
Large deviations for metastable states of Markov processes with absorbing states
with applications to population models in stable or randomly switching environment

Cécile Monthus
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The large deviations at Level 2.5 are applied to Markov processes with absorbing states in order
to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their em-
pirical time-averaged density and of their time-averaged empirical flows over a large time-window
T . The standard spectral problem for the slowest relaxation mode can be recovered from the full
optimization of the extinction rate over all these empirical observables and the equivalence can be
understood via the Doob generator of the process conditioned to survive up to time T . The large
deviation properties of any time-additive observable of the Markov trajectory before extinction can
be derived from the Level 2.5 via the decomposition of the time-additive observable in terms of the
empirical density and the empirical flows. This general formalism is described for continuous-time
Markov chains, with applications to population birth-death model in a stable or in a switching
environment, and for diffusion processes in dimension d.

I. INTRODUCTION

Stochastic processes with absorbing states have attracted a lot of interest in various fields, in particular to understand
the properties of non-equilibrium phase transitions (see the review [1] and references therein) and to characterize the
metastable quasi-stationary states that may survive during a very large time before extinction [2–9]. In the field of
stochastic populations models, the dynamical large deviations properties before extinction have been much studied
recently via the WKB method [10–21].

The goal of the present paper is to offer another perspective on the large deviations properties of metastable quasi-
stationary states : the explicit extinction rate of metastable states will be computed in terms of their empirical time-
averaged density and of their time-averaged empirical flows over a large time-window T via the applications of the large
deviations at Level 2.5 to Markov processes with absorbing states. Indeed, the initial classification of large deviations
into three nested levels (see the reviews [22–24] and references therein), with Level 1 for empirical observables, Level
2 for the empirical density, and Level 3 for the empirical process, has been more recently supplemented by the Level
2.5 concerning the joint distribution of the empirical density and of the empirical flows. The rate functions at Level
2.5 are explicit for various types of Markov processes, including discrete-time Markov chains [24–29], continuous-time
Markov jump processes [25, 28–48] and Diffusion processes [28, 29, 33, 34, 37, 49–51]. As a consequence, the explicit
Level 2.5 can be considered as a starting point from which many other large deviations properties can be derived
via contraction. In particular, the Level 2 for the empirical density alone can be obtained via the optimization of
the Level 2.5 over the empirical flows, so that the Level 2 will be closed only if this contraction can be implemented
explicitly. More generally, the Level 2.5 can be contracted to obtain the large deviations properties of any time-
additive observable of the dynamical trajectory involving both the configuration and the flows. The link with the
studies of general time-additive observables via deformed Markov operators [37, 51–91] can be then understood via
the corresponding conditioned process obtained from the generalization of Doob’s h-transform.

The paper is organized as follows. In section II, we introduce the notations for the Markov jump processes with
absorbing states considered in the main text, and we recall the spectral analysis of the slowest relaxation mode before
extinction, as well as the Doob generator of the process conditioned to survive. In section III, we apply the large
deviations at Level 2.5 to metastable quasi-stationary states in order to obtain their extinction rate as a function of
their empirical time-averaged density and of their empirical time-averaged flows; we discuss the contractions towards
the lower levels, and in particular we describe the link with the standard spectral analysis of section II. This general
framework is then illustrated with the applications to the birth-death model in a stable environment in section IV and
in a switching environment in section V. Our conclusions are summarized in section VI. The Appendix A is devoted
to diffusion processes in dimension d with absorbing states, in order to explain the appropriate adaptations that are
needed with respect to the formalism explained in the main text for Markov jump processes.

II. REMINDER ON THE SPECTRAL ANALYSIS OF THE SLOWEST RELAXATION MODE

In this section, we recall the standard spectral analysis of the slowest relaxation mode for Markov jump processes
with absorbing states [2–9] that will be useful to understand the large deviations properties described in section III.
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A. Markov jump process with an absorbing state at configuration x = 0

In the main text of this paper, we consider a Markov chain in continuous-time t for a discrete space Ω of config-
urations, with a single absorbing state that will be called the dead configuration x = 0, while Ω∗ = {x ∈ Ω, x 6= 0}
represents the set of living configurations. The generator w of the Markov chain is a matrix of size Ω×Ω, where the
off-diagonal x 6= y matrix element wx,y ≥ 0 represents the transition rate from configuration y to configuration x,
while the diagonal element wx,x is negative and is fixed by the conservation of probability to be

wx,x ≡ −
∑
y 6=x

wy,x (1)

The master equation for the probability Pt(x) to be in configuration x at time t reads

