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The Bloch theorem is a general theorem restricting the persistent current associated with a con-
served U(1) charge in a ground state or in a thermal equilibrium. It gives an upper bound of the
magnitude of the current density, which is inversely proportional to the system size. In a recent pa-
per, Else and Senthil applied the argument for the Bloch theorem to a generalized Gibbs ensemble,
assuming the presence of an additional conserved charge, and predicted a nonzero current density
in the nonthermal steady state [D. V. Else and T. Senthil, Phys. Rev. B 104, 205132 (2021)]. In
this work, we provide a complementary derivation based on the canonical ensemble, given that the
additional charge is strictly conserved within the system by itself. Furthermore, using the example
where the additional conserved charge is the momentum operator, we discuss that the persistent
current tends to vanish when the system is in contact with an external momentum reservoir in the
co-moving frame of the reservoir.

I. INTRODUCTION

The Bloch theorem is a fundamental theorem stating
that the current density of a conserved U(1) charge van-
ishes in thermodynamically large systems [1–6]. The the-
orem applies quite generally regardless of the detailed
form of the Hamiltonian and the presence or absence
of many-body interactions and impurities. The only as-
sumptions of the theorem are the locality of the Hamilto-
nian and the U(1) symmetry that defines the conserved
charge [4]. Although the theorem was originally derived
for a ground state [1], it has been generalized to a ther-
mal equilibrium described by a canonical ensemble and
a grand canonical ensemble [2, 4, 5].

Recently, there appeared an interesting proposal [7]
which, among other things, found that the proof of the
Bloch theorem can be used to predict a nonzero persistent
current in systems described by a “generalized Gibbs en-
semble.” Although the generalized Gibbs ensemble usu-
ally describes the quench dynamics of isolated systems
with an extensive number of conserved charges [8, 9], here
the system has only a few number of conserved quanti-
ties: the Hamiltonian Ĥ, the U(1) charge Q̂ that defines

the current density, and the additional charge Γ̂. How-
ever, if the system is completely isolated and the addi-
tional charge is strictly conserved within the system, it
is more natural not to take the ensemble average for the
charge. However, since the derivation in Ref. [7] is spe-
cialized to the generalized Gibbs ensemble, it is not clear
if the same conclusion can be derived within this picture.
Moreover, since condensed matter systems are usually
in contact with an environment, we may understand the
generalized Gibbs ensemble as a result of exchanges of
conserved quantities with reservoirs. For example, when
Γ̂ is the momentum operator, a nonzero persistent cur-
rent implies a relative motion between the system and
the reservoir, and whether such a motion persists after
equilibration needs to be clarified.
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We address these issues in this work. We develop
a complementary approach based on a grand canonical
ensemble, assuming the conservation of the additional
charge strictly within the focused system, and derive an
equivalent conclusion in this setting. We then discuss the
case when the additional conserved charge is the momen-
tum operator associated with the continuous translation
symmetry. When the system is in contact with an ex-
ternal momentum reservoir, we find that the velocities of
the system and the reservoir must coincide in the general-
ized Gibbs ensemble, implying that the persistent current
density vanishes in the laboratory frame where the reser-
voir is assumed to be stationary. In contrast, when the
system by itself is playing the role of the reservoir for its
subsystem [8], this argument simply implies a uniform
flow over the entire system.

II. REVIEW OF THE BLOCH THEOREM IN
GIBBS ENSEMBLE

In this section, we review the standard discussions for
the Bloch theorem for a thermal equilibrium [2, 4, 5] to
set a basis for later sections.

A. Setting

Let us consider a one-dimensional system described

by a Hamiltonian Ĥ =
∫ L

0
dxĥx under the periodic

boundary condition. Here we assume continuum mod-
els having in mind the example of momentum conser-
vation discussed in Sec. IV A. However, lattice models
can be treated in the same way as we give more details
in Sec. IV B. The Hamiltonian is invariant under a U(1)

symmetry that defines a conserved charge Q̂ =
∫ L

0
dxn̂x

where n̂x is the charge density operator. We assume

[ĥx, Q̂] = [n̂x, n̂x′ ] = 0 for all x and x′. Let ĵx be the
corresponding current operator, satisfying the continuity
equation

i[Ĥ, n̂x] + ∂xĵx = 0. (1)
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It follows that the expectation value of ĵx is x-
independent in any stationary state. Thus the equi-
librium current density can be fully characterized by
the expectation value of the averaged current density

ĵ ≡ L−1
∫ L

0
dxĵx. The averaged current density oper-

ator can be obtained by introducing the uniform gauge
field A associated with the U(1) charge Q̂ and by taking
a derivative with respect to it:

ĵ =
1

L

∂Ĥ(A)

∂A

∣∣∣
A=0

. (2)

Taking another derivative, we get

σ̂ ≡ 1

L

∂2Ĥ(A)

∂A2

∣∣∣
A=0

, (3)

whose expectation value gives the frequency sum of the
optical conductivity [10, 11].

