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Self-repelling two-leg (biped) spider walk is considered where the local stochastic movements are
governed by two independent control parameters βd and βh, so that the former controls the distance
(d) between the legs positions, and the latter controls the statistics of self-crossing of the traversed
paths. The probability measure for local movements is supposed to be the one for the “true self-
avoiding walk” multiplied by a factor exponentially decaying with d. After a transient behavior for
short times, a variety of behaviors have been observed for large times depending on the value of βd
and βh. Our statistical analysis reveals that the system undergoes a crossover between two (small
and large βd) regimes identified in large times (t). In the small βd regime, the random walkers
(identified by the position of the legs of the spider) remain on average in a fixed non-zero distance
in the large time limit, whereas in the second regime (large βds), the absorbing force between the
walkers dominates the other stochastic forces. In the latter regime, d decays in a power-law fashion
with the logarithm of time. When the system is mapped to a growth process (represented by
a height field which is identified by the number of visits for each point), the roughness and the
average height show different behaviors in two regimes, i.e., they show power-law with respect to
t in the first regime, and log t in the second regime. The fractal dimension of the random walker
traces and the winding angle are shown to consistently undergo a similar crossover.
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I. INTRODUCTION

Random walks are in the heart of non-equilibrium sta-
tistical mechanics and stochastic processes. They are
unique in describing nature due to their large applica-
tions in plenty of physical systems, like the polymers
in a good solvent [1], the stock markets [2], the ther-
mal motion of gas molecules [3] or networks [4, 5], and
mathematical statistics [6]. In most cases, the studies
on random walks in the literature are surprisingly lim-
ited to a few cases like uncorrelated random walks, self-
avoiding and loop-erased random walks [7–11], and frac-
tional Brownian motions [12] for which the mathemat-
ical structures are more or less known. Many proper-
ties of these random walks in various dimensions have
been calculated analytically and numerically. In two
dimensions, we know that self-avoiding walk (SAW) is
a Schramm-Loewner evolution (SLE) with a diffusivity
parameter κ = 8

3 which is consistent with a conformal
field theory (CFT) with a central charge c = 0 [13, 14],
whereas loop-erased random walk (LERW) is described
by SLEκ=2 [15], which is consistent with the c = −2
CFT [16] (both CFTs are logarithmic). The former re-
veals a relation with the critical percolation theory [17],
and the latter shows that LERW is consistent with the
interfaces of sandpiles [18]. Some authors occasionally
consider more sophisticated situations, like correlated
random walks with dropping debris (namely true SAW,
TSAW) [19], self-avoiding random walks in a media with
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quenched randomness [20], TSAW with diffusion of de-
bris [21], LERW in the correlated background [22], and
random walks on the random graphs [5, 23]. Another
type of correlation is the one that the motion of a ran-
dom walker depends on the effective environment that
is formed by the rest of the random walkers in the me-
dia. This problem applies to many systems like the active
matter (like the Vicsek model of self-propelled particles
[24] and the active Brownian motion [25]), thermal mo-
tion of gas molecules [3]. Polymers [26], polymer brushes
[27], and the trace of grains in sandpiles [28] are other
examples.

In nature, there are some more sophisticated situa-
tions, like multi-agent stochastic correlated walks, which
can serve as the example of few body active dynamics,
taking conditional steps depending on the structure of
the background potential or effective interaction with
other agents. Consider as an example two (male and
female) insects that besides seeking food, intend to each
other, and therefore perform correlated exploration pro-
cess in two dimensions, with a low tendency to step on the
places that they have already stepped on due to the fact
that the chance of finding food in the traversed path is
low. This problem can be considered as a combination of
TSAW and multi-agent random walk problem, which we
call self-repelling bi-exploration process (SRBP). SRBP
can be taken into account as a member of a larger class,
namely the Spider walks, defining the systems in which
the particles move in such a way that their movements do
not violate some given rules [29]. DNA molecular biped
on a one-dimensional walking path is another example
that is mapped to spider walk on a one-dimensional [30?
, 31] and two-dimensional [32] random media. There
are many more examples that can be mapped to our
model (SRBP as a generalization of biped spider walk)
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like insect movement [33], polymer ring entangled with
obstacles [34], local clustering for multi-agent random
walks [35], and animal’s movement as correlated random
walks [36]. Another example of the systems that can po-
tentially be mapped to SRBP is a system with two kinds
of monomers (say blue and red) with an absorbing in-
teraction between blue-red pairs and repulsion between
blue-blue and red-red pairs, combining of which two (blue
and red) self-avoiding polymers are constructed, which
serves as a generalization of polymers entangled with ob-
stacles [34].

