (SM) = R ·X ⊕⊥
V⊕⊥

H, (2.1)

where ⊕⊥ denotes orthogonal sum with respect to gSas. We will denote by πH, πHtot , πV the

orthogonal projections onto the respective spaces H,Htot,V. We denote by ∇Sas the gradient

of the Sasaki metric. The splitting (2.1) gives rise to a decomposition of the gradient

∇Sas(f) = Xf ·X +∇Hf +∇Vf,

where f ∈ C∞(SM), and ∇Hf ∈ C∞(SM,H),∇Vf ∈ C∞(SM,V).

The geodesic vector field X is a contact vector field with contact 1-form α such that

α(X) = 1, ıXdα = 0 and α has the expression:

α(x,v)(ξ) = gx(d(x,v) π(ξ), v), ξ ∈ T(x,v)SM. (2.2)

We have kerα = H⊕V and dα is non-degenerate on kerα (it is a symplectic form). Moreover

dα|H×H = dα|V×V = 0. The space kerα is equipped with a canonical almost complex structure

J defined in the following way: if Z ∈ C∞(SM, kerα), we write Z = (ZH, ZV) to denote its

horizontal ZH = dπ(Z) and vertical ZV = K(Z) parts; then JZ = (−ZV, ZH), see [Pat99,

Section 1.3.2]. For such Z, the following relation between the contact form and the Sasaki

metric holds (see [Pat99, Proposition 1.24]):

ιZdα(•) = −gSas(JZ, •). (2.3)
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We will denote by divSas := (∇Sas)∗ the divergence operator with respect to the Sasaki metric.

When clear from context, we will drop the Sasaki superscript. Then we have:

∀Z ∈ C∞(SM,T (SM)),∀f ∈ C∞(SM), div(fZ) = f div(Z)− Zf. (2.4)

Equivalently, the divergence operator is defined by

div(Z)d volgSas = −LZ(d volgSas),

where LZ is the Lie derivative along Z and d volgSas is the volume form of the Sasaki metric.

With our conventions, the following formal adjoint formula holds:

∀Z ∈ C∞(SM,T (SM)), Z∗ = −Z + div(Z). (2.5)

The Sasaki volume form satisfies the property that (see [Pat99, Exercise 1.33])

d volgSas =
1

(n− 1)!
α ∧ (dα)n−1. (2.6)

When the metric g ∈ MAnosov is Anosov, the following crucial property is known [Kli74]:

Es ∩ V = {0} , Eu ∩ V = {0} . (2.7)

As we shall see, this property is essential in proving the pseudodifferential nature of certain

operators, see §4. This also implies that the manifold has no conjugate points, namely:

∀t 6= 0, V ∩ dϕt(RX ⊕ V) = {0} . (2.8)

2.2. Symmetric tensors. This material is standard but it might be hard to locate a com-

plete reference in the literature. Further details can be found in [DS10, GL21, Lef19b, CL21].

2.2.1. Symmetric tensors in Euclidean space. Let (E, gE) be a n-dimensional Euclidean space

and (e1, ..., en) be an orthonormal basis. Let e∗i := gE(ei, •) be the covector given by the

musical isomorphism. We denote by ⊗mE∗, the space of m-tensors and ⊗m
S E

∗ the space of

symmetric m-tensors, namely f ∈ ⊗m
S E

∗ if and only if

∀v1, ..., vm ∈ E, ∀σ ∈ Sm, f(v1, ..., vm) = f(vσ(1), ..., vσ(m)).

Here Sm denotes the permutation group of {1, . . . ,m}. Given K = (k1, ..., km), we write

e∗K := e∗k1 ⊗...⊗ e∗km. The metric gE induces a natural inner product on ⊗mE∗ given by:

〈e∗K , e∗K ′〉⊗mE∗ := δk1k′1 ...δkmk′m .

The symmetrization operator S : ⊗mE∗ → ⊗m
S E

∗ defined by:

S(η1 ⊗ ...⊗ ηm) :=
1

m!

∑

σ∈Sm

ησ(1) ⊗ ...⊗ ησ(m),

is the orthogonal projection onto ⊗m
S E

∗. We introduce the trace operator T : ⊗m
S E

∗ →
⊗m−2

S E∗:

T f :=
n∑

i=1

f(ei, ei, •, ..., •),

and this is formally taken to be equal to 0 for m = 0, 1. We say that a symmetric tensor is

trace-free if its trace vanishes and denote by ⊗m
S E

∗|0−Tr this subspace. We let J : ⊗m
S E

∗ →
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⊗m+2
S E∗ be defined by J (f) := S(gE⊗f) which is the adjoint of the trace map T (with respect

to the standard inner product previously defined on symmetric tensors). The operator T ◦ J
is a scalar multiple of the identity on ⊗m

S E
∗|0−Tr. Moreover, the total space of symmetric

tensors of degree m breaks up as the orthogonal sum:

⊗m
S E

∗ = ⊕k≥0J 2k
(
⊗m−2k

S E∗|0−Tr

)
.

We define Pm(E) to be the set of homogeneous polynomials of degree m; Hm(E), the subset

of harmonic homogeneous polynomials of degree m. There is a natural identification λm :

⊗m
S E

∗ → Pm(E) given by the evaluation map λmf(v) := f(v, ..., v) (where v ∈ E). Moreover,

λm : ⊗m
S E

∗|0−Tr → Hm(E) is an isomorphism and

λm : ⊗m
S E

∗ = ⊕k≥0J 2k
(
⊗m−2k

S E∗|0−Tr

)
→ ⊕k≥0|v|2kHm−2k(E), (2.9)

is a graded isomorphism (it maps each summand to each summand isomorphically). We let

S
n−1 := {v ∈ E | gE(v, v) = 1} be the unit sphere in E and r : C∞(E) → C∞(Sn−1) be the

operator of restriction. Define π∗m := r ◦ λm, πm∗ its adjoint, and denote by Ωm(E) the

spherical harmonics of degree m, namely

Ωm(E) := ker(∆Sn−1 +m(m+ n− 2))|C∞(Sn−1),

where ∆Sn−1 denotes the induced Laplacian on the sphere, and Sm(E) := ⊕k≥0Ωm−2k(E),

where Ωk(E) = {0} for k < 0. It is well-known that

π∗m : ⊗m
S E

∗ = ⊕k≥0J 2k
(
⊗m−2k

S E∗|0−Tr

)
→ ⊕k≥0Ωm−2k(E) = Sm(E),

is a graded isomorphism.

2.2.2. Symmetric tensors on Riemannian manifolds. We now consider a Riemannian manifold

(M,g). Given f ∈ C∞(M,⊗m
S T

∗M), we define its symmetric derivative

Df := S ◦ ∇f ∈ C∞(M,⊗m+1
S T ∗M),

where ∇ is the Levi-Civita connection. The operator D is an elliptic differential operator

of degree 1 and is of gradient type, i.e. its principal symbol is injective (see [CL21, Section

3] for instance). When the geodesic flow is ergodic, its kernel is given by ker(D) = {0} for

m odd, and ker(D) = R · S m
2 (g) for m even. Its adjoint is denoted by D∗f = −Tr(∇f) ∈

C∞(M,⊗m−1
S T ∗M) and is of divergence type.

Any symmetric tensor f ∈ C∞(M,⊗m
S T

∗M) can be uniquely decomposed as

f = Dp+ h,

where h ∈ C∞(M,⊗m
S T

∗M)∩kerD∗ is the solenoidal part and we have p ∈ C∞(M,⊗m−1
S T ∗M)

(and Dp is the potential part). We denote by πranD the L2-orthogonal projection onto the

first factor and by πkerD∗ = 1− πranD the L2-orthogonal projection onto the second factor.

Both are pseudodifferential operators of order 0, namely in Ψ0(M,⊗m
S T

∗M → ⊗m
S T

∗M). The

latter is given by the expression:

πkerD∗ = 1−D(D∗D)−1D∗. (2.10)
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We use here the convention introduced in §2.5 for (D∗D)−1 asD∗D has some non-trivial kernel

for m even. The principal symbol of D is given by σD(x, ξ) = ijξ where jξ = iS(ξ ⊗ •) and

i is the imaginary unit satisfying i2 = −1, whereas that of D∗ is given by σD∗(x, ξ) = −iıξ♯ ,
where ıw is the contraction by w. The space ⊗m

S T
∗
xM breaks up as the orthogonal sum:

⊗m
S T

∗
xM = ran(jξ)⊕⊥ ker ıξ♯ .

The principal symbol of πkerD∗ is then given by the orthogonal projection onto the second

summand, namely

σπkerD∗ (x, ξ) = πker ı
ξ♯
. (2.11)

We have the important relation, proved originally in [GK80b, Proposition 3.1]:

Xπ∗m = π∗m+1D. (2.12)

The spherical harmonics introduced previously in §2.2.1 allow to decompose smooth functions

f ∈ C∞(SM) as f =
∑

m≥0 fm, where fm ∈ C∞(M,Ωm) is the projection onto spherical

harmonics of degree m and

Ωm(x) := ker (∆V(x) +m(m+ n− 2)) |C∞(SxM),

where ∆V(x) : C∞(SxM) → C∞(SxM) denotes the vertical Laplacian acting on functions

on SxM (i.e. the round Laplacian on the sphere). We call degree of f (denoted by deg(f))

the highest non-zero spherical harmonic in this expansion (which can take value +∞) and

say that f has finite Fourier content if its degree is finite. We will say that a function is

even (resp. odd) if it contains only even (resp. odd) spherical harmonics in its expansion, i.e.

f2k+1 = 0 for all k ∈ Z≥0 (resp. f2k = 0 for all k ∈ Z≥0). The operator X acts on spherical

harmonics as:

X : C∞(M,Ωm) → C∞(M,Ωm−1)⊕ C∞(M,Ωm+1),

and therefore splits into X = X− + X+, where X± denotes the projection onto the Ωm±1

factor. The operator X+ is of gradient type and thus, for each m ∈ N, kerX+|C∞(M,Ωm) is

finite-dimensional, and we call elements in this kernel Conformal Killing Tensors (CKTs).

Eventually, we will also use another lift of symmetric tensors to the unit tangent bundle

via the following map, which we call the Sasaki lift :

π∗m,Sas : C
∞(M,⊗m

S T
∗M) → C∞(SM,⊗m

S T
∗(SM)),

π∗m,Sasf(ξ1, ..., ξm) := f(dπ(ξ1), ...,d π(ξm)).
(2.13)

We note that the pullback π∗m,Sas is different from π∗m introduced in §2.2.1.

2.2.3. Twisted symmetric tensors. The previous discussion can be generalized in order to in-

clude a twist by a vector bundle E → M , see [CL21, Section 2.3] for further details. We

let (e1, ..., er) be a local orthonormal frame of E (defined around a fixed point x0 ∈ M).

The smooth sections of the pullback bundle π∗ E → SM can also be decomposed into

spherical harmonics, namely f ∈ C∞(SM,π∗ E) can be written as f =
∑

m≥0 fm, where

fm ∈ C∞(M,Ωm⊗E) and a similar notion of degree is defined, as well as the evenness/oddness

of a section.

If∇E is a unitary connection on E given in a local patch of coordinates U ∋ x0 by∇E = d+Γ,

where Γ is a connection 1-form with values in skew-Hermitian endomorphisms, (Γ(∂xi
))kℓ =
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Γk
iℓ, and we consider a twisted symmetric tensor f ∈ C∞(M,⊗m

S T
∗M ⊗ E), which we write

locally as f =
∑r

k=1 uk⊗ek with uk ∈ C∞(U,⊗m
S T

∗U), we can define its symmetric derivative

DE

(
r∑

k=1

uk ⊗ ek

)
=

r∑

k=1

(
Duk +

r∑

ℓ=1

n∑

i=1

Γk
iℓS(uℓ ⊗ dxi)

)
⊗ ek. (2.14)

As in §2.2.2, twisted symmetric tensors can be uniquely decomposed as f = DEp+ h, where

p ∈ C∞(M,⊗m−1
S T ∗M ⊗ E) and h ∈ C∞(M,⊗m

S T
∗M ⊗ E) is solenoidal, i.e. in ker(DE)

∗.

The pullback operators extend as maps

π∗m : C∞(M,⊗m
S T

∗M ⊗ E) → ⊕k≥0C
∞(M,Ωm−2k ⊗ E).

More precisely, in the local orthonormal frame (ei)
r
i=1, for a section f written locally as above

as f =
∑r

k=1 uk ⊗ ek, we have π∗mf(x, v) :=
∑r

k=1 π
∗
muk(x, v)ek(x) ∈ E(x), where on the

right hand side π∗m acts on symmetric tensors as introduced in §2.2.1. For simplicity, we keep

the same notation for both twisted and non-twisted pullbacks and note that the two agree

in the case E = M × C. The bundle π∗ E → SM is naturally equipped with the pullback

connection π∗∇E and we set X := (π∗∇E)X which is a differential operator of order 1 acting

on C∞(SM,π∗ E). We still have the relation:

Xπ∗m = π∗m+1DE , (2.15)

and X decomposes as:

X : C∞(M,Ωm ⊗ E) → C∞(M,Ωm−1 ⊗ E)⊕C∞(M,Ωm+1 ⊗ E), (2.16)

that is X splits as X = X−+X+, whereX+ is of gradient type. Elements in kerX+ are called

twisted Conformal Killing Tensors. Non-existence of twisted CKTs is a generic property of

connections as proved in [CL21].

2.3. Pollicott-Ruelle theory. The theory of Pollicott-Ruelle resonances which is briefly

recalled below has been widely studied in the literature, see [Liv04, GL06, BL07, FRS08,

FS11, FT13, DZ16]. We also refer to [Gui17a, CL21, Lef19b] for further details on these

paragraphs. In what follows, we will make the running assumption that (M,g) is a closed

Anosov manifold.

2.3.1. Meromorphic extension of the resolvents. Let E → M be a Hermitian bundle over

M equipped with a unitary connection ∇E . We consider the pullback bundle π∗ E → SM

equipped with the pullback connection π∗∇E and set X := (π∗∇E)X . Defining the domain

D(X) :=
{
u ∈ L2(SM,π∗ E) | Xu ∈ L2(SM,π∗ E)

}
6,

the differential operator X (of order 1) is skew-adjoint as an unbounded operator with dense

domain D(X) and has absolutely continuous spectrum on iR (with possibly embedded eigen-

values).

6The scalar product on L2 is given by 〈f, f ′〉L2 :=
∫
SM

h (f(x, v), f ′(x, v))Ex
dµ(x, v), where h denotes the

Hermitian metric on E and µ is the Liouville measure on SM .
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We introduce the positive (resp. negative) R+(z) (resp. R−(z)) resolvents, defined for for

ℜ(z) > 0 by:

R±(z) := (∓X− z)−1 = −
∫ ±∞

0
e∓tze−tX d t.

Note that given (x, v) ∈ SM and f ∈ C∞(SM,π∗ E), we have that e−tXf(x, v) ∈ Ex is

the parallel transport of f(ϕ−t(x, v)) along the flowline (ϕs(z))s∈[−t,0] with respect to the

connection π∗∇E .

These resolvents initially defined on {ℜ(z) > 0} can be meromorphically extended to C by

making X act on anisotropic Sobolev spaces. More precisely, there exists a scale of Hilbert

spaces Hs
± (where s > 0) and a constant c > 0 such that

{ℜ(z) > −cs} ∋ z 7→ R±(z) ∈ Hs
±,

are meromorphic families of operators with poles of finite rank. These spaces are defined so

that f ∈ Hs
+ (resp. Hs

−) implies that f is microlocally in Hs near E∗
s (resp. Hs near E∗

u)

and microlocally H−s near E∗
u (resp. H−s near E∗

s ). The poles are called the Pollicott-Ruelle

resonances: they are intrinsic to the operators X and do not depend on any choices made in

the construction of the spaces. Moreover, these operators are holomorphic in {ℜ(z) > 0} and

thus all the resonances are contained in {ℜ(z) ≤ 0}.

2.3.2. Generalized X-ray transform. When E = C×M , X = X is nothing but the vector field

and we use the notations R±(z) for the resolvents. In this case, there is a single resonance on

iR located at z = 0. It is a pole of order 1 and the resolvents have the expansion near z = 0:

R±(z) = −Π±

z
−R±,0 −R±,1z +O(z2),

for some operators R±,1, R±,0 : Hs
± → Hs

±, bounded for any s > 0. Moreover, the spectral

projection at 0 (i.e. the residue at z = 0) is

Π+ = Π− = 〈•, µ〉1, (2.17)

where µ is the normalized Liouville measure i.e. so that 〈1, µ〉 = 1, see [Gui17a] for instance.

We record a few useful relations involving Π± and R±,0:

XR+,0 = R+,0X = 1−Π+, XR−,0 = R−,0X = −1+Π−, R∗
+,0 = R−,0,

XR+,1 = R+,1X = −R+,0, XR−,1 = R−,1X = R−,0.
(2.18)

We introduce the operator

I := R+,0 +R−,0 +Π+ (2.19)

and define the generalized X-ray transform by:

Πg
m := πm∗Iπ∗m, (2.20)

which is an operator acting on sections of the bundle ⊗m
S T

∗M → M of symmetric tensors.

When clear from context, for the simplicity of notation we will drop the superscript g in Πg
m.

We say that Πm is s-injective if Πm is injective when restricted to kerD∗. The following

provides a relation with the X-ray transform Im:
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Lemma 2.1. Assume that (M,g) is a closed Anosov manifold. Let u ∈ C∞(M,⊗m
S T

∗M).

Then Πmu = 0 if and only if there exists v ∈ C∞(SM) such that π∗mu = Xv. Moreover, Im
is s-injective if and only if Πm is s-injective.

Proof. The first part follows from [Gui17a, Theorem 1.1], and the following observation.

Note that our convention is different from [Gui17a] who writes Π := R+,0 + R−,0 and uses

this operator instead of I in definition (2.20); however, both Π and Π+ are non-negative

operators (see e.g. [CL21, Lemma 5.1]) and so Πmu = 0 is equivalent to Ππ∗mu = 0 and

Π+π
∗
mu = 0. By (2.17), the latter condition gives that the average of π∗mu is zero, so [Gui17a,

Theorem 1.1] indeed applies.

The second part is then the consequence of the smooth Livšic theorem (see e.g. [Lef19b,

Lemma 2.5.4]). �

By the preceding Lemma, the study of Im is reduced to the study of Πm and as we shall see

in §4, Πm enjoys very good analytic properties. In other words, in order to prove our main

Theorem 1.1, it suffices to show that Πg
m is generically s-injective with respect to the metric.

2.3.3. Twisted generalized X-ray transform. We now go back to the case of a Hermitian vector

bundle E → M . For the sake of simplicity, we assume that kerX = {0} but the discussion

could be generalized, see the footnote at the beginning of §5. We introduce:

I∇E := R++R−,

where R+ := −R+(z = 0) and R− := −R−(z = 0), and define the twisted generalized X-ray

transform by:

Π∇E
m := πm∗I∇Eπ∗m (2.21)

Similarly to the first part of Lemma 2.1, the following was shown in [CL21, Lemma 5.1]:

Lemma 2.2. Let u ∈ C∞(M,⊗m
S T

∗M ⊗ E). Then Π∇E
m u = 0 if and only if there exists

v ∈ C∞(SM,π∗ E) such that π∗mu = Xv.

2.4. Properties of the resolvent under perturbations. The generalized X-ray trans-

form operators Πg
m (we now add the index g to insist on the metric-dependence) and Π∇E

m

introduced in the previous paragraphs depend on a choice of metric g and/or connection

∇E . In the following, we will consider perturbations of these operators with respect to these

geometric data. For E ,F → M , two smooth Hermitian vector bundles over M , and s ∈ R,

the spaces of pseudodifferential operators Ψs(M, E → F) are Fréchet spaces (see [GKL22,

Section 2.1] for instance) where the seminorms are defined thanks to local coordinates by

taking the seminorms of the full local symbol in the charts. Let us also mention that it is also

possible to consider pseudodifferential operators obtained by quantizing symbols with limited

regularity (see [Tay91]): actually, all the standard arguments of microlocal analysis (such as

boundedness on Sobolev spaces for instance) involve only a finite number of derivatives of the

full symbol, and this number depends linearly on the dimension. As a consequence, for k ≫ n

(where n is the dimension of M), we can consider the space Ψs
(k)(M, E → F) of pseudodif-

ferential operators obtained by quantizing Ck-symbols (satisfying the usual symbolic rules of

derivation).
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Lemma 2.3. The following maps are smooth:

MAnosov ∋g 7→ Πg
m ∈ Ψ−1(M,⊗m

S T
∗M → ⊗m

S T
∗M),

C∞(M,T ∗M ⊗ Endsk(E)) ∋∇E 7→ Π∇E
m ∈ Ψ−1(M,⊗m

S T
∗M ⊗ E → ⊗m

S T
∗M ⊗ E).