∂tPt(x) =
∑
y

wx,yPt(y) =
∑
y 6=x

[wx,yPt(y)− wy,xPt(x)] (2)

The absorbing character of the dead configuration x = 0 means that all the rates out of x = 0 vanish

wy,0 = 0 (3)

so that the master equation of Eq. 2 for the dead configuration x = 0 reduces to the incoming flows from the living
configurations y 6= 0 with non-vanishing absorbing rates w0,y > 0

∂tPt(0) =
∑
y 6=0

w0,yPt(y) (4)

As a consequence, the dynamics will converge for large time t→ +∞ towards the dead configuration x = 0

Pt=+∞(x) = δx,0 (5)

Eqs 1 and 5 mean that the highest eigenvalue of the Markov matrix w is zero

0 = 〈l0|w =
∑
x

l0(x)wx,y

0 = w|r0〉 =
∑
y

wx,yr0(y) (6)

where the positive left eigenvector is constant over the whole space Ω of configurations

l0(x) = 1 (7)

while the positive right eigenvector is the trivial steady state of Eq. 5

r0(y) = δy,0 (8)

with the normalization

1 = 〈l0|r0〉 =
∑
x

l0(x)r0(x) = 1 (9)

B. Slowest relaxation mode with its decay rate ζ1, its right eigenvector |r1〉 and its left eigenvector 〈l1|

We are interested in models where the next eigenvalue (−ζ1) < 0 of the Markov matrix w is very close to zero, with
its right eigenvector |r1〉 and its left eigenvector 〈l1|

w|r1〉 = −ζ1|r1〉
〈l1|w = −ζ1〈l1| (10)

This slowest relaxation mode will govern the convergence towards the absorbing state of Eq. 5

ewt '
t→+∞

|r0〉〈l0|+ e−tζ1 |r1〉〈l1| (11)
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i.e. for the probability Pt(x, x0) to be at configuration x at time t when starting at configuration x0 at time t = 0

Pt(x, x0) ≡ 〈x|ewt|x0〉 '
t→+∞

r0(x)l0(x0) + e−tζ1r1(x)l1(x0) = δx,0 + e−tζ1r1(x)l1(x0) (12)

Let us write more explicitly the projections of the eigenvalue Equations 10 onto the dead configuration x = 0

−ζ1r1(0) =
∑
y

w0,yr1(y) =
∑
y 6=0

w0,yr1(y)

−ζ1l1(0) =
∑
x

l1(x)wx,0 = 0 (13)

and the projection onto the living configurations of Ω∗ using Eq. 3 and 13

−ζ1r1(x) =
∑
y

wx,yr1(y) =
∑
y 6=0

wx,yr1(y) for x 6= 0

−ζ1l1(y) =
∑
x

l1(x)wx,y =
∑
x 6=0

l1(x)wx,y for y 6= 0 (14)

as well as the orthogonality conditions with the eigenvectors of Eqs 7 and 8

0 = 〈l0|r1〉 =
∑
x

l0(x)r1(x) =
∑
x

r1(x) = r1(0) +
∑
x 6=0

r1(x)

0 = 〈l1|r0〉 =
∑
x

l1(x)r0(x) = l1(0) (15)

and the normalization

1 = 〈l1|r1〉 =
∑
x

l1(x)r1(x) =
∑
x 6=0

l1(x)r1(x) (16)

Let us now summarize the two important properties of the previous discussion :
(i) the right eigenvector r1(.) and the left eigenvector l1(.) satisfy the closed eigenvalues Eqs. 14 on the set Ω∗ of

living configurations with the normalization of Eq. 16. Since (−ζ1) < 0 is the highest eigenvalue of Markov matrix
w on the set Ω∗ of living configurations, one obtains via the Perron-Frobenius that the eigenvectors r1 and l1 are
positive on Ω∗

r1(x) > 0 for x 6= 0

l1(x) > 0 for x 6= 0 (17)

(ii) For the dead configuration x = 0, the left eigenvector vanishes l1(0) = 0 (Eqs 13 and 15), while the right
eigenvector r1(0) is negative and can be computed in terms of the components r1(x) on living configurations via Eqs
13 and 15

r1(0) = − 1

ζ1

∑
y 6=0

w0,yr1(y) < 0

r1(0) = −
∑
x6=0

r1(x) < 0 (18)

As a consequence, one can eliminate r1(0) to obtain the following consistency equation between the eigenvalue ζ1 and
the right eigenvector r1(x) for living configurations x 6= 0

ζ1 =

∑
y 6=0

w0,yr1(y)∑
x 6=0

r1(x)
(19)
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C. Probability P endt (x, x0) to be in the living configuration x at time t if surviving up to time t

