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We analyze the collision of three identical spin-polarized fermions at zero collision energy, assuming
arbitrary finite-range potentials, and define the corresponding three-body scattering hypervolume
DF . The scattering hypervolume D was first defined for identical bosons in 2008 by one of us. It
is the three-body analog of the two-body scattering length. We solve the three-body Schrödinger
equation asymptotically when the three fermions are far apart or one pair and the third fermion are
far apart, deriving two asymptotic expansions of the wave function. Unlike the case of bosons for
which D has the dimension of length to the fourth power, here the DF we define has the dimension
of length to the eighth power. We then analyze the interaction energy of three such fermions with
momenta ~k1, ~k2 and ~k3 in a large periodic cubic box. The energy shift due to DF is proportional
to DF /Ω2, where Ω is the volume of the box. We also calculate the shifts of energy and pressure
of spin-polarized Fermi gases due to a nonzero DF and the three-body recombination rate of spin-
polarized ultracold atomic Fermi gases at finite temperatures.

I. INTRODUCTION

When electrically neutral particles collide with small
energies, such that the de Broglie wave lengths are large
compared to the range of interaction, their effective inter-
actions can be characterized by a small number of param-
eters such as the two-body s-wave scattering length. For
identical spin-polarized fermions, however, the s-wave
collision is forbidden due to the Pauli exclusion principle,
and the low-energy effective interaction is dominated by
the p-wave scattering volume ap. All the two-body effec-
tive parameters for the interaction can be extracted from
the wave functions for the two-body collision at energies
equal to or close to zero, outside of the physical range
of the interaction potential [1]. The p-wave scattering
volume ap, for example, can be extracted from the wave
function of the two fermions colliding at zero incoming
kinetic energy:

φ(1,m)(s) =
(s

3
− ap
s2

)√4π

3
Y m1 (ŝ), if s > re, (1)

where s is the spatial vector extending from one fermion
to the other, re is the range of the interaction potential,
Y ml (ŝ) is the spherical harmonic (m = −l,−l+ 1, . . . , l is
the magnetic quantum number).

The effective three-body interaction at small collision
energies can also be described by some effective param-
eters, such as the scattering hypervolume D which was
first defined for three identical bosons by one of us [1]. It
is the three-body analog of the two-body s-wave scatter-
ing length a, and is a fundamental parameter determin-
ing the effective strength of three-body interactions at
small collision energies. D affects the energies of dilute
Bose-Einstein condensates [1]. The three-body recombi-
nation [2–8] rate is proportional to the imaginary part
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of D [9, 10]. D determines the effective three-body cou-
pling constant in the effective-field theoretical descrip-
tion of low energy particles [1, 8, 11]. The value of D
has been numerically computed for identical bosons in-
teracting with hard-sphere [1], Gaussian [9], square-well
[12] and Lennard-Jones [13] potentials. Recently, the def-
inition of scattering hypervolume is generalized to three
particles with unequal masses [14], two identical bosons
and a particle with a different mass [15], and three iden-
tical spin-1 bosons [16]. In these three-body systems, the
dimensions of the corresponding scattering hypervolumes
are all [length]4.

Can we also define a scattering hypervolume for three
identical fermions in the same spin state? In this paper,
we study the zero energy collison of three spin-polarized
fermions with total orbital angular momentum L = 1,
assuming arbitrary finite-range potentials. We solve the
three-body Schrödinger equation asymptotically and get
two expansions for the three-body wave function Ψ, one
of which is applicable when all the three fermions are far
away from each other and is named 111 expansion, the
other of which is applicable when two fermions are held
at a fixed distance and the third fermion is far away from
the two and is named 21 expansion. The new scattering
hypervolume DF is the dominant three-body parameter
in these expansions. The dimension of DF is [length]8.
The parameter DF is applicable only if the thermal de
Broglie wavelengths of the fermions are much larger than
re, namely if the temperature T � Te, where

Te ≡
~2

2MF r2
ekB

. (2)

Here ~ is Planck’s constant over 2π, MF is the mass of
each fermion, and kB is the Boltzmann constant.

In Section II of this paper, we derive the 111 expansion
and the 21 expansion for the collision of three identical
spin-polarized fermions at zero energy. We assume that
the fermions are electrically neutral, and the interaction
potentials are finite-ranged, vanishing beyond a certain
range re. In this paper we will expand the three-body
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wave function Ψ to the order B−6 in the 111 expansion
and to the order R−7 in the 21 expansion, which are the
orders at which the three-body scattering hypervolume
DF first appears. Here B is the hyperradius, defined as
the square root of a half of the sum of the squares of the
three interfermionic distances; see Eq. (6) below. R is the
distance between the center of mass of the two fermions
held at a fixed distance and the third fermion which is
far away from the two; see Eq. (7) below.

In Section III we calculate the shift of the energy of
three fermions in a large periodic cubic box due to a
nonzero DF . We then further calculate the shifts of en-
ergy and pressure caused by DF for a homogeneous spin-
polarized Fermi gas at finite temperatures.

In Section IV we derive the formula for the three-body
recombination rate in spin-polarized ultracold atomic
Fermi gases. We find that in an intermediate temper-
ature regime TF � T � Te (where TF is the Fermi tem-
perature), dn/dt is proportional to n3T 2, in agreement
with Refs. [17–19], while at low temperatures, T � TF ,
dn/dt is proportional to n13/3.

II. ASYMPTOTICS OF THE THREE-BODY
WAVE FUNCTION

We consider identical spin-polarized fermions with
mass MF each. We assume that the interactions among
these fermions are finite-ranged and depend only on the
interparticle distances, and thus they are invariant under
translation, rotation and Galilean transformations.

If the three fermions collide with zero energy, the three-
body wave function Ψ satisfies the Schrödinger equation:[

− ~2

2MF
(∇2

1 +∇2
2 +∇2

3) + V (s1) + V (s2)

+ V (s3) + V123(s1, s2, s3)
]
Ψ(r1, r2, r3) = 0,

(3)

where ri is the position vector of the ith fermion, and

si ≡ rj − rk. (4)

In the above equation and in the following, (i, j, k) =
(1, 2, 3), (2, 3, 1), or (3, 1, 2). V (si) is the interaction
potential between the jth fermion and the kth fermion,
and V123(s1, s2, s3) is the three-body potential. We as-
sume the total momentum of three fermions is zero
(which means we study the problem in the center-of-mass
frame), and thus Ψ is translationally invariant:

Ψ(r1 + δr, r2 + δr, r3 + δr) = Ψ(r1, r2, r3) (5)

for any δr.
Equations (3) and (5) do not uniquely determine the

wave function for the zero energy collision. We need
to also specify the asymptotic behaviour of Ψ when the
three fermions are far apart. The leading-order term in Ψ
when s1, s2, s3 go to infinity simultaneously, Ψ0, should

satisfying the Laplace equation (∇2
1 +∇2

2 +∇2
3)Ψ0 = 0,

and scale like Bp at large B, where

B ≡
√

(s2
1 + s2

2 + s2
3) /2 (6)

is the hyperradius. The most important three-body wave
function for zero-energy collisions, for purposes of under-
standing ultracold collsions, should be the one with the
minimum value of p. The larger the value of p, the less
likely it is for the three particles to come to the range
of interaction within which they can interact. (For this
same reason, in the study of two-body ultracold colli-
sions of identical fermions, the p-wave collision is usu-
ally the most important one.) One can easily show that
the minimum value of p for three identical spin-polarized
fermions in three spatial dimensions is 2. There are only
three linearly independent three-body wave functions for
the zero-energy collision with p = 2, and they all have to-
tal orbital angular momentum quantum number L = 1,
and they form an irreducible representation of the rota-
tional group, and can be distinguished using the magnetic
quantum number M = −1, 0, 1. These three-body wave
functions are denoted as ΨM