B. Canonical ensemble

When the system is weakly connected to a reservoir
that supplies or absorbs only heat, it is natural to restrict
the state into the subspace of a particular value of the
U(1) charge Q̂ = Q0 ∈ N. The thermal equilibrium is
described by the (restricted) canonical ensemble

ρ̂(Q0)
c ≡ 1

Zc
e−βĤP̂Q̂=Q0

, (4)

Z(Q0)
c ≡ Tr

(
e−βĤP̂Q̂=Q0

)
, (5)

where β ≡ T−1 is the inverse temperature and P̂Q̂=Q0
is

the projector onto the Q̂ = Q0 subspace. This is equiva-
lent to say that the trace is over the subspace of Q̂ = Q0

only.
The Bloch theorem states that the equilibrium current

density is bounded above by cL−1 with a constant c > 0:

Tr(ρ̂(Q0)
c ĵ) = O(L−1). (6)

To see this, let us introduce the twist operator

Ûw ≡ ei2πwL
−1

∫ L
0
dxxn̂x , (7)

which is a large gauge transformation that changes the
gauge field A by 2πw/L and is consistent with the peri-
odic boundary condition when the winding number w is
an integer. From Eqs. (2) and (3), we find

Û†wĤÛw = Ĥ(A = 2πw
L )

= Ĥ + 2πwĵ +
(2πw)2

2L
σ̂ +O(L−2). (8)

The Bloch theorem can be most easily proven by con-

tradiction. On one hand, the canonical ensemble ρ̂
(Q0)
c

minimizes the free energy

F (Q0)
c (ρ̂) ≡ Tr

(
P̂Q̂=Q0

(
ρ̂Ĥ + T ρ̂ log ρ̂

))
. (9)

On the other hand, the free energy for the state

Ûwρ̂
(Q0)
c Û†w reads

F (Q0)
c (Ûwρ̂

(Q0)
c Û†w) = F (Q0)

c (ρ̂(Q0)
c ) + 2πwTr(ρ̂(Q0)

c ĵ)

+
(2πw)2

2L
Tr(ρ̂(Q0)

c σ̂) +O(L−2).

(10)

In the derivation, we used the fact that

Û†wQ̂Ûw = Q̂, (11)

which follows from the assumed commutation relation
among the charge density operators n̂x. Since w is an

arbitrary integer, F
(Q0)
c (Ûwρ̂

(Q0)
c Û†w) can be lower than

the free energy of the canonical ensemble F
(Q0)
c (ρ̂

(Q0)
c ) =

−T logZ
(Q0)
c . The contradiction with the variational

principle can be avoided only when∣∣Tr(ρ̂(Q0)
c ĵ)

∣∣ ≤ π

L
Tr(ρ̂(Q0)

c σ̂) +O(L−2). (12)

On the right hand side, Tr(ρ̂
(Q0)
c σ̂) is the frequency sum

of the optical conductivity [12]. For a later purpose, we
remind ourselves that the chemical potential µ associated
with the charge Q̂ in this approach is given by

µ =
∂F

(Q0)
c (ρ̂

(Q0)
c )

∂Q0
. (13)

C. Grand canonical ensemble

Next, let us assume that the reservoir can supply or
absorb the U(1) charge Q̂ as well. Then we take the
grand canonical ensemble

ρ̂(µ)
gc ≡

1

Z
(µ)
gc

e−β(Ĥ−µQ̂), (14)

Z(µ)
gc ≡ Tr e−β(Ĥ−µQ̂). (15)

The relevant free energy in this setting is

F (µ)
gc (ρ̂) ≡ Tr

(
ρ̂(Ĥ − µQ̂) + T ρ̂ log ρ̂

)
. (16)

To make a connection to the canonical ensemble in
Sec. II B, the chemical potential µ should be fixed in such
a way that the expectation value