The probability St(x0) to be surviving at time t when starting at configuration x0 at time t = 0 can be computed
from Eq. 12

St(x0) =
∑
x6=0

Pt(x, x0) '
t→+∞

e−tζ1

∑
x 6=0

r1(x)

 l1(x0) (20)

So the probability P endt (x, x0) to be in the living configuration x 6= 0 at time t if surviving up to time t

P endt (x, x0) =
Pt(x, x0)

St(x0)
'

t→+∞

r1(x)∑
x′ 6=0

r1(x′)
≡ πend(x) (21)

is actually independent of the time t and of the initial condition x0 : the probability distribution πend(x) normalized
on the set Ω∗ of living configurations thus only involves the right eigenvector r1(.) of the slowest relaxation mode.

D. Probability P interiorτ (x) to be in configuration x at the interior time 1� τ � t if surviving up to time t

If the process survives up to time t, the probability P interiorτ (x) to be in the living configuration x at the interior
time τ satisfying 1 � τ � t can be evaluated using the asymptotic form of the propagator of Eq. 12 for both
time-intervals τ � 1 and (t− τ)� 1

P interiorτ (x) =
Pt−τ (xt, x)Pτ (x, x0)∑

x′ 6=0

Pt−τ (xt, x
′)Pτ (x′, x0)

'
1�τ�t

e−ζ1(t−τ)r1(xt)l1(x)e−ζ1τr1(x)l1(x0)∑
x′ 6=0

e−ζ1(t−τ)r1(xt)l1(x′)e−ζ1τr1(x′)l1(x0)

'
1�τ�t

l1(x)r1(x)∑
x′ 6=0

l1(x′)r1(x′)
= l1(x)r1(x) ≡ πinterior(x) (22)

where we have used the normalization of Eq. 16 to obtain the final result. Since the probability P interiorτ (x, x0) of
Eq. 22 is independent of τ as long as it is in the interior of the time-interval 1� τ � t, it is interesting to construct
the Doob Markov generator ŵ on the set Ω∗ of living configurations that has πinterior(x) as true steady state, i.e. its
highest eigenvalue zero should be associated to the positive left and right eigenvectors

l̂0(x) = 1

r̂0(x) = πinterior(x) = l1(x)r1(x) (23)

The explicit form of the Doob generator ŵ involves the eigenvalue (−ζ1) and the positive left eigenvector l1(.) on Ω∗

ŵx,y = l1(x)wx,y
1

l1(y)
+ ζ1δx,y (24)

The eigenvalues equations can be checked using Eqs 14

∑
y 6=0

ŵx,y r̂0(y) =
∑
y 6=0

[
l1(x)wx,y

1

l1(y)
+ ζ1δx,y

]
l1(y)r1(y) = l1(x)

∑
y 6=0

wx,yr1(y)

+ ζ1l1(x)r1(x) = 0

∑
x 6=0

l̂0(x)ŵx,y =
∑
x 6=0

[
l1(x)wx,y

1

l1(y)
+ ζ1δx,y

]
=

∑
x 6=0

l1(x)wx,y

 1

l1(y)
+ ζ1 = 0 (25)

E. Perturbation theory with respect to the absorbing rates w0,y towards the dead configuration x = 0

Since the spectral problem for the slowest relaxation mode cannot be explicitly solved in many models of interest,
it is useful to consider the simplest possible approximation, namely the perturbation theory with respect to the
absorbing rates w0,y towards the dead configuration x = 0.
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1. Properties of the unperturbed Markov matrix w(0)

Let us decompose the full Markov matrix w into the two contributions

w = w(0) + εw(1) (26)

where the contribution containing all the absorbing rates w0,y towards the dead configuration x = 0

εw(1) =
∑
y 6=0

(|0〉 − |y〉)w0,y〈y| (27)

will be considered as a perturbation of order ε with respect to the complementary contribution containing all the
other transition rates wx,y within the set Ω∗ of living configurations

w(0) =
∑
x6=0

∑
y 6=0

(|x〉 − |y〉)wx,y〈y| (28)

This unperturbed Markov matrix w(0) conserve the probability on Ω∗. For the Markov matrix w(0) on the full
configuration space Ω, the eigenvalue 0 is thus doubly degenerate, with the two left trivial eigenvectors

ldead0 (x) = δx,0

lliving0 (x) = 1− δx,0 (29)

The corresponding right eigenvectors are

rdead0 (x) = δx,0

rliving0 (x) = (1− δx,0)π∗(x) (30)

where π∗(x) is the normalized steady state of Markov matrix w(0) on Ω∗.