More precisely, for every k ∈ Z≥0, k
′′ ∈ Z≥1, there is k′ ≫ max(n, k) such that the following

maps are Ck:

Mk′
Anosov ∋g 7→ Πg

m ∈ Ψ−1
(k′′)(M,⊗m

S T
∗M → ⊗m

S T
∗M),

Ck′(M,T ∗M ⊗ Endsk(E)) ∋∇E 7→ Π∇E
m ∈ Ψ−1

(k′′)(M,⊗m
S T

∗M ⊗ E → ⊗m
S T

∗M ⊗ E).

Lemma 2.3 will be used in §5 and §6 in order to perturb the generalized X-ray transforms

with respect to the connection/metric. For k = 0, Lemma 2.3 is precisely the content of

[GKL22, Proposition 4.1]. Inspecting the proof, one can see that it also works for higher

order derivatives. The heart of the proof is based on understanding the differentiability of

the resolvent map

C∞(SM,T (SM)) × C ∋ (Y, z) 7→ (∓Y − z)−1 ∈ L(Hs
±),

where Hs
± is the scale of anisotropic Sobolev spaces (which can be made independent of the

vector field by [Bon20]), and Y is a vector field close to X. This perturbation theory is now

standard and we refer to [Bon20, DGRS20, CDDP22] for further details.

2.5. Notational convention. Throughout the paper (see for instance (5.8) below), if A is

an operator on a Hilbert space H with meromorphic resolvent (A − z)−1 on a half-space

ℜ(z) ≥ −ε (for some ε > 0), we use the convention that A−1 denotes the holomorphic part

of the resolvent at 0. More precisely, close to z = 0 we can write

(A− z)−1 = RA +

N∑

j=1

Aj

zj
+O(z),

for some finite rank operators (Aj)
N
j=1 and we set A−1 := RA. In particular, if z = 0 is not in

the spectrum of A, A−1 is the inverse for A.

3. On spherical harmonics

We record here some facts about spherical harmonics. We keep the notation (E, gE) for a

Euclidean vector space of dimension n.

3.1. The restriction operator. In the following, we will need to understand how the degree

of a function is changed when restricting to a hypersphere. For ξ ∈ E∗\{0}, define ~n(ξ) := ξ♯

|ξ| .

If Sn−1 denotes the unit sphere in E, we introduce S
n−2
ξ :=

{
v ∈ S

n−1 | 〈ξ, v〉 = 0
}
. Any

vector v ∈ S
n−1 \ {±~n(ξ)} can be uniquely decomposed as v = cos(ϕ)~n(ξ) + sin(ϕ)u, where

ϕ ∈ (0, π), u ∈ S
n−2
ξ (the diffeomorphism is singular at the extremal points ϕ = 0 and ϕ = π

but since they form a set of measure 0, this is harmless in what follows). The round measure

dS(v) on S
n−1 is then given in these new coordinates by

dS(v) = sinn−2(ϕ) dϕdSξ(u), (3.1)
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where dSξ(u) denotes the canonical round measure on the (n − 2)-dimensional sphere S
n−2
ξ .

3.1.1. Standard restriction. We start with the following:

Lemma 3.1. Assume n > 2. Let w ∈ C∞(Sn−1). Then w has degree ≤ m if and only if the

restriction w |
S
n−2
ξ

to any hypersphere S
n−2
ξ has degree ≤ m.

Proof. We start with the easy direction. If w ∈ Ωm(Sn−1) is a spherical harmonic of degree

m, then:

w |
S
n−2
ξ

∈ ⊕k≥0Ωm−2k(S
n−2
ξ ).

This fact follows from the following observation: if w ∈ Ωm(Sn−1), then w is the restriction

of a harmonic homogeneous polynomial P ∈ Hm(E) defined on E. For any ξ ∈ E∗ \ {0},
let H = ker(ξ) ⊂ E denote the codimension 1 hyperplane determined by ξ. Then P |H is

still a homogeneous polynomial of degree m (it may not be harmonic, though) and thus its

restriction to S
n−2
ξ is a sum of spherical harmonics of degree ≤ m (and with same parity as

m).

We now show the converse. The case m = 0 is obvious so we can always assume that

m ≥ 1. Note first that we may split w into odd and even terms, w = wodd +weven. We have

(w |
S
n−2
ξ

)odd = wodd |Sn−2
ξ

and (w |
S
n−2
ξ

)even = weven |Sn−2
ξ

, and so for every ξ, both weven |Sn−2
ξ

and wodd |Sn−2
ξ

are of degree ≤ m. Thus, we may assume w is either pure odd or pure even, and

that moreover this is the parity of m (if m and w have distinct parities, then the hypothesis

of the Lemma is true for m− 1).

The conclusion is now implied by the following claim : let w ∈ C∞(E \ {0}) be an m-

homogeneous function (sincem > 0 it is at least continuous at x = 0) such that the restriction

w |H to any hyperplane H ⊂ E is a homogeneous polynomial of degree m. Then w is a

homogeneous polynomial of degree m.

First of all, we start by proving that w is smooth at x = 0. Let (e1, ..., en) be an orthonormal

basis of E and write x =
∑n

i=1 xiei. We claim that ∂m+1
xi

w ≡ 0 on E. Indeed, fix i ∈ {1, ..., n},
fix x ∈ E and consider a hyperplane H containing both x and ei (which forces the condition

n > 2). Then f |H is a polynomial of degree m. In particular, it is smooth and satisfies:

∂m+1
xi

w(x) = ∂m+1
t w(x+ tei)|t=0 = 0,

since it is polynomial. Actually, ∂kxi
w ≡ 0 as long as k ≥ m+1. In particular, P w = 0 on E,

where P =
∑n

i=1 ∂
2m
xi

. As P is elliptic and w continuous, this gives that w is smooth on E.

We now write by Taylor’s theorem:

w(x) =
∑

|α|≤m

1

α!
xα · ∂αx w(0) +R(x),

where R(x) = O(|x|m+1) as |x| → 0 and define S(x) :=
∑

|α|≤m

1

α!
xα · ∂αx w(0). Taking any

hyperplane H, we obtain:

w |H(x)− S|H(x) = O(|x|m+1).
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The left-hand side is a polynomial of degree ≤ m so it implies that it is equal to 0. This

gives that R|H ≡ 0. Since this holds for every hyperplane H, this implies R ≡ 0 and w is a

polynomial of degree ≤ m. Using m-homogeneity of w, it is homogeneous of degree m. �

Remark 3.2. We observe that the proof actually gives a stronger statement which is: assume

w ∈ C∞(E \ {0}) is m-homogeneous and a polynomial of degree m when restricted to any

plane (and not hyperplane), then it is a polynomial of degree m on E.

3.1.2. Differentiated restriction. The following lemma will be used for the generic s-injectivity

with respect to the metric. We will denote by ∇ the gradient with respect to the spherical

metric on S
n−1.

Lemma 3.3. Assume n ≥ 3 and let m ∈ Z≥0 and w ∈ C∞(Sn−1) such that deg(w) ≥ m+1.

Then, there exists ξ ∈ E∗ \ {0} such that 〈ξ,∇w(•)〉|
S
n−2
ξ

has degree ≥ m (seen as a function

on S
n−2
ξ ).

This Lemma will be applied later in each fibre E = TxM and ∇ will be the vertical gradient

∇V; we will take ξ ∈ T ∗
xM . If m = 0, degree ≥ 0 also implies non-zero.

Proof. We assume the degree of 〈ξ,∇w(•)〉|
S
n−2
ξ

is always < m (for all ξ 6= 0) and show that

this forces w to be of degree ≤ m. In fact, we may assume without loss of generality that w

is either pure odd or pure even, and of the same parity as m+1. Let us deal with the m ≥ 2

case first.

First of all, we extend the smooth function w to an (m − 1)-homogeneous function on E

(which we still denote by w). In particular, this extension is smooth on E\{0}. We now claim

that for every ξ, dw(ξ♯) is a homogeneous polynomial of degree ≤ m − 2 on ker ξ. Indeed,

consider a point v ∈ ker ξ \ {0}. The total gradient on E is

∇totf =
n∑

i=1

∂xi
f(v).∂xi

= ∇f + d f(~n).~n,

where ~n := v
|v| , ∇ denotes the gradient of f restricted to the spheres and (xi)

n
i=1 are the

coordinates induced by an orthonormal basis (ei)
n
i=1 of E. Hence, for v ∈ ker ξ, we have:

〈ξ,∇w(v)〉 =
n∑

i=1

ξi.∂xi
w(v)− dw(~n).〈ξ, ~n〉 = dw(ξ♯), (3.2)

where ξi. denotes multiplication by ξi. Therefore, 〈ξ,∇w(v)〉|ker ξ is a homogeneous function

of degree m − 2 whose restriction to the sphere S
n−2
ξ is of same parity as m, and thus has

degree ≤ m− 2. As a consequence, it is a homogeneous polynomial of degree m− 2 on ker ξ.

We now fix an arbitrary v0 ∈ E \ {0} and consider the Taylor-expansion of w at this point:

w(v) =
∑

|α|≤m−1

(v − v0)
α(α!)−1∂αx f(v0)

︸ ︷︷ ︸
P (v):=

+R(v), (3.3)

where R(v) = O(|v − v0|m). We consider v1 ∈ E \ {0}, w ∈ Span(v0, v1)
⊥. If we differentiate

(3.3) in the w-direction and then restrict to the hyperplane w⊥, then we know by the previous
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discussion that dw(w)|w⊥ is a polynomial of degree ≤ m− 2, and so is dP (w)|w⊥ . Moreover,

from Taylor’s theorem dR(w) = O(|v − v0|m−1). As a consequence: d(w−P )(w)|w⊥ =

dR(w)|w⊥ is a polynomial of degree ≤ m − 2 which vanishes to order m − 1 at v0; it is

therefore constant equal to 0. Evaluating at v1, this shows that dR(w) = 0 at v1.

We now introduce Gv0 ⊂ SO(n), the isotropy subgroup of v0, i.e. the subgroup of rotations

fixing the v0 axis. By the previous discussion, R satisfies the following (see Figure 1): given

a sphere S
n−1(r) := {|v| = r}, γ∗R = R for all γ ∈ Gv0 .

v0

v1

w

Figure 1. The function R is constant along the red orbits which correspond to the rotation

around the v0-axis.

We restrict this equality to the unit sphere S
n−1 and observe that (3.3) implies w |Sn−1 =

qv0 + Sv0 , where qv0 ∈ Ω≤m−1 = ⊕k≥0Ωm−1−k is a sum of spherical harmonics of degree

≤ m − 1 and Sv0 is invariant by the action of Gv0 . Note that v0 is arbitrary and taking

some other v1, we see that Sv1 − Sv0 ∈ Ω≤m−1. As each Ωk is a representation of SO(n)

by pullback, in particular it is invariant by Gv1 . This gives that for all γ ∈ Gv1 , one has:

γ∗Sv1 − γ∗Sv0 = Sv1 − γ∗Sv0 ∈ Ω≤m−1. Hence, for all γ ∈ Gv1 , γ
∗Sv0 − Sv0 ∈ Ω≤m−1. Taking

γ′ ∈ Gv2 for some other arbitrary v2, we see that (γ
′)∗γ∗Sv0 − (γ′)∗Sv0 ∈ Ω≤m−1 and since we

also have (γ′)∗Sv0 − Sv0 ∈ Ω≤m−1, this gives that (γ′)∗γ∗Sv0 − Sv0 ∈ Ω≤m−1. By induction,

for any γ1, . . . , γℓ belonging to isotropy subgroups of SO(n), we have:

γ∗1 . . . γ
∗
ℓSv0 − Sv0 ∈ Ω≤m−1.

As products of isotropy subgroups generate SO(n), we deduce that for all γ ∈ SO(n), γ∗Sv0 −
Sv0 ∈ Ω≤m−1. Decomposing Sv0 =

∑
k≥0(Sv0)k into spherical harmonics, we then see that

γ∗(Sv0)k = (Sv0)k for all k ≥ m and γ ∈ SO(n). As Ωk is irreducible [Hel00, Theorem 3.1],

this implies that (Sv0)k = 0. Hence Sv0 is of degree ≤ m − 1 and w |Sn−1 = qv0 + Sv0 is also

of degree ≤ m− 1. This completes the proof of the m ≥ 2 case.

Finally, if m = 0, 1, then (3.2) implies that dw(ξ♯)|ker ξ ≡ 0. Then taking R(v) := w(v) in

(3.3), it is straightforward that dR(w) = 0 at v1 where w, v1 are as before. The remainder

of the proof works the same to show that w |Sn−1 is invariant under the isotropy subgroups,

hence constant, contradicting that deg(w) > 0. �
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3.2. The extension operator. In this paragraph, we study an operator of extension from

a hypersphere S
n−2
ξ to the whole sphere S

n−1. First of all, for m ∈ Z≥1, we introduce the

constant:

Cm :=

∫ π

0
sinm−1(ϕ) dϕ =

√
π

Γ(m2 )

Γ(m+1
2 )

, (3.4)

where Γ is the usual Gamma function. Given a smooth function f ∈ C∞(Sn−2
ξ ) or more

generally, one can take a section f ∈ C∞(Sn−2
ξ , π∗ E), where π : Sn−1 → {0} is the projection,

we define its extension of degree k ∈ N to the whole sphere S
n−1 by the formula:

Ek
ξ f ∈ L2(Sn−1, π∗ E), Ek

ξ f
(
cos(ϕ)~n(ξ) + sin(ϕ)u

)
:= sink(ϕ)f(u). (3.5)

Note that Ek
ξ extends to L2(Sn−2

ξ , π∗ E) by continuity since by definition and (3.1)

‖Ek
ξ f‖2L2(Sn−1,π∗ E) = C2k+n−1‖f‖2L2(Sn−2

ξ
,π∗ E)

. (3.6)

Moreover, we have (cf. [Lef19b, Lemma B.1.1]):

Lemma 3.4. For any f ∈ C∞(Sn−2
ξ , π∗ E) and f ′ ∈ ⊗m′

S E∗ ⊗ E, and all m ∈ Z≥0, we have:

Cm+m′+n−1

∫

S
n−2
ξ

〈f(u), π∗m′f ′(u)〉E .dSξ(u) = 〈πkerı
ξ♯
πm′∗E

m
ξ (f), f ′〉⊗m′

S E∗⊗E . (3.7)

Proof. The left hand side of (3.7) equals, after using (3.4):
∫

S
n−2
ξ

∫ π

0

〈
sinm(ϕ)f(u), π∗m′πker ı

ξ♯
f ′ (cos(ϕ).~n(ξ) + sin(ϕ).u)

〉
E
.

sinn−2(ϕ).dϕ.dSξ(u)

=

∫

Sn−1

〈Em
ξ f, π

∗
m′πker ı

ξ♯
f ′〉E .dS = 〈πkerı

ξ♯
πm′∗E

m
ξ (f), f ′〉⊗m′

S E∗⊗E ,

where in the first line we used that 〈ξ, u〉 = 0 on S
n−2
ξ by definition and in the second equality

we used the Jacobian formula (3.1). This concludes the proof. �

We have the following result on the degree:

Lemma 3.5. For all ξ ∈ E∗ \{0}, the following holds. Let f ∈ C∞(Sn−2
ξ ) such that deg(f) ≥

m+ 1. Then, deg(Em
ξ (f)) ≥ m+ 1.

Proof. We argue by contradiction. We assume that Em
ξ (w) has degree ≤ m. In particular, it is

smooth. Moreover, observe that its (m−1)-th jet vanishes at the North pole N := {ϕ = 0} =

~n(ξ). We can therefore compute its differential of degree m. Let 0 6= Z ∈ TNS
n−1, Z = rZ ′,

where |Z ′| = 1. Note that in the (ϕ, u)-coordinates, Z ′ corresponds to ∂ϕ at (ϕ = 0, u) where

u = Z ′ ∈ S
n−2
ξ . Then:

dmEm
ξ (w)N (Z, ..., Z) = rm∂mϕ (Em

ξ (w))(0, u)

= rm∂mϕ
∣∣
ϕ=0

(sinm(ϕ)w |
S
n−2
ξ

(u)) = m!× rmw |
S
n−2
ξ

(u).
(3.8)
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There is a natural identification between TNS
n−1 and ker ξ = ~n(ξ)⊥, and with this iden-

tification dmEm
ξ (w)N defines a symmetric m-tensor on ker ξ. Then (3.8) says w |

S
n−2
ξ

=

1
m!π

∗
m(dmEm

ξ (w)N ) has degree ≤ m, which is a contradiction. �

3.3. Multiplication of spherical harmonics. We end this section with standard results

on multiplication of spherical harmonics:

Lemma 3.6. Let m,k ∈ Z≥0 and assume without loss of generality that m ≥ k. If f ∈
Ωm(E), f ′ ∈ Ωk(E), then:

f × f ′ ∈ ⊕k
ℓ=0Ωm+k−2ℓ(E).

Proof. First of all, extending f and f ′ bym- and k-homogeneity to E, respectively, we directly

see that f × f ′ is a homogeneous polynomial of degree m+ k and so by (2.9):

f × f ′ ∈ ⊕ℓ≥0|v|2ℓHm+k−2ℓ(E).

The only non-trivial part is to show that the projection onto

⊕ℓ≥k+1|v|2ℓHm+k−2ℓ(E)

is zero. For that it suffices to show that ∆ℓ(f × f ′) = 0 as long as ℓ ≥ k + 1. Observe that:

∆(f × f ′) = (∆f)× f ′ + 2∇f · ∇f ′ + f × (∆f ′) = 2

n∑

i=1

∂vif × ∂vif
′,

and thus by iteration:

∆ℓ(f × f ′) = 2ℓ
∑

|α|=ℓ

∂αv f × ∂αv f
′,

which clearly vanishes for ℓ ≥ k + 1 as f ′ is a polynomial of degree k. �

In the particular case where k = 1, the previous lemma shows that f ∈ Ω1(E) gives rise

to two operators f± defined in the following way: if w ∈ Ωm(E), then f × w = f−w+f+w

with f±w ∈ Ωm±1(E). Moreover, by extending f and w as 1- and m-homogeneous harmonic

polynomials denoted by the same letter, we get (∇ denotes the total gradient of E)

f−w =
1

n+ 2(m− 1)

(
∇f · ∇w

)
|Sn−1 . (3.9)

In fact, for non-zero f the map f− : Ωm(E) → Ωm−1(E) is surjective, implying also that

f+ : Ωm(E) → Ωm+1(E) is injective (see [CL21, Lemma 2.3]).

Lemma 3.7. Assume n ≥ 2 and let m,k ∈ Z≥0. Consider w ∈ C∞(Sn−1) such that deg(w) ≥
m. Then, there exists f ∈ Sk(E) such that deg(f.w) ≥ m+ k.

Equivalently, there exists f ∈ ⊗k
SE

∗ such that deg(π∗kf.w) ≥ m+ k.

Proof. We first prove the case k = 1; the cases m = 0 or k = 0 are trivial so we assume

m ≥ 1 from now on. We write w =
∑∞

j=0wj, where wj ∈ Ωj , and denote by the same letter

the harmonic extension of wj (as a j-homogeneous polynomial) to R
n. Take ℓ ≥ m such that
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wℓ 6= 0, and assume for any i = 1, . . . , n that (vi)+ wℓ+(vi)− wℓ+2 = 0, which by (3.9) is

equivalent to:

(n+ 2(ℓ+ 1))−1∂vi wℓ+2 +viwℓ−|v|2(n+ 2(ℓ− 1))−1∂vi wℓ = 0.

Multiplying by vi and summing over i, we obtain using Euler’s formula (i.e. homogeneity)

− ℓ+ 2

n+ 2(ℓ+ 1)
wℓ+2 =

n+ ℓ− 2

n+ 2(ℓ− 1)
|v|2 wℓ .

Applying ∆, this contradicts the fact that wℓ 6= 0.

For general k ∈ Z≥1, by iteratively applying the case k = 1 above, there exist f1, ..., fk ∈
Ω1(E) such that deg(fk · · · f1 w) ≥ m + k. Since f := fk · · · f1 ∈ Sk(E), this completes the

proof. �

Note that there is a straightforward extension to the bundle case (just by applying the

previous lemma coordinate-wise), that is, when considering sections of a trivial bundle π∗ E →
S
n−1, where π : Sn−1 → {0} is the constant map. We record it here and leave the proof as an

exercise for the reader:

Lemma 3.8. Let m,k ∈ Z≥0. Consider w ∈ C∞(Sn−1, π∗ E) such that deg(w) ≥ m. Then,

there exists f ∈ Sk(E)⊗ Endsk(E) such that deg(f.w) ≥ m+ k.

4. Pseudodifferential nature of perturbed generalized X-ray transforms

Under a weaker form, the results of this section can be found in [Gui17a, GL21] and in

[Lef19b, Chapter 2] where the principal symbol of the generalized X-ray transform is computed

in details. We here need a more general result where we “sandwich” (pseudo)differential

operators (we recall that the constants C• were defined in (3.4)):

Proposition 4.1. Let PR, PL : C∞(SM,π∗ E) → C∞(SM,π∗ E) be differential operators of

degree mR,mL ≥ 0 and fix m1,m2 ∈ N0. Then the operator

APR,PL
:= πm1∗PLI∇EPRπ

∗
m2
,

is a classical7 pseudodifferential operator of order m := mR +mL − 1 in

APR,PL
∈ Ψm(M,⊗m2

S T ∗M ⊗ E → ⊗m1
S T ∗M ⊗ E).

