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A THREE GAP THEOREM FOR THE ADELES

AKSHAT DAS, ALAN HAYNES

Abstract. We prove a natural generalization of the classical three gap theorem, for
rotations on adelic tori. Our proof is an adaptation to the adeles of the lattice based
approach to gaps problems in Diophantine approximation originally introduced by
Marklof and Strömbergsson.

1. Introduction

The classical three gap theorem (also known as the three distance theorem and as
the Steinhaus problem) asserts that, for any α ∈ R and N ∈ N, the collection of points
nα mod 1, 1 ≤ n ≤ N, partitions R/Z into component arcs having one of at most
three distinct lengths. This theorem was first proved independently in the 1950’s by Sós
[8, 9], Surányi [10], and Świerczkowski [11], and it has since been reproved numerous
times and generalized in many ways (see the introductions and bibliographies of [2, 3]).

With a view towards understanding problems in dynamics which are sensitive to
arithmetic properties of return times to regions, it is desirable to generalize classical
results about rotations on R/Z to the setting of rotations on adelic tori. In this paper
we will prove an adelic version of the three gap theorem. For readers unfamiliar with
the adeles or adelic tori, we provide definitions and basic properties in the next section.
Here we briefly present our results.

Let P = {p1, p2, . . .} be a non-empty subset of prime numbers and let AP denote the
projection of the rational adeles A onto the places indexed by {∞} ∪ P. The additive
group ΓP = Z[1/p1, 1/p2, . . .] can be diagonally embedded into AP as a subgroup, and
we identify it with its image under this embedding. The adelic torus XP is then defined
as XP = AP/ΓP . We will write elements α ∈ XP as α = (α∞, αp1, αp2, . . .).

We are going to define gaps as nearest neighbor distances, but first we must specify
a metric on XP . A natural choice of metric on AP is given by

(1.1) |α− β| =















max
{

|α∞ − β∞|∞,maxp∈P |αp − βp|p
}

if |P| < ∞,

max
{

|α∞ − β∞|∞,maxp∈P
|αp−βp|p

p

}

if |P| = ∞.
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This metric induces the usual restricted product topology on AP , and we use it to
define the metric

(1.2) ‖α− β‖ = min{|α− β − γ| : γ ∈ ΓP}

on XP , which induces the quotient topology (see [4, 12]).

Given α ∈ AP and N ∈ N, let

SN(α) = {ξn = nα+ ΓP : 1 ≤ n ≤ N} ⊂ XP ,

and for each 1 ≤ n ≤ N let δn,N = δn,N(α) denote the distance from ξn to its nearest
neighbor in SN(α). That is,

(1.3) δn,N = min
{

‖ξm − ξn‖ > 0 : 1 ≤ m ≤ N
}

.

We are interested in the number of distinct nearest neighbor distances, which we write
as

gN(α) = |{δn,N(α) : 1 ≤ n ≤ N}|.

The main result of this paper is the following theorem.

Theorem 1.1. Let P be any non-empty set of prime numbers. For any α ∈ XP and
N ∈ N, we have that gN(α) ≤ 3. Furthermore, there exist α ∈ XP and N ∈ N for
which gN(α) = 3.

Our proof of this theorem is an adaptation to the adeles of the lattice based ap-
proach to gaps problems in Diophantine approximation first introduced by Marklof
and Strömbergsson in [6] to give a new proof of the three gap theorem. The utility of
their approach lies in its flexibility for generalization to higher dimensional problems
where other techniques do not work well (see [2, 3, 5]).

Readers who are familiar with the references in the previous paragraph will recognize
the overall structure of our proof of Theorem 1.1. However, technical details aside,
here there are two new difficulties which must be overcome. The first is to prove
that a certain function (the function F defined in Section 3) on the space of lattices
SL(2,ΓP)\SL(2,AP) is well-defined. For this we use an adelic version of Minkowski’s
theorem from the geometry of numbers, which was developed independently by McFeat
[7] and Bombieri and Vaaler [1]. The second difficulty is to prove that the bound of 3
in our theorem is best possible. Of course, for specific choices of P this can be done
by a computer, but to deal with arbitrary P a small amount of ingenuity is required.