2. Degenerate perturbation theory for the unperturbed Markov matrix w(0)

The goal is to compute the leading contribution for the non-vanishing eigenvalue (−ζ1(ε)) < 0 for ε > 0 of the full
matrix w that vanishes for ε = 0

ζ1(ε) = 0 + εζ
(1)
1 +O(ε2) (31)

with the corresponding expansions for the right and left eigenvectors

|r1(ε)〉 = |r(0)1 〉+ ε|r(1)1 〉+O(ε2)

〈l1(ε)| = 〈l(0)1 |+ ε〈l(1)1 |+O(ε2) (32)

that should satisfy the orthonormalization relations

0 = 〈l0|r1(ε)〉 = 〈l0|r(0)1 〉+ ε〈l0|r(1)1 〉+O(ε2)

0 = 〈l1(ε)|r0〉 = 〈l(0)1 |r0〉+ ε〈l(1)1 |r0〉+O(ε2)

1 = 〈l1(ε)|r1(ε)〉 = 〈l(0)1 |r
(0)
1 〉+ ε

(
〈l(0)1 |r

(1)
1 〉+ 〈l(1)1 |r

(0)
1 〉
)

+O(ε2) (33)

Since the eigenvalue ζ
(0)
0 = 0 of the unperturbed matrix w(0) is doubly degenerate, one needs to apply the degenerate

perturbation theory familiar from quantum mechanics, where the first task is the diagonalization of the perturbation
(εw(1)) within the two-dimensional degenerate subspace of w(0). However here, we know that ζ0 = 0 is an exact
isolated eigenvalue for the full Markov matrix w for ε > 0, where the corresponding trivial left eigenvector l0(x) = 1
of Eq. 7 is the simple linear combination of the two left trivial eigenvectors of Eq. 29

〈l0| = 〈ldead0 |+ 〈lliving0 | (34)



6

while the corresponding right eigenvector r0(x) = δx,0 of Eq. 8 simply coincide with one of the two right eigenvectors
of Eq. 30

|r0〉 = |rdead0 〉 (35)

At order 0, the eigenvectors |r(0)1 〉 and 〈l(0)1 | of Eq. 32 belong to the two-dimensional degenerate subspace of w(0) and
can be thus rewritten as linear combinations of the corresponding unperturbed eigenvectors. The orthonormalization
conditions of Eq. 33 for ε = 0

0 = 〈l0|r(0)1 〉

0 = 〈l(0)1 |r0〉

1 = 〈l(0)1 |r
(0)
1 〉 (36)

leads to the linear combinations

|r(0)1 〉 = −|rdead0 〉+ |rliving0 〉

〈l(0)1 | = 〈lliving0 | (37)

3. First-order contribution to the slowest relaxation rate ζ1

Using the series expansion of Eqs 31 and 32, the eigenvalue equation for ζ1(ε) reads for the right eigenvector |r1(ε)〉

0 = (w + ζ1(ε)) |r1(ε)〉 =
(
w(0) + εw(1) + εζ

(1)
1 + ...

)(
|r(0)1 〉+ ε|r(1)1 〉+ ...

)
(38)

= ε
[
w(0)|r(1)1 〉+

(
w(1) + ζ

(1)
1

)
|r(0)1 〉

]
+O(ε2)

and for the left eigenvector 〈l1(ε)

0 = 〈l1(ε)| (w + ζ1(ε)) =
(
〈l(0)1 |+ ε〈l(1)1 |+ ...

)(
w(0) + εw(1) + εζ

(1)
1 + ...

)
(39)

= ε
[
〈l(1)1 |w(0) + 〈l(0)1 |

(
w(1) + ζ

(1)
1

)]
+O(ε2)

The standard choice that respects the normalization of Eq 33 at order ε is given by the orthogonality conditions for
the first-order corrections of the eigenvectors with respect to the unperturbed eigenvectors

0 = 〈l(0)1 |r
(1)
1 〉

0 = 〈l(1)1 |r
(0)
1 〉 (40)

Then the eigenvalue Eq. 38 for the right eigenvector at order ε can be projected onto the left eigenvector 〈l(0)1 |
satisfying 〈l(0)1 |w(0) = 0 and 〈l(0)1 |r

(0)
1 〉 = 1 to obtain the first-order correction for the eigenvalue

ζ
(1)
1 = −〈l(0)1 |w(1)|r(0)1 〉 (41)