Q0 = Tr(ρ̂(µ)
gc Q̂) = −∂F

(µ)
gc (ρ̂

(µ)
gc )

∂µ
(17)

matches the value assumed in the (restricted) canoni-
cal ensemble. In a thermal equilibrium, the tempera-
tures and the chemical potentials of the system and the

reservoir are balanced, and the free energy F
(µ)
gc (ρ̂

(µ)
gc ) =

−T logZ
(µ)
gc is a function of the common values of β and

µ.
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One can repeat the same argument as in Sec. II B for
the free energy in Eq. (16) to derive the Bloch theorem
for the grand canonical ensemble∣∣Tr(ρ̂(µ)

gc ĵ)
∣∣ ≤ π

L
Tr(ρ̂(µ)

gc σ̂) +O(L−2). (18)

Hence, we obtain the equivalent conclusion regardless of
whether we assume the (restricted) canonical ensemble
or the grand canonical ensemble, as anticipated from
the equivalence of the canonical ensemble and the grand
canonical ensemble [13].

III. BLOCH THEOREMS WITH ADDITIONAL
CONSERVED CHARGES

In this section, we discuss how the discussions on the
Bloch theorem in Sec. II are modified in the presence
of an additional conserved charge. We assume that the
system has another conserved charge Γ̂ that commutes
with Q̂, i.e., [Γ̂, Ĥ] = [Γ̂, Q̂] = 0.

A. Generalized Gibbs ensemble

Let us first reproduce the discussion in Ref. [7]. Sup-
pose that the reservoir can supply or absorb the addi-
tional charge Γ̂ as well. Then we describe the system by
the generalized Gibbs ensemble [7],

ρ̂
(µ,η)
gG ≡ 1

Z
(µ,η)
gG

e−β(Ĥ−µQ̂−ηΓ̂), (19)

Z
(µ,η)
gG ≡ Tr e−β(Ĥ−µQ̂−ηΓ̂). (20)

If one repeats the above argument for the free energy

F
(µ,η)
gG (ρ̂) ≡ Tr

(
ρ̂(Ĥ − µQ̂− ηΓ̂) + T ρ̂ log ρ̂

)
, (21)

this time one instead finds [7]

Tr
(
ρ̂

(µ,η)
gG ĵ

)
= ηTr

(
ρ̂

(µ,η)
gG ξ̂

)
+O(L−1). (22)

One can also obtain an inequality similar to Eq. (12) and
Eq. (18):∣∣Tr

(
ρ̂

(µ,η)
gG (ĵ − ηξ̂)

)∣∣ ≤ π

L

∣∣Tr
(
ρ̂

(µ,η)
gG (σ̂ − ηζ̂)

)∣∣+O(L−2).

(23)

These results implies that the persistent current density

Tr
(
ρ̂

(µ,η)
gG ĵ

)
does not vanish in the limit of large L when

η 6= 0 and Tr
(
ρ̂

(µ,η)
gG ξ̂

)
6= 0 [7]. Here ξ̂ and ζ̂ are the

contributions from Γ̂ defined by

ξ̂ ≡ 1

L

∂Γ̂(A)

∂A

∣∣∣
A=0

, (24)

ζ̂ ≡ 1

L

∂2Γ̂(A)

∂A2

∣∣∣
A=0

, (25)

where Γ̂(A) is the conserved charge Γ̂ under the uniform

gauge field A associated with Q̂. In the derivation of
Eqs. (22) and (23), we used

Û†wΓ̂Ûw = Γ̂(A = 2πw
L )

= Γ̂ + 2πwξ̂ +
(2πw)2

2L
ζ̂ +O(L−2). (26)

In examples discussed in Ref. [7], ζ̂ and higher order
terms in L−1 were absent, but we will see a more general
case in Sec. IV B.