1 .
For later use, we define the Jacobi coordinates [10, 20]

used in this paper. si has been defined in Eq. (4). We
define Ri as the vector extending from the center of mass
of the jth fermion and the kth fermion to the ith fermion:

Ri ≡ ri − (rj + rk)/2. (7)

We also define three hyperangles:

θi ≡ arctan
2Ri√

3si
. (8)

si, Ri, θi and B satisfy the following relations:

si =
2√
3
B cos θi, Ri = B sin θi. (9)

The si, Ri, B, and θi defined above are the same as
the corresponding variables defined for identical bosons
in Ref. [1].

A. Two-body special functions

We define the two-body special functions φ(l,m)(s),
f (l,m)(s), g(l,m)(s), . . . , for the collision of two parti-
cles with orbital angular momentum quantum number
l and magnetic quantum number m along the z direction
[1, 14]:

H̃φ(l,m) = 0, (10a)

H̃f (l,m) = φ(l,m), (10b)

H̃g(l,m) = f (l,m), (10c)

. . .
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where ~2H̃/MF is the two-body Hamiltonian for the col-
lision of two fermions in the center-of-mass frame, and

H̃ ≡ −∇2
s +

MF

~2
V (s). (11)

For identical spin-polarized fermions, l must be odd due
to Pauli principle. We use symbols p, f, h, · · · to repre-
sent l = 1, 3, 5, · · · .

Given the two-body special functions φ(l,m), f (l,m),
g(l,m), . . . , we can express the wave function for the
collision of two particles at any small nonzero energy
E = ~2k2/MF as an infinite series in k2 [1, 14]:

φ
(l,m)
k (s) = φ(l,m)(s) + k2f (l,m)(s) + k4g(l,m)(s) + · · · .

(12)
To complete the definition of φ(l,m), we need to specify

its overall amplitude. Since the potential V (s) vanishes
beyond a finite range re, φ

(l,m) takes a simple form at
s > re:

φ(l,m)(s) =

[
sl

(2l + 1)!!
− (2l − 1)!!al

sl+1

]√
4π

2l + 1
Y ml (ŝ),

(13)
where Y ml is the spherical harmonic, and al is the
two-body l-wave scattering volume (with dimension
[length]2l+1). We have fixed the overall amplitude of
φ(l,m) by specifying the coefficient of the term ∝ sl.

The solution to the equation H̃f (l,m) = φ(l,m) is not
unique, because if f (l,m) satisfies this equation, then
f (l,m) + (arbitrary coefficient) × φ(l,m) also satisfies this
equation. To complete the definition of f (l,m), we spec-
ify that in the expansion of f (l,m)(s) at s > re we do
not have the term ∝ s−l−1 (if such a term exists, we can
add a suitable coefficient times φ(l,m)(s) to f (l,m)(s) to
cancel this term). Then at s > re we have the following
analytical formula for f (l,m)(s):

f (l,m)(s) =

[
− sl+2

2(2l + 3)!!
− alrls

l

2(2l + 1)!!

− (2l − 3)!!

2
als

1−l
]√

4π

2l + 1
Y ml (ŝ).

(14)

For brevity we do not show the explicit formula for g(l,m)

as it is not used in this paper.
The two-body special functions will appear in the 21

expansions of the three-body wave functions at zero col-
lision energy.

If the magnetic quantum number m = 0, these two-
body functions we have defined here are the same as the
special functions defined in Ref. [14] if one sets n̂ = ẑ in
Ref. [14].

One can show [1, 14] that al which first appears in
Eq. (13) is the two-body l-wave scattering volume, rl
which first appears in Eq. (14) is the two-body l-wave
effective range, and they are related to the scattering
phase shift δl(k) in the well-known effective range expan-
sion [21, 22]:

k2l+1 cot δl(k) = − 1

al
+

1

2
rlk

2 +O(k4). (15)

B. 111 expansion and 21 expansion

As in our previous works [1, 14], we derive two asymp-
totic expansions for the three-body wave function ΨM

1 .
When the three fermions are all far apart from each other,
such that the pairwise distances s1, s2, s3 go to infinity
simultaneously for any fixed ratio s1 : s2 : s3, we expand
ΨM

1 in powers of 1/B, and this expansion is called the
111 expansion. When one fermion (the ith fermion) is far
away from the other two (the jth and the kth fermions),
but the two fermions (j and k) are held at a fixed dis-
tance si, we expand ΨM

1 in powers of 1/Ri, and this is
called the 21 expansion. The two expansions are

ΨM
1 =

∞∑
p=−2

T (−p)(r1, r2, r3), (16a)

ΨM
1 =

∞∑
q=−1

S(−q)(R, s), (16b)

where T (−p) scales as B−p, S(−q) scales as R−q. Without
loss of generality, here we suppose the Jacobi coordinates
s = s1, and R = R1.
T (−p) satisfies the free Schrödinger equation outside of

the interaction range:

− ~2

2MF

(
∇2

1 +∇2
2 +∇2

3

)
T (−p) = 0. (17)

If one fermion is far away from the other two, Eq. (3)
becomes[

− ~2

MF
∇2

s + V (s)− 3~2

4MF
∇2

R

]
ΨM

1 = 0. (18)

Therefore, S(−q) satisfies the following equations,

H̃S(1) = 0, H̃S(0) = 0,

H̃S(−q) =
3

4
∇2

RS(−q+2) (q ≥ 1).
(19)

If s� R, we can further expand T (−p) as

T (−p) =
∑
i

t(i,−p−i), (20)

where t(i,j) scales like Risj . If s � re, we can further
expand S(−q) as

S(−q) =
∑
j

t(−q,j). (21)

Because the three-body wave function ΨM
1 may be ex-

panded as
∑
p T (−p) at B → ∞, and may also be ex-

panded as
∑
q S(−q) at R → ∞, the t(i,j) in the above

two expansions should be the same. In fact the wave
function has a double expansion ΨM

1 =
∑
i,j t

(i,j) in the
region re � s� R.
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We show the points at which t(i,j) 6= 0 on the (i, j)
plane in Fig. 1. T (−p) corresponds to the straight line
with slope equal to −1 and intercept equal to −p. S(−q)

corresponds to the vertical line i = −q. Therefore, all
the points t(i,j) satisfying i + j = −p are on the line
corresponding to T (−p), and all the points t(−q,j) are on
the line of S(−q).

i

j

10-1-2-3-4-5-6-7

1

2

3

4

5

-1

-2

-3

-4

-5

T (2)

T (−1)

T (−4)

T (−6)

S(1)S(−2)

S(−4)
S(−5)

S(−6)

S(−7)

FIG. 1. Diagram of the points representing t(i,j) on the
(i, j) plane. Each point with coordinates (i, j) represents t(i,j)

which scales like Risj . Thick dots represent those points
at which t(i,j) 6= 0. Each nonzero term T (−p) in the 111-
expansion is represented by a red dashed line satisfying the
equation i + j = −p. For s > re, the term S(−q) in the 21-
expansion is represented by the vertical blue line satisfying
the equation i = −q. We have not derived the expressions
for T (−7), T (−8), T (−9) etc, and so the red dashed lines corre-
sponding to them are not shown.