The structure of this paper is as follows. In Section 2 we discuss background material
and notation, and we establish basic preliminary results. In Section 3 we reformulate
the problem of bounding gN(α) as a problem about bounding a certain function on
the space of lattices of determinant 1 in A2

P . In Section 4 we prove the upper bound
gN ≤ 3, and in Section 5 we give examples showing that this bound is best possible,
in the sense described in Theorem 1.1.
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2. Preliminaries and notation

For any prime number p, we write Qp for the field of p-adic numbers and | · |p for
the usual p-adic absolute value on this field. The ring of p-adic integers Zp is the set
of x ∈ Qp with |x|p ≤ 1. We also use | · |∞ to denote the usual Archimedean absolute
value on R.

The ring of rational adeles A of Q is a topological ring consisting of all points of the
form

α = (α∞, α2, α3, α5, . . .) ∈ R×
∏

p

Qp,

satisfying the condition that αp ∈ Zp for all but finitely many primes p (the product
above is over all prime numbers). Addition and multiplication of elements are defined
pointwise, with closure under addition guaranteed by the strong triangle inequality, and
the topology on A is the restricted product topology with respect to the sets Zp ⊆ Qp.

As in the introduction, for a nonempty set of prime numbers P = {p1, p2, . . .} we
write AP for the topological ring obtained by projecting A onto the coordinates indexed
by {∞}∪P, and provided with the final topology with respect to this projection. With
this topology, the additive group of AP is a locally compact Abelian group, therefore
it has a translation invariant Haar measure which is unique up to scaling.

The space AP is metrizable, so there are of course many metrics which induce its
topology. The problems that we are studying depend on the choice of metric, and in
this paper we choose to use the metric defined by (1.1). For the case when |P| < ∞
this is the maximum metric, which is a canonical choice. When |P| = ∞ this is a
natural metric, which has been used before in this context [4, 12].

The additive group ΓP = Z[1/p1, 1/p2, . . .] can be diagonally embedded into AP by
the injective homomorphism γ 7→ γ = (γ, γ, γ, . . .), and we identify ΓP with its image
under this map (in the same way, we also denote the diagonal embedding of any element
of Q into AP by bold face). The group ΓP is a discrete subgroup of AP , and the the
quotient group

XP = AP/ΓP

is compact. The metric ‖ ·‖ defined by (1.2) induces the quotient topology on XP (this
follows from the same arguments given in [4]). For clarity of notation, we also mention
that there is a natural action of ΓP on AP , given by γα = γα.

To help with some of the calculations below, it is worth pointing out that a strict
fundamental domain for the quotient group XP can be identified with the set

FP = [0, 1)×
∏

p∈P

Zp.

The reader should take care to note that this is only a Cartesian product of sets, not
a direct product of groups - the group structure is slightly different because of the fact
that ΓP is diagonally embedded in AP .
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Finally, we conclude this section with the following useful observation, which is a
good exercise in some of the definitions above.

Proposition 2.1. If α,β ∈ FP then

(2.1) ‖α− β‖ = min
γ∈{0,±1}

|α− β − γ|.

Proof. First of all, since

|α∞ − β∞|∞ < 1 and |αp − βp|p ≤ 1 for all p ∈ P,

we have that

(2.2) ‖α− β‖ ≤ |α− β|

{

≤ 1 if |P| < ∞,

< 1 if |P| = ∞.

Choose γ ∈ ΓP so that

‖α− β‖ = |α− β − γ|.

If, for some prime p ∈ P, we had |γ|p > 1 then it would follow that

|αp − βp − γ|p ≥ p,

This would give that

‖α− β − γ‖

{

> 1 if |P| < ∞,

≥ 1 if |P| = ∞,

which would contradict (2.2). It follows that γ ∈ Zp for all p ∈ P, which implies that
γ ∈ Z. Now if |γ|∞ ≥ 2, then we would have that

‖α− β‖ ≥ |α∞ − β∞ − γ|∞ > 1,

again contradicting (2.2). Therefore γ = −1, 0, or 1, as required. �

3. Formulation of the problem in terms of lattices

Let G = SL(2,AP) and Γ = SL(2,ΓP). The goal of this section is to explain how the
quantity gN(α) can be obtained as the value of a function on the quotient space Γ\G.
This space can be identified in a natural way with the space of lattices of determinant
1 in A2

P , since such a lattice is determined as the ΓP-span of the rows of a matrix in
G, which is unique up to left multiplication by an element of Γ (i.e. change of basis).