The condition Tr
(
ρ̂

(µ,η)
gG ξ̂

)
6= 0 for the nonvanishing

persistent current in the large L limit may not be intu-
itive. Alternatively, we can also write

d

dη
Tr
(
ρ̂

(µ,η)
gG ĵ

)∣∣∣
η=0

= βTr
(
ρ̂(µ)

gc Γ̂ĵ
)
− βTr

(
ρ̂(µ)

gc Γ̂
)
Tr
(
ρ̂(µ)

gc ĵ
)
. (27)

The second term vanishes in the large L limit as sug-
gested by Eq. (18). Hence, the operator Γ̂ should

have a finite overlap with the current operator ĵ [i.e.,

Tr
(
ρ̂

(µ)
gc Γ̂ĵ

)
6= 0] in order to induce the persistent U(1)

current in the linear response.
In the generalized Gibbs ensemble, the “chemical po-

tential” η for Γ̂ should be set in such a way that the
expectation value of the charge Γ̂, given by

Γ0 = Tr(ρ̂
(µ,η)
gG Γ̂) = −

∂F
(µ,η)
gG (ρ̂

(µ,η)
gG )

∂η
, (28)

agrees to the value fixed by the initial condition. This
is analogous to the chemical potential µ in the grand
canonical ensemble.

The key behind the possible nonzero current in
Eq. (22) is the mismatch between the Hamiltonian Ĥ
that defines the current operator in Eq. (2) and

Ĥ(µ,η) ≡ Ĥ − µQ̂− ηΓ̂ (29)

that appears in the free energy in Eq. (21). In other
words, the expectation value of the effective current op-
erator corresponding to Ĥ(µ,η),

ĵ(µ,η) ≡ 1

L

∂Ĥ(µ,η)(A)

∂A

∣∣∣
A=0

= ĵ − ηξ̂, (30)

is O(L−1) in the generalized Gibbs ensemble. A simi-
lar mismatch exists for the grand canonical ensemble in
Sec. II C but it did not lead to any change because Ûw and
Q̂ commute [see Eq. (11)]. However, when we interpret
the system by itself playing the role of the reservoir for its
subsystem, then the entire system may be described by
the canonical or the grand canonical ensemble discussed
in Sec. II. Then the −ηΓ̂ term, which was the key in the
above derivation, is missing from the free energy. Then
the question is whether we can reproduce the same result
even in this case.
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B. Canonical ensemble with additional conserved
charge

Let us revisit the canonical ensemble but this time pay-
ing attention to the presence of the additional conserved
charge Γ̂. We assume that the reservoir supplies or ab-
sorbs the heat only, and Q̂ and Γ̂ are strictly conserved.
Then we restrict the state into the subspace of Q̂ = Q0

and Γ̂ = Γ0, where Γ0 here is an eigenvalue of Γ̂. We
thus consider the (restricted) canonical ensemble

ρ̂(Q0,Γ0)
c ≡ 1

Z
(Q0,Γ0)
c

e−βĤP̂Q̂=Q0
P̂Γ̂=Γ0

, (31)

Z(Q0,Γ0)
c ≡ Tr

(
e−βĤP̂Q̂=Q0

P̂Γ̂=Γ0

)
. (32)

Note that, in general, the state ρ̂
(Q0,Γ0)
c does not remain

within the Γ̂ = Γ0 subspace under the action of the twist
operator, because Eq. (26) implies

Γw ≡ Tr
(
(Ûwρ̂

(Q0,Γ0)
c Û†w)Γ̂

)
= Tr

(
ρ̂(Q0,Γ0)

c (Û†wΓ̂Ûw)
)

= Γ0 + 2πwTr
(
ρ̂(Q0,Γ0)

c ξ̂
)

+O(L−1). (33)

Therefore, although it is still true that ρ̂
(Q0,Γ0)
c minimizes

the free energy

F (Q0,Γ0)
c (ρ̂) ≡ Tr

(
P̂Q̂=Q0

P̂Γ̂=Γ0

(
ρ̂Ĥ + T ρ̂ log ρ̂

))
, (34)

Ûwρ̂
(Q0,Γ0)
c Û†w does not provide a state with lower free

energy within the Γ̂ = Γ0 subspace. This is why the
proof of the Bloch theorem in Sec. II is not applicable to

ρ̂
(Q0,Γ0)
c when Γw 6= Γ0.
Now, let us demonstrate

Tr
(
ρ̂(Q0,Γ0)

c ĵ
)

= ηTr
(
ρ̂(Q0,Γ0)

c ξ̂
)

+O(L−1) (35)

in the restricted canonical ensemble ρ̂
(Q0,Γ0)
c . In this pic-

ture, the potential η is given by

η =
∂F

(Q0,Γ0)
c (ρ̂

(Q0,Γ0)
c )

∂Γ0
, (36)

just like the chemical potential µ in the canonical ensem-
ble in Sec. II B [see. Eq. (13)].