To derive the two expansions, we start from the
leading-order term in the 111 expansion (which fixes the
overall ampltude of ΨM

1 ):

T (2) = QM1 (s×R), M = −1, 0, 1, (22)

where QML (u) is the harmonic polynomial,

QML (u) ≡
√

4π

2L+ 1
uLYML (û). (23)

More explicitly, for M = 0,

T (2) = Az, (24)

and for M = ±1,

T (2) = −M√
2

(Ax + iMAy), (25)

where

A = s×R = −(r1 × r2 + r2 × r3 + r3 × r1) (26)

is a vector perpendicular to the plane of the triangle
formed by the three fermions, and A is equal to twice
the area of such triangle. One can check the leading-
order term T (2) satisfies the free Schrödinger equation.
It is also translationally invariant, and is antisymmet-
ric under the exchange of the fermions. T (2) = t(1,1) is
denoted by the point with coordinates (1, 1) in Fig. 1.

We then first derive S(1), and then derive T (1), and
then derive S(0), and then derive T (0), and so on, all
the way until S(−7). At every step, we require the 111
expansion and the 21 expansion to be consistent in the
region re � s � R. See Appendices A and B for more
details.

Our resultant 111 expansion is

ΨM
1 = QM1 (s×R) ·

[
1− 3ap

3∑
i=1

1

s3
i

+
36a2

p

π

3∑
i=1

(
θi − 1

4 sin 4θi
)

R3
i s

3
i

− 9
√

3DF

4π3B8

]
+O(B−7), (27)

where DF is the three-body scattering hypervolume of
identical spin-polarized fermions, and it appears at the
order of B−6. We have chosen the coefficient −9

√
3/4π3

in front of DF to simplify the formula for the energy shift
of three identical fermions in a large periodic volume due
to the three-body parameter; see Sec. III A for details.



5

Our resultant 21 expansion is

ΨM
1 =6i

√
2π

3

[
R− 6ap

R2
+

12a2
p

R5

(
8− 9

√
3

π

)
− ξ

R7

]∑
m

C1,M
1,M−m;1,mY

M−m
1 (R̂)φ(1,m)(s)

+ i

[
−630

√
πap

R4
+

4032
√
πa2

p

R7

(
16− 27

√
3

π

)]∑
m

C1,M
3,M−m;3,mY

M−m
3 (R̂)φ(3,m)(s)

− i
31185

√
10πap

4R6

∑
m

C1,M
5,M−m;5,mY

M−m
5 (R̂)φ(5,m)(s)

+ i
324
√

6πa2
p

R7

(
8− 9

√
3

π

)∑
m

C1,M
1,M−m;1,mY

M−m
1 (R̂)f (1,m)(s) +O(R−8),

(28)

where

CJ,Ml1m1;l2m2
= 〈l1,m1; l2,m2|J,M〉 (29)

is the Clebsch-Gordan coefficient, and ξ is a parameter
related to DF ,

ξ =
9
√

3DF

4π3
− 81a3

prp

(
8− 9

√
3

π

)
. (30)

III. ENERGY SHIFTS AND
THERMODYNAMIC PROPERTIES

In this section, we study the energy shifts of N identi-
cal spin-polarized fermions caused by the scattering hy-
pervolume DF in a periodic box. Using this result we
derive the thermodynamic properties, including the en-
ergy and the pressure, of the spin-polarized Fermi gas
due to a nonzero DF .

A. Three fermions in a cubic box

In this subsection, for the sake of simplicity we assume
that the fermions have vanishing or negligible two-body
interactionsbut have a nonzero three-body scattering hy-
pervolume DF , and the 111 expansion for the zero-energy
three-body wave function in Eq. (27) is simplified as

ΨM
1 = QM1 (s×R)

(
1− 9

√
3DF

4π3B8

)
+O(B−7). (31)

For purposes of calculating the energy shifts due to a
nonzero DF , we can replace the true interaction poten-
tial V (s1) + V (s2) + V (s3) + V123(s1, s2, s3), which in
general has a complicated dependence on the interparti-
cle distances, by a three-body pseudopotential Vps. We
use the following pseudopotential:

Vps =
~2DF

6MF

{[
∇2

s∇2
R − (∇s · ∇R)2

]
δ(s)δ(R)

}
Λ, (32)

where Λ is a projection operator which, when acting on
the O(B−6) term in the three-body wave function, yields
zero. The operator Λ is an analog of the operator ∂

∂r r in
the two-body pseudopotential for s-wave two-body colli-
sions in Refs. [23, 24]. One can check the pseudopoten-
tial in Eq. (32) is symmetric under the interchange of the
three fermions. The coefficient on the right hand side of
Eq. (32) has been chosen such that[

− ~2

2MF
(∇2

1 +∇2
2 +∇2

3) + Vps

]
ΨM

1 ' 0. (33)

We now consider three fermions in a large periodic cu-
bic box with volume Ω. Their momenta are ~k1, ~k2 and
~k3 in the absence of interactions. When we introduce
interactions that give rise to a nonzero DF , the energy
eigenvalue of the three-body state is shifted by the fol-
lowing amount at first order in the perturbation:

Ek1k2k3 =

∫
d3r1d

3r2d
3r3 |Ψk1k2k3 |2Vps, (34)

where Ψk1k2k3
is the normalized unperturbed wave func-

tion and it can be written as a Slater determinant:

Ψk1k2k3
=

1√
6Ω3/2

∣∣∣∣∣∣
eik1·r1 eik1·r2 eik1·r3

eik2·r1 eik2·r2 eik2·r3

eik3·r1 eik3·r2 eik3·r3

∣∣∣∣∣∣ . (35)

We get

Ek1k2k3
=

~2DF

3MFΩ2
(k1 × k2 + k2 × k3 + k3 × k1)

2
.

(36)
Note that |k1 × k2 + k2 × k3 + k3 × k1| is twice the area
of the k-space triangle whose vertices are k1,k2,k3.

Note that Eq. (33) is only satisfied approximately. In
particular, if we take into account the O(B−7) correc-
tions in the asymptotic expansion of the wave function
in Eq. (31), Eq. (33) is violated. So the three-body pseu-
dopotential in Eq. (32) is only an approximate descrip-
tion of the effective three-body interaction. However,
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we believe that this does not affect our leading-order re-
sult for the energy shift in Eq. (36). In Appendix C we
show another calculation, using Gauss’s theorem, with-
out resorting to the pseudopotential, that also gives rise
to Eq. (36).