Moreover, its principal symbol satisfies, for any f ∈ ⊗m2
S T ∗

xM ⊗ Ex and f ′ ∈ ⊗m1
S T ∗

xM ⊗ Ex:

〈σAPR,PL
(x, ξ)f, f ′〉⊗m1

S T ∗Mx⊗Ex

=
2π

|ξ|

∫

S
n−2
ξ

〈
σPR

(
(x, u), ξH(x, u)

)
(π∗m2

f(u)), σP ∗
L

(
(x, u), ξH(x, u)

)
(π∗m1

f ′(u))
〉
Ex

dSξ(u),

(4.1)

7See below (4.7) for a definition.
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where ξH(x, u) := ξ (dx,u π(•)). More explicitly, the principal symbol of APR,PL
is given by the

formula, for any m ∈ N0:

σAPR,PL
(x, ξ)f

=
2π

|ξ|C
−1
m1+m+n−1πker ıξ♯πm1∗E

m
ξ

[
σPLPR

(
x, u, ξH(x, u)

)
(π∗m2

πker ι
ξ♯
f)
]
.

(4.2)

Remark 4.2. This was originally proved with PL = PR = 1 in [Gui17a], see also [Lef19b].

Note that one could actually take PR, PL in Proposition 4.1 to be pseudodifferential of arbi-

trary order (that only makes the proof slightly longer but the idea is the same).

In the following, we will refer to this result as the sandwich Proposition 4.1. In the case

where E = C×M , the formula reads (using that σP ∗
L
= σPL

):

〈σAPR,PL
(x, ξ)f, f ′〉⊗m1

S T ∗Mx⊗Ex

=
2π

|ξ|

∫

S
n−2
ξ

σPR

(
(x, u), ξH(x, u)

)
σPL

(
(x, u), ξH(x, u)

)
.π∗m2

f(u).π∗m1
f ′(u)

dSξ(u).

We will only prove Proposition 4.1 in the case of the trivial line bundle with trivial connection

in order to simplify the discussion; the generalization to the twisted case is straightforward

modulo some tedious notation. We also make the following important remark:

Remark 4.3. Proposition 4.1 can also be generalized by considering differential operators

PR : C∞(SM,⊗m2
S T ∗(SM)) → C∞(SM),

PL : C∞(SM) → C∞(SM,⊗m1
S T ∗(SM)),

(of degree mR,mL ≥ 0) and looking at the operator:

APR,PL
:= πm1,Sas∗PLIPRπ

∗
m2,Sas,

where π∗m2,Sas
denotes the Sasaki lift introduced in (2.13). The same proof shows that this

operator is pseudodifferential of order mR +mL − 1 with principal symbol satisfying:

〈σAPR,PL
(x, ξ)f, f ′〉⊗m1

S T ∗Mx

=
2π

|ξ|

∫

S
n−2
ξ

σPR

(
(x, u), ξH(x, u)

)
(π∗m2,Sasf(u)).σP ∗

L

(
(x, u), ξH(x, u)

)
(π∗m1,Sas

f ′(u))

dSξ(u),

(4.3)

where ξH(x, u) := ξ (dx,u π(•)). We leave this claim as an exercise for the reader.

First of all, let us fix ε > 0 and a cut off function χ ∈ C∞
0 (R; [0, 1]), symmetric around

zero, such that

χ(t) = 1, t ∈
[
−ε
2
,
ε

2

]
, χ(t) = 0, |t| ≥ ε.

We set (here etX = ϕ∗
t ):

Iε :=
∫ +ε

−ε
χ(t)etX d t.
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Lemma 4.4. The following property holds:

πm1∗PLIPRπ
∗
m2

− πm1∗PLIεPRπ
∗
m2

∈ Ψ−∞(M,⊗m2
S T ∗M → ⊗m1

S T ∗M).

Proof. Recall that I = R+,0+R−,0+Π+ and the term Π+ will only contribute to a smoothing

operator. We first derive an auxiliary identity; we start by the following
∫ ∞

0
χ′(t)e−t(z+X) d t = − Id+

(∫ ∞

0
χ(t)e−t(z+X) d t

)
◦ (X + z), z ∈ C,

where we integrated by parts in the equality. Composing on the right by (X + z)−1 with

z 6= 0 close to zero, using the meromorphic extension and taking the bounded terms at z = 0

we get:

R+,0 =

∫ ∞

0
χ(t)e−tX d t−



∫ ∞

0
χ′(t)e−tX d t

︸ ︷︷ ︸
R:=


 ◦R+,0 +

(∫ ∞

0
tχ′(t) d t

)
· Π+, (4.4)

where for the last term we used that ϕ∗
−tΠ+ = Π+ since Π+ is the orthogonal projection

onto constant functions; integrating by parts the multiplier in the last term simplifies to∫∞
0 tχ′(t) d t = −

∫∞
0 χ(t) d t. Using the analogous formula for R−,0, and that Π+ is smooth-

ing, we see it suffices to prove that the middle term of (4.4) contributes to a smoothing

operator, that is,

K := πm1∗PLRR+,0PRπ
∗
m2

∈ Ψ−∞(M,⊗m2
S T ∗M → ⊗m1

S T ∗M).

It is sufficient to prove that if f ∈ D′(M,⊗m2
S T ∗M), one has Kf ∈ C∞(M,⊗m1

S T ∗M). For

that, we will use the wavefront set calculus of Hörmander [Hör03, Chapter 8].

Using the notation of §2.1, define the subbundles H∗,V∗ ⊂ T ∗(SM) such that H∗(H ⊕ R ·
X) = 0,V∗(V) = 0. Observe that since π∗m2

is a pullback operator, we have WF(π∗m2
f) ⊂ V

∗

(see also [Lef19a, Lemma 2.1] for a detailed proof). Since PR is a differential operator, we have

WF(PRπ
∗
m2
f) ⊂ V

∗. We then use the characterization of the wavefront set of the resolvent

R+,0 in [DZ16, Proposition 3.3], namely8:

WF′(R+,0) ⊂ ∆(T ∗(SM)) ∪ Ω+ ∪ E∗
u × E∗

s , (4.5)

where ∆(T ∗(SM)) is the diagonal in T ∗(SM)× T ∗(SM), and

Ω+ := {(Φt(z, ξ), (z, ξ)) | t ≥ 0, 〈ξ,X(z)〉 = 0}
is the positive flow-out and Φt : T ∗(SM) → T ∗(SM) is the symplectic lift of the geodesic

flow (ϕt)t∈R, given by Φt(z, ξ) := (ϕt(z),dϕ
−⊤
t (z)(ξ))9. From (4.5) we obtain using [Hör03,

Theorem 8.2.13]:

WF(R+,0PRπ
∗
m2
f) ⊂ V

∗ ∪ E∗
u ∪t≥0 Φt(V

∗ ∩ ker ıX). (4.6)

Next, we show that since R is given by integration along the flow, it is microlocally smooth-

ing outside ker ıX (i.e. it is smoothing in the elliptic set of X). For that, fix an arbitrary

8We use the standard conventions, namely if B : C∞(M) → D′(M) is a linear operator with kernel

KB ∈ D′(M ×M), we define WF′(B) := {(x, ξ, y, η) ∈ T ∗M × T ∗M | (x, ξ, y,−η) ∈ WF(KB)}.
9We use −⊤ to denote the inverse transpose.
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k ∈ Z≥1, and let B ∈ Ψ0(M) be arbitrary microlocally equal to Id near ker ıX (where

M := SM), that is, WF(Id−B) does not intersect a conical neighbourhood of ker ıX . We

will show that R(Id−B) is smoothing for any such B. By ellipticity, there are E ∈ Ψ−k(M)

and F ∈ Ψ−∞(M) such that

XkE = Id−B + F.

Therefore we can compute, for an arbitrary u ∈ D′(M) that

R(Id−B)u+RFu =

∫ ∞

0
χ′(t)ϕ∗

−tX
kEud t =

∫ ∞

0
(∂k+1

t χ)(t)ϕ∗
−tEud t,

where in the last equality we used that ϕ∗
−tX

k = (−∂t)kϕ∗
−t and integrated by parts k times.

Since RFu ∈ C∞(M), and E ∈ Ψ−k(M) where k could be chosen arbitrary, we conclude

that R(Id−B) ∈ Ψ−∞(M), proving the claim. Therefore, by (4.6) and by the behaviour of

the wavefront set under pullbacks (see [Hör03, Theorem 8.2.4]):

WF(PLRR+,0PRπ
∗
m2
f) ⊂ WF(RR+,0PRπ

∗
m2
f)

⊂ ∪t∈[ε/2,ε]Φt(V
∗ ∩ ker ıX) ∪E∗

u ∪t∈[ε/2,ε] Φt(V
∗ ∩ ker ıX).

Next, as πm1∗ is a pushforward, we obtain (see [Mel03, Proposition 4.12]):

WF(Kf)

⊂
{
(x, ξ) ∈ T ∗M | ∃v ∈ SxM, ξ(d(x,v) π(•)) ∈ E∗

u ∪t∈[ε/2,ε] Φt(V
∗ ∩ ker ıX)

}
,

where we note that ξ(d(x,v) π(•)) ∈ V
∗(x, v). As a consequence, the lemma is proved if we can

show that V
∗ ∩

(
E∗

u ∪t≥[ε/2,ε] Φt(V
∗ ∩ ker ıX)

)
= {0}. But this follows from (2.7) and (2.8),

completing the proof. �

We now turn to the sandwich Proposition 4.1. For that, it is convenient to use the historical

characterization of pseudodifferential operators [Hör65, Definition 2.1] which we now recall:

P is a pseudodifferential operator of order m ∈ R if P : C∞(M) → C∞(M) is continuous,

and there exists a sequence s0 = 0 < s1 < ... of real numbers converging to +∞ such that for

all f ∈ C∞(M), S ∈ C∞(M) such that dS 6= 0 on supp(f), there is an asymptotic expansion:

e−iS
hP (fei

S
h ) ∼ h−m

+∞∑

j=0

Pj(f, S)h
sj . (4.7)

By this, we mean that for every integer N > 0, for every compact set 10 K of real-valued

functions S ∈ C∞(M) with dS 6= 0 on supp(f), for every 0 < h < 1, the following holds: the

error term

h−sN+m


e−iS

hP
(
fei

S
h

)
− h−m

N−1∑

j=0

Pj(f, S)h
sj


 (4.8)

belongs to a bounded set in C∞(M) with bound independent of h and S ∈ K. In particular,

P is classical if and only if in the sum (4.7) the sj’s take integer values.

10A set A ⊂ C∞(M) is bounded if there exists a sequence (Ak)k∈Z≥0
such that for all f ∈ A, ‖f‖Ck(M) ≤ Ak.

It is known that A is compact if and only if it is closed and bounded.
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Proof of Proposition 4.1. We first note that the formula (4.2) is an immediate consequence

of (4.1) and Lemma 3.4; henceforth we focus on (4.1). We divide the proof in two steps.

1. Principal symbol computation. For the moment, let us assume that the operator is

pseudodifferential and compute its principal symbol. By Lemma 4.4, we can replace I by

Iε in the definition of the operator, that is, it suffices to compute the principal symbol of

πm1∗PLIεPRπ
∗
m2

.

Take a Lagrangian state fh := ei
S
h f̃ , where S ∈ C∞(M) is a real-valued, smooth phase

such that S(x0) = 0, dS(x0) = ξ0, f̃ ∈ C∞(M,⊗m2
S T ∗M) and f̃(x0) := f ∈ ⊗m2

S T ∗
x0
M , and

further assume that dS does not vanish on the support of f̃ . As PR is a differential operator,

we have:

PRπ
∗
m2
fh = PR

(
ei

π∗
0S

h π∗m2
f̃

)

= h−mRei
π∗
0S

h

(
σPR

(
•, SH(•)

)
.π∗m2

f̃(•) +OC∞(h)
)
,

where SH(x, v) := dx S ◦ d(x,v) π. Hence:
IεPRπ

∗
m2
fh(x, v)

=

∫ +ε

−ε
h−mRe

i
h
S(π(ϕt(x,v)))χ(t)

×
(
σPR

(
ϕt(x, v), SH(ϕt(x, v))

)
π∗m2

f̃(ϕt(x, v)) +OC∞(h)
)
d t,

and thus:

PLIεPRπ
∗
m2
fh(x, v)

=

∫ +ε

−ε
h−(mR+mL)e

i
h
S(π(ϕt(x,v)))χ(t)

(
σPR

(
ϕt(x, v), SH(ϕt(x, v))

)

× σPL

(
(x, v), S

(t)
H

(x, v)
)
π∗m2

f̃(ϕt(x, v)) +OC∞(h)
)
d t,

where S
(t)
H
(x, v) := dx S ◦d(x,v) π ◦d(x,v) ϕt (and S

(0)
H

= SH). This gives for m = mR +mL− 1

and any f ′ ∈ ⊗m1
S T ∗

x0
M :

〈σAPR,PL
(x0, ξ0)f, f

′〉⊗m1
S T ∗

x0
M = lim

h→0
hm〈(APR,PL

fh)(x0), f
′〉⊗m1

S T ∗
x0

M

= lim
h→0

hm
∫

Sx0M
(PLIεPRπ

∗
m2
fh)(x0, v).π∗m1

f ′(x0, v) dSx0(v)

= lim
h→0

h−1

∫

Sx0M

∫ +ε

−ε
e

i
h
S(π(ϕt(x0,v)))χ(t).π∗m1

f ′(v)

×
[
σPR

(
ϕt(x0, v), SH(ϕt(x0, v))

)
.σPL

(
(x0, v), S

(t)
H

(x0, v)
)
.π∗m2

f̃(ϕt(x0, v))

+OC∞(h)] d t dSx0(v),

(4.9)

where dSx0 stands for the round measure on the sphere Sx0M . As we shall see, the term h−1

comes from the fact that we will perform a stationary phase over a two-dimensional space.
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We define the (real) phase Φ : (−ε, ε)× Sx0M → R by

Φ(t, v) := S(π(ϕt(x0, v))). (4.10)

We recall (see §3.1) the diffeomorphism, singular at the poles, S
n−2
ξ0

× (0, π) ∋ (u, ϕ) 7→
v(u, ϕ) := cos(ϕ)~n(ξ0) + sin(ϕ)u ∈ Sx0M . Observe that for fixed u ∈ S

n−2
ξ0

, the phase

Φu : (−ε, ε)×(0, π) → R defined by Φu(t, ϕ) := Φ(t, v(u, ϕ)) has a critical point at t = 0, ϕ = π
2

and the determinant of the Hessian at this point is equal to −|dS(x0)|2 = −|ξ0|2 (see the

proof of [GL21, Theorem 4.4] or [Lef19b, Theorem 2.5.1] for further details). Hence by the

stationary phase lemma [Zwo12, Theorem 3.16], for any u ∈ S
n−2
ξ0

, writing v = v(u, ϕ):

lim
h→0

h−1

∫ π

0

∫ +ε

−ε
e

i
h
Φu(t,ϕ)χ(t).π∗m1

f ′
(
v
)
.
(
OC∞(h)+

+ σPR

(
ϕt(x0, v), SH(ϕt(x0, v))

)
.σPL

(
(x0, v), S

(t)
H

(x0, v)
)
.π∗m2

f̃(ϕt(x0, v))
)

sinn−2(ϕ) d t dϕ

=
2π

|ξ0|
σPR

(
(x0, u), SH(x0, u)

)
.σPL

(
(x0, u), SH(x0, u)

)
.π∗m2

f(u).π∗m1
f ′(u).

(4.11)

Using that this limit is uniform in u and integrating over Sn−2
ξ0

, inserting into (4.9), as well as

recalling the Jacobian formula (3.1), completes the proof.

2. Pseudodifferential nature. By the characterization (4.7) of ΨDOs via the asymptotic

expansion, the proof is very similar to the first point except that one needs to go to arbitrary

order in the expansions. For the sake of simplicity, we assume that m1 = m2 = 0 (this does

not change the nature of the proof). By Lemma 4.4, it suffices to show that π0∗PLIεPRπ
∗
0 is

a pseudodifferential operator of order m. Consider an arbitrary f ∈ C∞(M) and a compact

set K ⊂ C∞(M) of (real) phases S such that dS 6= 0 on supp(f).

Since PR is differential, we can write

PRπ
∗
0

(
fei

S
h

)
= h−mRei

π∗
0S

h

mR∑

j=0

P
(j)
R (π∗0f, π

∗
0S)h

j

︸ ︷︷ ︸
=:fh

= h−mRei
π∗
0S

h fh,

where P
(j)
R (π∗0f, π

∗
0S)(x, v) depends on the jet of order ≤ j of f at x (and on the (mR − j)-th

jet of the phase S). Then:

IεPRπ
∗
0

(
fei

S
h

)
(x, v) = h−mR

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v))χ(t)fh(ϕt(x, v)) d t,

which gives:

PLIεPRπ
∗
0

(
fei

S
h

)
(x, v)

= h−(mR+mL)

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v))χ(t)

mL∑

k=0

hkP
(k)
L

(
etXfh, e

tXπ∗0S
)
(x, v) d t,
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and thus:

π0∗PLIεPRπ
∗
0

(
fei

S
h

)
(x)

= h−(mR+mL)

∫

SxM

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v))χ(t)

mL∑

k=0

hkP
(k)
L

(
etXfh, e

tXπ∗0S
)
(x, v) d t d v.

(4.12)

We now split to cases according to the location of x and the value of dS(x) as follows.

Since K ⊂ C∞(M) is compact, and dS 6= 0 on supp(f), there is an open neighbourhood N

of supp(f) and δ = δ(K) > 0 such that

|dS(x)| ≥ δ, ∀x ∈ N.

We introduce ξ := dS(x) and first consider the case x ∈ N . We will use the coordinates

(u, ϕ) ∈ S
n−2
ξ × (0, π) on SxM as in the previous step, and write Φu(t, ϕ) for the phase

introduced in (4.10). It is possible to compute the derivatives of Φu at t = 0 as follows:

∂tΦu(0, ϕ) = cos(ϕ)|dS(x)|, ∂ϕΦu(0, ϕ) = 0,

∂ϕ∂tΦu(0, ϕ) = − sin(ϕ)|dS(x)|, ∂2ϕΦu(0, ϕ) = 0, ∂2tΦu(0,
π
2 ) = Hess(S)(0, π2 )(u, u),

where Hess(S) denotes the Hessian of S in the (t, ϕ) coordinates. Therefore, the only critical

point of Φu on {t = 0} is at (t, ϕ) = (0, π2 ), and here the Hessian of Φu is non-degenerate.

It follows that (0, π2 ) is an isolated critical point, and moreover using Taylor’s theorem that

there is a C > 0 depending only on K such that the derivative dΦu(t, ϕ) vanishes only at

(0, π2 ) for

(t, ϕ) ∈ S :=
{
(t, ϕ) ∈ (−ε, ε) × (0, π) | |t|+ |π2 − ϕ| < C|dS(x)|2

}
.

Let ψ ∈ C∞
0 (R) be a cut off function such that ψ(t) = 1 for |t| < β := min( ε4 ,

π
4 ,

C
4 |dS(x)|2)

and ψ(t) = 0 for |t| > 2β, such that it is bounded uniformly in C∞(R) depending on S ∈ K;

here it is important to note that by assumption |dS(x)| ≥ δ(K) > 0. We also note that this

construction of ψ can be made to depend smoothly on x ∈ U for an open set U ⊂ N of points

close to x; we note that ϕ in this case encodes the distance to the equator ker(dS(x))∩SxM .

For simplicity, we drop x from the notation of ψ.

Using the formula (3.1) and writing v = v(u, ϕ) we obtain:

π0∗PLIεPRπ
∗
0

(
fei

S
h

)
(x) = h−(mR+mL)

×
∫

S
n−2
ξ

∫ π

0

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v))χ(t)

(
ψ(t)ψ(ϕ − π

2 ) + (1− ψ(t)ψ(ϕ − π
2 ))
)

×
mL∑

k=0

hkP
(k)
L

(
etXfh, e

tXπ∗0S
)
(x, v)

︸ ︷︷ ︸
F :=

sinn−2(ϕ) d t dϕdSξ(u)

= h−(mR+mL)

∫

S
n−2
ξ

(∫ π

0

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v(u,ϕ)))

2∑

i=1

Fi(x, u, ϕ, t) d t dϕ

)
dSξ(u),
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where the terms Fi(x, u, ϕ, t) for i = 1, 2 represent the terms appearing in the second line (in

the order of appearance). We study each term separately. For F1 (which may be also seen as

a smooth function on (−ε, ε)× SU), as in (4.11), for x ∈ U and ξ = dS(x), and u ∈ S
n−2
ξ , we

apply the stationary phase lemma [Zwo12, Theorem 3.16] at t = 0, ϕ = π
2 , which gives:

h−(mR+mL−1)

∫

S
n−2
ξ

ei
S(x)
h

(
N−1∑

ℓ=0

hℓA2ℓ(x, u,Dϕ,Dt)F1

(
x, u,

π

2
, 0
)
+ hNR′

N (x, u)

)
dSξ(u)

= h−(mR+mL−1)ei
S(x)
h

×
(

N−1∑

ℓ=0

hℓ
∫

S
n−2
ξ

A2ℓ(x, u,Dϕ,Dt)F1

(
x, u,

π

2
, 0
)
dSξ(u) + hNRN (x)

)
.