Suppose that α ∈ AP and N ∈ N, and write N+ = N + 1/2. Beginning from
definition (1.3), for each 1 ≤ n ≤ N we have

δn,N(α) = min
{

|(m− n)α+ γ| > 0 : 0 < m < N+, γ ∈ ΓP

}

= min
{

|kα+ γ| > 0 : −n < k < N+ − n, γ ∈ ΓP

}

= min

{

|kα+ γ| > 0 :
−n

N+

< k < 1−
n

N+

, γ ∈ ΓP

}

.



A THREE GAP THEOREM FOR THE ADELES 5

For each non-zero t ∈ Q define

(3.1) At(α) =

(

1 α

0 1

)(

t−1 0
0 t

)

=

(

t−1 tα
0 t

)

∈ G,

and note that, for any β, γ ∈ ΓP ,

(β,γ)AN+
(α) =

(

β

N+
, N+(βα+ γ)

)

.

It follows from this and the computation above that, for each 1 ≤ n ≤ N , the quantity
δn,N is equal to

1

N+
min

{

|v| 6= 0: (u, v) ∈ Γ2
PAN+

(α),
−n

N+
< u∞ < 1−

n

N+
,(3.2)

|up|p ≤
1

|N+|p
for all p ∈ P

}

.

Next, for any M ∈ G, t ∈ (0, 1), and z ∈ N, let us define

Q(M, t, z) =

{

(u, v) ∈ Γ2
PM : v 6= 0, −t < u∞ < 1− t,(3.3)

|up|p ≤

∣

∣

∣

∣

2

z

∣

∣

∣

∣

p

for all p ∈ P

}

,

and

F (M, t, z) = min
{

|v| : (u, v) ∈ Q(M, t, z)
}

.(3.4)

The reason for these definitions will be made clear below. However, before proceeding
further, we must verify the following proposition.

Proposition 3.1. The quantity F is well-defined as a function from Γ\G× (0, 1)×N
to R>0.

Proof. First of all let (M, t, z) ∈ G× (0, 1)×N and choose ǫ > 0 small enough so that:

(i) ǫ < min{t, 1− t},

(ii) pǫ < |2/z|p, for all primes p|2z, and

(iii) Γ2
PM contains no non-zero lattice points (u, v) satisfying |u| ≤ ǫ and |v| = 0.

Condition (iii) is possible because of the uniform discreteness of the lattice.

Now write

S =
{

(α,β) ∈ A2
P : |α| < ǫ

}

,

and suppose that (α,β) ∈ S. Then from condition (i) we have that

−t < α∞ < 1− t.
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If |P| < ∞ then for all primes p ∈ P we have from (ii), together with the fact that
ǫ < 1, that

|αp|p ≤ ǫ <

∣

∣

∣

∣

2

z

∣

∣

∣

∣

p

.

If |P| = ∞ then for primes p ∈ P with p|2z we have from (ii) that

|αp|p ≤ pǫ <

∣

∣

∣

∣

2

z

∣

∣

∣

∣

p

.

In this case for primes p ∈ P with p ∤ 2z we use the discreteness of the p-adic absolute
value to deduce that

|αp|p
p

≤ ǫ < 1 ⇒ |αp|p ≤ 1 =

∣

∣

∣

∣

2

z

∣

∣

∣

∣

p

.

These arguments show that

S ∩ Γ2
PM ⊆ Q(M, t, z).

Since S is a symmetric and convex subset of A2
P with infinite Haar measure, it follows

from the adelic analogue of Minkowski’s convex body theorem (see [1, Section III])
that S contains a non-zero element of Γ2

PM . Therefore Q(M, t, z) is non-empty.

The existence of the minimum in the definition of F follows from the uniform dis-
creteness of the lattice Γ2

PM , and this also guarantees that F never takes the value 0.
Finally, since the same lattice is determined by choosing any other representative for
M from Γ\G, the function F is well-defined on Γ\G× (0, 1)× N. �

Comparing equations (3.2)-(3.4), we have that

δn,N(α) =
1

N+
F

(

AN+
(α),

n

N+
, 2N + 1

)

.