If there are two-body interactions, the shift of the en-
ergy of the three particles will also contain terms due to
the two-body parameters including ap, rp, af etc; never-
theless, the shift due to DF in Eq. (36) is still valid. If
ap 6= 0, the leading-order shift of the three-body energy
due to ap is the sum of contributions from the three pairs
of fermions. To quickly derive this shift, we may write
down the p-wave pseudopotential

V 2-body
ps =

6π~2ap
MF

[
∇2δ(s)

]
Λ, (37)

where s is the pairwise distance, and Λ is the opera-
tor that annihilates the singular term that is ∝ s−2 in
the two-body wave function φ(1,m)(s). The coefficient
in this pseudopotential is chosen such that the two-body
wave function φ(1,m)(s) satisfies the Schrödinger equation

(− ~2

MF
∇2

s + V 2-body
ps )φ(1,m)(s) = 0. The pseudopotential

that we write in Eq. (37) is similar to those given in
Refs. [25–32] but is of a simpler form. Taking the expec-
tation value of the pseudoptential in Eq. (37) in the un-
perturbed three-body state, we derive the leading-order
shift of the three-body energy due to a nonzero ap:

E2-body
k1k2k3

=
6π~2ap
MFΩ

[
(k1−k2)2 + (k2−k3)2 + (k3−k1)2

]
.

(38)

B. Energy shift of many fermions and
thermodynamic consequences

We generalize the energy shift in Eq. (36) to N
fermions in the periodic volume Ω. The number den-
sity of the fermions is n = N/Ω. We define the Fermi
wave number kF = (6π2n)1/3, the Fermi energy εF =
~2k2

F /2MF , and the Fermi temperature TF = εF /kB .
We assume that the density is low such that the average
interparticle distance n−1/3 � re.

1. Adiabatic shifts of energy and pressure in the
thermodynamic limit

Starting from a many-body state at a finite tempera-
ture T , if we introduce a nonzero DF adiabatically, the
energy shift at first order in DF is equal to the sum of
the contributions from all the triples of fermions, namely

∆E =
1

6

∑
k1k2k3

Ek1k2k3
nk1

nk2
nk3

, (39)

where nk = (1 + eβ(εk−µ))−1 is the Fermi-Dirac distribu-
tion function, β = 1/kBT , εk = ~2k2/2MF is the kinetic

energy of a fermion with linear momentum ~k, and µ is
the chemical potential. The summation over k can be
replaced by a continuous integral

∑
k = Ω

∫
d3k/(2π)3

in the thermodynamic limit. Carrying out the integral,
we get

∆E(T ) =
N~2DF

36π4MF
k10
F ·

(
9π

64

)
T̃ 5[f5/2(eβµ)]2, (40)

where T̃ = T/TF , and the function fν(z) is defined as

fν(z) ≡ −Liν(−z) = z − z2

2ν
+
z3

3ν
− z4

4ν
+ · · · . (41)

The chemical potential µ is determined by the number of
fermions,

N = Ω

∫
d3k

(2π)3

1

eβ(εk−µ) + 1
, (42)

which is equivalent to

1 =
3
√
π

4
T̃ 3/2f3/2(eµ̃/T̃ ), (43)

where µ̃ = µ/εF .
In the low temperature limit, T � TF ,

∆E(T ) =
N~2DF

36π4MF
k10
F ·

[ 1

25
+
π2

30
T̃ 2 +O(T̃ 4)

]
. (44)

In particular, at absolute zero temperature,

∆E(0) =
N~2DF

900π4MF
k10
F , (45)

and the ground state energy of the Fermi gas is

E =
3

5
εFN

(
1 +

DF k
8
F

270π4
+ · · ·

)
. (46)

If there are two-body interactions, the total ground state
energy should contain terms that depend on the two-
body parameters such as ap, rp, af , but the term due to
DF remains the same as in the above formula to leading
order in DF .

In an intermediate temperature regime, TF � T � Te,

∆E(T ) =
N~2DF

36π4MF
k10
F

[
1

4
T̃ 2 +

√
T̃

6
√

2π
+O(T̃−1)

]
. (47)

If T is comparable to or higher than Te, the de Broglie
wave lengths of the fermions will be comparable to or
shorter than the range re of interparticle interaction po-
tentials, and we can no longer use the effective parameter
DF to describe the system. See Fig. 2 for ∆E as a func-
tion of the initial temperature.

The pressure of the spin-polarized Fermi gas changes
by the following amount due to the adiabatic introduc-
tion of DF :

∆p(T ) = −
(
∂∆E

∂Ω

)
S,N

=
10∆E

3Ω

=
5n~2DF

54π4MF
k10
F ·

(
9π

64

)
T̃ 5
[
f5/2(eβµ)

]2
.

(48)
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The subscripts S,N in Eq. (48) mean that we keep the
entropy S and the particle number N fixed when taking
the partial derivative. See Fig. 3 for ∆p as a function of
the initial temperature. In particular, at zero tempera-
ture

∆p(0) =
n~2DF

270π4MF
k10
F . (49)

2. Isothermal shifts of energy and pressure in the
thermodynamic limit

If the interaction is introduced adiabatically, the tem-
perature will increase (if DF > 0) or decrease (if DF <
0). The change of temperature is

∆T =

(
∂∆E

∂S

)
N,Ω

. (50)

Therefore, if we introduce DF isothermally, the energy
shift ∆E′ should be approximately

∆E′ = ∆E − C∆T =

(
1− T ∂

∂T

)
∆E, (51)

where C is the heat capacity of the noninteracting Fermi
gas at constant volume. In the low temperature limit,
T � TF ,

∆E′(T ) =
N~2DF

36π4MF
k10
F ·

[ 1

25
− π2

30
T̃ 2 +O(T̃ 4)

]
. (52)

In an intermediate temperature regime, TF � T � Te,

∆E′(T ) =
N~2DF

36π4MF
k10
F

[
− 1

4
T̃ 2 +

√
T̃

12
√

2π
+O(T̃−1)

]
.

(53)
According to Eqs. (52) and (53), ∆E′ changes sign as we
increase the temperature. Therefore, there is a critical
temperature Tc at which ∆E′ = 0. We find

Tc ' 0.377TF . (54)

The pressure of the spin-polarized Fermi gas changes
by the following amount due to the isothermal introduc-
tion of DF :

∆p′ = ∆p− 2C∆T

3Ω
=

(
1− 1

5
T
∂

∂T

)
∆p. (55)

In the low temperature limit, T � TF ,

∆p′ =
5n~2DF

54π4MF
k10
F

[ 1

25
+
π2

50
T̃ 2 +O(T̃ 4)

]
. (56)

In an intermediate temperature regime, TF � T � Te,

∆p′ =
5n~2DF

54π4MF
k10
F

[
3

20
T̃ 2 +

3
√
T̃

20
√

2π
+O(T̃−1)

]
. (57)

The energy shift and the pressure change as functions
of temperature are shown in Fig. 2 and Fig. 3 respec-
tively.

0 0 . 5 1 1 . 5 2 2 . 5 3- 6 0

- 3 0

0

3 0

6 0

0 0 . 2 0 . 4- 1

0

1

2

3

T  /  T F

∆E
 (T

) / 
∆E

 (0
)

 z e r o
 ∆E  -  a d i a b a t i c
 ∆E  '  -  i s o t h e r m a l

FIG. 2. The energy shift caused by the adiabatic (red line) or
isothermal (blue dashed line) introduction of DF versus the
temperature T . At T ' 0.377TF , the isothermal energy shift
∆E′ changes sign.