(4.13)

Here, for any ℓ ∈ N, A2ℓ(x, u,Dϕ,Dt) is a differential operator of degree ≤ 2ℓ depending

smoothly on x ∈ U and u and R′
N satisfies the bound

‖R′
N‖C0(SU∩ker dS) ≤ C ′

N‖F1‖C2N+3((−ε,ε)×SU),

where SU denotes the unit tangent bundle of U (where F1 is defined). The order 2N + 3 =

2N + 2 + 1 comes from the remainder term in [Zwo12, Theorem 3.16]. After integration in

the variable u, i.e. setting RN (x) =
∫
S
n−2
ξ

R′
N (x, u) dSξ(u), this gives:

‖RN‖C0(U) ≤ CN‖F1‖C2N+3(SU), (4.14)

and one can control higher order derivatives of RN in the same fashion (up to increasing the

order of the norm on the right-hand side of (4.14)).

Next, observe that by definition:

F1(x, u, ϕ, t)

= sinn−2(ϕ)χ(t)ψ(t)ψ(π2 − ϕ)

mL∑

k=0

P
(k)
L


etX

mR∑

j=0

P
(j)
R (π∗0f, π

∗
0S)h

j , etXπ∗0S


 (x, v(u, ϕ))hk ,

which implies that the Ck-norms of F1 are controlled by the Ck′-norms of f and S (for some

k′ ≫ k), that is, the remainder RN is indeed negligible in the sense of (4.8). Also note

that A2ℓ(x, u,Dϕ,Dt)F1(x, u,
π
2 , 0) depends only on a finite number K(ℓ) of derivatives of the

function f and the phase S at x. Hence (4.13) shows that the term corresponding to F1 has

the correct asymptotic expansion.

For the term F2 in (4.13), it is more convenient to go one step back and to write it as

h−(mR+mL)

∫

SxM

∫ +ε

−ε
e

i
h
π∗
0S(ϕt(x,v))χ(t)

(
1− ψ(t)ψ(π2 − ϕ)

)
F (t, x, v) d t d v, (4.15)

where the coordinate ϕ is encodes the distance to ker(dS(x)) ∩ SxM (as explained above).

Now, assume that the phase Φ (introduced in (4.10)) has a critical point (t, v) ∈ R × SxM ,

that is,

dS(γ(t))
(
dπ(ϕt(x, v))X(ϕt(x, v))

)
= 0, dS(γ(t))

(
dπ(ϕt(x, v))dϕt(x, v)V

)
= 0,
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where γ(t) = π(ϕt(x, v)), for any vertical vector field V ∈ V(x, v). Then either t = 0, in

which case we have v ∈ S
n−2
ξ and the cut off in (4.15) is zero, or t 6= 0, so by the absence

of conjugate points (see (2.8)), we conclude that dS(γ(t)) = 0 and therefore F (t′, x, v) = 0

for |t′ − t| uniformly small independent of S ∈ K (using that PL/R are differential operators

and |dS| ≥ δ on N). It follows, upon applying the (non-)stationary phase lemma similarly to

the argument in the previous paragraph, that the expression in (4.15) equals OC∞(h∞) for

x ∈ U , with the seminorms uniformly bounded as S ∈ K. This completes the discussion for

the case x ∈ N and show the required asymptotic expansion.

Finally, it remains to deal with the case x 6∈ N ; for that we go back to (4.12). Then in

particular f = 0 near x (with the neighbourhood independent of S ∈ K) and by the analysis of

the phase function Φ from the previous step (note that in this case the integrand vanishes for

|t| small enough uniformly in S ∈ K) we conclude similarly using the (non-)stationary phase

lemma that near x the expression (4.12) contributes to OC∞(h∞) with seminorms uniformly

bounded with respect to S ∈ K. This completes the proof. �

Remark 4.5. Note that in the above proof the fact that PL/R are differential operators gets

used in the last two paragraphs through their locality. In the more general case of arbitrary

pseudodifferential operators PL/R, this has to be replaced by pseudolocality and a similar

proof applies.

5. Generic injectivity with respect to the connection

We now prove Theorem 1.5 in this section. This case is much less technical than the metric

case but still provides a good insight on the argument. In what follows, differentiation will

be mostly carried out without recalling that the objects depend smoothly on the parameter

and we refer the reader to §2.4, Lemma 2.3 for further details.

5.1. Preliminary remarks. Consider an Anosov Riemannian manifold, denoted by (M,g),

with a Hermitian vector bundle E → M , equipped with a unitary connection ∇E . Consider

a linear perturbation ∇E + τΓ for some skew-Hermitian Γ ∈ C∞(M,T ∗M ⊗ Endsk(E)) and

τ ∈ R, and the operator Xτ := π∗(∇E + τΓ)X , where we recall that π : SM → M is

the footpoint projection. We set X := X0. For the sake of simplicity, let us assume that

kerX|C∞(SM,E) = {0}11, which is generically true by [CL21]. We will consider the operator

Pτ := πkerD∗
0
∆0Π

τ
m∆0πkerD∗

0
,

11The following arguments can be generalized to the case where kerX consists of stable elements of degree

0 (equivalently, we will say that kerX is stably non-empty): by stable, we mean that any perturbation of the

operator will still have the same resonant space at 0 and that this space only contains elements of degree 0.

This is the case for the operator X acting on functions as it always has C ·1 (the constant sections) as resonant

space at z = 0; this is also the case for (π∗∇End(E))X as it always contains C · 1E and is generically equal to

C · 1E by [CL21] (where ∇End(E) is the induced connection on End(E)). Instead of taking the resolvent at 0,

one needs to work with the holomorphic part of the resolvent. This is done in the metric case, see §6. For the

sake of simplicity, we assume in this section that kerX is trivial.
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where Πτ
m = πm∗(R

τ
++Rτ

−)π
∗
m, ∆0 is an elliptic, formally self-adjoint, positive, pseudodiffer-

ential operator with diagonal principal symbol of order k > 1/2 that induces an isomorphism

on Sobolev spaces Hs for any s and Dτ denotes the twisted (with respect to ∇E + τΓ) sym-

metric derivative on tensors, as in §2.2.3. Here Rτ
± := −Rτ

±(z = 0) is the (opposite of)

resolvent at zero of Xτ as defined in §2.3.3. It is important to note that

πkerD∗
τ
Πτ

m = Πτ
mπkerD∗

τ
= Πτ

m,

and that by continuity we have:

Lemma 5.1. For any given s ∈ R, for |τ | small enough, the map τ 7→ ‖πkerD∗
τ
‖Hs→Hs is

continuous. Moreover, for all s ∈ R, there exists ε = ε(s) > 0 and C = C(s) > 0 such that

for |τ | < ε:

∀f ∈ Hs+k(M,⊗m
S T

∗M ⊗ E), ‖πkerD∗
τ
∆0πkerD∗

τ
f‖Hs ≥ C‖πkerD∗

τ
f‖Hs+k . (5.1)

Hence for any s ∈ R, for all |τ | < ε, where ε = ε(s) > 0 is small enough, the following maps

are isomorphisms:

πkerD∗
τ
∆0πkerD∗

0
: kerD∗

0 ∩Hs+k → kerD∗
τ ∩Hs,

πkerD∗
0
∆0πkerD∗

τ
: kerD∗

τ ∩Hs+k → kerD∗
0 ∩Hs.

Proof. The first claim follows from the formula (see (2.10)):

πkerD∗
τ
= 1−Dτ (D

∗
τDτ )

−1D∗
τ , (5.2)

once we show that τ 7→ ‖(D∗
τDτ )

−1‖Hs→Hs+2 is well-defined and continuous for |τ | small

enough. Firstly, note that if D0f = 0, then Xπ∗mf = 0 by (2.15) and this implies f = 0 by

our assumptions, so the map D∗
0D0 is invertible on Sobolev spaces.12 Using the identity

D∗
τDτ = D∗

0D0



1− (D∗

0D0)
−1(D∗

0D0 −D∗
τDτ︸ ︷︷ ︸

τSτ :=

)


 ,

and the fact that ‖Sτ‖Hs+2→Hs+1 = O(1) as τ → 0 (which follows upon applying the formula

(2.14) and its adjoint), we conclude by inverting this identity that (D∗
τDτ )

−1 is an isomorphism

Hs → Hs+2 for |τ | small enough, and moreover by using Neumann series that

(D∗
τDτ )

−1 − (D∗
0D0)

−1 = τ(D∗
0D0)

−1Sτ
(
1− τ(D∗

0D0)
−1Sτ

)−1
(D∗

0D0)
−1 = OHs→Hs+3(τ).

From here we deduce using (5.2)

πkerD∗
τ
− πkerD∗

0
= (D0 −Dτ )(D

∗
0D0)

−1D0 +Dτ

(
(D∗

0D0)
−1 − (D∗

τDτ )
−1
)
D∗

0

+Dτ (D
∗
τDτ )

−1(D∗
0 −D∗

τ ) = OHs→Hs+1(τ),
(5.3)

as τ → 0, where the constant depends on s; the claim follows.

Next, since ∆0 is an isomorphism on Sobolev spacesHs, we have that ‖∆0f‖Hs ≥ Cs‖f‖Hs+k

for some Cs > 0. Using the identity

πkerD∗
τ
∆0πkerD∗

τ
= [πkerD∗

τ
− πkerD∗

0
,∆0]πkerD∗

τ
+ [πkerD∗

0
,∆0]πkerD∗

τ
+∆0πkerD∗

τ
,

12If kerX is not empty but stably non-empty, this argument also works.
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as well as that [πkerD∗
0
− πkerD∗

τ
,∆0] = OHs+k−1→Hs(1) as τ → 0 (which follows from (5.3)

with possibly a different constant, by replacing s there with s − 1 and s+ k − 1), we obtain

the estimate

‖πkerD∗
τ
f‖Hs+k ≤ Cs‖∆0πkerD∗

τ
f‖Hs

≤ C ′(‖πkerD∗
τ
∆0πkerD∗

τ
f‖Hs + ‖πkerD∗

τ
f‖Hs+k−1)

(5.4)

for some constant C ′ = C ′(s) > 0 independent of τ . To show (5.1), we argue by contradiction

and assume there is a sequence fn ∈ kerD∗
τn with ‖fn‖Hs+k = 1 and ‖π∗kerDτn

∆0fn‖Hs → 0.

We assume τn → 0 (but the same argument works if τn → τ for some τ 6= 0). By compactness,

we may assume fn converges in Hs+k−1. In fact, by (5.4) we have:

‖fn − fm‖Hs+k ≤ ‖πkerD∗
τn
(fn − fm)‖Hs+k + ‖(πkerD∗

τn
− πkerD∗

τm
)fm‖Hs+k

≤ C ′‖πkerD∗
τn
∆0πkerD∗

τn
fm‖Hs + C ′‖πkerD∗

τn
(fn − fm)‖Hs+k−1

+ o(1)

≤ C ′‖πkerD∗
τm

∆0fm‖Hs + C ′‖(πkerD∗
τn

− πkerD∗
τm

)∆0fm‖Hs

+ C ′‖πkerD∗
τn
∆0(πkerD∗

τn
− πkerD∗

τm
)fm‖Hs + o(1) = o(1).

as m,n → ∞. In the second line, we used that πkerD∗
τn

− πkerD∗
τm

= oHs+k→Hs+k(1) (which

follows from (5.3) with possibly a different constant, by replacing s there with s + k) and

‖fm‖Hs+k = 1, (5.4), and the fact that ‖π∗kerDτn
∆0fn‖Hs = o(1). In the last line, we also

used the assumption that fn converges in Hs+k−1. Therefore, (fn)n∈N is a Cauchy sequence

in Hs+k and it converges to some f ∈ Hs+k with ‖f‖Hs+k = 1, D∗
0f = 0 and πkerD∗

0
∆0f = 0.

Using that [πkerD∗
0
,∆0]f = −∆0f and the fact that [πkerD∗

0
,∆0] ∈ Ψk−1 implies by elliptic

regularity that f ∈ Hs+k+1. Bootstrapping we get f ∈ C∞ and so

0 = 〈πkerD∗
0
∆0f, f〉L2 = 〈∆0f, f〉L2 ,

which means that f = 0 as ∆0 was chosen to be positive. This contradicts that ‖f‖Hs+k = 1

and proves (5.1).

Finally, by the first point we have ‖πkerD∗
0
− πkerD∗

τ
‖Hs→Hs = os(1) as τ → 0, so by (5.1)

for small |τ | depending on s we get

‖πkerD∗
τ
∆0πkerD∗

0
f‖Hs ≥ ‖πkerD∗

0
∆0πkerD∗

0
f‖Hs

− ‖(πkerD∗
0
− πkerD∗

τ
)∆0πkerD∗

0
f‖Hs

≥ C(s)

2
‖πkerD∗

0
f‖Hs+k .

(5.5)

Similarly, using (5.1) for |τ | small enough we obtain:

‖πkerD∗
τ
∆0πkerD∗

0
f‖Hs ≥ C(s)

2
‖πkerD∗

0
f‖Hs+k . (5.6)

Estimates (5.5) and (5.6) show that the operators πkerD∗
0
∆0πkerD∗

τ
, πkerD∗

τ
∆0πkerD∗

0
are in-

jective and have a closed range for |τ | small enough, and then the surjectivity follows since

their L2-adjoints are injective. This completes the proof. �
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Next, using Proposition 4.1, the fact that ∆0 acts diagonally to principal order and the

equation (2.11), we obtain that for ξ ∈ T ∗
xM \ {0}:

σ(Pτ )(x, ξ) =
2π

|ξ|C
−1
2m+n−1σ(∆0)

2(x, ξ)πker ı
ξ♯
πm∗π

∗
mπker ıξ♯ ⊗ 1Ex .

Note that here we simply use Proposition 4.1 to compute the symbol of Πm, and then the

pseudodifferential nature and the symbol of Pτ follow from the usual pseudodifferential cal-

culus. Therefore, the symbol of Pτ at (x, ξ) is invertible on kerı
ξ♯

and by standard microlocal

analysis for each τ there exist pseudodifferential operators Qτ and Rτ of respective orders

1− 2k and −∞ (cf. [Lef19b, Lemma 2.5.3]) , such that

QτPτ = πkerD∗
0
+Rτ .

Using that Πτ
m ≥ 0 we get Pτ ≥ 0 and it follows that (Pτ + 1)−1 : L2 ∩ kerD∗

0 → L2 ∩ kerD∗
0

is compact and thus the spectrum of Pτ is well-defined. It is discrete, non-negative and

accumulates at infinity, and the eigenfunctions of Pτ are smooth. Moreover, by Lemma 5.1

and again using that Πτ
m ≥ 0, for small |τ | we have that

πkerD∗
τ
∆0πkerD∗

0
: kerPτ |C∞∩kerD∗

0

∼−→ kerΠτ
m|C∞∩kerD∗

0

is an isomorphism. Therefore we see that for each τ , 0 is an eigenvalue of Πτ
m if and only if

0 is an eigenvalue of Pτ .

5.2. Variations of the ground state. We assume that kerP0|C∞∩kerD∗
0
is d-dimensional,

for some d ≥ 1, and spanned by u1, ..., ud ∈ C∞(M,⊗m
S T

∗M⊗E)∩kerD∗
0 with 〈ui, uj〉L2 = δij .

Let Πτ be the L2-orthogonal spectral projector

Πτ :=
1

2πi

∮

γ′
(z − Pτ )

−1 d z, (5.7)

where γ′ is a small circle centred around 0 and not containing any other eigenvalue of P0 in

its interior. In particular, we have Πτ=0 =
∑d

i=1〈•, ui〉L2ui and by ellipticity of P0 on kerD∗
0

we have the meromorphic expansion close to zero, valid on S := L2 ∩ kerD∗
0

(z − P0)
−1 =

Π0

z
− P−1

0 + zH1 +O(z2), (5.8)

for some maps P−1
0 ,H1 : S → S, where we recall our notational conventions were explained

in §§2.5. These maps satisfy the relations (cf. (2.18)):

P0P
−1
0 = P−1

0 P0 = Id−Π0, P0H1 = −P−1
0 , Π0P

−1
0 = P−1

0 Π0 = 0. (5.9)

We introduce λτ as the sum of the eigenvalues of Pτ inside γ′:

λτ := Tr(PτΠτ ). (5.10)

Note that both τ 7→ Πτ ∈ L(L2) and τ 7→ λτ ∈ C are smooth by standard elliptic theory

(see [CL21, Section 4]). Observe that λτ=0 = 0 and as Pτ ≥ 0, we have λτ ≥ 0. Our goal

is to produce a small perturbation ∇E + τΓ (where Γ is skew-Hermitian) such that λτ > 0

for τ 6= 0. This will say that at least one of the eigenvalues was ejected from 0 and that

kerPτ is at most (d − 1)-dimensional (for τ 6= 0). Iterating the process, we will then obtain

a perturbation of ∇E with injective (twisted) X-ray transform.
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We make the easy observation that the first variation is zero, as λτ=0 = 0 is a local minimum

of the smooth function τ 7→ λτ :

λ̇τ=0 = 0. (5.11)

Next, we note that since Pτui = 0 and Πτ
m ≥ 0, we have Πτ

m∆0ui = 0. Therefore, by Lemma

2.2, there exists vi ∈ C∞(SM, E) such that

π∗m∆0ui = Xvi, Π+vi = 0. (5.12)

By the mapping properties of X (see (2.16)), we have that if m is even then vi may be chosen

odd and vice versa, if m is odd then vi may be chosen even.

5.2.1. Second order variations. We now compute λ̈τ=0. For simplicity, when clear from the

context we will drop the τ = 0 subscript and simply write λ̇ and λ̈. We start with an abstract

lemma, valid in a more general setting (this will also get used in the metric case, see Lemma

6.9 below):

Lemma 5.2. The following variational formula holds:

λ̈τ=0 = Tr(P̈0Π0)− 2Tr(Π0Ṗ0P
−1
0 Ṗ0Π0).

Proof. We compute:

Π̇0 =
1

2πi

∮

γ′
(z − P0)

−1Ṗ0(z − P0)
−1dz = −

(
Π0Ṗ0P

−1
0 + P−1

0 Ṗ0Π0

)
,

Π̈0 = 2× 1

2πi

∮

γ′
(z − P0)

−1Ṗ0(z − P0)
−1Ṗ0(z − P0)

−1dz

+
1

2πi

∮

γ′
(z − P0)

−1P̈0(z − P0)
−1dz.

We expand the second formula using (5.8) to get:

Π̈0 = 2
[
Π0Ṗ0Π0Ṗ0H1 +Π0Ṗ0P

−1
0 Ṗ0P

−1
0 +Π0Ṗ0H1Ṗ0Π0 + P−1

0 Ṗ0Π0Ṗ0P
−1
0

+P−1
0 Ṗ0P

−1
0 Ṗ0Π0 +H1Ṗ0Π0Ṗ0Π0

]
−
(
Π0P̈0P

−1
0 + P−1

0 P̈0Π0

)
. (5.13)

Therefore, we compute using (5.9):

P0Π̈0 = 2(Id−Π0)Ṗ0

(
Π0Ṗ0P

−1
0 + P−1

0 Ṗ0Π0

)
− 2P−1

0 Ṗ0Π0Ṗ0Π0 − (Id−Π0)P̈0Π0, (5.14)

which implies that, using the cyclicity of the trace (here and below, we use the fact that

Tr(AB) = Tr(BA) for two bounded operators A,B on a Hilbert space H, as soon as one of

them has finite rank, see [DZ19, Appendix B.4]) and (5.9):

Tr
(
P0Π̈0

)
= 2Tr

(
Ṗ0Π0Ṗ0P

−1
0

)
= 2Tr

(
Π0Ṗ0P

−1
0 Ṗ0Π0

)
.

Finally, we obtain using once more the cyclicity of the trace:

λ̈ = Tr
(
P̈0Π0 + 2Ṗ0Π̇0 + P0Π̈0

)
= Tr

(
P̈0Π0

)
− 2Tr

(
Π0Ṗ0P

−1
0 Ṗ0Π0

)
.

�
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Next, we compute Ṗ0, P̈0 and apply Lemma 5.2. Before doing that, note that by Lemma

5.1, on kerD∗
0 we have

P−1
0 = (πkerD∗

0
∆0πkerD∗

0
)−1Π−1

m (πkerD∗
0
∆0πkerD∗

0
)−1, (5.15)

where Π−1
m stands for the holomorphic part of the resolvent at zero as defined in §2.5 that is,

if (Πm − z)−1 =
Πm,0

z + Rm(z), where Πm,0 is the orthogonal projection onto ker Πm|kerD∗
0

zero and Rm(z) holomorphic close to z = 0 then Π−1
m := Rm(0).