In this paper, we consider the SRBP problem with
two independent parameters, one of which controls the
tendency between two agents (βd ≡ 1/Td), and another
controls the disinclination for crossing the traversed path
(βh ≡ 1/Th). The variables Td and Th can be interpreted
as two different temperatures in our model. To capture
the “true self-repulsion”, we use the method given in [21],
according to which the random walkers drop one unit of
debris in the site that they are in, so that hi(t) shows
the height of the debris in site i at time t. Then, the
random walkers come back to any site i with a probability
proportional to exp [−βhh] (the step length is one unit of
lattice). The relative distance of two agents, the height of
debris, and the random walker paths are the important
quantities that we study in this paper. This system is
shown to undergo anomalous diffusion (with respect to
the relative coordinate) and show a crossover point to a
new phase that is determined by βd and βh.

The paper is organized as follows: In the next section,
we introduce the model. The results for the diffusion
process are presented in Sec. III. Sec. IV is devoted to
the fractal dimension of the traces and the winding angle
statistics. We close the paper with a conclusion section.

II. THE MODEL

The spider walks with k legs are defined through
considering k different (coupled) traces (Xt =
(X1,t, X2,t, ..., Xk,t) where Xi,t stands for the position of
the ith leg of the spider at time t) over a given undirected
connected graph G(V,E) with vertex set V and edge set
E. The model is identified using the transition matrix
P = {p(x, y)}x,y∈G, where p(x, y) is zero only when the
required links are missing in G. Showing the position
of the spider by x = (x1, x2, ..., xk), the transition to
y = (y1, y2, ..., yk) is given by p(xi, yi) if there exists ex-
actly one index i such that xi 6= yi. Many properties of
this model have been explored in the literature, like re-
currence [29], transience, ergodicity, spider walk in the
random media [37]. The example is the legs of the biped
molecule (as a biped spider) which moves on the inte-
ger lattice representing the nucleic acid binding domains
imprinted on the path [? ].

As partially explained in the introduction, we consider
two correlated random walks that step on a lattice. This
problem is mapped to a generalized biped spider walk

problem in the Euclidean space (square lattice). The
generalization backs to the fact that the traces that tra-
versed by the legs of the spider matter, i.e. the traces
are self-repulsive in the sense that in each time step t,
the random walkers drop a unit of debris at the point
that they stand on, say the site i, so that the height of
the site increases by one, i.e. hi(t)→ hi(t)+1. The steps
are taken according to the following update probability:
Suppose that the random walkers are in points r0

1 and
r0

2 at time t, and r1 and r2 are some random neighbors
of r0

1 and r0
2, respectively. Then the probability to step

to the neighboring sites r1 and r2 at the next time is
proportional to:

P ∝ exp [−βh (h(r1) + h(r2))] exp [−βdδd] , (1)

where δd ≡ dnew − dold, dnew ≡ |r1 − r2| and dold ≡∣∣r0
1 − r0

2

∣∣. The first factor cares about self repulsion and
the second one cares about the tendency between the
pair, so that when both βh and βd are zero, all the direc-
tions are equiprobable and one retrieves two-dimensional
uncorrelated random walks. The simulation is started by
two agents that start from the origin. At each time the
next step is taken towards a random neighbor accord-
ing to the probability given above. For calculating the
winding angle statistics, we prevent the agents to enter
a region in a close neighborhood of the origin [38]. The
larger amount of βh leads to a smaller probability of self
intersection, so that (βd, βh)→ (0,∞) gives two indepen-
dent ordinary SAW. In the opposite limit for βh = 0, and
defining d ≡ |r1 − r2|, at long enough times, one expects
that

〈d〉 = −∂/∂βd ln

∫ ∞
0

e−βdddd = β−1
d = Td, (2)

where the ergodicity was considered, meaning that the
random walker has enough time to find any possible
configuration, i.e., all d values are visited. The other
famous limit is βd = βh = 0, which is corresponds to
two independent 2D uncorrelated random walk — space
filling with mass fractal dimension df = 2.