0 0 . 5 1 1 . 5 2 2 . 5 3
0

2 0

4 0

6 0

0 0 . 2 0 . 40

1

2

3
∆p

 (T
) / 

∆p
 (0

)

T  /  T F

 ∆p  -  a d i a b a t i c
 ∆p '  -  i s o t h e r m a l

FIG. 3. The change of pressure caused by the adiabatic (red
line) or isothermal (blue dashed line) introduction of DF ver-
sus the temperature T .

IV. THE THREE-BODY RECOMBINATION
RATE

If the collision of the three particles is purely elastic,
DF is a real number. But if the two-body interactions
support bound states, then the three-body collisions are
usually not purely elastic, three-body recombination [2–
8] will occur, and DF will acquire some negative imagi-
nary part. The three-body recombination rate constant
is proportional to the imaginary part of DF [9, 10].

Within a short time ∆t, the probability that no recom-
bination occurs is exp(−2|ImE|∆t/~) ' 1−2|ImE|∆t/~.
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Then the probability that one recombination event occurs
is 2|ImE|∆t/~. Since each recombination event causes
the loss of three low-energy atoms, the change of the
number of remaining low-energy atoms in the short time
dt is

dN = −1

6

∑
k1k2k3

3 · 2dt

~
|ImEk1k2k3

|nk1
nk2

nk3
. (58)

This leads to

dn

dt
= −L3n

3, (59)

and the three-body recombination rate constant L3 is

L3 = 6(6π2)4/3

(
9π

64

)
T̃ 5[f5/2(eβµ)]2

~|ImDF |
MF

n4/3.

(60)
L3 now in general depends on the density n and the tem-
perature T .

In the low temperature limit, T � TF ,

L3 '
6(6π2)4/3

25

(
1 +

5π2

6
T̃ 2

)
~
MF
|ImDF |n4/3. (61)

In this limit, dn/dt is proportional to nα where α =
13/3 = 4.333 · · · . In particular, at absolute zero temper-
ature,

L3 =
6

25

~|ImDF |
MF

k4
F . (62)

In an intermediate temperature regime, TF � T � Te,
we find that

L3 = 6
MF

~3
|ImDF | (kBT )

2
, (63)

and L3 is approximately independent of n, and is pro-
portioanl to T 2. It was predicted that L3 ∝ T 2 ac-
cording to the Wigner threshold law [17]. Our Eq. (63)
is consistent with this prediction. In Refs. [18, 19] the
quadratic dependence of L3 on the temperature was ex-
perimentally confirmed for ultracold 6Li atoms in the
|F = 1/2,mF = 1/2〉 state. In Ref. [19] it was reported
that L3 = (3.55± 0.22)× 10−23×T 2cm6/s (T in units of
Kelvin) at T ∼ 100− 300µK for 6Li atoms in a magnetic
field of 1G (far away from the p-wave Feshbach resonance
located at 159 G). Using this result in Ref. [19] we find
that the order of magnitude of ImDF for these fermionic
atoms in such magnetic field is about −(125a0)8, where
a0 is the Bohr radius.

In the intermediate temperature regime, TF � T �
Te, the characteristic thermal de Broglie wave length λ
of the fermions is shorter than the average interfermionic
distance. Hence the orbital angular momentum quantum
number for three colliding fermions may easily exceed 1.
One may wonder why the three-body recombination rate
is still dominated by the parameter DF which refers to
the L = 1 collisions only. We can resolve this paradox

by noting that in this temperature regime λ is still much
larger than the range re of the interaction potentials. In
the many-body wave function, when three fermions come
to a spatial region whose size is much smaller than the
average interfermionic distance but much larger than re,
the many-body wave function is approximately factor-
ized as a 3-fermion Slater determinant [analogous to the
one shown in Eq. (35)] times a function that depends on
the positions of the other fermions and the position of the
center of mass of the three nearby fermions, and when the
three fermions come to distances smaller than λ this 3-
fermion Slater determinant may be further approximated
by Eq. (C3) and Eq. (C4) which in fact correspond to a
collision with orbital angular momentum quantum num-
ber L = 1. When the three fermions come to even smaller
distances, the three-body wave function acquires correc-
tion terms due to the interactions, and can be approxi-
mately described by the 111 expansion we have derived.
Therefore, the rate of three-body recombination events,
which can occur only if three fermions come within the
range of interaction, is dominated by the parameter DF

we have defined.
Ref. [33] considered spin-polarized fermionic atoms

near a p-wave Feshbach resonance. It was shown that
when the two-body scattering volume ap is positive and
large, such that there is a shallow two-body p-wave bound
state, the three-body recombination rate constant di-

verges as a
5/2
p [33]:

L3 '
9~

25MF
(48π)2

(
a5
p

−3rp/2

)1/2

k4
F (64)

at T � TF . Comparing this result with Eq. (61) we
infer that near such a p-wave Feshbach resonance, on the
ap > 0 side,

ImDF ' −
3

2
(48π)2

(
a5
p

−3rp/2

)1/2

. (65)

Note that the αres in Ref. [33] is equal to (−rp/2) in our
paper, and is positive.

V. SUMMARY AND DISCUSSION

We have defined the three-body scattering hypervol-
ume DF for identical spin-polarized fermions by consid-
ering the collision of three such fermions at zero energy.
We solved the three-body Schrödinger equation asymp-
totically at large interparticle distances and expanded
the three-body wave function in powers of 1/B when the
pairwise distances go to infinity simultaneously (here B
is the three-body hyperradius), and expanded the same
wave function in powers of 1/R when two fermions are
held at a fixed distance and the third fermion is far away
from the two (here R is the distance between this third
fermion and the center of mass of the other two fermions).
In the expansion in powers of 1/B, the parameter DF



9

first appears at the order 1/B6. In the expansion in pow-
ers of 1/R, the parameter DF first appears at the order
1/R7. For any given microscopic interaction potentials,
one can solve the three-body Schrödinger equation nu-
merically and match the solution to these expansions to
compute DF .

The three-body scattering hypervolume we have de-
fined in this paper plays a fundamental role in three-
body, four-body, . . . , and many-body physics for ultra-
cold Fermi gases. Although usually the two-body p-wave
scattering volume is the dominant parameter for the
effective interactions in spin-polarized ultracold Fermi
gases, and DF serves as a small correction, DF may be-
come the dominant parameter if ap happens to be zero
or tiny or is tuned to zero, or if the system is near a
three-body resonance close to zero energy. If the system
is near a three-body resonance close to zero energy, DF

may be anomalously large.

In the second part of this paper we computed the en-
ergy shift of three fermions in a large periodic volume
due to DF . From this result we computed the energy
shift of many fermions in the thermodynamic limit due
to DF . We also computed the shift of pressure due to
DF . The energy shift and the pressure shift are related.
We computed the two shifts in two scenarios as functions
of temperatures: either introducing the three-body pa-
rameter adiabatically or introducing it isothermally. For
isothermal introduction of DF , we found that the shift of
energy changes sign at temperature T ' 0.377TF , where
TF is the Fermi temperature. The energy and pressure
shifts could be experimentally detected in trapped ultra-
cold atomic Fermi gases. In particular, DF will cause a
small change of the atomic cloud size and small changes
of the collective mode frequencies.