Motivated by this observation, for M ∈ G and z ∈ N we define

G(M, z) = |{F (M, t, z) : 0 < t < 1}|,

and for N ∈ N, we also set

GN(M) =

∣

∣

∣

∣

∣

∣

{

F

(

M,
n

N+

, 2N + 1

)

: 1 ≤ n ≤ N

}

∣

∣

∣

∣

∣

∣

.

It follows that

(3.5) gN(α) = GN(AN+
) ≤ G(AN+

, 2N + 1).

This reduces the problem of finding an upper bound for the number of gaps to that of
finding an upper bound for the function G. We conclude this section with the following
basic observation.

Proposition 3.2. For any M ∈ G and z ∈ N, we have that G(M, z) < ∞.
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Proof. Proposition 3.1 implies that there exists a vector (u, v) ∈ Q(M, 1/2, z). By
symmetry, we also have that (−u,−v) ∈ Q(M, 1/2, z). For any t ∈ (0, 1), one of ±u∞

lies in the interval (−t, 1 − t), and so one of the vectors ±(u, v) lies in Q(M, t, z). It
follows that F (M, t, z) ≤ |v|, for all t ∈ (0, 1). By the uniform discreteness of the
lattice Γ2

PM , there are finitely many vectors (u′, v′) in the set

(3.6) Q(M, z) =
⋃

t∈(0,1)

Q(M, t, z),

satisfying the condition |v′| ≤ |v|. Therefore the set of values taken by the function
F (M, t, z), as t varies over (0, 1), is a finite set. �

4. Proof of Theorem 1.1, part 1

In this section we will prove the following result.

Theorem 4.1. Let P be a non-empty set of prime numbers. For any M ∈ G and
z ∈ N, we have that G(M, z) ≤ 3.

In view of inequality (3.5), this theorem implies the upper bound in the statement
of Theorem 1.1.

To establish Theorem 4.1, suppose that M ∈ G and z ∈ N, and let Q(M, z) be
defined as in (3.6). Note that, by the symmetry of the lattice and of the definition of
Q(M, z),

(4.1) (u, v) ∈ Q(M, z) ⇔ (−u,−v) ∈ Q(M, z).

By Proposition 3.2, there exists a number K ∈ N such that G(M, z) = K. It is clear
from definitions that we can fix vectors (u1, v1), . . . , (uK , vK) ∈ Q(M, z) for which the
following properties hold:

(V1) 0 < |v1| < |v2| < · · · < |vK |,

(V2) For each t ∈ (0, 1), there exists 1 ≤ i ≤ K such that F (M, t, z) = |vi| , and

(V3) For each 1 ≤ i ≤ K, there exists t ∈ (0, 1) such that (ui, vi) ∈ Q(M, t, z) and
F (M, t, z) = |vi|.

We also have the following proposition.

Proposition 4.2. If G(M, z) = K then we can choose the vectors (ui, vi) as above, so
that they satisfy conditions (V1)-(V3), and so that ui,∞ ≥ 0 for each 1 ≤ i ≤ K.

Proof. Suppose that 1 ≤ i ≤ K and that ui,∞ < 0. It is clear that the vector (−ui,−vi)
satisfies property (V2), and we wish to show that it also satisfies (V3). Since (ui, vi)
itself satisfies (V3), there exists a number t ∈ (0, 1) with (ui, vi) ∈ Q(M, t, z) and
F (M, t, z) = |vi|. This implies that there are no vectors (u, v) ∈ Q(M, z) with |v| <
|vi| and u∞ ∈ (−t, 1 − t). Writing t′ = 1 − t and using (4.1), we see that there
are also no vectors (u, v) ∈ Q(M, z) with |v| < |vi| and u∞ ∈ (−t′, 1 − t′). Since
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(−ui,−vi) ∈ Q(M, t′, z), this implies that F (M, t′, z) = | − vi|, and we see that (V3)
holds for this vector.