Equivalently, the eigenvalue Eq. 39 for the leftt eigenvector at order ε can be projected onto the right eigenvector

|r(0)1 〉 satisfyinf w(0)|r(0)1 〉 = 0 to obtain again Eq. 41.
Putting everything together, this degenerate perturbation theory yields that the leading contribution for the slowest

relaxation rate can be evaluated from the matrix elements of the perturbation εw(1) of Eq. 27 for the left and right
eigenvectors of Eq. 37

ζper1 = εζ
(1)
1 = −〈l(0)1 |εw(1)|r(0)1 〉 =

∑
y 6=0

〈lliving0 | (−|0〉+ |y〉)w0,y〈y|
(
−|rdead0 〉+ |rliving0 〉

)
=
∑
y 6=0

lliving0 (y)w0,yr
living
0 (y) =

∑
y 6=0

w0,yπ
∗(y) (42)

This final result has thus a very simple physical meaning in terms of the absorbing flows w0,yπ
∗(y) into the dead

configuration x = 0 computed with the normalized steady-state π∗(y) of the unperturbed Markov matrix w(0) of Eq.
28 on the set Ω∗ of living configurations. As a consequence, even when the absorbing rates w0,y are not particularly
small, the perturbative estimation ζper1 of Eq. 42 will be small if the steady state π∗(y) is small on the sites y 6= 0
that are directly connected to the absorbing site at x = 0 via positive rates w0,y > 0.
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III. LARGE DEVIATIONS AT VARIOUS LEVELS FOR METASTABLE QUASI-STATIONARY STATES

In this section, the goal is to analyze the extinction rate of metastable states in terms of their empirical time-averaged
properties over a large time-window T .

A. Reminder on the large deviations at Level 2.5 for the time-averaged density and the time-averaged flows

For a very long dynamical trajectory x(0 ≤ t ≤ T ) of the Markov jump process satisfying a master equation of the
form of Eq. 2, the empirical time-averaged density

ρT (x) ≡ 1

T

∫ T

0

dt δx(t),x (43)

measures the histogram of the various configurations x seen during the dynamical trajectory x(0 ≤ t ≤ T ), while the
empirical time-averaged flows

qT (x, y) ≡ 1

T

∑
t∈[0,T ]:x(t+) 6=x(t−)

δx(t+),xδx(t−),y (44)

measure the density of jumps from one configuration y to another configuration x. The joint probability to see the
empirical density ρ(x) and the empirical flows q(x, y) follows the large deviation form for large T [25, 28–48]

P
[2.5]
T [ρ(.); q(., .)] ∝

T→+∞
C2.5[ρ(.); q(., .)]e−TI2.5[ρ(.);q(.,.)] (45)

where the prefactor

C2.5[ρ(.); q(., .)] = δ

(∑
x

ρ(x)− 1

)∏
x

δ

∑
y 6=x

(q(x, y)− q(y, x))

 (46)

contains the constitutive constraints that the empirical observables should satisfy : the density ρ(.) should be normal-
ized, while the flows q(., .) should satisfy the stationarity constraints : for any configuration x, the total incoming flow∑
y 6=x q(x, y) into the configuration x should be equal to the total outgoing flow

∑
y 6=x q(y, x) out of the configuration

x. As stressed in the Introduction, the rate function I2.5[ρ(.); q(., .)] at level 2.5 can be written explicitly for any
continuous-time Markov chain in terms of its generator w [25, 28–48]

I2.5[ρ(.); q(.)] =
∑
x

∑
y 6=x

[
q(x, y) ln

(
q(x, y)

wx,yρ(y)

)
− q(x, y) + wx,yρ(y)

]
(47)

This rate function characterizes how rare it is for large T to see some empirical density ρ(.) and some empirical flows
q(., .) that are different from the steady state and its corresponding steady flows that would make the rate function
vanish. As a consequence, the large deviations at Level 2.5 can be directly applied to Markov jump processes with
absorbing states in order to analyze the extinction rate of metastable states as explained below.

B. Probability P
[2.5]living
T [ρ(.); q(., .)] to remain living up to T with given empirical density and empirical flows

The probability to remain confined in the set Ω∗ of living configurations during the whole time-window T can be
directly obtained from the Level 2.5 of Eq. 45

P
[2.5]living
T [ρ(.); q(., .)] ∝

T→+∞
Cliving2.5 [ρ(.); q(., .)]e−TI

living
2.5 [ρ(.);q(.,.)] (48)

as a function of the empirical density ρ(.) and the empirical flows q(., .) defined on Ω∗, i.e. the empirical density
should vanish on the dead configuration x = 0, and all the empirical absorbing flows q(0, y) should also vanish