To proceed, here we assume that ξ̂ in Eq. (26) is given

by a function of Q̂, i.e.,

ξ̂ = ξ(Q̂) (37)

and that ζ̂ and all higher terms vanish. This was the case

for the momentum operator, for which ξ̂ = Q̂/L, and

also for emergent symmetries, for which ξ̂ is a constant
m/(2π) with m ∈ Z [7]. Then Γw in Eq. (33) becomes
Γw = Γ0 + 2πwξ(Q0), which should be an eigenvalue of

Γ̂. We are interested in the case when ξ(Q0) 6= 0.

To evaluate the change of the free energy, we define

(∆F (Q0,Γ0)
c )w ≡ F (Q0,Γw)

c (ρ̂(Q0,Γw)
c )− F (Q0,Γ0)

c (ρ̂(Q0,Γ0)
c )

(38)

(∆Γ)w ≡ Γw − Γ0 = 2πwξ(Q0). (39)

Based on the variational principle, we find

(∆F (Q0,Γ0)
c )w

≤ F (Q0,Γw)
c (Ûwρ̂

(Q0,Γ0)
c Û†w)− F (Q0,Γ0)

c (ρ̂(Q0,Γ0)
c )

= 2πwTr
(
ρ̂(Q0,Γ0)

c ĵ
)

+O(L−1), (40)

where we used Eq. (8) in the last step. Thus, assuming
ξ(Q0) > 0 and neglecting O(L−1) corrections, we find

(∆F
(Q0,Γ0)
c )+1

(∆Γ)+1
≤

Tr
(
ρ̂

(Q0,Γ0)
c ĵ

)
ξ(Q0)

≤ (∆F
(Q0,Γ0)
c )−1

(∆Γ)−1
.

(41)

When the free energy density F
(Q0,Γ0)
c (ρ̂

(Q0,Γ0)
c )/L is a

smooth function of Γ0/L in the limit of large L, the left-
most side and the right-most side of (41) should be iden-
tical to η in Eq. (36). Hence we obtain Eq. (35). When
ξ(Q0) < 0, these inequalities are flipped but the conclu-
sion is unchanged.

The above derivation suggests that, when Γ0 is al-
lowed to vary, it will be spontaneously tuned to the

value that minimizes the free energy F
(Q0,Γ0)
c (ρ̂

(Q0,Γ0)
c ) =

−T logZ
(Q0,Γ0)
c . At the minimum of the free energy, η

in Eq. (36), hence the persistent current density, van-
ishes. In other words, states with nonzero η are at most
metastable.

IV. EXAMPLES

In this section, we discuss concrete realizations of
nonzero persistent current density. As discussed in

Ref. [7], ξ̂ vanishes for any genuine internal symmetries.
Hence, we should explore space-time symmetries or emer-
gent symmetries at a low-energy effective theory. Since
the case of emergent symmetries has been discussed in
detail in Ref. [7], here we focus on the case where Γ̂ is
associated with a space-time symmetry.

A. Momentum conservation

Let us discuss the case when Γ̂ is the momentum oper-
ator P̂ defined as the generator of the continuous trans-
lation:

e−iεP̂ n̂xe
iεP̂ = n̂x+ε. (42)

Following the proof of the Lieb-Schultz-Mattis theo-
rem [14], one can show that

e−iεP̂ Ûwe
iεP̂ = Ûwe

−iε 2πwQ̂/L, (43)
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which implies that

Û†wP̂ Ûw = P̂ + 2πw
Q̂

L
. (44)

In the derivation, we used the fact that
∫ ε

0
dxn̂x is integer

valued. Thus ξ̂ is given by the charge density operator

Q̂/L and ζ̂ vanishes [7]. The chemical potential η in this
case is the velocity v [7], which can be understood by
recalling that the Legendre transformation between the
Lagrangian L(x, v) and the Hamiltonian H(x, p) is given
by H(x, p) = vp− L(x, v) in analytical mechanics.