Lemma 5.3. We have:

λ̈ = 2

d∑

i=1

〈
I∇E (π∗1Γ.vi), π

∗
1Γ.vi

〉
L2

−
〈
Π−1

m πm∗I∇E (π∗1Γ.vi), πm∗I∇E (π∗1Γ.vi)
〉
L2 .

(5.16)

Proof. We start with the first term in (5.16). For the variation of the resolvent, recalling that

(similarly to the metric case in (2.18))

XR− = R−X = −1, XR+ = R+ X = 1, R∗
+ = R−, (5.17)

as z = 0 is not a resonance by assumption, and the notation of §2.3.3 (γ is a small loop

around zero), we have:

R̈+ = ∂2τ |τ=0
1

2πi

∮

γ

1

z
(z +Xτ )

−1dz = ∂2τ |τ=0X
−1
τ = 2R+ π

∗
1ΓR+ π

∗
1ΓR+,

R̈− = (R̈+)
∗ = ∂2τ |τ=0

1

2πi

∮

γ

1

z
(z −Xτ )

−1dz

= ∂2τ |τ=0(−Xτ )
−1 = 2R− π

∗
1ΓR− π

∗
1ΓR− .

(5.18)

We remark that here we strongly use the facts that Xτ is linear in τ (so ∂2τXτ = 0) and

that Xτ is invertible with inverse denoted by X−1
τ (as we shall see below in Lemma 6.9 this

signficantly complicates in the case of metrics and more terms appear). Therefore

P̈0 = 2πkerD∗
0
∆0πm∗ (R+ π

∗
1ΓR+ π

∗
1ΓR++R− π

∗
1ΓR− π

∗
1ΓR−)π

∗
m∆0πkerD∗

0

and we obtain, using that Xvi = π∗m∆0ui (see (5.12)):

Tr(P̈0Π0) = 2

d∑

i=1

〈(
R+ π

∗
1ΓR+ π

∗
1ΓR++R− π

∗
1ΓR− π

∗
1ΓR−

)
Xvi,Xvi

〉
L2

= 2

d∑

i=1

〈
I∇E (π∗1Γ.vi), π

∗
1Γ.vi

〉
L2 ,

(5.19)

using (5.17) in the second line, as well as that Γ is skew-Hermitian.

For the second term of (5.16), we first observe that similarly to (5.18)

Ṙ+ = ∂τ |τ=0X
−1
τ = −R+ π

∗
1ΓR+, Ṙ− = ∂τ |τ=0(−Xτ )

−1 = R− π
∗
1ΓR− .

Therefore it holds that

Ṗ0 = πkerD∗
0
∆0πm∗(−R+ π

∗
1ΓR+ +R− π

∗
1ΓR−)π

∗
m∆0πkerD∗

0
, (5.20)
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and we finally obtain that, using (Ṗ0)
∗ = Ṗ0:

Tr
(
Π0Ṗ0P

−1
0 Ṗ0Π0

)

=
d∑

i=1

〈
P−1
0 Ṗ0ui, Ṗ0ui

〉

L2

=
d∑

i=1

〈
P−1
0 πkerD∗

0
∆0I∇E (π∗1Γ.vi) , πkerD∗

0
∆0I∇E (π∗1Γ.vi)

〉
L2

=
d∑

i=1

〈
Π−1

m πm∗I∇E (π∗1Γ.vi), πm∗I∇E (π∗1Γ.vi)
〉
L2 .

(5.21)

Here in the second line we used (5.20) and (5.12); in the final line we used (5.15). This proves

the announced result. �

5.2.2. Properties of the operators involved in the second variation. First of all we note that by

Proposition 4.1, Πm and hence Π−1
m πkerD∗

0
, are pseudodifferential operators of orders−1 and 1,

respectively. More precisely, recall Π−1
m was defined just below (5.15) as the holomorphic part

of (Πm− z)−1 at zero and is thus a pseudodifferential operator; πkerD∗
0
is a pseudodifferential

operator using the formula analogous to (2.10). It follows that, for (x, ξ) ∈ T ∗M \ 0 (cf.

[Lef19b, Lemma 2.5.3]):

σΠm(x, ξ) = C−1
n−1+2m

2π

|ξ|πker ıξ♯πm∗π
∗
mπker ıξ♯ ⊗ 1Ex ,

σΠ−1
m πkerD∗

0

(x, ξ) = Cn−1+2m
|ξ|
2π

(πker ı
ξ♯
πm∗π

∗
mπker ıξ♯ )

−1πker ı
ξ♯
⊗ 1Ex .

(5.22)

We now fix v ∈ C∞(SM,π∗ E) and introduce the multiplication map

Mv : C∞(SM,π∗End(E)) → C∞(SM,π∗ E), MvA := A.v.

Its adjoint is given by M∗
v w = 〈•, v〉E ⊗ w, for any w ∈ C∞(SM,π∗ E). Next, we show that

the terms appearing in the formula for λ̈ in Lemma 5.3 have pseudodifferential nature:

Lemma 5.4. For all v ∈ C∞(SM,π∗ E), the operator

Qv := πm∗I∇EMvπ
∗
1 ∈ Ψ−1 (M,T ∗M ⊗ End(E) → ⊗m

S T
∗M ⊗ E) (5.23)

is pseudodifferential of order −1 with principal symbol for (x, ξ) ∈ T ∗M \ {0}

σQv(x, ξ) ∈ Hom(T ∗
xM ⊗ End(Ex),⊗m

S T
∗
xM ⊗ Ex),

given by, for B ∈ T ∗
xM ⊗ End(Ex):

σQv(x, ξ)B = C−1
n−1+2m

2π

|ξ|πker ıξ♯πm∗E
m
ξ

(
π∗1(πker ıξ♯B).v(x, •)

)
.

Proof. This follows directly from Proposition 4.1. �



36 M. CEKIĆ AND T. LEFEUVRE

Lemma 5.5. For any v ∈ C∞(SM,π∗ E), the operator

Lv := π1∗M
∗
vI∇EMvπ

∗
1 ∈ Ψ−1(M,T ∗M ⊗ End(E) → T ∗M ⊗ End(E)) (5.24)

is pseudodifferential of order −1 with principal symbol for (x, ξ) ∈ T ∗M \ {0}

σLv(x, ξ) ∈ End(T ∗
xM ⊗ End(Ex))

given by:

σLv(x, ξ) = C−1
n−1+2m

2π

|ξ|πker ıξ♯π1∗M
∗
v (E

m
ξ )∗Em

ξ Mvπ
∗
1πker ıξ♯ .

Proof. Once more, this follows from Proposition 4.1 and the formula, for B ∈ T ∗
xM⊗End(Ex):

〈σLv(x, ξ)B,B〉x =
2π

|ξ|

∫

S
n−2
ξ

〈
π∗1B(u).v(x, u), π∗1B(u).v(x, u)

〉
x
dSξ(u)

= C−1
n−1+2m

2π

|ξ|
〈
Em

ξ (π∗1B.v), E
m
ξ (π∗1B.v)

〉
L2(Sn−1,π∗ Ex)

= C−1
n−1+2m

2π

|ξ|
〈
π1∗M

∗
v (E

m
ξ )∗Em

ξ Mvπ
∗
1B,B

〉
L2 .

In the second line we used the Jacobian formula (3.1). �

5.3. Assuming the second variation is zero. If λ̈ = 0 for all linear variations ∇E + τΓ as

in §5.2, where Γ is skew-Hermitian, by Lemma 5.3 and using the notation of (5.23), (5.24),

this implies:

∀Γ ∈ C∞(M,T ∗M ⊗ Endsk(E)),
d∑

i=1

〈LviΓ,Γ〉L2 =

d∑

i=1

〈Π−1
m QviΓ, QviΓ〉L2 . (5.25)

The idea is to apply the equality (5.25) (which is of analytic nature) to Gaussian states in

order to derive an algebraic equality. Let eh(x0, ξ0) be a Gaussian state centered at (x0, ξ0) ∈
T ∗M \ {0}, that is, a function which has the form in some local coordinates around x0

13:

eh(x0, ξ0)(x) =
1

(πh)
n
4

e
i
h
ξ0·(x−x0)−

|x−x0|2
2h . (5.26)

We will use the following standard technical lemma:

Lemma 5.6. Let P ∈ Ψm(M,E → F ) be a pseudodifferential operator of order m ∈ R acting

on two Hermitian vector bundles E,F →M . Let e ∈ C∞(M,E) and f ∈ C∞(M,F ). Then:

lim
h→0

〈
hmP

(
ℜ(eh(x0, ξ0)).e

)
,ℜ(eh(x0, ξ0)).f

〉
L2(M,F )

=
1

2

〈
σP (x0, ξ0)e(x0), f(x0)

〉
Fx0

+
1

2

〈
σP (x0,−ξ0)e(x0), f(x0)

〉
Fx0

.

13Alternatively, a Gaussian state is an h-dependent function whose semiclassical defect measure is a point

(x0, ξ0) ∈ T ∗M , see [Zwo12].
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We cannot directly apply (5.25) to eh(x0, ξ0).Γ where Γ ∈ C∞(M,T ∗M⊗Endsk(E)) because
eh(x0, ξ0).Γ is not skew-Hermitian. However, applying (5.25) to ℜ(eh(x0, ξ0)).Γ and using

Lemma 5.6, as well as the principal symbol formulas in (5.22), Lemmas 5.4 and 5.5 (and that

in particular these symbols are invariant under the antipodal map (x, ξ) 7→ (x,−ξ)), taking
h→ 0 we obtain:

d∑

i=1

〈
Em

ξ0(π
∗
1Γ.vi), E

m
ξ0 (π

∗
1Γ.vi)

〉
L2(Sn−1,π∗ Ex0 )

=
d∑

i=1

〈
π∗mπker ı

ξ
♯
0

[
πker ı

ξ
♯
0

πm∗π
∗
mπker ı

ξ
♯
0

]−1
πker ı

ξ
♯
0

πm∗E
m
ξ0(π

∗
1Γ.vi),

Em
ξ0(π

∗
1Γ.vi)

〉
L2(Sn−1,π∗ Ex0)

.

(5.27)

Since (π∗mπker ı
ξ
♯
0

)∗ = πker ı
ξ
♯
0

πm∗ in the L2 sense, we have the orthogonal decomposition:

L2(Sn−1, π∗ Ex0) = π∗m
(
⊗m

S ker ı
ξ♯0

⊗ Ex0

)
⊕⊥ ker

(
πker ı

ξ
♯
0

πm∗|L2(Sn−1)

)
. (5.28)

In particular, if we define wi := Em
ξ0

(
(π∗1Γ.vi)|Sn−2

ξ0

)
, then we can write

wi = π∗mTi + hi, (5.29)

where Ti ∈ ⊗m
S ker ı

ξ♯0
⊗ Ex0 and hi ∈ ker(πker ı

ξ♯
πm∗|L2(Sn−1)). We also define

Pm := π∗mπker ı
ξ
♯
0

[πker ı
ξ
♯
0

πm∗π
∗
mπker ı

ξ
♯
0

]−1πker ı
ξ
♯
0

πm∗ :

L2(Sn−1, π∗ Ex0) → L2(Sn−1, π∗ Ex0),

and observe that P 2
m = Pm, P ∗

m = Pm, so Pm is the orthogonal projection onto the first factor

of (5.28). In particular π∗mTi = Pmwi and (5.27) reads:

d∑

i=1

‖wi ‖2L2(Sn−1,π∗ Ex0)
=

d∑

i=1

‖Pm wi ‖2L2(Sn−1,π∗ Ex0)
. (5.30)

As a consequence, in order to obtain a contradiction in (5.30), it is sufficient to exhibit a Γ

such that h1 6= 0 (where h1 is given in (5.29)). Since h1 ∈ ker(πker ı
ξ♯
πm∗) and ker(πm∗) ⊂

ker(πker ı
ξ♯
πm∗), it is sufficient to show that the orthogonal projection of w1 onto ker(πm∗|L2)

is not zero, that is, it is sufficient to show that w1 = Em
ξ0
(π∗1Γ.v1) has degree ≥ m+ 1:

Lemma 5.7. There exists x0 ∈ M , ξ0 ∈ T ∗
x0
M \ {0} and Γ ∈ T ∗

x0
M ⊗ Endsk(Ex0) such that

deg(Em
ξ0
(π∗1Γ.v1)) ≥ m+ 1.

Proof. For that, we will need the following claim:

∀1 ≤ i ≤ d, we have deg(vi) ≥ m+ 1.

Indeed, assuming the contrary, since vi has opposite parity as m this would force deg(vi) ≤
m − 1, that is, vi = π∗m−1ṽi for some ṽi ∈ C∞(M,⊗m−1

S T ∗M). Recalling π∗m∆0ui = Xvi
by (5.12) and using the relation (2.12), this implies ∆0ui = DE ṽi. Hence πkerD∗

0
∆0ui = 0,

implying ui = 0 which is a contradiction.
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Now we select x0 according to v1, that is, we take x0 such that at this point, the degree of v1
in the fibre over x0 is ≥ m+1. This also implies that π∗1Γ.v1 has degree ≥ m+1 (actually, the

degree is at least m+ 2 but we do not need this) for some choice of Γ ∈ T ∗
x0
M ⊗ Endsk(Ex0)

by Lemma 3.8 applied with k = 1. Then, by Lemma 3.1, we know that there exists a

ξ0 ∈ T ∗
x0
M \ {0} such that deg(π∗1Γ.v1|Sn−2

ξ0

) ≥ m + 1 and then it suffices to apply the

extension Lemma 3.5 to get that

deg

(
Em

ξ0(π
∗
1Γ.v1|Sn−2

ξ0

)

)
≥ m+ 1,

concluding the proof when n ≥ 3. �

This allows to complete the proof of Theorem 1.5:

Proof of Theorem 1.5. Define Sm to be the set of smooth unitary connections with s-injective

twisted generalized X-ray transform Π∇E
m . It follows from Lemma 2.3 that this set is open

with respect to the Ck0-topology (for some k0 ≫ 1 large enough) namely, for all ∇E ∈ Sm,

there exists ε > 0 such that for all smooth ∇′E with ‖∇E −∇′E‖Ck0 < ε, ∇′E ∈ Sm.

In order to show density, let ε > 0 and ∇E be a smooth unitary connection not in Sm. By

[CL21] we know that the set of connections for which ker(π∗∇E)X |C∞ = {0} is dense, so we

may assume that ∇E satisfies this property. By the perturbative argument above (Lemmas

5.3, 5.7 and (5.30)), there exists Γ ∈ C∞(M,T ∗M ⊗ Endsk(E)) such that for all τ > 0 small

enough, ∇E + τΓ satisfies dim(ker Π∇E+τΓ
m ) < dim(ker Π∇E

m ); as usual, all the kernels here and

in what follows are assumed to be restricted to the space of divergence free tensors. Take

τ > 0 small enough such that Γ1 := τΓ has Ck0 norm strictly smaller than β := ε

dim(kerΠ∇E
m )

.

Iterating finitely many times this construction (N times where N ≤ dim(ker Π∇E
m )), we can

find Γ1, ...,ΓN ∈ C∞(M,T ∗M ⊗ Endsk(E)), each one with Ck0 norm less than β, such that

kerΠ∇E+Γ1+...+ΓN
m = {0} ,

that is ∇E + Γ1 + ...+ ΓN ∈ Sm and also

‖(∇E + Γ1 + ...+ ΓN )−∇E‖Ck0 < ε,

which proves density and concludes the proof of Theorem 1.5. �

Remark 5.8. As mentioned in the introduction, Lemma 5.3 and (5.25) show that the sec-

ond order derivative d2 λ(Γ,Γ) is of the form 〈BΓ,Γ〉L2 , where B is some pseudodifferential

operator (and the same will occur in the metric case). However, this operator is a priori not

elliptic. More precisely, the proof only shows that there exists a point x0 ∈M (where vi has

degree m + 1) where the principal symbol of B is non-zero. Had we been able to show the

ellipticity of B, we would have obtained that locally the space of connections (up to gauge)

with non-injective X-ray transform is finite-dimensional (and its tangent space would have

been equal to the kernel of B).

Remark 5.9. Our proof does not give generic injectivity when n = 2. More precisely, Lemma

5.7 does not work in that case, since Em
ξ0
(π∗1Γ.v1) always has degree equal to m. Therefore,

the equality (5.30) always holds and our proof shows that the pseudodifferential operator
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Lvi − Q∗
viΠ

−1
m Qvi appearing in (5.25) is in fact of order −2, as opposed to the case n ≥ 3

where we show that this operator is strictly of order −1. However, we believe that in the

former case the second variation should also be non-zero, and that this should be provable

using the method in §4 directly.

To conclude this paragraph, we point out that Theorem 1.5 also allows to answer positively

to the tensor tomography problem for generic connections:

Corollary 5.10 (of Theorem 1.5). There exists k0 ≫ 1 such that the following holds. Let

(M,g) be a smooth Anosov manifold of dimension ≥ 3 and let πE : E → M be a smooth

Hermitian vector bundle. There exists a residual set S ′ ⊂ AE (for the Ck0-topology) such that

if ∇E ∈ S ′, the following holds: let f, u ∈ C∞(SM,π∗ E) such that Xu = f and deg(f) <∞;

then deg(u) ≤ max(deg(f)− 1, 0).

We let U be the open dense set of unitary connections on ∇E such that X has no resonances

at z = 0 (density follows from [CL21]). The set S ′ in Corollary 5.10 is the intersection of the

set S in Theorem 1.5 with U .

Proof. Let ∇E ∈ S ′ := U ∩ S. Consider the transport equation Xu = f , where deg(f) < ∞
and both u and f are smooth. We aim to show that deg(u) ≤ max(deg(f)− 1, 0) and u ≡ 0

if deg(f) = 0.

Up to decomposing u and f into odd and even parts, we can already assume that f is even

and u is odd for instance. Let m := deg(f). Then f = π∗mf̃ and by applying πm∗I to the

transport equation, we obtain

Π∇E
m f̃ = πm∗Iπ∗mf̃ = πm∗IXu = 0.

By s-injectivity of Π∇E
m , we get that f̃ = 0 if m = 0, or f̃ = DEp for some twisted tensor

p ∈ C∞(M,⊗m−1
S T ∗M ⊗ E) if m ≥ 1. In the former case, we get Xu = 0 and thus u ≡ 0 as

X has no resonance at z = 0. In the latter case, we get X(u− π∗m−1p) = 0 (using (2.15)) and

thus u = π∗m−1p has degree ≤ m− 1. This concludes the proof. �

5.4. Endomorphism case. We conclude this section with a discussion of the endomorphism

case. More precisely, if E → M is a Hermitian vector bundle, we let End(E) → M be the

vector bundle of endomorphisms. If ∇E is a unitary connection on E , it induces a canonical

connection ∇End(E) on End(E) defined so that it satisfies the Leibniz rule:
[
∇End(E)u

]
.f := ∇E(u(f))− u(∇Ef),

for all f ∈ C∞(M, E), u ∈ C∞(M,End(E)). Similarly to §2.3.3, one can define a twisted

X-ray transform Π
End(E)
m with values in the endomorphism bundle End(E). More precisely,

the operator π∗∇End(E)
X always contains C ·1E in its kernel and its kernel is generically reduced

to C.1E (see [CL21], such a connection is also said to be opaque). We then set:

ΠEnd(E)
m := πm∗(R+ +R− +ΠC.1E )π

∗
m,

where ΠC.1E denotes the L2-orthogonal projection onto C.1E and R± is (the opposite of) the

holomorphic part of the resolvents of π∗∇End(E)
X at z = 0.
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For m = 1, the solenoidal injectivity of the operator Π
End(E)
1 appears to be crucial when

studying the holonomy inverse problem on Anosov manifolds, namely: to what extent does the

trace of the holonomy of a connection along closed geodesics determine the connection? We

proved in a companion paper [CL22] that this problem is locally injective near a connection

∇End(E) such that its induced operator Π
End(E)
1 is s-injective. Similarly to Theorem 1.5, this

turns out to be a generic property:

Theorem 5.11. There exists k0 ≫ 1 such that the following holds. Let (M,g) be a smooth

Anosov manifold of dimension n ≥ 3, πE : E → M be a smooth Hermitian vector bundle

and let m ∈ Z≥0. Moreover, assume that the X-ray transform Im with respect to (M,g)

is s-injective. Then, there exists an open and dense set Sm ⊂ AE (for the Ck0-topology)

of unitary connections with s-injective twisted generalized X-ray transform Π∇End(E)
m on the

endomorphism bundle.

Note that the main difference with Theorem 1.5 is that we need to assume that Im is

s-injective; this is known for m = 0, 1 on all Anosov manifolds [DS03] and this is a generic

condition with respect to the metric by our Theorem 1.1.