The winding angle θ is defined as the total winding
angle of the random walker around the origin. The gen-
eral setup of the problem and the quantities of interest
are schematically shown in Fig. 1, where a small region
around the starting point was removed. It was shown
that for the ordinary 2D random walks with the starting
point excluded [8, 38]

〈θm〉 ∝ (log t)2m, (3)

and the distribution function Pt(θ) ∝ exp [−2π|θ| log t].
This is in contrast to self-avoiding walks (SAW), where〈
θ2
〉

= 8
3 t [13]. Also, note that the characteristic distance

of the random walker scales with tν , where ν = 1/2 for
ordinary random walks and ν = 3/4 for SAW.
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FIG. 1. Schematic representation of the random walks of one
agent with the corresponding winding angle θt and displace-
ment r(t).

Summary of Results

To improve the flow of the paper, we declare here the
important findings of the paper. The significant finding
of the present paper is the crossover behavior in terms of
βd. This crossover region is β∗d ∈ [0.2− 0.5].
Figs. 2c and d show the exponent ν in terms of βd and
βh which is defined by r ∝ tν . This exponent changes
abruptly in the crossover region, i.e. from ν ≈ 0.5 for
βd . 0.2 to another value for βd & 0.2.
The difference between two regimes becomes more clear
when one focuses on the time-dependence of d (Fig-
ure. 3a and b). d(t) decays with a power-law fashion
with (log t)−αd for βd > 0.5, whereas for βd < 0.5 the
random walkers remain in a non-zero average distance.

In the second part of the paper, we map the system to
a (2 + 1)-dimensional growth process, represented by the
height configurations. The statistics of the height and
other related quantities change from one regime to the
other. As an example, the width w(t) scales with time as

tα
(1)
w for βd � 0.2 (Fig. 6a), while it follows the relation

w(t) ∼ (log t)α
(2)
w for βd � 0.2 as depicted in Fig. 6b.

This change is also seen in the fractal dimension of
the trace of random walkers (Fig. 7d), i.e. df changes
abruptly from βd . 0.2. to other values in the βd & 0.2
regime. The same change of behavior is seen for the
winding angle as well (Fig. 8d), where the exponent αθ
changes abruptly between the regimes.

III. THE DIFFUSION PROCESS

In this section, we present the results of the simula-
tions. We use the Metropolis algorithm with the accept
ratio P defined in Eq. (1) to accept one of the 16 possible
pair movements on a lattice at each time step t. For
various values of βd, and βh (with variable increments),
we generated more than 105 independent realizations,

for each of which the time runs up to t = 106. The run
time for high βh values increases dramatically because
of the self-avoiding character of the traces.

The type of diffusion (normal-, sub-, and super-
diffusion) for each agent is arguably the most important
question in the transport perspective. Our inspections
show that the statistics of the random walkers are quite
sensitive to βd and βh. Importantly, the position of each
random walker r ≡ |r| crosses over from normal diffusion
(identified by an exponent ν = 1

2 in the scaling relation
r ∝ tν) to a regime with different diffusion exponent, see
Fig. 2. As βh increases, one expects that the SAW be-
havior is retrieved, i.e., νSAW = 3

4 [13], which is expected
from Fig. 2c, while the dependence on βd is quite low
for βd & 0.2. As βd increases, the crossover to the new
regime happens earlier, i.e., βd facilitates this crossover.

The relative distance between the random walkers
(dβd,βh(t)) is the other quantity that shows considerable
change as βd and βh vary. Figure 3 shows this quan-
tity in terms of time t for various amounts of βh and for
βd = 0.2 and 2 (a and b respectively). For both cases in
the early times, the distance between the random walk-
ers (agents) increases with time in a power-law fashion.
There is however an important difference between them
in long times, i.e., for βd = 0.2 the graph saturates to
a βh-dependent constant, while the graph for βd = 2, d
decays in a power-law fashion in terms of log t. More
precisely, in the large βd regime, the random walkers are
asymptotically absorbed to each other with a heavy tail
function

dR2
βd,βh

(t)
∣∣
large times

∝ (log t)
−αd . (4)