ρ(0) = 0

q(0, y) = 0 for any y 6= 0 (49)
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So the constraints obtained from Eq 46 become

Cliving2.5 [ρ(.); q(., .)] = δ (ρ(0)) δ

∑
x 6=0

ρ(x)− 1

∏
y 6=0

δ (q(0, y))


∏
x 6=0

δ

∑
y 6=0
y 6=x

(q(x, y)− q(y, x))


 (50)

while the rate function obtained from Eq. 47 reads

I living2.5 [ρ(.); q(., .)] =
∑
y 6=0

w0,yρ(y) +
∑
x 6=0

∑
y 6=0
y 6=x

[
q(x, y) ln

(
q(x, y)

wx,yρ(y)

)
− q(x, y) + wx,yρ(y)

]
(51)

In conclusion, the rate function I living2.5 [ρ(.); q(., .)] represents the extinction rate of a metastable state localized on the
set Ω∗ of living configurations as a function of its empirical density ρ(.) and of its empirical flows q(., .).

Using Eq. 1 to rewrite for any y 6= 0

w0,y +
∑
x 6=0
x6=y

wx,y =
∑
x 6=y

wx,y = −wy,y (52)

one obtains the alternative expression for the Level 2.5 rate function of Eq. 51

I living2.5 [ρ(.); q(., .)] = −
∑
y 6=0

wy,yρ(y) +
∑
x6=0

∑
y 6=0
y 6=x

[
q(x, y) ln

(
q(x, y)

wx,yρ(y)

)
− q(x, y)

]
(53)

C. Probability P
[2]living
T [ρ(.)] to remain living up to T with given empirical density

If one wishes to compute the extinction rate of a metastable state as a function of its empirical density ρ(.) alone,
one needs to integrate the joint probability of Eq. 48 over all the possible empirical flows q(., .)

P
[2]living
T [ρ(.)] =

∫
Dq(., .)P [2.5]living

T [ρ(.); q(., .)]

∝
T→+∞

δ (ρ(0)) δ

∑
x6=0

ρ(x)− 1

∫ Dq(., .)
∏
y 6=0

δ (q(0, y))


∏
x 6=0

δ

∑
y 6=0
y 6=x

(q(x, y)− q(y, x))


 e−TIliving

2.5 [ρ(.);q(.,.)]

∝
T→+∞

δ (ρ(0)) δ

∑
x 6=0

ρ(x)− 1

 e−TI
living
2 [ρ(.)] (54)

So the extinction rate I living2 [ρ(.)] at Level 2 as a function of the empirical density ρ(.) alone corresponds to the opti-

mization of the extinction rate I living2.5 [ρ(.); q(., .)] at Level 2.5 over the empirical flows q(., .) satisfying the stationarity
constraints.

D. Link with the slowest relaxation mode via the probability P livingT ∝ e−Tζ1 to remain living up to T

The probability P livingT to remain living up to T that involves the slowest decay rate ζ1 discussed in section II

P livingT ∝
T→+∞

e−Tζ1 (55)

can also be computed via the integration the Level 2 of Eq. 54 over the empirical density ρ(.)

P livingT =

∫
Dρ(.)P

[2]living
T [ρ(.)] ∝

T→+∞

∫
Dρ(.)δ (ρ(0)) δ

∑
x6=0

ρ(x)− 1

 e−TI
living
2 [ρ(.)] (56)
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By consistency, the slowest decay rate ζ1 should thus correspond to the optimization of the extinction rate I living2 [ρ(.)]
at Level 2 over the empirical density ρ(.) satisfying the normalization constraint

ζ1 = min
ρ(.) :

∑
x 6=0

ρ(x) = 1

(
I living2 [ρ(.)]

)
(57)

When the extinction rate I living2 [ρ(.)] at Level 2 cannot be explicitly obtained via the contraction of Eq. 54, one
can always return to the explicit Level 2.5 of Eq. 48 that should be integrated over both the empirical density and
the empirical flows to obtain

P livingT =

∫
Dρ(.)

∫
Dq(., .)P [2.5]living

T [ρ(.); q(., .)]

∝
T→+∞

∫
Dρ(.)δ (ρ(0)) δ

∑
x 6=0

ρ(x)− 1

∫ Dq(., .)
∏
y 6=0

δ (q(0, y))


∏
x 6=0

δ

∑
y 6=0
y 6=x

(q(x, y)− q(y, x))




e−TI
living
2.5 [ρ(.);q(.,.)] (58)

So the slowest decay rate ζ1 corresponds to the optimization of the explicit extinction rate I living2.5 [ρ(.); q(., .)] at Level
2.5 over the empirical density ρ(.) satisfying the normalization constraint and over the empirical flows q(., .) satisfying
the stationarity constraints. Let us now explain in more details the links with properties discussed in section II.