It follows that, for each 1 ≤ i ≤ K with ui,∞ < 0, we can replace the vector
(ui, vi) by its negative, to obtain a new list of vectors satisfying the conclusion of the
proposition. �

We will henceforth assume, without loss of generality, that the vectors (ui, vi) have
been chosen as above, so that they also satisfy:

(V4) ui,∞ ≥ 0 for each 1 ≤ i ≤ K.

Next we have the following proposition.

Proposition 4.3. If (u, v) ∈ Q(M, z) and |u∞| < 1/2, then F (M, t, z) ≤ |v| for all
t ∈ (0, 1).

Proof. By replacing (u, v) with its negative if necessary, we may assume without loss of
generality that u∞ ∈ [0, 1/2). We then have that (u, v) ∈ Q(M, t, z) for all t ∈ (0, 1−
u∞), and that (−u,−v) ∈ Q(M, t, z) for all t ∈ (u∞, 1). Therefore F (M, t, z) ≤ |v|
for all t in the union of these two intervals. If u∞ < 1/2, then the union of these two
intervals is all of (0, 1), and the statement of the proposition follows. �

Finally, we have the following proposition.

Proposition 4.4. If 1 ≤ i ≤ K and if (u, v) ∈ Q(M, z) satisfies |u∞|∞ ≤ ui,∞, then
|v| ≥ |vi|.

Proof. Suppose that the hypotheses are satisfied and, by replacing (u, v) by its negative
if necessary, suppose that u∞ ≥ 0. By property (V3), there exists a t ∈ (0, 1) such that
(ui, vi) ∈ Q(M, t, z) and F (M, t, z) = |vi|. Then since

−t < 0 ≤ u∞ ≤ ui,∞ < 1− t,

we also have that (u, v) ∈ Q(M, t, z). This implies that F (M, t, z) ≤ |v|, which gives
the desired conclusion. �

Note that Proposition 4.4 implies that

0 ≤ uK,∞ < uK−1,∞ < · · · < u1,∞ < 1.

Now we are ready to complete the proof of Theorem 4.1. Let K1 denote the number
of indices 1 ≤ i ≤ K with ui,∞ < 1/2, and let K2 denote the number of indices with
1/2 ≤ ui,∞ < 1.

By Proposition 4.3, together with properties (V1) and (V2), we have that K1 ≤ 1,
and if K1 = 1 then the corresponding index i is equal to K.

If K2 ≤ 2 then clearly we have that K = K1 + K2 ≤ 3. Therefore suppose that
K2 ≥ 3, and let 1 ≤ i, j, k ≤ K be the smallest three indices with ui,∞, uj,∞, uk,∞ ≥ 1/2.
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Without loss of generality, by relabeling if necessary, we may assume that i < j and
that vi,∞ and vj,∞ are either both negative, or both non-negative. This guarantees that

|vi,∞ − vj,∞|∞ ≤ max{|vi,∞|∞, |vj,∞|∞},

and by using the strong triangle inequality at the non-Archimedean places we obtain
the bound

(4.2) |vi − vj | ≤ max
{

|vi|, |vj|
}

= |vj |.

However, it is also the case that

|ui,∞ − uj,∞|∞ < 1/2 ≤ uj,∞,

and that

|ui,p − uj,p|p ≤ max
{

|ui,p|p, |uj,p|p
}

≤

∣

∣

∣

∣

2

z

∣

∣

∣

∣

p

,

for all p ∈ P. It follows that the vector (u, v) = (ui, vi)− (uj, vj) lies in Q(M, z) and
satisfies |u∞| < 1/2. By Proposition 4.3, we must have that

F (M, t, z) ≤ |v| = |vi − vj |,

for all t ∈ (0, 1). Combining this with (4.2), and with (V1), we conclude in this case
that j = K, K1 = 0, K2 = 3, and K = K1 + K2 = 3. This completes the proof of
Theorem 4.1, and also the proof of the upper bound in the statement of Theorem 1.1.

5. Proof of Theorem 1.1, part 2

To complete the proof of Theorem 1.1 we must show that, for any choice of P, there
are examples of α ∈ XP and N ∈ N for which gN(α) = 3. Since the definition of the
metric in (1.1) depends on whether |P| is finite or infinite, we will consider these two
cases separately. In the examples below, we make repeated implicit use of Proposition
2.1.