If the two-body interactions are sufficiently attractive
such that there are two-body bound states, DF will ac-
quire some negative imaginary part related to the three-
body recombination processes. We computed the three-
body recombination rate constant L3 in terms of ImDF

as functions of temperature. In particular, we found that
at low temperatures (T � TF ) L3 ∝ n4/3. These results
could be verified in future experiments concerning ultra-
cold atomic Fermi gases.
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Appendix A: Derivation of the 111 expansion and
the 21 expansion for L = 1, M = 0

We consider the collision of three identical spin-
polarized fermions with orbital angular momentum L =
1. The magnetic quantum number M can be −1, 0, and

1. Here we first derive the 111 expansion and the 21
expansion for M = 0.

We expand the three-body wave function in two forms:

Ψ =

∞∑
p=−2

T (−p)(r1, r2, r3), (A1a)

Ψ =

∞∑
q=−1

S(−q)(R, s), (A1b)

where T (−p) scales as B−p, S(−q) scales as R−q. The hy-
perradius B and the vectors R and s are already defined
in the main text.

If s� R, we can further expand T (−p) as

T (−p) =
∑
i

t(i,−p−i), (A2)

where t(i,j) scales as Risj . If s � re, we can expand
S(−q) as

S(−q) =
∑
j

t(−q,j). (A3)

Because the three-body wave function Ψ0
1 may be ex-

panded as
∑
p T (−p) at B → ∞, and may also be ex-

panded as
∑
q S(−q) at R → ∞, the t(i,j) in the above

two expansions should be the same. In fact the wave
function has a double expansion Ψ =

∑
i,j t

(i,j) in the
region re � s� R.
Step 1. We start from the leading-order term in the

111 expansion:

T (2) = Q0
1(s×R) = sxRy − syRx = t(1,1), (A4)

and this indicates that S(1) is nonzero, but S(2), S(3),
S(4), . . . are zero. Consequently

t(i,j) = 0, if i ≥ 2. (A5)

Expanding T (2) at s� R, we find that

t(0,2) = t(−1,3) = t(−2,4) = t(−3,5) = · · · = 0. (A6)

Since T (3), T (4), T (5), . . . are zero, we have

t(i,j) = 0, if i+ j ≥ 3. (A7)

Step 2. At s� re we expand S(1) as

S(1) = t(1,1) +
∑
j≤0

t(1,j). (A8)

S(1) also satisfies

H̃S(1) = 0, (A9)

where H̃ is proportional to the two-body Hamiltonian,
and has been defined in the main text. Therefore, we
have

S(1) = R
∑
l,m

cmφ
(l,m)(s). (A10)
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Here l must be equal to 1, because φ(l,m) contributes a
term proportional to sl, and thus S(1) contains a term
scaling as R1sl. On the other hand, the leading order
term on the right hand side of Eq. (A8) is t(1,1) which
scales as R1s1.

Expanding Eq. (A10) at s � re to the order s1, and
using Eq. (13), we get

t(1,1) = R
∑
m

cm
s

3

√
4π

3
Y m1 (ŝ). (A11)

Comparing this result with Eq. (A4), we find

c−1 =
−3i√

2R
(Rx + iRy), (A12a)

c0 = 0, (A12b)

c1 =
−3i√

2R
(Rx − iRy). (A12c)

Therefore,

S(1) =
−3i√

2
(Rx+iRy)φ(1,−1)(s)+

−3i√
2

(Rx−iRy)φ(1,1)(s).

(A13)
The above result can be expressed in terms of the
Clebsch-Gordan coefficients as

S(1) = 6i

√
2π

3
R
∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)φ(1,m)(s). (A14)

Expanding S(1) at s > re, we get

t(1,0) = 0, (A15a)

t(1,−1) = 0, (A15b)

t(1,−2) = −3ap
s3

(sxRy − syRx) , (A15c)

t(1,j) = 0, j ≤ −3. (A15d)

Step 3. At s� R we expand T (1) as

T (1) = t(1,0) + t(0,1) + t(−1,2) + · · · = t(0,1) + t(−1,2) + · · · .
(A16)

So T (1) goes to zero at s→ 0. So Eq. (17) may be written
as (∇2

1 +∇2
2 +∇2

3)T (1) = 0 for p = −1, and T (1) should
satisfy this partial differential equation even at si = 0.
Thus T (1) must be a harmonic polynomial. But we do
not have any nontrivial harmonic polynomial of degree
1 that also satisfies the fermionic antisymmetry. We are
therefore forced to take

T (1) = 0. (A17)

So

t(i,j) = 0, if i+ j = 1. (A18)

Step 4. At s� re we expand S(0) as

S(0) = t(0,2) + t(0,1) +O(s0) = O(s0). (A19)

Combining this with the equation H̃S(0) = 0, we get

S(0) = 0. (A20)

So

t(0,j) = 0. (A21)

Step 5. At s� R we expand T (0) as

T (0) = t(1,−1) + t(0,0) + t(−1,1) + t(−2,2) + · · ·
= t(−1,1) + t(−2,2) + · · · . (A22)

So T (0) goes to zero at s→ 0. So Eq. (17) may be written
as (∇2

1 + ∇2
2 + ∇2

3)T (0) = 0 for p = 0, and T (0) should
satisfy this partial differential equation even at si = 0.
Thus T (0) must be a harmonic polynomial. But we do
not have any nontrivial harmonic polynomial of degree
0 that also satisfies the fermionic antisymmetry. We are
therefore forced to take

T (0) = 0. (A23)

So

t(i,j) = 0, if i+ j = 0. (A24)

Step 6. At s� re we expand S(−1) as

S(−1) = t(−1,3)+t(−1,2)+t(−1,1)+O(s0) = O(s0). (A25)

Combining this with the equation

H̃S(−1) =
3

4
∇2

RS(1) = 0, (A26)

we get

S(−1) = 0. (A27)

So

t(−1,j) = 0. (A28)

Step 7. At s� R we expand T (−1) as

T (−1) = t(1,−2) +O(s−1). (A29)

t(1,−2) is shown in Eq. (A15c). T (−1) should satisfy
the free Schrödinger equation outside of the interaction
range, so (−∇2

s − 3∇2
R/4)T (−1) should be equal to some

Dirac delta functions that are nonzero at si = 0 only.
T (−1) should also be antisymmetric under the inter-
change of the fermions. We have

−∇2
st

(1,−2) = 12πap[Ry∂xδ(s)−Rx∂yδ(s)],
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so(
−∇2

s −
3

4
∇2

R

)
T (−1)
s1 = 12πap[Ry∂xδ(s)−Rx∂yδ(s)],

(A30)

where T (−1)
s1 is one term of the full T (−1). Solving the

above equation, we get

T (−1)
s1 =

−3ap
s3

1

(sxRy − syRx) . (A31)

The full T (−1) should also be antisymmetric under the
interchange of the fermions, so

T (−1) = −3ap (sxRy − syRx)

(
1

s3
1

+
1

s3
2

+
1

s3
3

)
. (A32)