In the grand canonical ensemble discussed in Sec. II C,
the temperatures and the chemical potentials of the sys-
tem and the reservoir must be balanced in the equilib-
rium. In the same way, in the generalized Gibbs en-
semble in Sec. III A, where the system and the reservoir
exchange the momentum, the velocity vs of the system
and the velocity vr of the reservoir must coincide in the
steady state. Thus, when the reservoir is an external
system, and as far as we observe physical quantities in
the laboratory frame in which the reservoir is stationary,
η = vs = vr = 0. In other words, if we model reservoir’s
free energy associated with the center of the mass motion
as

Fr(Pr) =
P 2
r

2Mr
, (45)

the velocity vr = ∂Fr(Pr)/∂Pr = Pr/Mr vanishes unless
the momentum Pr of the reservoir scales with the total
mass of the reservoir Mr. Then, η in Eq. (23) can be set
0 and the original statement of the Bloch theorem as in
Eqs. (12) and (18) is recovered.

On the other hand, if the momentum of the system is
absolutely conserved, i.e., when the system and the reser-
voir do not exchange the momentum, the entire system
can be described by the restricted Gibbs ensemble dis-
cussed in III B. Then, in principle, Eq. (35) with nonzero
η (= vs) is allowed. In this setting, the velocity vs is
determined by Eq. (36), i.e., the derivative of the free en-
ergy with respect to the momentum of the system. The
well-known examples are (classical) perfect fluids [15] and
(quantum) superfluids [16], which lack the viscosity and
support a persistent flow.

B. XXZ spin chain

Next, let us discuss the persistent U(1) current and
the persistent energy current in the spin-1/2 XXZ chain.

The Hamiltonian reads Ĥ =
∑L
n=1 ĥn with

ĥn = J(ŝxn+1ŝ
x
n + ŝyn+1ŝ

y
n + ∆ŝzn+1ŝ

z
n). (46)

Here, ŝαn (α = x, y, z) is the spin-1/2 operator at the
site n. We impose the periodic boundary condition and
identify ŝαn+L with ŝαn.

The model has a U(1) charge Ŝz ≡
∑L
n=1 ŝ

z
n. The

current operator associated with the link n̄ between the
sites n and n+ 1 is given by

ĵSn̄ = J(ŝyn+1ŝ
x
n − ŝxn+1ŝ

y
n), (47)

which satisfies the lattice version of the continuity equa-
tion

i[Ĥ, n̂n] + ĵSn̄ − ĵSn̄−1 = 0. (48)

One can also define the energy current operator

ĵEn̄ = i[ĥn, ĥn+1]

= J2(ŝxn+2ŝ
z
n+1ŝ

y
n − ŝ

y
n+2ŝ

z
n+1ŝ

x
n)

− J2∆(ŝxn+2ŝ
y
n+1 − ŝ

y
n+2ŝ

x
n+1)ŝzn

− J2∆ŝzn+2(ŝxn+1ŝ
y
n − ŝ

y
n+1ŝ

x
n) (49)

satisfying

i[Ĥ, ĥn] + ĵEn̄ − ĵEn̄−1 = 0. (50)

For the XXZ model, it is known that the total energy

current operator Γ̂ ≡
∑L
n=1 ĵ

E
n̄ commutes with Ĥ and

Ŝz [17, 18]. For this Γ̂, ξ̂ and ζ̂ can also be found from a
straightforward calculation:

ξ̂ =
1

L

L∑
n=1

2J(ŝxn+2ŝ
z
n+1ŝ

x
n + ŝyn+2ŝ

z
n+1ŝ

y
n)

− 1

L

L∑
n=1

J∆(ŝxn+2ŝ
x
n+1 + ŝyn+2ŝ

y
n+1)ŝzn

− 1

L

L∑
n=1

J∆ŝzn+2(ŝxn+1ŝ
x
n + ŝyn+1ŝ

y
n) (51)

and

ζ̂ = − 1

L

L∑
n=1

4J2(ŝxn+2ŝ
z
n+1ŝ

y
n − ŝ

y
n+2ŝ

z
n+1ŝ

x
n)

+
1

L

L∑
n=1

J2∆(ŝxn+2ŝ
y
n+1 − ŝ

y
n+2ŝ

x
n+1)ŝzn

+
1

L

L∑
n=1

J2∆ŝzn+2(ŝxn+1ŝ
y
n − ŝ

y
n+1ŝ

x
n). (52)

Let us assume the generalized Gibbs ensemble ρ̂
(µ,η)
gG

discussed in Sec. (III A). We are interested in the ground
state expectation value of the charge density and the cur-
rent densities:

〈ŝz〉(µ,η) ≡ 1

L
tr[ρ̂

(µ,η)
gG Ŝz], (53)