Our observations show that a crossover is established be-
tween two distinct regimes in terms of βd identified by
different statistical behaviors. Let us show the crossover
region by β∗d which is [0.2, 0.5]. For βds smaller than β∗d
(let’s call it R1 regime), d saturates to a constant value
for long enough times (like βd = 0.2 in Fig. 3a), while
for βd > β∗d (R2 regime) d varies in the form of Eq. 4
(like βd = 2 in Fig. 3b). For R1 regime, the curves for
d are collapsed (fitted to each other) with an appropri-
ate choice of exponents, the fact that was not observed
for R2 regime. Figures 3c and 3d show the data collapse
analysis for the R1 regime for βh = 0.2 and 1, demon-
strating that the relative distance of the agents satisfies
the following scaling behavior (for all βh values in the in-
terval [0.01, 1], also note that it is not applicable for R2
regime)

dR1
βd,βh

(t) = C(βh)β−bd F (βad t) , (5)

where a and b are their corresponding exponents, C(βh)
is a smooth function of βh and F is a universal func-
tion with the asymptotic behavior limx→0 F (x) ∝ xb/a

and limx→∞ F (x) = const. These exponents are inter-
estingly more or less independent of βh for βh ∈ [0.01, 1],
being fixed at a = 2.00± 0.05 and b = 1.00± 0.05. This
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FIG. 2. Log-log plot of r ≡ |r| versus t for βd = 0.005 and βd = 1.5 are shown in panel-a and -b, respectively. The slope
of curves gives the diffusion exponent ν. The corresponding exponents in terms of βh and βd are shown in panel-c and -d,
respectively. In panel-d, one can see that for βd . 0.2, the diffusion exponent ν changes abruptly, and for βd & 0.2, roughly
remains fixed.
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FIG. 3. Log-log plot of d ≡ |r1 − r2| in terms of log t for βd = 0.2 and for βd = 2 are plotted in panel-a and -b, respectively.
The legend in panel-b is the same as in panel-a. It is clear that we have two different behaviors in panel-a and -b. The βd = 0.2
and βd = 2 belong to R1 and R2 regimes, respectively. When βh ≈ 0, these differences do not exist anymore; i.e., the variable
d(t) reaches a saturation value ds at a big enough time for all values of βd > 0. The corresponding data collapse analysis for
βh = 0.2 and βh = 1 with a = 2.00(5) and b = 1.00(5) are shown in panel-c, and -d, respectively. It is worth noting that the
data collapse happens in the R1 regime (βh > 0, βd . 0.2).

shows that d(t)small times ∝ tz where the dynamic ex-
ponent z = 0.51 ± 0.02 lies pretty within the normal
diffusion regime. We notice that this behavior cannot
be valid for (or simply extrapolated to) much larger βhs
where one expects the SAW regime with zSAW = 3

4 .

To monitor the differences of the R1 and R2 regimes,

we show the αd exponent in terms of βd and βh in
Figs. 4a and 4b, respectively. αd is almost zero for
βd . 0.6 (inset of Fig. 4a) as expected from the defini-
tion of the R1 regime and grows more or less linearly
by increasing βd starting from βd ≈ 0.6 consistent with
the above claim (βh = 0 is an exception for which αd is
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reaches to a plateau region. But in the second regime, we see d(t) follows the power law in terms of log t. In panel-b, the
exponent αd is plotted in terms of βh, which roughly remains fixed for almost large βh.
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FIG. 5. The amount of d at t = 103 in terms of βd for various
values of βh is shown in main panel. For small values of βd,
d(t) reaches to ds and all curves follow the scaling relation
ds ∝ 1/βd, which is consistent with Eq. (2). The change of
ds with respect to βh is negligibly small, which is shown in
inset.

almost zero everywhere). The dependence of αd to βh is
low (Fig. 4b), as can also be seen in the other observables
like Fig. 5 where ds is the amount of d at a fixed time
t = 103 after the saturation is established. The latter
figure shows that the change of ds with respect to βh
is negligibly small. For small βd values, the graphs are
fitted with the relation ds ∝ 1/βd, which is true for all
βh values considered in this work (in agreement with
Eqs. 2 and 5), while some deviations are observed for
large βd values.

The problem of random walkers in two dimensions can
readily be mapped to a (2+1)-dimensional growth by
considering the statistics of the height produced by the
amount of debris left by random walkers at each site.

From this point of view, the roughness is arguably the
significant quantity that identifies the system’s univer-
sality class. It is defined by

w2 =

〈(
h(r)− h̄

)2〉
, (6)

where the over line represents the spatial average O ≡
1

m(t)

∑
x,y∈Γ(t)O(x, y), the 〈· · · 〉 is the ensemble aver-

age. The variables m(t) =
∑
i Θ(hi(t) − 1) and Γ(t) are

the number of occupied sites and the set of all occupied
sites respectively. Also, Θ is the step function defined by
Θ(x) = 1 for x ≥ 0 and zero otherwise. We found a same
crossover point in terms of t, so that for βd � β∗d (R1
regime) both h (= 〈h̄〉) and w grow with time in a power-
law fashion, while for βd � β∗d (R2 regime) both of them
grow with a power of log t. For βd u β∗d both behaviors
are observed, one for small time scales and another for
large times.