If s � R, we expand T (−1) as
∑
n+m=−1 t

(n,m), and
get

t(−2,1) = −6ap (sxRy − syRx)
1

R3
, (A33a)

t(−3,2) = 0, (A33b)

t(−4,3) = 9ap (sxRy − syRx)
(R2 − 5R2

s)s
2

4R7
, (A33c)

t(−5,4) = 0, (A33d)

t(−6,5) = −45ap (sxRy − syRx)

· (R4 − 14R2R2
s + 21R4

s)s
4

64R11
, (A33e)

t(−7,6) = 0, (A33f)

· · ·

where Rs ≡ R · ŝ.
Step 8. At s� re we expand S(−2) as

S(−2) = t(−2,4) + t(−2,3) + t(−2,2) + t(−2,1) +
∑
j≤0

t(−2,j)

= t(−2,1) +
∑
j≤0

t(−2,j). (A34)

S(−2) satisfies the equation

H̃S(−2) =
3

4
∇2

RS(0) = 0. (A35)

So we get

S(−2) =
1

R2

∑
l,m

dmφ
(l,m)(s). (A36)

Here l must be equal to 1, in order to be compatible with
Eq. (A34). Expanding Eq. (A36) at s� re, we find that
t(−2,1) should be equal to

t(−2,1) =
1

R2

∑
m

dm
s

3

√
4π

3
Y m1 (ŝ). (A37)

Comparing this with Eq. (A33a), we find

d−1 =
9
√

2 api

R
(Rx + iRy), (A38a)

d0 = 0, (A38b)

d1 =
9
√

2 api

R
(Rx − iRy). (A38c)

Substituting these results into Eq. (A36), we get

S(−2) =
9
√

2 api

R3

[
(Rx + iRy)φ(1,−1)(s)

+ (Rx − iRy)φ(1,1)(s)

]
. (A39)

This can be re-expressed in terms of the Clebsch-Gordan
coefficients as

S(−2) = −36iap
R2

√
2π

3

∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)φ(1,m)(s).

(A40)
Expanding S(−2) at s� re, we find

t(−2,0) = 0, (A41a)

t(−2,−1) = 0, (A41b)

t(−2,−2) =
18a2

p

R3s3
(sxRy − syRx) , (A41c)

t(−2,j) = 0, j ≤ −3. (A41d)

Step 9. At s� R we expand T (−2) as

T (−2) = t(1,−3) + t(0,−2) +O(s−1) = O(s−1). (A42)

So the solution to the equation (∇2
1 +∇2

2 +∇2
3)T (−1) = 0

that is compatible with the above expansion is

T (−2) = 0. (A43)

So

t(i,j) = 0, if i+ j = −2. (A44)

Step 10. At s� re we expand S(−3) as

S(−3) =
∑
j≤5

t(−3,j) =
∑
j≤0

t(−3,j). (A45)

Combining this with the equation

H̃S(−3) =
3

4
∇2

RS(−1) = 0, (A46)

we get

S(−3) = 0. (A47)

So

t(−3,j) = 0. (A48)
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Step 11. At s� R we expand T (−3) as

T (−3) = t(1,−4) + t(0,−3) + t(−1,−2) +O(s−1) = O(s−1).
(A49)

So the solution to the equation (∇2
1 +∇2

2 +∇2
3)T (−3) = 0

that is compatible with the above expansion is

T (−3) = 0. (A50)

So

t(i,j) = 0, if i+ j = −3. (A51)

Step 12. At s� re we expand S(−4) as

S(−4) =
∑
j≤6

t(−4,j) = t(−4,3) +
∑
j≤0

t(−4,j). (A52)

Combining this with the equation

H̃S(−4) =
3

4
∇2

RS(−2) = 0, (A53)

we find

S(−4) = −630
√
π iap

R4

∑
m

C1,0
3,−m;3,mY

−m
3 (R̂)φ(3,m)(s).

(A54)
Expanding S(−4) at s� re, we get

t(−4,0) = 0, (A55a)

t(−4,−1) = 0, (A55b)

t(−4,−2) = 0. (A55c)

Step 13. At s� R we expand T (−4) as

T (−4) = t(1,−5) + t(0,−4) + t(−1,−3) + t(−2,−2) +O(s−1)

=
18a2

p

R3s3
(sxRy − syRx) +O(s−1). (A56)

The solution to the equation (∇2
1 +∇2

2 +∇2
3)T (−4) = 0

that is compatible with the above expansion is

T (−4) =
36a2

p

π
(sxRy − syRx)

3∑
i=1

θi − 1
4 sin 4θi

R3
i s

3
i

. (A57)

Expanding T (−4) at s� R as
∑
i+j=−4 t

(i,j), we get

t(−3,−1) = 0, (A58a)

t(−4,0) = 0, (A58b)

t(−5,1) =
12a2

p

π
(sxRy − syRx)

8π − 9
√

3

R6
, (A58c)

t(−6,2) = 0, (A58d)

t(−7,3) =
9a2
p

5π
(sxRy − syRx)

· [(297
√

3− 200π)R2 + (640π − 1080
√

3)R2
s]s

2

R10
,

(A58e)

· · ·

Step 14. At s� re we expand S(−5) as

S(−5) =
∑
j≤7

t(−5,j)

=
12a2

p

π
(sxRy − syRx)

8π − 9
√

3

R6
+
∑
j≤0

t(−5,j).

(A59)

Combining this with the equation

H̃S(−5) =
3

4
∇2

RS(−3) = 0, (A60)

we get

S(−5) =
72(8− 9

√
3

π )ia2
p

R5

√
2π

3

×
∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)φ(1,m)(s).

(A61)

So

t(−5,0) = 0, (A62a)

t(−5,−1) = 0. (A62b)

Step 15. At s� R we expand T (−5) as

T (−5) =
∑
i≤1

t(i,−5−i) = O(s−1). (A63)

The solution to the equation (∇2
1 +∇2

2 +∇2
3)T (−5) = 0

that is compatible with the above expansion is

T (−5) = 0. (A64)

So

t(i,j) = 0, if i+ j = −5. (A65)

Step 16. At s� re we expand S(−6) as

S(−6) =
∑
j≤8

t(−6,j) = t(−6,5) +O(s0). (A66)

Combining this with the equation

H̃S(−6) =
3

4
∇2

RS(−4) = 0, (A67)

we get

S(−6) =− 31185
√

10π iap
4R6

×
∑
m

C1,0
5,−m;5,mY

−m
5 (R̂)φ(5,m)(s). (A68)

So

t(−6,0) = 0. (A69)
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Step 17. At s� R we expand T (−6) as

T (−6) =
∑
i≤1

t(i,−6−i) = O(s−1). (A70)

The solution to the equation (∇2
1 +∇2

2 +∇2
3)T (−6) = 0

(for B > 0) that is compatible with the above expansion
is

T (−6) = −9
√

3DF

4π3B8
(sxRy − syRx) . (A71)

It satisfies(
−∇2

s −
3

4
∇2

R

)
T (−6)

= −DF

[∂δ(s)
∂sx

∂δ(R)

∂Ry
− ∂δ(s)

∂sy

∂δ(R)

∂Rx

]
.