〈ĵS〉(µ,η) ≡ tr[ρ̂
(µ,η)
gG ĵSn̄ ], (54)

〈ĵE〉(µ,η) ≡ tr[ρ̂
(µ,η)
gG ĵEn̄ ]. (55)
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Their behaviors are restricted by discrete symmetries of
the XXZ model: (i) The Hamiltonian Ĥ and the en-

ergy current Γ̂ are even under the spin flip symmetry

V̂ x ≡
∏L
n=1 exp[iπŝxn] (i.e., ĤV̂ x = V̂ xĤ and Γ̂V̂ x =

V̂ xΓ̂), while the spin Ŝz and hence the spin current ĵSn̄
are odd (i.e., ŜzV̂ x = −V̂ xŜz and ĵSn̄ V̂

x = −V̂ xĵSn̄ ).

(ii) The Hamiltonian Ĥ and the spin current ĵSn̄ are

even under the time-reversal symmetry symmetry T̂ ≡
K
∏L
n=1 exp[iπŝyn] (K is the complex conjugation), while

the spin Ŝz and the energy current Γ̂ are odd. As a conse-
quence, the spin density and the persistent U(1) current
is odd under µ, while the persistent U(1) current and the
persistent energy current are odd under η:

〈ŝz〉(µ,η) = −〈ŝz〉(−µ,η) = 〈ŝz〉(µ,−η), (56)

〈ĵS〉(µ,η) = −〈ĵS〉(−µ,η) = −〈ĵS〉(µ,−η), (57)

〈ĵE〉(µ,η) = 〈ĵE〉(−µ,η) = −〈ĵE〉(µ,−η). (58)

The operator ξ̂ and ζ̂ transform in the same way as Ŝz

and Γ̂, respectively. From Eqs. (56)–(58), we see that
both the spin current and the energy current vanishes
when η = 0. This is expected because the generalized

Gibbs ensemble ρ̂
(µ,η)
gG reduces to the ground canonical

ensemble ρ̂
(µ)
gc for which the original version of the Bloch

theorem holds as discussed in Sec. II C. Furthermore,

when µ = 0, the generalized Gibbs ensemble ρ̂
(0,η)
gG is in-

variant under the spin flip symmetry V̂ x, under which ĵSn̄
is odd and Γ̂ is even. Therefore, ĵSn̄ does not overlap with

Γ̂ and the persistent current is not induced when µ = 0
[see Eq. (27)]. On the other hand, for a generic µ and η,

we expect that 〈ĵS〉(µ,η) 6= 0 and 〈ĵE〉(µ,η) 6= 0. A Bloch-
type theorem for the energy current density was recently
proven in Refs. [19, 20], which states that the persistent
energy current vanishes in a ground state or in a ther-
mal equilibrium state in the large L limit. Therefore, the
nonvanishing energy current density confirms that the
generalized Gibbs ensemble is not a thermal equilibrium
but a nonequilibrium steady state.

C. Tight-binding model

To provide more evidence on nonvanishing values of
〈ĵS〉(µ,η) and 〈ĵE〉(µ,η) in the generalized Gibbs ensemble

ρ̂
(µ,η)
gG , let us examine the noninteracting limit (∆ = 0)

of the XXZ model in more detail. In this case the XXZ
model can be mapped to the tight-binding model of spin-
less fermions by the Jordan-Wigner transformation

ŝ+
n = ŝxn + iŝyn = e+iπ

∑n−1
m=1 ĉ

†
mĉm ĉ†n, (59)

ŝ−n = ŝxn − iŝyn = e−iπ
∑n−1

m=1 ĉ
†
mĉm ĉn, (60)

ŝzn = ĉ†nĉn − 1
2 , (61)

where ĉn is the annihilation operator of the fermion
at the site n. The boundary condition of the tight-

binding model depends on the total number of fermions

N̂ =
∑L
n=1 ĉ

†
nĉn in the system; the boundary condi-

tion becomes anti-periodic in the even N̂ = N sector,
while it remains periodic in the odd N̂ = N sector [14].
When N is even, we perform a gauge transformation

Û = exp(−iθN
∑L
n=1 nĉ

†
nĉn) with θN = π/L to recover

the periodic boundary condition. When N is odd, we set
θN = 0. Then we find

Ĥ =

L∑
n=1

t(e−iθN ĉ†n+1ĉn + eiθN ĉ†nĉn+1), (62)