1. Link with the estimation of ζper1 obtained via the perturbation theory in the absorbing rates w0,y

The rate function I living2.5 [ρ(.); q(., .)] of Eq. 51 allows to recover directly the perturbative estimation of the slowest
relaxation rate ζper1 of Eq. 42 as follows : when the empirical density ρ(y) coincides with the steady state π∗(y) of

the unperturbed Markov matrix w(0) on Ω∗, and when the empirical flows q(x, y) coincide with the associated steady
flows wx,yπ

∗(y) on Ω∗, then all the constraints of Eq. 50 are satisfied, while the second term of the rate function of
Eq. 51 vanishes, so that Eq. 48 reduces to

P livingT [ρ(y) = π∗(y); q(x, y) = wx,yπ
∗(y)] ∝

T→+∞
e

−T
∑
y 6=0

w0,yπ
∗(y)

= e−Tζ
per
1 (59)

and one recovers directly the perturbative estimation ζper1 of Eq. 42.

2. Equivalence between the exact optimization of Eq. 58 and the spectral problem of section II

Let us now consider the exact optimization problem of Eq. 58. In the integral, it is convenient to make the change
of variables from the empirical flows q(x, y) to the empirical transition rates W (x, y) on Ω∗

W (x, y) ≡ q(x, y)

ρ(y)
for x 6= y (60)

The integral of Eq. 58 can be then rewritten using the rate function of Eq. 53 as

P livingT ∝
T→+∞

∫
Dρ(.)δ (ρ(0)) δ

∑
y 6=0

ρ(y)− 1

∫ DW (., .)

∏
y 6=0

δ (W (0, y))


∏
x 6=0

δ

∑
y 6=0
y 6=x

(W (x, y)ρ(y)−W (y, x)ρ(x))


 e
−T

∑
y 6=0

ρ(y)

−wy,y +
∑
x 6=0
x 6=y

[
W (x, y) ln

(
W (x, y)

wx,y

)
−W (x, y)

]
(61)



10

In order to optimize the functional in the exponential of Eq. 61 in the presence of the constraints, it is convenient to
introduce the following Lagrangian with the Lagrange multipliers (ω, ν(.))

L(ρ(.);W (., .)) =
∑
y 6=0

ρ(y)

−wy,y +
∑
x 6=0
x 6=y

[
W (x, y) ln

(
W (x, y)

wx,y

)
−W (x, y)

]

−ω

∑
y 6=0

ρ(y)− 1

−∑
x 6=0

ν(x)

∑
y 6=0
y 6=x

(W (x, y)ρ(y)−W (y, x)ρ(x))

 (62)

that can be rewritten more compactly as

L(ρ(.);W (., .)) = ω +
∑
y 6=0

ρ(y)

−ω − wy,y +
∑
x 6=0
x 6=y

[
W (x, y) ln

(
W (x, y)

wx,yeν(x)−ν(y)

)
−W (x, y)

] (63)

The optimization of this Lagrangian with respect to empirical transition rate W (x, y) on Ω∗ for x 6= y

0 =
∂L(ρ(.);W (., .))

∂W (x, y)
= ρ(y) ln

(
W (x, y)

wx,yeν(x)−ν(y)

)
(64)

yields the optimal values

W opt(x, y) = eν(x)wx,ye
−ν(y) (65)

The optimization of the Lagrangian of Eq. 63 with respect to the empirical density ρ(y) yields with the optimal
transition rates obtained in Eq. 65

0 =
∂L(ρ(.);W (., .))

∂ρ(y)
= −ω − wy,y +

∑
x 6=0
x6=y

[
W opt(x, y) ln

(
W opt(x, y)

wx,yeν(x)−ν(y)

)
−W opt(x, y)

]

= −ω − wy,y −
∑
x 6=0
x6=y

eν(x)wx,ye
−ν(y) = −ω −

∑
x 6=0

eν(x)wx,ye
−ν(y) (66)

The optimal value of the Lagrangian of Eq. 63 that determines the slowest relaxation rate ζ1 of Eq. 56 reduces to
the Lagrange multiplier ω

ζ1 = Lopt = ω (67)

The optimization Eq. 66 can be rewritten as the eigenvalue equation

−ζ1eν(y) =
∑
x 6=0

eν(x)wx,y (68)

so that eν(x) should correspond to the positive left eigenvector l1(.) of the matrix w on Ω∗ associated to the eigenvalue
(−ζ1)

eν(x) = l1(x) (69)