Proof. We just point out the main differences with the proof of Theorem 1.5. If ∇E is a fixed

unitary connection and ∇E + Γ (for Γ ∈ C∞(M,T ∗M ⊗ Endsk(E))) is a perturbation, the

induced connection on the endomorphism bundle is∇End(E)+[Γ, •]. Then, in the computations

of §5.2, each time that a term π∗1Γ.vi appears, it has to be replaced by [π∗1Γ, vi] and the vi’s are

now elements of C∞(SM,π∗End(E)), where vi satisfy a version of (5.12) for X := π∗∇End
X .

Now, each vi can be (uniquely) decomposed as vi = fi.1E + v⊥i , where fi ∈ C∞(SM) and

v⊥i ∈ C∞(SM,π∗End(E)) is a (pointwise) trace-free endomorphism-valued section. One still

has that Xvi is of degree m and vi is of degree ≥ m+1. In fact, we claim that v⊥i is of degree

≥ m+ 1. Indeed, assume that this is not the case, that is deg(v⊥i ) ≤ m; then fi has to be of

degree ≥ m+ 1 and

Xvi = (Xfi).1E +Xv⊥i

is of degree m. As (Xfi).1E and Xv⊥i are pointwise orthogonal as elements of π∗End(E)
(since Xv⊥i is trace-free), this forces each of them to be of degree ≤ m and thus Xfi is of

degree ≤ m, and deg(fi) ≥ m+ 1. But then the assumption that Im is s-injective rules out

this possibility.

Lemma 5.7 is then modified in the obvious way: one chooses a point x0 such that deg(v⊥i ) ≥
m+ 1 and it suffices to find a Γ ∈ T ∗

x0
M ⊗ Endsk(Ex0) such that

[π∗1Γ, vi] = [π∗1Γ, v
⊥
i ]

has degree ≥ m+1. For that, we choose an orthonormal basis (e1, ..., er) of Ex0 and write in

that basis v⊥i = (mjℓ)1≤j,ℓ≤r. By assumption, there is an element mjℓ with degree ≥ m+ 1.

Without loss of generality, we can assume it is in the first column ℓ = 1. If it is obtained for

some j0 6= 1, then taking a real-valued α ∈ Ω1 such that α.mj01 has degree ≥ m+1 (which is

possible by Lemma 3.7), and setting Γ := iα×e1⊗e∗1, we get easily that [π∗1Γ, v
⊥
i ] has degree

≥ m+ 1.
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If it is obtained for j0 = 1, then we write

v⊥i =

(
m11 b⊤

c d

)
,

where m11 ∈ C∞(SM) has degree ≥ m + 1, b, c are vectors of length r − 1 and d ∈
C∞(Sx0M,End(Cr−1)). Note that Tr(v⊥i ) = 0 = m11 + Tr(d). Moreover, writing d =

(mjℓ)2≤j,ℓ≤r, there is an element mj0j0 on the diagonal of d such that, if f≥m+1 denotes the

projection of a function f onto Fourier modes of degree ≥ m + 1, one has (mj0j0)≥m+1 6=
(m11)≥m+1 (indeed, if not, this would contradict Tr(v⊥i ) = 0). Without loss of generality, we

can assume that j0 = 2. Then, taking

Γ =

(
0 γ⊤

−γ 0

)
,

where γ is a vector of length r− 1 and γ⊤ = (α, 0, ..., 0) and α ∈ Ω1 is real-valued, we obtain:

[π∗1Γ, v
⊥
i ] =

(∗ γ⊤d−m11.γ
⊤

∗ ∗

)
, γ⊤d−m11.γ

⊤ = ((m22 −m11).α, ∗, ..., ∗) .

By assumption, m22−m11 has degree ≥ m+1 and it thus suffices to choose a real α ∈ Ω1 such

that (m22 −m11).α has degree ≥ m+1. The existence of such an α is once again guaranteed

by Lemma 3.7. This completes the proof. �

6. Generic injectivity with respect to the metric

We now prove Theorem 1.1. As we shall see, the computations follow from the same

strategy as in the connection case, except that they are more involved.

6.1. Preliminary computations. A first point to address is that the unit tangent bundle

now varies if we perturb the metric.

6.1.1. Scaling the geodesic vector fields on SM . The metric g := g0 is fixed and we consider

a smooth variation (gτ )τ∈(−1,1) of the metric. Each τ ∈ (−1, 1) defines a unit tangent bundle

SMτ := {(x, v) ∈ TM | gτ (v, v) = 1} ⊂ TM,

and we write SM := SM0. Each metric gτ induces a geodesic vector field Hτ defined on the

whole tangent bundle TM (which is tangent to SMτ , for every τ ∈ (−1, 1)). We let

Φτ : SM → SMτ , (x, v) 7→
(
x,

v

|v|gτ

)
, (6.1)

be the natural projection onto SMτ . We consider the family Xτ := Φ∗
τHτ = (Φ−1

τ )∗Hτ ∈
C∞(SM,T (SM)), which depends smoothly on τ and is defined so that Xτ=0 = X0 is the

geodesic vector field of the metric g0. Note that (Xτ )τ∈(−1,1) is a smooth family of Anosov

vector fields on SM . In what follows, when clear from context we will drop the subscript

when referring to derivatives at τ = 0. We will use ♯ : T ∗(SM) → T (SM) to denote the

musical isomorphism with respect to the Sasaki metric.
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Lemma 6.1. We have:

Ẋτ=0 = −1

2
π∗2 ġ ·X +

1

2
J [∇V(π

∗
2 ġ) +∇H(π

∗
2 ġ)]

− J
(
(∇Sas

X π∗2,Sasġ)(X,πH(•))
)♯

+ π∗2,Sasġ(X,πH(•))♯.
(6.2)

Proof. Write βτ (x, v)(ξ) = 〈v, dπ(x, v)ξ〉gτ (x) for the contact 1-form on SMτ . Writing ατ :=

Φ∗
τβτ and α := β0, and using π ◦Φτ = π, we obtain for any ξ ∈ T(x,v)SM :

ατ (x, v)(ξ) = |v|−1
gτ gτ (v,d π(x, v)(ξ)).

Differentiating in τ and restricting to τ = 0, we obtain the relation:

α̇ = −1

2
π∗2 ġ · α+ ġ(v,d π(x, v)(•)). (6.3)

The pullback vector fieldXτ is uniquely determined by the relations: ιXτατ = 1 and ιXτdατ =

0. Differentiating, we get ιẊα+ ιX α̇ = 0 and thus using (6.3), α(Ẋ) = −1
2π

∗
2 ġ. Since we can

decompose Ẋ = α(Ẋ)X + Y for some Y orthogonal to X this gives the first term in (6.2). It

remains to compute Y .

For that, we introduce the 1-form, defined for (x, v) ∈ SM as

A(x, v)(•) := ġ(v,d π(x, v)(•)) = π∗2,Sasġ(X, •),
using the Sasaki lift introduced in (2.13). The first step is to compute ιXdA and we claim:

ιXdA = −d(π∗2 ġ) + (∇Sas
X π∗2,Sasġ)(X,πHtot(•)) − π∗2,Sasġ(X,JπV(•)). (6.4)

Recall here that Htot = H ⊕ R · X denotes the total horizontal space, as explained in §2.1,

and πHtot is the orthogonal projection onto this space (with respect to the Sasaki metric).

Note that A defines a 1-form on TM and we will first compute ιXdA on TM . Then ιXdA

on SM is just the restriction. For W,Z ∈ C∞(TM,T (TM)), we have the formula:

dA(W,Z) =W ·
(
π∗2,Sasġ(X,Z)

)
− Z ·

(
π∗2,Sasġ(X,W )

)
− π∗2,Sasġ(X, [W,Z]). (6.5)

We now fix a point p ∈ M and take a geodesic orthonormal frame (E1, ..., En) around p, i.e.

such that ∇Ei
Ej(p) = 0. Let Xi be the horizontal lift of Ei. We have that ∇Sas

Xi
X is vertical

(see [Pat99, Lemma 1.25]) and ∇Sas
X Xi is also vertical at p (as π is a Riemannian submersion).

Hence by (6.5), at the point p:

ιXdA(Xi) = (∇Sas
X π∗2,Sasġ)(X,Xi) + π∗2,Sasġ(∇Sas

X X,Xi) + π∗2,Sasġ(X,∇Sas
X Xi)

−Xi · π∗2 ġ − π∗2,Sasġ(X, [X,Xi]︸ ︷︷ ︸
=∇Sas

X Xi−∇Sas
Xi

X

)

= (∇Sas
X π∗2,Sasġ)(X,Xi)−Xi · π∗2 ġ.

(6.6)

Introducing Yi := JXi, it can also be checked that [X,Yi] = JYi = −Xi at the point p (this

is an immediate consequence of the fact that [Xi, Yj ] = 0 at p, see [Pat99, Exercise 1.26]).

Thus by (6.5), at p:

ιXdA(Yi) = X · π∗2,Sasġ(X,Yi)− Yi ·
(
π∗2,Sasġ(X,X)

)
− π∗2,Sasġ(X, [X,Yi])

= −Yi · π∗2 ġ − π∗2,Sasġ(X,JYi).
(6.7)
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Combining (6.6) and (6.7) immediately yields (6.4) and proves the claim.

Hence, combining (6.4) with (6.3), we get

ιXdα̇ = −1

2
X(π∗2 ġ).α+

1

2
d(π∗2 ġ) + ιXdA

= −1

2
X(π∗2 ġ).α− 1

2
d(π∗2 ġ) + (∇Sas

X π∗2,Sasġ)(X,πHtot(•))− π∗2,Sasġ(X,JπV(•)).

Using ιXdα̇+ ιẊdα = ιXdα̇+ ιY dα = 0 together with (2.3), we get:

Y = −J(ιXdα̇)♯ =
1

2
J (∇Vπ

∗
2 ġ +∇Hπ

∗
2 ġ)− J

(
(∇Sas

X π∗2,Sasġ)(X,πH(•))
)♯

+ J
(
π∗2,Sasġ(X,JπV(•))

)♯
.

Note here that we used (∇Sas
X π∗2,Sasġ)(X,πH(•)) = (∇Sas

X π∗2,Sasġ)(X,πHtot(•))−X(π∗2 ġ).α, valid

sinceX(π∗2 ġ) = (∇Sas
X π∗2,Sasġ)(X,X). The last term in the expression for Y can be simplified as

π∗2,Sasġ(X,πH(•))♯ (which boils down to the identity JπVJ = −πH on kerα), which completes

the proof. �

The last two terms of (6.2) vanish for a conformal perturbation. We introduce the differ-

ential operator Λconf ∈ Diff1(SM,C → TC(SM)) of order one

Λconf(f) :=
1

2
(−fX + J [∇Vf +∇Hf ]) . (6.8)

We also introduce Λaniso ∈ Diff1(SM,⊗2
ST

∗(SM) → TC(SM)) of order one by:

Λaniso(f) := −J
(
(∇Sas

X f)(X,πH(•))
)♯

+ f(X,πH(•))♯ (6.9)

By construction Ẋ = Λconf(π∗2f)+Λaniso(π∗2,Sasf). In order to manipulate compact notations,

we will write Ẋ := Λ(π∗2f), although there is some abuse of notations here as there are two

distinct lifts of f to SM .

We now compute the symbols of Λconf,aniso. They will be useful in the perturbation argu-

ments in the following sections.

Lemma 6.2. For any (x, v, ξ) ∈ T (SM), we have:

σ(Λconf )(x, v, ξ) =
i

2
J(x, v)(πHξ

♯ + πVξ
♯) =

i

2
J(x, v)

(
ξ♯ − ξ(X(x, v)).X(x, v)

)
.

Proof. Consider the Lagrangian state ei
S
h f , where S(x, v) = 0,dS(x, v) = ξ and f(x, v) = 1.

By (6.8), we compute

Λconf(ei
S
h f) = −1

2
ei

S
h

[
fX − i

h
fJ(∇HS +∇VS)− J(∇Hf +∇Vf)

]
. (6.10)

We may directly read off the principal symbol from this expression:

σ(Λconf)(x, v, ξ) = lim
h→0

hΛconf(ei
S
h f)(x, v)

=
i

2
J(∇HS +∇VS)(x, v) =

i

2
J(x, v)(πHξ

♯ + πVξ
♯).

�
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We have:

Lemma 6.3. For any (x, v, ξ) ∈ T (SM) and f ∈ ⊗2
ST

∗
(x,v)(SM), we have:

σ(Λaniso)(x, v, ξ)f = −i〈ξ,X(x, v)〉.J(x, v)
(
f(X(x, v), πH(•))

)♯

Proof. We see that it suffices to compute the principal symbol of the first term in (6.9) as the

second term is of lower order. We take a Lagrangian state ei
S
h f with S(x, v) = 0,dS(x, v) = ξ

and f ∈ C∞(SM,⊗2
ST

∗(SM)), f(x) =: f0. We have:

σ(Λaniso)(x, v, ξ)f0

= lim
h→0

hΛaniso(ei
S
h f)(x, v)

= lim
h→0

−hJ(x, v)
(
i

h
XS. [f(X,πH(•))]♯ + ei

S
h

[
(∇Sas

X f)(X,πH(•))
]♯
)
(x, v)

= −i〈ξ,X(x, v)〉.J(x, v)
(
f0(X(x, v), πH(•))

)♯
.

�

Eventually, we compute the divergence of Ẋ in a geometric way. We prove:

Lemma 6.4. The following formula holds:

div(Ẋ) = X
(
π∗0 Trg0(ġ)−

n

2
π∗2 ġ
)
. (6.11)

In local coordinates (xi)1≤i≤n where g0 and ġ are identified with n×n symmetric matrices,

we have Trg0(ġ) = Tr(g−1
0 ġ).

Proof. Write Ωτ := d volSas,gτ for the Sasaki volume form of gτ in SMτ and Ω := Ω0. Write

Jτ for the Jacobian of Φτ (where we recall Φτ was introduced in (6.1)), i.e. Φ∗
τΩτ = JτΩ.

Observe that

− div(Xτ )Ω = LXτ Ω = Φ∗
τ (LHτ (J −1

τ ◦ Φ−1
τ .Ωτ )) = Jτ .Xτ (J −1

τ ).Ω.

It follows that div(Xτ ) = −Jτ .Xτ (J −1
τ ) = J −1

τ .XτJτ (the second equality follows from the

product rule) and differentiating at τ = 0 and using J0 = 1:

div(Ẋ) = XJ̇ . (6.12)

In what follows we compute Jτ . We will use that

d volSas,gτ (x, v) = π∗d volgτ (x, v) ∧ d volSxMτ (v).

We need the following auxiliary lemma:

Lemma 6.5. Let A0 and A1 be two symmetric, positive definite matrices, and denote by

S
n−1
Ai

= {x ∈ R
n | 〈Aix, x〉 = 1} ⊂ R

n the unit sphere with respect to the metric induced by

Ai; denote by d volAi
the induced volume form on S

n−1
Ai

. If R(x) = x√
〈A1x,x〉

is the scaling

map between the two spheres, then for x ∈ S
n−1
A0

:

R∗d volA1(x) =
(√detA1

detA0
.〈A1x, x〉−

n
2

)
d volA0(x). (6.13)
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Proof. We first show the claim for A0 = Id. Denote A1 = A and write R∗d volA = j.d volSn−1

for some function j on S
n−1. Observe that d volA(x) =

√
detA.ı∑

i xiei |dx| for x ∈ S
n−1
A , where

we write |dx| = dx1 ∧ . . . ∧ dxn, ei for the standard basis vectors of Rn identified with ∂i;∑
i xiei = x is the outer unit normal to S

n−1
A at x. It is straightforward to compute:

∀i = 1, . . . , n− 1, denR(ei) = ∂iR(en) =
1√
Ann

(
ei − en.

Ain

Ann

)
.

This shows the claim at x = en:

R∗(d volA)(en)(e1, . . . , en−1)

=
√
detA.ı en√

Ann
dx1 ∧ . . . ∧ dxn

(
...,

1√
Ann

(
ei − en.

Ain

Ann

)
, ...

)

= (−1)n−1
√
detA.〈Aen, en〉−

n
2 .

For general x ∈ S
n−1, consider a B ∈ SO(n) such that B(en) = x. Using that B : Sn−1

BTAB
→

S
n−1
A is an isometry and the previous computation, the formula (6.13) for A0 = Id follows.

For general A0, simply consider a linear coordinate change given by B with BTA0B = Id

and apply the previous result to A = BTA1B. This completes the proof. �

Using Lemma 6.5, we see that in local coordinates:

Φ∗
τ (π

∗d volgτ ∧d volSxMτ ) = π∗d volgτ ∧Φ∗
τ (d volSxMτ )

=
√

det gτ |dx| ∧
√

det gτ
det g0

.(π∗2gτ )
−n

2 d volSxM

=
det gτ
det g0

.(π∗2gτ )
−n

2 .π∗d volg0 ∧d volSxM .

This shows that Jτ = det gτ
det g0

.(π∗2gτ )
−n

2 , so taking the derivative at τ = 0 and using (6.12)

completes the proof and shows (6.11). �

In what follows, we will frequently use the operators, defined for a distribution v ∈ D′(SM):

∀u ∈ C∞(SM), Mvu := v.u, ∀Z ∈ C∞(SM,T (SM)), NvZ := Zv. (6.14)

Sometimes u or Z will also be singular, in which case we will have to justify the extension of

the corresponding operator to such functions.

6.1.2. Metric-dependent generalized X-ray transform. For each τ ∈ (−ε, ε) small enough,

we can consider the positive resolvent C ∋ z 7→ (−Xτ − z)−1 and the negative resolvent

C ∋ z 7→ (Xτ − z)−1. Since we have Xτ = (Φτ )
∗Hτ , the resolvents satisfy on C∞(SM) that

(±Xτ − z)−1 = (Φτ )
∗(±Hτ − z)−1(Φτ )∗ and therefore also

RXτ
±,0 = (Φτ )

∗RHτ
±,0(Φτ )∗, ΠXτ

± = (Φτ )
∗ΠHτ

± (Φτ )∗, (6.15)

where the superscript denotes the vector field with respect to which the resolvent is taken,

R•
±,0 is its holomorphic part at zero and Π•

± is the orthogonal projection to the resonant space



46 M. CEKIĆ AND T. LEFEUVRE

at zero. From now on we drop the • = Xτ superscript and simply write τ instead. By (2.17)

we have

Πτ
± = 〈•, µτ 〉1, (6.16)

where 1 is the constant function and µτ is the pullback by Φτ of the normalised Liouville

measure on SMτ such that 〈1, µτ 〉 = 1.

Let (πgτm )∗ : C∞(M,⊗m
S T

∗M) → C∞(SMτ ) be the canonical pullback operator; we write

π∗m := (πg0m )∗. We may then compute, for a symmetric m-tensor f :

(Φτ )
∗(πgτm )∗f(x, v) = (πgτm )∗f

(
x,

v

|v|gτ

)

= fx

(
v

|v|gτ
, . . . ,

v

|v|gτ

)
= |v|−m

gτ π∗mf(x, v).

We denote χτ (x, v) = |v|−m
gτ , so that by the previous equality:

χτπ
∗
m = (Φτ )

∗(πgτm )∗, (πm)∗χτ = (πgτm )∗(Φτ )∗, (6.17)

where the lower star denotes the pushforward, that is the L2 adjoint of the pullback operator.

We are in position to introduce the generalised X-ray transform with respect to Hτ and study

its properties under re-scaling by (6.15) and (6.17):

Πτ
m := (πgτm )∗(R

Hτ
+,0 +RHτ

−,0 +ΠHτ
+ )(πgτm )∗ = πm∗χτ (R

τ
+,0 +Rτ

−,0 +Πτ
+︸ ︷︷ ︸

Iτ :=

)χτπ
∗
m. (6.18)

Moreover, the family

(−ε, ε) ∋ τ 7→ Πτ
m ∈ Ψ−1(M,⊗m

S T
∗M → ⊗m

S T
∗M)

depends smoothly on τ as stated in Lemma 2.3.

We keep the same strategy as in §5 and define

Pτ = πkerD∗
0
∆0Π

τ
m∆0πkerD∗

0
, (6.19)

where ∆0 is an elliptic, formally self-adjoint, positive, pseudodifferential operator of order

k > 1/2 with diagonal principal symbol that induces an isomorphism on Sobolev spaces. As

in Lemma 5.1 (more precisely, apply Lemma 5.1 to the trivial vector bundle E = M × C

equipped with the trivial unitary connection d, and note that as explained in Footnote (11)

the kernel of X is stably non-empty, so the lemma applies in our setting), the maps:

πkerD∗
τ
∆0πkerD∗

0
: kerD∗

0 ∩Hs(M,⊗m
S T

∗M) → kerD∗
τ ∩Hs−k(M,⊗m

S T
∗M),

πkerD∗
0
∆0πkerD∗

τ
: kerD∗

τ ∩Hs(M,⊗m
S T

∗M) → kerD∗
0 ∩Hs−k(M,⊗m

S T
∗M),

are isomorphisms for τ small enough depending on s ∈ R. In particular, as before, Πτ
m is

solenoidal injective (i.e. injective on symmetric tensors in kerD∗
τ ) if and only if Pτ is solenoidal

injective. In what follows we assume that (ui)
d
i=1 is an L2-orthonormal basis of eigenstates

of P0 at 0. As in (5.10), we let λτ be the sum of the eigenvalues of Pτ inside a small contour

near 0.