Two extreme cases (R1 and R2 regimes) for w have
been shown in Fig. 6 (the results for h is quite similar to
w which can be realized from scaling arguments). Fig. 6a
and Fig. 6b are w2 for βd = 0.005 (in R1 regime) and
βd = 1.5 (R2 regime) respectively, from which we see
that the log-log plot of roughness is linear with time in
the R1 regime, whereas it is linear with respect to log t
in the R2 regime. The quantities shown in 6c and 6d are
the corresponding exponents in long times defined by

w2
R1 ∝ tα

(1)
w , w2

R2 ∝ (log t)
α(2)
w . (7)

We see that, α
(1)
w after a small increase shows a decreas-

ing behavior in terms of βd (it decreases with βh), while

α
(2)
h is more or less constant. Both exponents decrease

with βh for all βd values. α
(1)
w is not a monotonic func-

tion in terms of βd, showing a maximum at βd ≈ 0.005,
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FIG. 6. Log-log plot of w2 in terms of t for βd = 0.005 is plotted in panel-a. This βd lives in R1 regime, in which the width

is proportional to tα
(1)
w . In panel-b, the log-log plot of width is shown in terms of log t for βd = 1.5. This βd belongs to R2

regime, in which w2(t) ∝ (log t)α
(2)
w . In panel-c, and -d, the exponents α

(1)
w , and α

(2)
w are depicted in terms of βd in the regions

βd � 0.2 and βd � 0.2 for various amount of βh, respectively.

while it decreases with βh confirming that it is entering a

logarithmic regime. α
(2)
w is almost robust against βd and

decrease with βh. Note that our definition of spatial aver-
aging differs from the one used in [21] (here the average is
over the occupied sites), so that our exponents cannot be
compared with that paper. We are not sure whether this
behavior of the roughness remains unchanged as t → ∞
or it enters a stationary regime, for which a very larger
scale simulations are needed. The second way out of this
problem might be to consider the random walkers on a
finite lattice, which is beyond this paper.

IV. FRACTAL PROPERTIES

The comparison of the fractal properties of the random
walker traces with the other known exact results reveals
the properties of the model. It especially helps much to
understand the nature of the crossover. We have tested
various definitions for the fractal dimension (FD), namely
sandbox FD, box counting FD and the scaling relation
between mass-gyration radius. The best one which fits
best to the traces in our model is sandbox FD, for a de-
scription of the model see [39]. Briefly, one considers the
traces for one random walker up to time t with length
l(t) and enclose it with a minimal square with an edge
length L. The scaling relation between l and L gives us
the FD, l(t) ∼ L(t)df . In Fig. 7a and 7b, this relation
is shown for the R1 and R2 regimes respectively. The
exponent df can be considered as the dynamical mass
fractal dimension since the quantities are time depen-
dent. We calculate the effective df in terms of βh and

βd (Fig. 7c and d respectively). The fractal dimension
of βd = βh = 0 is almost 2 as expected for 2D uncorre-
lated random walks. Note also that the other extreme is
βh →∞ for which dSAW

f = 4
3 . From Fig. 7c, we see that

FD decreases as βh increases (showing that the traces
become sparse), approaching this value. Fig. 7d tells us
that for βd > β∗d , FD becomes almost constant in terms
of βd.

Now we are in the position to test the statistics of the
winding angle defined in Fig. 1. Its variance 〈θ2〉 is given
in Eq. (3) for βd = βh = 0. This function is linear in
the log-log scale plot in terms of log t shown in Fig. 8a
and 8b with the exponents in large time scales given in
Fig. 8c and d. These results confirm that the Eq. (3) is
applicable for all cases with generalized exponents, i.e.,
it should be generalized to〈

θ2
〉

= A (log t)
αθ(βd,βh)

αθ(0, 0) = 2, (8)

whereA is a non-universal constant. From Fig. 8c and 8d,
one observes that αθ changes from 2, to the lower values.
It is hard to decide whether this exponent is identical for
all βd and βh values when βh is high enough. Roughly
speaking, αθ changes from 2 for small βh and βd values
to 0.9 < αθ(βd, βh) < 1.2 for large βh and βd.