Ŝz =

L∑
n=1

(ĉ†nĉn − 1
2 ), (63)

ĵEn̄ = −it2(e−2iθN ĉ†n+2ĉn − e2iθN ĉ†nĉn+2), (64)

ĵSn̄ = −it(e−iθN ĉ†n+1ĉn − eiθN ĉ†nĉn+1) (65)

with t = J/2 and ĉn+L = ĉn. For Γ̂ ≡
∑L
n=1 ĵ

E
n̄ , opera-

tors ξ̂ and ζ̂ read

ξ̂ = − 1

L

L∑
n=1

2t2(e−2iθN ĉ†n+2ĉn + e2iθN ĉ†nĉn+2), (66)

ζ̂ = − 4

L

L∑
n=1

ĵEn̄ = −4Γ̂

L
. (67)

At the zero temperature, all single particle states with

εk − µ− ηεkvk < 0 (68)

are occupied and the expectation values are given as the
sum over all occupied states:

〈ŝz〉(µ,η) = −1

2
+

1

L

∑
k:occ

1, (69)

〈ĵS〉(µ,η) =
1

L

∑
k:occ

vk, (70)

〈ĵE〉(µ,η) =
1

L

∑
k:occ

εkvk, (71)

〈ξ̂〉(µ,η) ≡ tr[ρ̂
(µ,η)
gG ξ̂] =

1

L

∑
k:occ

∂k(εkvk). (72)

Here εk = 2t cos(k+θN ) is the band dispersion and vk =
∂kεk is the group velocity.

When µ = 0, Fermi points can be determined by the
conditions εk = 0 or 1 − ηvk = 0. In this case, we find
the analytic expression for the large L limit:

〈ŝz〉(0,η) = 0, (73)

〈ĵS〉(0,η) = 0, (74)

〈ĵE〉(0,η) =

{
sign η (J2 − η−2)/(2π) (|ηJ | ≥ 1)

0 (|ηJ | < 1)
, (75)

〈ξ̂〉(0,η) = 0. (76)
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FIG. 1. Numerical results of 〈ŝz〉(µ,η) (blue dots), 〈ĵS〉(µ,η)

(orange dots), and 〈ĵE〉(µ,η) (green dots) for (a) µ = 0 and (b)
µ = J/2. We set J = 1 and L = 105 ± 2 in these plots. Solid
curves represent analytic expressions for the thermodynamic
limit in Eqs. (75)–(79).

When µ 6= 0, we find the following expansions for small
Jη:

〈ŝz〉(µ,η) = signJ

[
1

2
− arccos(µ/J)

π

]
+O((Jη)2), (77)

〈ĵS〉(µ,η) = signJ
µ

π

[√
1− (µ/J)2Jη +O((Jη)3)

]
,

(78)

〈ĵE〉(µ,η) = signJ
µ2

π

[√
1− (µ/J)2Jη +O((Jη)3)

]
,

(79)

〈ξ̂〉(µ,η) = |J |µ
π

[√
1− (µ/J)2 +O((Jη)2)

]
. (80)

These results are consistent with the general constraints
in Eqs. (56)–(58). In particular, we observe that

〈ĵS〉(µ,η) = η〈ξ̂〉(µ,η) at least at the lowest order of Jη,
which is expected from Eq. (22). We numerically demon-

strate these results in Fig. 1.

V. CONCLUSION

In this work, we clarified the equivalences and the dif-
ferences between different ensembles regarding the per-
sistent current in non-equilibrium steady state. We con-
firmed that a nonzero persistent current in the limit of
large system size can be supported in the canonical en-
semble in the presence of an additional conserved charge
Γ̂, as in the generalized Gibbs ensemble [7]. Although
this was well-anticipated from the equivalence of differ-
ent ensembles [13], the concrete derivation presented in
Sec. III B uses the variational principle in a new way.

There are also subtle differences related to the prop-
erty of the reservoir. When the system and the reservoir
exchange the charge Γ̂, the corresponding “chemical po-
tential” η must be balanced between the system and the
reservoir after equibliration. Then, if the system is ex-
pected to support a nonzero persistent current, so is the
reservoir. If the reservoir is an external system, the per-
sistent current of the system vanishes in the co-moving
frame of the reservoir. In contrast, when the charge Γ̂ is
strictly conserved within the system, a persistent current
in the large L limit is allowed, in principle.
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