(A72)

Expanding T (−6) at s� R, we get

t(−7,1) = −9
√

3DF

4π3R8
(sxRy − syRx) , (A73a)

· · ·

Step 18. At s� re we expand S(−7) as

S(−7) =
∑
j≤9

t(−7,j) = t(−7,3) + t(−7,1) +O(s0). (A74)

Combining this with the equation

H̃S(−7) =
3

4
∇2

RS(−5)

=
324
√

6π(8− 9
√

3
π )ia2

p

R7

∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)φ(1,m)(s),

(A75)

we get

S(−7)

=
324
√

6π(8− 9
√

3
π )a2

pi

R7

∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)f (1,m)(s)

− 6ξi

R7

√
2π

3

∑
m

C1,0
1,−m;1,mY

−m
1 (R̂)φ(1,m)(s)

+
4032

√
π(16− 27

√
3

π )a2
pi

R7

×
∑
m

C1,0
3,−m;3,mY

−m
3 (R̂)φ(3,m)(s),

(A76)

where ξ is a parameter related to DF ,

ξ =
9
√

3DF

4π3
− 81a3

prp

(
8− 9

√
3

π

)
. (A77)

We have thus derived the 111 expansion to the order
B−6 and the 21 expansion to the order R−7.

Appendix B: The 111 expansion and the 21
expansion for L = 1, M = ±1

For the magnetic quantum number M = ±1, one can
start from the leading order term

T (2) = Q±1
1 (s×R), (B1)

and do the same type of step-by-step derivation as in the
last section. The details of the derivation are similar. For
brevity we do not show the details.

We can also use the ladder operators J±,

J± = Jx ± iJy, (B2)

where Jx and Jy are the projections of the total orbital
angular momentum operator in the x and y directions,
respectively. Applying the ladder operator J+ or J− to
the 111 expansion and the 21 expansion for M = 0, we
get the corresponding expansions for M = 1 or M = −1.

Appendix C: An alternative method for the
derivation of the energy of three fermions in a large

box

The wave function of three free fermions with momenta
~k1, ~k2, ~k3 in a large periodic cubic box is

Ψk1k2k3
=

1√
6Ω3/2

∣∣∣∣∣∣
eik1·r1 eik1·r2 eik1·r3

eik2·r1 eik2·r2 eik2·r3

eik3·r1 eik3·r2 eik3·r3

∣∣∣∣∣∣ . (C1)

We define the Jacobi momenta ~q, ~p, ~kc such that

k1 =
1

3
kc +

1

2
q + p, (C2a)

k2 =
1

3
kc +

1

2
q− p, (C2b)

k3 =
1

3
kc − q. (C2c)

~kc is the total momentum of three fermions. We extract
the motion of the center of mass Rc = (r1 + r2 + r3)/3,

Ψk1k2k3 =
1√
Ω
eikc·RcΦq,p. (C3)

Suppose that the typical momentum of each fermion is ∼
2π~/λ. For small hyperradii, B � λ, we Taylor expand
Φq,p and get

Φq,p '
3√
6Ω

(p× q) · (s3 ×R3). (C4)

Φq,p is the wave function of the relative motion of three
free fermions. If we introduce a small three-body DF

adiabatically, it is changed to

Φq,p '
3√
6Ω

(p× q) · (s3 ×R3)

(
1− 9

√
3DF

4π3B8

)
(C5)
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for re � B � λ, where re is the range of interaction.
The wave function satisfies the free Schrödinger equation
outside of the range of interaction,

− ~2

MF
∇2

ρΦq,p = EΦq,p, (C6)

where ρ = (s, 2R/
√

3) is a six dimensional vector, E is

the energy of the relative motion, and B =
√

3ρ/2.
For large box sizes, we may compute the energy E

approximately. We rewrite Eq. (C6) as

− ~2

MF
∇2

ρΦ1 = E1Φ1, (C7a)

− ~2

MF
∇2

ρΦ∗2 = E2Φ∗2, (C7b)

for two different interactions that yield two different
three-body scattering hypervolumes, DF1 and DF2 re-
spectively. Here we omit the subscript q,p for simplicity.
Multiplying both sides of Eq. (C7a) by Φ∗2, multiplying
both sides of Eq. (C7b) by Φ1, subtracting the two resul-
tant equations, and taking six-dimensional integral over
ρ for ρ > ρ0 (where ρ0 is any length scale satisfying
re � ρ0 � λ), we get

− ~2

MF

∫
ρ>ρ0

d6ρ ∇ρ · (Φ∗2∇ρΦ1 − Φ1∇ρΦ∗2)

= (E1 − E2)

∫
ρ>ρ0

d6ρ Φ1Φ∗2. (C8)

In the region ρ > ρ0, Φ1 ' Φ2, and the right hand side
of Eq. (C8) is

(E1−E2)
8

3
√

3

∫
ρ>ρ0

d3s d3R |Φ|2 ' 8

3
√

3
(E1−E2) (C9)

because the wave function for the relative motion is nor-
malised, and the volume of the region ρ < ρ0 is small
and may be omitted in the integral. Applying Gauss’s

divergence theorem to the left hand side of Eq. (C8), we
get

− ~2

MF

∮
ρ=ρ0

dS · (Φ∗2∇ρΦ1 −Φ1∇ρΦ∗2) ' 8

3
√

3
(E1 −E2),

(C10)
where S is the surface of the hypersphere with radius ρ =
ρ0, and dS points toward the center of the hypersphere.

To evaluate the integral on the surface, we parametrize
the six coordinates ρ = (ρ(1), ρ(2), ρ(3), ρ(4), ρ(5), ρ(6)) as

ρ(1) = ρ cosϕ1, (C11a)

ρ(2) = ρ sinϕ1 cosϕ2, (C11b)

ρ(3) = ρ sinϕ1 sinϕ2 cosϕ3, (C11c)

ρ(4) = ρ sinϕ1 sinϕ2 sinϕ3 cosϕ4, (C11d)

ρ(5) = ρ sinϕ1 sinϕ2 sinϕ3 sinϕ4 cosϕ5, (C11e)

ρ(6) = ρ sinϕ1 sinϕ2 sinϕ3 sinϕ4 sinϕ5, (C11f)

where 0 ≤ ϕ1, · · ·ϕ4 ≤ π, and 0 ≤ ϕ5 < 2π. Here

s = (ρ(1), ρ(2), ρ(3)) and R =
√

3
2 (ρ(4), ρ(5), ρ(6)). The

surface element dS is

dS =− ρ̂ρ5dϕ1dϕ2dϕ3dϕ4dϕ5

· sin4 ϕ1 sin3 ϕ2 sin2 ϕ3 sinϕ4. (C12)

The minus sign in the above equation means that the di-
rection of dS is towards the origin. Using the coordinates
ρ, ϕ1, · · ·ϕ5, we rewrite the wave function in Eq. (C5),
and evaluate the integral on the hypersphere with radius
ρ = ρ0. We get

E2 − E1 =
3~2

MFΩ2
(DF2 −DF1)(p× q)2

' ~2(DF2 −DF1)

3MFΩ2
(k1 × k2 + k2 × k3 + k3 × k1)

2
.

(C13)

This result agrees with Eq. (36).
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