It is interestingly seen that there is a universal point
t∗ where for a fixed βd, all the graphs for various βhs
meet each other. The slope of the graphs is different
on two sides of this point, so that t∗θ is served as the
crossover point between small and large scale behaviors.
We calculate αθ by extracting the slopes on the right-
hand side of this point, i.e., large time scales. Using
this fact, one can conclude that A has no choice by A =
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FIG. 7. Log-log plot of trace length of the random walker (l) in terms of L (lateral size of minimal square containing whole
trace) for βd = 0.005 and βd = 1.5 are shown in panel-a and -b, respectively. The slope of each curve yields the fractal dimension
df of random walker traces. The corresponding fractal dimension calculated using the sandbox method in terms of βh and βd
are shown in panel-c and -d, respectively. In panel-d, one can see that for βd . 0.2, the value of df changes abruptly. But for
βd & 0.2, the value of αθ almost remains fixed.
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seems that all curves in each panel meet together at a specific time say t∗. We will show the dependency of t∗ to βd in Fig. 9.
The corresponding exponent αθ in the long time limit in terms of βh and βd are plotted in panel-c and -d, respectively. For
βd . 0.2 in panel-d, one can see that the value of df changes abruptly. But for βd & 0.2, the value of αθ almost remains fixed.

C/(log t∗θ)
αθ(βd,βh), where C is a non-universal constant,

reading 〈
θ2
〉

= C

(
log t

log t∗θ

)αθ(βd,βh)

. (9)

To calculate t∗θ, we identify the crossing point of each

two curves corresponding to different values of βh. The
reported t∗θ is the average value and the error bar is the
variance of it. Figure 8e shows log t∗θ in terms of βd, in
which we see that it changes behavior when one crosses
from the R1 regime to R2 regime, i.e. in R1 it is an
increasing function of βd while for the R2 regime it almost
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FIG. 9. The crossover time t∗θ related to 〈θ2〉 curves (see
Eq. (9) and Fig. 8) in terms of βd is shown. It seems that
for βd < 0.2, the value of t∗ decreases. But for βd > 0.2, it
increases and finally for large βds greater than 0.5, the values
of t∗θ roughly remain fixed within the error bar.

saturates to a constant.

V. CONCLUSION

This paper was devoted to the analysis of a biped spider
walk, i.e., two correlated self-repelling random walkers,
which is realized by dropping debris in the lattice points
that are visited. The motion of random walkers is con-
trolled by two external parameters (βd, βh) where βd cap-
tures the tendency of the random walkers to each other,
and βh controls the possibility that a random walker
steps on a site with debris height h. Our study uncovers
the fact that there is a crossover point in which ran-
dom walkers change from uncorrelated random walks to
a new regime that is characterized in this paper in detail.
In the new regime, the system is in the super diffusion
phase with some diffusion exponents higher than 1

2 . By
analyzing the diffusion exponent and also the fractal di-

mension of the random walker traces, we showed that
the new regime although exhibiting properties partially
similar to self-avoiding walks, represents new features.
The first regime which is identified by a crossover region
βd . β∗d ∈ [0.2 − 0.5] (β∗d is a crossover point) is called
R1 regime, whereas the other regime is R2.

In the long time limit, the random walkers stay in a
finite equilibrium distance in the R1 regime, while they
tend to each other in R2 regime. This tendency is de-
scribed by a power-law decay of d = |r1 − r2| in terms
of logarithm of time. The decay is faster for lower βds
(Fig. 4a), while it is not very sensitive to βh (for not very
small βhs).
A similar crossover is seen for the sandbox fractal dimen-
sion of random walker traces, which is expected to be-
come uncorrelated random walk dURW

f = 2 as (βd, βh)→
(0, 0), and SAW as (βd, βh) → (0,∞) with dSAW

f = 4
3 .

We observed that the traces become more sparse (more
self-avoiding) as βh increases, i.e. df , starting from 2
(the uncorrelated case) decreases with βh saturating to
a value. For βd 6= 0 this final fractal dimension is almost
independent of βd, e.g., it is 1.6± 0.1 for βh = 2.0.

In the analysis of the winding angle, two important
facts were found: 1- the variance of the winding angle
regarding Eq. (3) with different exponent (Eq. (9)) with
an exponent which is not effectively βd-dependent, and is
pretty sensitive to βh (transiting from 2.0± 0.1 to 1.1±
0.2), 2- There is a crossover time t∗θ where for fixed βd all
the βh graphs meet each other almost in a same point.
We observed that the slopes of the graphs before and
after this point are slightly different (Fig. 8).
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