Finite case (|P| < ∞). Suppose that |P| < ∞ and consider the following examples:

(F1) If P = {2}, take α = (α∞, α2) = (351/100, 1) and N = 52. By direct compu-
tation we have that

δ1,N(α) = ‖51α‖ =
1

100
,

δ2,N(α) = ‖35α‖ =
3

20
, and

δ18,N (α) = ‖16α‖ =
4

25
,

which gives gN(α) = 3.

(F2) If P = {3}, take α = (α∞, α3) = (16/5, 1) and N = 5. Again by direct
computation, we have that

δ1,N(α) = ‖4α‖ =
1

5
,
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δ2,N(α) = ‖3α‖ =
3

5
, and

δ3,N(α) = ‖α‖ =
4

5
,

which gives gN(α) = 3.

(F3) If P = {p1, . . . , pk}, with p1 < · · · < pk and p1 · · · pk ≥ 5, let N = p1 · · · pk + 1
and

α =

(

1

4p1 · · · pk
,−1, . . . ,−1

)

.

For each 1 ≤ n ≤ N − 3 we have that

−n 6= 0 mod pi, for some 1 ≤ i ≤ k,

and that
−n 6= 1 mod pj , for some 1 ≤ j ≤ k.

It follows from Proposition 2.1 that ‖nα‖ = 1 for all such n. From this we see
that

δ1,N(α) = ‖(p1 · · · pk)α‖ = max

{

1

4
,
1

p1

}

≤ 1/2,

δ2,N(α) = ‖(p1 · · · pk − 1)α‖ =
3

4
+

1

4p1 · · · pk
, and

δ3,N(α) = ‖α‖ = 1,

which gives gN(α) = 3. It is worth mentioning that one reason this construction
does not work in the cases described in the previous two examples is because
the corresponding value of N is too small.

It is clear that examples (F1)-(F3) cover all possibilities with |P| < ∞.

Infinite case (|P| = ∞). Suppose that |P| = ∞ and consider the following examples:

(I1) If the smallest prime in P is 3 then let α∞ = 1/9, α3 = 1, and αp = 0 for all
p ∈ P with p 6= 3, and take N = 11. Then we have that

δ1,N(α) = ‖10α‖ =

{

1
5

if 5 ∈ P,
1
9

if 5 /∈ P,

δ2,N(α) = ‖7α‖ =
2

9
, and

δ5,N(α) = ‖α‖ =
1

3
,

which gives gN(α) = 3.

(I2) If P contains the primes 2 and 3 then let α∞ = 27/50, α2 = −1, and αp = 0 for
all p ∈ P with p 6= 2, and take N = 6. Then we have that

δ1,N(α) = ‖5α‖ =
3

10
,
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δ2,N(α) = ‖4α‖ =
1

3
, and

δ3,N(α) = ‖α‖ =
23

50
,

which gives gN(α) = 3. We note that in the calculation of δ1,N and δ2,N , it is
important that α3 = 0.

(I3) If P contains the prime 2 but not the prime 3 then let α∞ = 8/49, α2 = −1,
and αp = 0 for all p ∈ P with p 6= 2 or 5. Also let α5 = 3 if 5 ∈ P, and take
N = 8. Then we have that

δ1,N(α) = ‖7α‖ =
1

7
,

δ2,N(α) = ‖5α‖ =
1

4
, and

δ4,N(α) = ‖2α‖ =
16

49
,

which gives gN(α) = 3. The assumption on α5 (if 5 ∈ P) is important in the
calculation of δ1,N .

(I4) If the smallest prime q in P is greater than or equal to 5 then let α∞ =
q−1

q(q−2)
, αq = −1, and αp = 0 for all p ∈ P with p 6= q, and take N = q.

Then, by the type of argument given in example (F3) above, we have that

δ1,N (α) = ‖(q − 1)α‖

= max

{

1

q(q − 2)
,max

{

1

p
: p ∈ P, p 6= q

}

}

<
1

q
,

δ2,N (α) = ‖(q − 2)α‖ =
1

q
, and

δ3,N (α) = ‖α‖ =
1

q
+

1

q(q − 2)
,

which gives gN(α) = 3.

Examples (I1)-(I4) cover all possibilities with |P| = ∞. This therefore completes the
proof of Theorem 1.1.
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