6.2. Variations of the ground state. We now compute the variations with respect to τ .
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6.2.1. First order variations. As in the connection case, the first order variation of λτ at

τ = 0 is λ̇τ=0 = 0 and the second order variation is given by Lemma 5.2. We thus need to

compute each term involved in the second derivative λ̈τ=0, namely Ṗ0 and P̈0. More precisely,

the goal of this section is to compute
∑d

i=1〈P−1
0 Ṗ0ui, Ṗ0ui〉L2 .

We assume that gτ = g + τf , where f ∈ C∞(M,⊗2
ST

∗M) is a perturbation such that

ġ = f . We write

−(−Xτ − z)−1 = (z +Xτ )
−1 =

Πτ
+

z
+Rτ

+,0 + zRτ
+,1 + z2Rτ

+,2 +O(z3),

−(Xτ − z)−1 = (z −Xτ )
−1 =

Πτ
−

z
+Rτ

−,0 + zRτ
−,1 + z2Rτ

−,2 +O(z3),

(6.20)

for the meromorphic expansion of the resolvents at zero. First of all, we compute the deriva-

tives of χτ at τ = 0:

χ̇τ=0(x, v) = −m
2
ġ(v, v) = −m

2
π∗2f(x, v),

χ̈τ=0(x, v) =
m

2

(m
2

+ 1
)
[π∗2f ]

2(x, v).
(6.21)

In the following we recall that Πτ
+ = Πτ

− (see (6.16)). We now turn to the first order variation

of the resolvent:

Lemma 6.6. We have Π̇± = −Π±ẊR+,0 and:

Ṙ+,0 = −
(
R+,0ẊR+,0 +Π+ẊR+,1

)
, Ṙ−,0 = +

(
R−,0ẊR−,0 +Π−ẊR−,1

)
.

Proof. Let us deal with the second equality (the third one is similar). By (6.20), we have

(recall that the contour γ around zero was defined in §2.4):

Rτ
+,0 =

1

2πi

∮

γ
(z +Xτ )

−1d z

z
, (6.22)

and differentiating with respect to τ , we get:

Ṙ+,0 = − 1

2πi

∮

γ
(z +X)−1Ẋ(z +X)−1d z

z

= −
(
R+,0ẊR+,0 +Π+ẊR+,1 +R+,1ẊΠ+

)
.

To conclude, it suffices to observe that ẊΠ+ = 0 as Ẋ is a vector field and the range of Π+

is always the constant functions C · 1.
As far as the derivative of the spectral projection is concerned, one starts with the equality

Πτ
+ =

1

2πi

∮

γ
(z +Xτ )

−1 d z, (6.23)

and then differentiates with respect to τ similarly as above; we omit the details. �
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Therefore, recalling (6.18), by (6.21) and Lemma 6.6 we obtain at τ = 0:

Π̇m = πm∗

(
−m

2
(π∗2f.I + Iπ∗2f) + İ

)
π∗m

= πm∗

(
− m

2
(π∗2f.I + Iπ∗2f)−

(
R+,0ẊR+,0 +Π+ẊR+,1

)

+
(
R−,0ẊR−,0 +Π−ẊR−,1

)
−Π+ẊR+,0

)
π∗m.

(6.24)

Next, we observe that for m odd, πm∗1 = 0 and also πm∗(π
∗
2f) = 0 and as a consequence,

the terms in (6.24) involving Π± disappear; when m is even, this simplification no longer

occurs. Recalling the definition (6.19) of Pτ , we obtain from (6.24) the general expression

(valid for m odd or even):

Ṗ0 = πkerD∗
0
∆0πm∗

(
− m

2

(
π∗2f.(R+,0 +R−,0) + (R+,0 +R−,0)π

∗
2f
)

−R+,0ẊR+,0 +R−,0ẊR−,0

)
π∗m∆0πkerD∗

0

+ ε(m)πkerD∗
0
∆0πm∗

−m
2
π∗2f.Π+−m

2
Π+π

∗
2f −Π+ẊR+,1 +Π−ẊR−,1 −Π+ẊR+,0

︸ ︷︷ ︸
S(π∗

2f):=




π∗m∆0πkerD∗
0
,

where ε(m) = 0 for m odd and ε(m) = 1 for m even. This last term is isolated on purpose

because as we shall see, it only contributes to a smoothing remainder in the following argument

and will therefore disappear in the principal symbol computations.

We let ui ∈ C∞(M,⊗m
S T

∗M) ∩ kerD∗
0 be one of the elements in the kernel of P0. Note

that the operator Πm being real, we can always assume that the ui’s are real-valued. This

implies using Lemma 2.1 that (as in §5)

π∗m∆0πkerD∗
0
ui = Xvi, for some vi ∈ C∞(SM) with Π+vi = 0, (6.25)

which can also be chosen real-valued (since X is real). Hence, using (2.18) and the fact that

(R+,0 +R−,0)X = 0, XΠ+ = Π+X = ẊΠ+ = 0, and recalling that Ẋ = Λ(π∗2f), we obtain:

Ṗ0ui = −m
2
πkerD∗

0
∆0πm∗

(
π∗2f.(R+,0 +R−,0) + (R+,0 +R−,0)π

∗
2f
)
Xvi

+ πkerD∗
0
∆0πm∗

(
−R+,0Ẋ R+,0X︸ ︷︷ ︸

=1−Π+

vi +R−,0Ẋ R−,0X︸ ︷︷ ︸
=−1+Π−

vi
)

+ ε(m)πkerD∗
0
∆0πm∗

(
−m

2
π∗2f.Π+ + S(π∗2f)

)
Xvi

= −πkerD∗
0
∆0πm∗(R+,0 +R−,0)

[m
2
π∗2f.Xvi + Λ(π∗2f)vi

]

+ ε(m)πkerD∗
0
∆0πm∗S(π

∗
2f)Xvi.

(6.26)
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Let us introduce shorthand notation for the operators arising in (6.26), for any v ∈ C∞(SM)

and any symmetric 2-tensor h ∈ C∞(M,⊗2
ST

∗M):

Bvh := πm∗S(π
∗
2h)Xvi, Qvh := πm∗(R+,0 +R−,0)

[m
2
π∗2h.Xv + Λ(π∗2h)v

]
. (6.27)

By using the facts that P−1
0 = (πkerD∗

0
∆0πkerD∗

0
)−1Π−1

m (πkerD∗
0
∆0πkerD∗

0
)−1 on kerD∗

0 and

the equalities D∗
0πm∗(R+,0 + R−,0) = D∗

0πm∗S(π
∗
2f) = 0, we obtain from (6.26) (similarly to

(5.21)):

〈P−1
0 Ṗ0ui, Ṗ0ui〉L2 =

〈
Π−1

m Qvif,Qvif
〉
L2 + ε(m)

〈
Π−1

m Bvif,Bvif
〉
L2

− 2ε(m)ℜ
(
〈Qvif,Bvif〉L2

)
.

(6.28)

We now prove that the operator Bv introduced in (6.27) is in fact smoothing:

Lemma 6.7. Bvi ∈ Ψ−∞(M,⊗2
ST

∗M → ⊗m
S T

∗M) is a smoothing operator.

Proof. Similarly to the proof of Lemma 4.4, it suffices to show that Bvi maps

D′(M,⊗2
ST

∗M) → C∞(M,⊗m
S T

∗M)

boundedly. For that, let h ∈ D′(M,⊗2
ST

∗M). By [Lef19a, Lemma 2.1] we have WF(π∗2h) ⊂ V
∗

and WF(π∗2,Sash) ⊂ V
∗ (as in the proof of Lemma 4.4). By resolvent identities (2.18) and

using ẊΠ+ = 0, we have:

S(π∗2h)Xvi = −m
2
Π+(π

∗
2h.Xvi) + Π+Λ(π

∗
2h)(R+,0 +R−,0)vi −Π+Λ(π

∗
2h)vi. (6.29)

By (2.17), the first term in (6.29) i.e. −m
2 Π+(π

∗
2h.Xvi) = −m

2 〈π∗2h.Xvi, µ〉1 is clearly smooth.

Similarly, the last term −Π+Λ(π
∗
2h)vi is also obviously smooth.

We now deal with the remaining term. Define vui := (R+,0+R−,0)vi. Since vi is smooth, this

has wavefront set in E∗
u ∪E∗

s by the characterization of the wavefront set of the resolvent, see

(4.5). Hence, the one-form dvui has also wavefront set in E∗
u∪E∗

s and thus by the multiplication

rule of distributions (see [Hör03, Theorem 8.2.10] for instance), the inner product Λ(π∗2h)v
u
i =

ıΛ(π∗
2h)

d vui is allowed (since V
∗ ∩ (E∗

u ∪ E∗
s ) = {0} by the absence of conjugate points, see

(2.8)). As a consequence

Π+Λ(π
∗
2h)(R+,0 +R−,0)vi = 〈ıΛ(π∗

2h)
d vui , µ〉1

is smooth, which proves the lemma. �

We have an analogous statement to Lemma 5.4:

Lemma 6.8. For all v ∈ C∞(SM),

Qv ∈ Ψ0(M,⊗2
ST

∗M → ⊗m
S T

∗M),

is a pseudodifferential operator of order 0 with principal symbol for (x, ξ) ∈ T ∗M \ {0},
σQv(x, ξ) ∈ Hom(⊗2

ST
∗
xM,⊗m

S T
∗
xM), given by:

σQv(x, ξ)h = C−1
n−1+2m

iπ

|ξ|πker ıξ♯πm∗E
m
ξ (〈ξV,∇Vv〉.π∗2h) , h ∈ ⊗2

ST
∗
xM,

where ξV(x, v) ∈ H
∗(x, v) is defined by ξV(x, v)(•) := ξ(Kx,v(•)).
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Observe that the main difference with Lemma 5.4 is that the operator is now of order 0

instead of −1: this is due to the fact that the operator Λ is of degree 1 (it costs derivatives of

order 1 in f). Also note that the principal symbol of Qv now satisfies σQv(x,−ξ) = −σQv(x, ξ);

this will not be a problem as Qv will always appear twice in the brackets (hence the two minus

signs will eventually give a plus).

Proof. We may re-write the operator Qv in a sandwich form as follows:

Qv =
m

2
πm∗(R+,0 +R−,0)MXvπ

∗
2 + πm∗(R+,0

+R−,0)Nv(Λ
confπ∗2 + Λanisoπ∗2,Sas),

(6.30)

where we use the notation of (6.14). By the sandwich Proposition 4.1 (and Remark 4.3 below),

it follows that Qv is pseudodifferential of order 0 and the first term of (6.30) is of order −1.

By Lemma 6.2, the principal symbol of NvΛ
conf is given by, on co-vectors ξH = ξ ◦ dx,vπ:

σ(NvΛ
conf)(x, v, ξH(x, v))

=
i

2
dx,vv

(
J(x, v)

(
(ξH(x, v))

♯ −X(x, v).〈ξ, v〉
))

=
i

2

〈
∇Vv(x, v), (0, ξ

♯ − v.〈ξ, v〉)
〉
=
i

2
〈ξV(x, v),∇Vv(x, v)〉 .

(6.31)

Similarly, by Lemma 6.3, we have:

σ(NvΛ
aniso)(x, v, ξH(x, v))h = −i〈ξH,X(x, v)〉.dx,vv

(
J
(
h(X,πH(•))

)♯)

= −i〈ξ, v〉.dx,vv
(
J
(
h(X,πH(•))

)♯)
.

(6.32)

It then suffices to apply Proposition 4.1 and Remark 4.3 to conclude the proof. Note that

the principal symbol of NvΛ
aniso does not appear as the expression in Remark 4.3 involves

integration over the sphere {〈ξ, v〉 = 0} = S
n−2
ξ . �

To summarise the content of this section, we obtain from (6.28) using Lemmas 6.7 and 6.8:

d∑

i=1

〈P−1
0 Ṗ0ui, Ṗ ui〉L2

=

d∑

i=1

〈Q∗
viΠ

−1
m Qvif, f〉L2(M,⊗2

S
T ∗M) + 〈OΨ−∞(1)f, f〉L2(M,⊗2

S
T ∗M).

(6.33)

6.2.2. Second order variations. We now turn to the second variation of the resolvents which

will allow us to compute
∑d

i=1〈P̈0ui, ui〉L2 . Similarly to Lemma 6.6, we have:

Lemma 6.9. We have Π̈± = 2Π±ẊR±,0ẊR±,0 ∓Π±ẌR±,0 and:

R̈±,0 = 2
(
Π±ẊR±,0ẊR±,1 +Π±ẊR±,1ẊR±,0 +R±,0ẊR±,0ẊR±,0

)

∓
(
Π±ẌR±,1 +R±,0ẌR±,0

)
. (6.34)
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Proof. We prove the claims for the (Xτ + z)−1 resolvent, the other claim follows analogously.

Differentiating the expression (6.22) twice at τ = 0, we obtain the formula:

R̈+,0 =
1

πi

∮

γ
(X + z)−1Ẋ(X + z)−1Ẋ(X + z)−1 dz

z

− 1

2πi

∮

γ
(X + z)−1Ẍ(X + z)−1 dz

z
.

The equation (6.34) now follows by the residue theorem and the expansion (6.20), using the

relations ẊΠ+ = ẌΠ+ = 0 to cancel the extra terms.

For the derivative of the spectral projector, by differentiating the formula (6.23) twice:

Π̈+ =
1

πi

∮

γ
(X + z)−1Ẋ(X + z)−1Ẋ(X + z)−1dz

− 1

2πi

∮

γ
(X + z)−1Ẍ(X + z)−1dz,

and the final result again follows from the expansion (6.20). �

Next, differentiating (6.18) and inserting (6.21), we obtain at τ = 0:

Π̈m = πm∗

(m
2

(m
2

+ 1
) [

(π∗2f)
2.I + I(π∗2f)2

]

−m
[
π∗2f.İ + İπ∗2f

]
+ Ï +

m2

2
π∗2f.Iπ∗2f

)
π∗m.

(6.35)

We can already make some simplifications in the term 〈P̈ ui, ui〉L2 , where ui is one of the

eigenstates at 0 of P0. Recalling (6.25) and using IX = XI = 0, from (6.35) we get at τ = 0:

〈P̈0ui, ui〉L2 =
〈
πkerD∗

0
∆0Π̈m∆0πkerD∗

0
ui, ui

〉
L2(M,⊗m

S T ∗M)

=

〈(
−m

[
π∗2f.İ + İπ∗2f

]
+ Ï +

m2

2
π∗2f.Iπ∗2f

)
Xvi,Xvi

〉

L2(SM)

. (6.36)

Similarly to §6.2.1, some terms will disappear whenm is odd while in the case wherem is even,

they will only contribute up to a smoothing remainder. First of all, let us assume that m is

odd. We make the simple observation that 〈heven, hodd〉L2 = 0 for any heven, hodd ∈ C∞(SM)

with even and odd Fourier content, respectively. Therefore, the terms involving Π± in (6.36)
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obtained after using Lemmas 6.6 and 6.9 to expand İ, Ï vanish, and we get:

〈P̈0ui, ui〉L2

= −m
〈[
π∗2f.

(
R−,0ẊR−,0 −R+,0ẊR+,0

)

+
(
R−,0ẊR−,0 −R+,0ẊR+,0

)
π∗2f

]
Xvi,Xvi

〉
L2

+
〈[

2
(
R+,0ẊR+,0ẊR+,0 +R−,0ẊR−,0ẊR−,0

)

−R+,0ẌR+,0 +R−,0ẌR−,0

]
Xvi,Xvi

〉
L2

+
m2

2
〈(R+,0 +R−,0)(π

∗
2f.Xvi), π

∗
2f.Xvi〉L2 .

Using the resolvent relations (2.18), the terms involving Ẍ cancel each other:

〈(
−R+,0ẌR+,0 +R−,0ẌR−,0

)
Xvi,Xvi

〉

L2(SM)
= 0.

Therefore, we get using again (2.18), the fact that involved quantities are real, recalling that∫
SM vi d volgSas = 0, and using (2.5):

〈P̈0ui, ui〉L2

= −m
(
−
〈
π∗2f.(R+,0 +R−,0)Ẋvi,Xvi

〉
L2(SM)

+
〈
Ẋ(R+,0 +R−,0)(π

∗
2f.Xvi), vi

〉
L2(SM)

)

− 2
〈
Ẋ(R+,0 +R−,0)Ẋvi, vi

〉
L2(SM)

+
m2

2

〈
(R+,0 +R−,0) (π

∗
2f.Xvi), π

∗
2f.Xvi

〉
L2(SM)

= 2m
〈
π2∗

(
Xvi.(R+,0 +R−,0)Ẋvi

)
, f
〉
L2︸ ︷︷ ︸

=:(I)

−m
〈
π2∗

(
Xvi.(R+,0 +R−,0)

(
div(Ẋ).vi

))
, f
〉
L2︸ ︷︷ ︸

=:(I)

+ 2
〈
(R+,0 +R−,0)Ẋvi, Ẋvi

〉

L2︸ ︷︷ ︸
=:(II)

− 2
〈
(R+,0 +R−,0)Ẋvi,div(Ẋ).vi

〉

L2︸ ︷︷ ︸
=:(III)

+
m2

2

〈
π2∗
(
Xvi.(R+,0 +R−,0)(π

∗
2f.Xvi)

)
, f
〉
L2

︸ ︷︷ ︸
=:(IV)

.

(6.37)

(The expression for (I) runs on two lines.) In the general case (where m is either even or

odd), the previous equality still holds by adding on the right-hand side the extra term (V)
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which is equal to:

(V) := ε(m)
(
−m

〈
π∗2f.Π+Ẋ (R+,0 +R−,0 − 1) vi,Xvi

〉
L2

+
m2

2
〈π∗2f.Π+(π

∗
2f.Xvi),Xvi〉L2

)
.

(6.38)

Here again we used (6.36) along with Lemmas 6.6 and 6.9 to expand the terms containing

Π±; we also used (2.18) and XΠ+ = ẊΠ+ = 0 to simplify the expression.

As before, we will see that each term in the previous equality can be written in the form

〈Af, f〉L2(M,⊗2
ST

∗M), for some pseudodifferential operator A. In order to shorten the compu-

tations, it is important to understand the order of these operators: when taking Gaussian

states, only the terms of highest order will remain. Also observe that (6.33) involves an op-

erator of order 1: we therefore expect to find operators of order at most 1. First of all, we

deal with the term (V) (appearing only when m is even):

Lemma 6.10. There exists B′
vi ∈ Ψ−∞(M,⊗2

ST
∗M → ⊗2

ST
∗M) such that:

(V) = ε(m).〈B′
vif, f〉L2 . (6.39)

Proof. It follows from (6.38) that (6.39) holds with:

B′
vi = π2∗
(
−m.MXviΠ+N(R+,0+R−,0)viΛ+m.MXviΠ+NviΛ+

m2

2
MXviΠ+MXvi

)
π∗2

(6.40)

The last two terms in (6.40) are obviously smoothing, while exactly the same wavefront set

arguments as in Lemma 6.7 apply to show that the first term is smoothing. �

We then prove (recall that ξV(x, v)(•) = ξ(Kx,v(•))):

Lemma 6.11. There exist pseudodifferential operators A
(I)
vi , A

(II)
vi , A

(III)
vi and A

(IV)
vi in the pseu-

dodifferential algebra Ψ∗(M,⊗2
ST

∗M → ⊗2
ST

∗M) of respective order 0, 1, 0 and −1 such that

(recall (∗) was defined in (6.37)):

(∗) = 〈A(∗)
vi f, f〉L2 , (6.41)

for ∗ ∈ {I, II, III, IV}. Moreover, we have for (x, ξ) ∈ T ∗M \ {0} and h ∈ ⊗2
ST

∗
xM :

〈σA(II)(x, ξ)h, h〉⊗2
ST

∗
xM

=
π

|ξ|C
−1
n−1+2m

∥∥∥Em
ξ

(
π∗2h(•).〈ξV(x, •),∇Vv(x, •)〉|Sn−2

ξ

)∥∥∥
2

L2(SxM)
.

(6.42)

Proof. Term (IV). Using the notation of (6.14), we observe that (6.41) holds for ∗ = IV with:

A(IV)
vi :=

m2

2
π2∗MXvi(R+,0 +R−,0)MXviπ

∗
2.

By the sandwich Proposition 4.1, this is a ΨDO of order −1.
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Term (I). Next, using the formula for the divergence in Lemma 6.4 together withMviXu =

X(Mviu)−MXviu and (R+,0+R−,0)X = 0 = X(R+,0+R−,0), we see from (6.37) that (6.41)

holds for ∗ = I with:

A(I)
vi := 2m.π2∗MXvi(R+,0 +R−,0)NviΛπ

∗
2

+m.π2∗MXvi(R+,0 +R−,0)MXvi

(
π∗0 Trg0(•) −

n

2
π∗2(•)

)
.

(6.43)

By Proposition 4.1, the first term in (6.43) is of order 0 as Λ is of order 1, and the second

term is of order −1.

Term (III). By Lemma 6.4 and using MviXu = X(Mviu)−MXviu, we get from (6.37):

A(III)
vi = (2jg0π0∗ − n.π2∗)MXvi(R+,0 +R−,0)NviΛπ

∗
2 ,

where jg0 denotes the multiplication by g0, that is jg0u := u.g0 for u ∈ C∞(M). By Proposi-

tion 4.1, this is a pseudodifferential operator of order 0.

Term (II). Finally, for the term (II), we write from (6.37):

A(II)
vi :=2

(
π2∗

(
Λconf

)∗
+ π2,Sas∗

(
Λaniso

)∗)

N∗
vi(R+,0 +R−,0)Nvi(Λ

confπ∗2 +Λanisoπ∗2,Sas),

where
(
Λconf,aniso

)∗
denotes the formal adjoint of the first order differential operators Λconf,aniso.

Once more, applying Proposition 4.1 and Remark 4.3 shows that A
(II)
vi is a ΨDO of order 1 with

the principal symbol given by (6.42), where we also use (6.31) and (6.32) to compute the prin-

cipal symbols of NviΛ
conf and NviΛ

aniso, and (3.6) to extend the formula to SxM . Note that

NviΛ
aniso does not contribute to the principal symbol as its symbol (see (6.32)) is proportional

to 〈ξ, v〉 and the formula of Remark 4.3 involves integration over {〈ξ, v〉 = 0} = S
n−2
ξ . �

As a consequence, (6.37) and the previous two lemmas show that:

d∑

i=1

〈P̈0ui, ui〉L2 =
d∑

i=1

〈Rvif, f〉L2 + 〈OΨ−∞(1)f, f〉L2 , (6.44)

where Rvi = A
(I)
vi + A

(II)
vi + A

(III)
vi + A

(IV)
vi is a pseudodifferential operator of order 1, whose

principal symbol is given by that of A
(II)
vi and determined by (6.42).

6.3. Assuming the second variation is zero. We now assume that for any variation of

the metric gτ = g + τf with f ∈ C∞(M,⊗2
ST

∗M), the second derivative λ̈ = 0 vanishes.

Using Lemma 5.2, this implies that:

d∑

i=1

〈P̈0ui, ui〉L2(M,⊗m
S T ∗M) = 2

d∑

i=1

〈P−1
0 Ṗ0ui, Ṗ0ui〉L2(M,⊗m

S T ∗M). (6.45)

In §6.2.1 and §6.2.2, we saw that both the right-hand side and the left-hand side can be

written as quadratic forms in f , with pseudodifferential operators of order 1 acting on f .
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More precisely, combining (6.33) and (6.44), we have that (6.45) implies:

∀f ∈ C∞(M,⊗2
ST

∗M),

d∑

i=1

〈(
Rvi − 2Q∗

viΠ
−1
m Qvi

)
f, f

〉
L2(M,⊗2

ST
∗M)

= 〈OΨ−∞(1)f, f〉L2 ,
(6.46)

where the remainder has this form by Lemmas 6.7 and 6.10 and appears only when m is even.

We then consider a real Gaussian state fh = ℜ(eh(x, ξ))f̃ (see (5.26) for the notation),

where f̃ ∈ C∞(M,⊗2
ST

∗M) is a smooth section such that f̃(x) =: f and ξ ∈ T ∗
xM \ {0}.

Note that similarly to §5 we can only allow real perturbations of the metric, hence the need

for the real part of the Gaussian state. Nevertheless, this will not be a problem insofar as the

principal symbols of Rvi and Q∗
viΠ

−1
m Qvi are preserved by the antipodal map in the fibres.

We thus obtain by applying (6.46) to the Gaussian state h.fh and taking the limit as h→ 0,

using Lemma 5.6:

C−1
n−1+2m

π

|ξ|

d∑

i=1

∥∥∥Em
ξ

(
π∗2f(•). 〈ξV(x, •),∇Vvi(x, •)〉 |Sn−2

ξ

)∥∥∥
2

L2(SxM)

= 2
d∑

i=1

〈
σΠ−1

m πkerD∗
0

(x, ξ)σQvi
(x, ξ)f, σQvi

(x, ξ)f

〉

⊗m
S T ∗

xM

= C−1
n−1+2m

π

|ξ|

×
d∑

i=1

〈(
πker ı

ξ♯
πm∗π

∗
mπker ıξ♯

)−1
πker ı

ξ♯
πm∗E

m
ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)
,

πker ı
ξ♯
πm∗E

m
ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)〉

⊗m
S T ∗

xM

= C−1
n−1+2m

π

|ξ|

×
d∑

i=1

〈
PmE

m
ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)
, Em

ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)〉

⊗m
S T ∗

xM
,

where we used Lemmas 6.8 and 6.11 to compute the symbols of Rvi and Q
∗
viΠ

−1
m Qvi , and we

introduced the following map:

Pm := πm
∗πker ı

ξ♯

(
πker ı

ξ♯
πm∗π

∗
mπker ıξ♯

)−1
πker ı

ξ♯
πm∗.

Note that Pm is the L2-orthogonal projection onto ran(π∗mπker ıξ♯ ) in L
2(SxM) and so it holds

that (cf. (5.28)):

L2(SxM) = ran(π∗mπker ıξ♯ )⊕
⊥ ker(πker ı

ξ♯
πm∗).
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Thus, we get cancelling the constant terms (similarly to (5.30)):

d∑

i=1

∥∥∥Em
ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)∥∥∥
2

L2(SxM)

=

d∑

i=1

∥∥∥PmE
m
ξ

(
π∗2f.〈ξV,∇Vvi〉|Sn−2

ξ

)∥∥∥
2

L2(SxM)
.

(6.47)

As ker(πm∗) ⊂ ker(πker ı
ξ♯
πm∗), to obtain a contradiction it is sufficient to show that the L2-

orthogonal projection onto ker(πm∗) of the function Em
ξ

(
π∗2f.〈ξV,∇Vv1〉|Sn−2

ξ

)
is non-zero,

that is, it suffices to show the following:

Lemma 6.12. There exists x ∈M, ξ ∈ T ∗
xM \ {0} and f ∈ ⊗2

ST
∗
xM such that:

deg
(
Em

ξ

(
π∗2f.〈ξV,∇Vv1〉|Sn−2

ξ

))
≥ m+ 1. (6.48)

Proof. Similarly as in the proof of Lemma 5.7, we know that v1 has degree ≥ m+1. Indeed,

by the mapping properties of X and using equation (6.25), parity of v1 is opposite tom and so

if deg(v1) ≤ m− 1 we could write v1 = π∗m−1ṽ1 for some smooth ṽ1. This would imply (using

(2.12)) that Dṽ1 = ∆0u1 and hence also πkerD∗∆0u1 = 0, so u1 = 0 which is a contradiction.

Observe that by Lemma 3.3, since v1 has degree ≥ m + 1 at some point x ∈ M , there

exists ξ ∈ T ∗
xM such that 〈ξV,∇Vv1〉|Sn−2

ξ
has degree ≥ m. Then, by Lemma 3.7 (observe

here that the musical map is an isomorphism from ker〈ξ, •〉 ⊂ TxM to ker ıξ♯ ⊂ T ∗
xM), there

exists f ∈ ⊗2
S(ker ıξ♯) such that π∗2f.〈ξV,∇Vv1〉|Sn−2

ξ
has degree ≥ m+ 2. Note that f can be

naturally extended as a symmetric tensor in ⊗2
ST

∗
xM by setting f(ξ♯, •) = f(•, ξ♯) = 0. Thus

we can apply Lemma 3.5 to obtain (6.48). �

This allows to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The same proof as for Theorem 1.5 applies verbatim. �

Remark 6.13. When n = 2, similarly as in Remark 5.9 our proof does not work. More

precisely, the equality (6.47) always holds, which shows that the symbol of Rvi −2Q∗
viΠ

−1
m Qvi

appearing in (6.46) is zero, hence this operator is of order 0, as opposed to the case n ≥ 3

where we show it is strictly of order 1.

7. Manifolds with boundary

In this section we outline some applications of the previous results to the injectivity of

X-ray transform on manifolds with boundary.

7.1. Generic injectivity on manifolds with boundary. We now turn to the case of a

smooth Riemannian manifold (M,g) with boundary. We define the incoming (resp. outgoing)

tail Γ− (resp. Γ+) as the set of points (x, v) ∈ SM such that ϕt(x, v) is defined for all t ≥ 0

(resp. t ≤ 0); the trapped set is defined as K = Γ− ∩ Γ+. We further assume that (M,g)

satisfies the following assumptions:
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• Strictly convex boundary: the boundary is strictly convex in the sense that the

second fundamental form is strictly positive;

• No conjugate points: the metric has no conjugate points;

• Hyperbolic trapped set: there exists a continuous flow-invariant Anosov decom-

position as in (1.1) on the trapped set K.

We will use the short notation SNH for such manifolds. Typical and well-studied examples

are provided by simple manifolds which are diffeomorphic to balls, without conjugate points

and no trapped set; SNH manifolds are a generalization of these, see [MP11, Gui17b] for

further references.

Embedding of SNH manifolds into closed Anosov manifolds was recently established in

[CEG23] under the extra assumption that the manifold has boundary components diffeomor-

phic to spheres S
n−1, or S

1 × S
n−2. As we will rely on [CEG23], we therefore introduce the

following terminology: we say that a smooth n-dimensional manifold M with boundary is

admissible if it has boundary components diffeomorphic to S
n−1 or S1 × S

n−2. As pointed

out to us by on the referees, in dimension n ≥ 3, SNH manifolds with spherical boundary

components are presumably diffeomorphic to balls.

Given a manifold M , we let MSNH be the set of all smooth SNH metrics. As in the

closed case, this set is invariant by the action of a gauge group Diff0(M) which is the set of

diffeomorphisms fixing the boundary ∂M .

Given x ∈ ∂M , we let ν(x) be the outward-pointing normal unit vector to the boundary

and

∂±SM := {(x, v) ∈ SM, x ∈ ∂M,±g(v, ν(x)) ≥ 0}
be the incoming (-) and outgoing (+) boundary. The X-ray transform is defined as the

operator

Ig : C∞(SM) → C∞(∂−SM \ Γ−), I
gf(x, v) :=

∫ ℓ+(x,v)

0
f(ϕt(x, v)) d t,

where ℓ+(x, v) denotes the exit time of (x, v) ∈ SM , namely the maximal positive time for

which the geodesic flow is defined. As in the closed case, the X-ray transform of symmetric

tensors is defined as Igm = Ig ◦ π∗m; a similar decomposition f = Dp + h between potential

and solenoidal parts holds by requiring the extra condition p|∂M = 0. It is then easy to check

that such potential tensors are in the kernel of Igm and it is conjectured that this should be

the whole kernel of the X-ray transform. The s-injectivity is known to be true in a lot of cases

but not in full generality:

• On simple manifolds: s-injectivity was proved for m = 0, 1 in any dimension [AR97];

further assuming non-positive sectional curvature, it was obtained for all m ∈ Z≥0 in

[PS87]; and for all m ∈ Z≥0 on surfaces, without any curvature assumption, it was

obtained in [PSU13]; generic s-injectivity was obtained for m = 2 in [SU05, SU08] (by

proving s-injectivity for real analytic metrics);

• On SNH manifolds: in dimension n ≥ 3, s-injectivity was proved on all SNH manifolds

for m = 0, 1 and all SNH manifolds with non-positive sectional curvature for m ≥ 2

in [Gui17b]; it was obtained on all SNH surfaces for all m ∈ Z≥0 in [Lef19a],
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• On manifolds admitting a global foliation by convex hypersurfaces: s-injectivity was

obtained in any dimension ≥ 3 for all m ∈ Z≥0 in [UV16, SUV18, dHUZ19].

We will then derive the following:

Corollary 7.1 (of Theorem 1.1 and [CEG23]). There exists an integer k0 ≫ 1 such that

the following holds. Let M be a smooth admissible manifold of dimension ≥ 3 carrying SNH

metrics. For all m ∈ Z≥0
14, there exists an open dense set R′

m ⊂ MSNH (for the Ck0-topology)

such that for all metrics g ∈ R′
m, the X-ray transform Igm is s-injective. In particular, the

space of metrics R′ := ∩m≥0R′
m whose X-ray transforms are all s-injective is residual in

MSNH.

Once again, the sets Rm and R are invariant by the action of Diff0(M). We believe that

the assumption that the boundary components are diffeomorphic to S
n−1 or S1 × S

n−2 could

be removed (for that, one would need to avoid the use of [CEG23, Theorem 1] and follow

directly the proof of Theorem 1.1 in the case of a manifold with boundary).

7.2. Marked boundary distance function. Let (M,g) be an SNH manifold with bound-

ary. For each pair of points x, y ∈ ∂M and each homotopy class [γ] of curves joining x to y,

it is well-known that there exists a unique geodesic in that class. We let dg(x, y, [γ]) be the

length of that unique geodesic (it minimizes the length among all curves in the [γ]) and call

the map dg the marked boundary distance function. When M is simple (it is diffeomorphic

to a ball), there is only a single geodesic joining x to y; we may then drop the [γ] and we

call dg the boundary distance function. This function is invariant by the action of the gauge-

group Diff0(M) (it descends on the moduli space) and it is conjectured that this is the only

obstruction to recovering the metric:

Conjecture 7.2. Simple manifolds are boundary distance rigid and, more generally, SNH

manifolds are marked boundary distance rigid in the sense that the marked boundary distance

function:

d : MSNH := MSNH/Diff0(M) ∋ g 7→ dg (7.1)

is injective.

This conjecture is known in a certain number of cases but it still open in full generality, and

was originally stated for simple manifolds by Michel [Mic82]. We refer to [Muk77, Muk81,

MR78, Cro91, Mic82, Gro83, Ota90b, PU05, BI10, SUV18] for further details. Similarly to

the closed case, it was shown in [SU05] that the local boundary distance rigidity of a metric

g can be derived from the s-injectivity of its X-ray transform Ig2 . This was extended to SNH

manifolds (not necessarily spherical) in [Lef20]. As a consequence, we obtain:

Corollary 7.3 (of Corollary 7.1 and [Lef20]). There exists k0 ≫ 1 such that the following

holds. Let M be a smooth admissible n-dimensional manifold carrying SNH metrics. There is

an open dense set R′
2 ⊂ MSNH (with respect to the Ck0-topology) such that: for all g0 ∈ R′

2,

the marked boundary distance function d in (7.1) is locally injective near g0.

Here R′
2 = R′

2/Diff0(M), where R′
2 is given by Corollary 7.1.

14For m = 0, 1, the s-injectivity is already established [Gui17b].
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7.3. Proofs. This section is devoted to the proof of Corollary 7.1.

Proof of Corollary 7.1. We fix an integer m ∈ Z≥0. As in the closed case, the s-injectivity

of Igm is equivalent to the s-injectivity of the normal operator (Igm)
∗
Igm which has the same

microlocal properties as the generalized X-ray transform Πg
m, see [Gui17b] for instance. Hence

the fact that R′
m is open is an immediate consequence of elliptic theory so it suffices to show

that R′
m is dense in Mk0

SNH. We let g ∈ Mk0
SNH. By [CEG23], the manifold (M,g) can be

embedded into a closed Anosov manifold (M ext, gext) such that gext|M = g and by Theorem

1.1, we can perturb the metric gext (in the Ck0-topology) to a new metric g′ext such that this

metric has injective X-ray transform I
g′ext
m on M ext. In order to prove Corollary 7.1, it then

suffices to show that g′ext|M restricted to the manifold with boundary M has injective X-ray

transform. In other words, it suffices to prove the following:

Lemma 7.4. Let (M,g) be a closed Anosov manifold and let (N, g|N ) ⊂ (M,g) be an SNH

manifold with boundary. If the X-ray transform Igm on the closed manifold is s-injective on

M , then the X-ray transform I
g|N
m on the manifold with boundary is also s-injective on N .

Proof. We let f ∈ C∞(N,⊗m
S T

∗N) such that I
g|N
m f = 0. First of all, by [Sha02, Lemma 2.2],

we can write f = Dp + h, where p|∂N = 0, ıνh = 0 in a neighborhood of ∂N (where ν is the

outward-pointing unit vector and is extended in the inner neighborhood of ∂N by flowing

along the geodesics), ıν is the contraction by the vector ν and both tensors p, h are smooth.

Observe that Ig|Nf = 0 = Ig|Nh. We claim that ∂kνh = 0 for all k ≥ 0, that is h vanishes to

infinite order on the boundary. For k = 0, this is contained in [Sha02, Lemma 2.3]. The proof

is a simple observation: if hx(v, ..., v) is non-zero for some x ∈ ∂M and v ∈ Tx∂N then it is

also true in a small neighboorhood of (x, v) and π∗mh has constant sign there; without loss

of generality we can take it to be positive. Using short geodesics in a neighborhood of the

boundary (with unit speed vector almost equal to v) we then get that Imh(x, v) > 0, which

is a contradiction. Hence we can write h = rh′, where r(x) := d(x, ∂N) is defined locally

near the boundary and extended to an arbitrary positive function inside N . Then the same

argument of positivity applies to h′ and by iteration, we get that h = O(r∞) at ∂N . Hence we

can extend h by 0 outside N to get a smooth tensor (still denoted by h) in C∞(M,⊗m
S T

∗M).

We now claim that Igmh = 0 on M , that is the integral of π∗mh along closed geodesics in M

is zero. Indeed, let γ ⊂ SM be a closed orbit of the geodesic flow of length ℓ(γ), then:

Igmh(γ) =
1

ℓ(γ)

∫ ℓ(γ)

0
π∗mh(ϕt(x, v)) d t =

1

ℓ(γ)

(∫

I
π∗mh+

∫

J
π∗mh

)
,

where I ⊂ [0, ℓ(γ)] is the union of intervals of times t such that π(ϕt(x, v)) /∈ N , π : SM →M

denotes the projection and J is the complement of I. Observe that the integral over I is zero

since h was extended by 0 outside N . Now, J splits as a union of subintervals, each of them

corresponding to a segment of geodesic in N . By assumption, the integral of π∗mh over all

these segments is 0. Hence Igmh = 0.

Since Igm is s-injective, we deduce that h = Du, for some tensor u ∈ C∞(M,⊗m−1T ∗M),

that is π∗mh = Xπ∗m−1u is a coboundary. We now want to show that u|∂M = 0. We let

(x0, v0) ∈ SM be a point on the boundary ∂+SN such that both forward (ϕt(x0, v0))t∈R≥0
and
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backward (ϕt(x0, v0))t∈R≤0
orbits are dense in SM and we let c := π∗m−1u(x0, v0). Observe

that the following holds: if t−1 ≥ 0 denotes the first positive time such that ϕt−1
(x0, v0)

intersects ∂−SN
◦ (that is, it is an inward pointing vector that is not tangent to the boundary

of N), then π∗m−1u(ϕt(x0, v0)) is constant equal to c for all t ∈ [0, t−1 ]. There is then a time

t+1 > t−1 such that ϕt+1
(x0, v0) ∈ ∂+SN . For t ∈ [t−1 , t

+
1 ), the value of π∗m−1u(ϕt(x0, v0)) is

unknown but one has π∗m−1u(ϕt+1
(x0, v0)) = c since:

Ig|Nh(ϕt−1
(x0, v0)) =

∫ t+1

t−1

π∗mh(ϕt(x0, v0)) d t

= 0 = π∗m−1u(ϕt+1
(x0, v0))− π∗m−1u(ϕt−1

(x0, v0)).

Since the orbit of O(x0, v0) of (x0, v0) is dense in SM , the set A := O(x0, v0) ∩ (∂−SN ∪
∂+SN) is also dense in ∂−SN ∪ ∂+SN . Moreover, iterating the previous argument shows

that π∗m−1u|A = c and thus π∗m−1u|∂−SN∪∂+SN = c. If m is even, m− 1 is odd and this forces

c to be 0 (just use the antipodal map (x, v) 7→ (x,−v)); if m is odd, then changing at the

very beginning u by u+ λg⊗(m−1)/2 for some λ ∈ R allows to take c = 0. Hence, we conclude

that u|∂N = 0. This gives that f = Dp+ h = D(p+ u), where p+ u vanishes on ∂N . �

This concludes the proof of Corollary 7.1. �
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[Kou15] Mickaël Kourganoff. Geometry and dynamics of configuration spaces. Theses, Ecole normale

supérieure de lyon - ENS LYON, December 2015.

[Lef19a] Thibault Lefeuvre. On the s-injectivity of the X-ray transform on manifolds with hyperbolic trapped

set. Nonlinearity, 32(4):1275–1295, 2019.

[Lef19b] Thibault Lefeuvre. Sur la rigidité des variétés riemanniennes. PhD thesis, 2019. Thèse de doctorat
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(2), 131(1):151–162, 1990.
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Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1991.

[Uhl76] K. Uhlenbeck. Generic properties of eigenfunctions. Amer. J. Math., 98(4):1059–1078, 1976.

[UV16] Gunther Uhlmann and András Vasy. The inverse problem for the local geodesic ray transform.

Invent. Math., 205(1):83–120, 2016.
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