The optimal transition rates of Eq. 65 should satisfy the stationarity constraint for any x 6= 0

0 =
∑
y 6=0
y 6=x

(
W opt(x, y)ρ(y)−W opt(y, x)ρ(x)

)

=

∑
y 6=0

eν(x)wx,ye
−ν(y)ρ(y)− wx,xρ(x)

−
∑
y 6=0

eν(y)wy,xe
−ν(x)ρ(x)− wx,xρ(x)


= eν(x)

∑
y 6=0

wx,ye
−ν(y)ρ(y)−

∑
y 6=0

eν(y)wy,x

 e−ν(x)ρ(x) (70)
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that can be rewritten using Eq. 68 for the last parenthesis as the eigenvalue equation

−ζ1e−ν(x)ρ(x) =
∑
y 6=0

wx,ye
−ν(y)ρ(y) (71)

So e−ν(x)ρ(x) should be the positive right eigenvector r1(.) of the matrix w on Ω∗ associated to the eigenvalue (−ζ1)

r1(x) = e−ν(x)ρ(x) =
ρ(x)

l1(x)
(72)

As a consequence, the optimal empirical density ρopt(x) coincides with the interior probability distribution πinterior(x)
of Eq. 22

ρopt(x) = l1(x)r1(x) = πinterior(x) (73)

Finally, the optimal empirical transition rates of Eq. 65 on Ω∗ for x 6= y involves the left eigenvector of Eq. 69

W opt(x, y) = eν(x)wx,ye
−ν(y) = l1(x)wx,y

1

l1(y)
= ŵx,y for x 6= y (74)

and corresponds to the off-diagonal matrix elements of the Doob generator of Eq. 24.

In conclusion, the exact optimization of the explicit rate function I living2.5 [ρ(.); q(., .)] at Level 2.5 over the empirical
density and the empirical flows with their constraints is equivalent to the spectral analysis described in the previous
section II, as it should for consistency.

E. Large deviations for general time-additive observables of the trajectory x(0 ≤ t ≤ T ) before extinction

As mentioned in the Introduction, the large deviations at Level 2.5 allows to derive the large deviations of any time-
additive observable of the Markov trajectory using their decomposition in terms of empirical observables. Indeed, the
empirical density ρ(.) allows to reconstruct any time-additive observable AT that involves some function αx of the
configuration x

AT ≡
1

T

∫ T

0

dt αx(t) =
∑
x

αxρx (75)

while the empirical flows q(., .) allows to reconstruct any time-additive observable BT that involves some function βx,y

BT ≡
1

T

∑
t:x(t−)6=x(t+)

βx(t+),x(t−) =
∑
y

∑
x6=y

βx,yqx,y (76)

As a consequence, the large deviations at Level 2.5 for P
[2.5]living
T [ρ(.); q(., .)] of Eq. 48 allows to analyze the large

deviations of any time-additive observable of the form (AT + BT ) for Markov trajectories living up to time T .

F. Generalization : large deviations at Level 2.5 for a set A of absorbing configurations a ∈ A

Up to now, we have only considered the case of a single absorbing configuration x = 0 for simplicity, but it is clear

that the large deviations at Level 2.5 for P
[2.5]living
T [ρ(.); q(., .)] of Eq. 48 can be directly generalized to the case of a

set A of absorbing configurations a ∈ A as follows. The constraints of Eq. 50 become

Cliving2.5 [ρ(.); q(., .)] =

[∏
a∈A

δ (ρ(a))

]
δ

(∑
x/∈A

ρ(x)− 1

)∏
a∈A

∏
y/∈A

δ (q(a, y))


∏
x/∈A

δ

∑
y/∈A
y 6=x

(q(x, y)− q(y, x))


 (77)

while the rate function obtained from Eq. 51 is given by

I living2.5 [ρ(.); q(., .)] =
∑
a∈A

∑
y/∈A

wa,yρ(y) +
∑
x/∈A

∑
y/∈A
y 6=x

[
q(x, y) ln

(
q(x, y)

wx,yρ(y)

)
− q(x, y) + wx,yρ(y)

]
(78)
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G. Application to other types of metastable states

In this paper, we have chosen to focus on Markov processes with absorbing states. However, the case of long-
lived metastable states before the relaxation towards the Boltzmann equilibrium or some other steady state has
also attracted a lot of interest for many classical stochastic dynamics [92–101] (see also [102, 103] for the notion of
metastability in open quantum systems). As a consequence, it is interesting to mention here that the large deviations

at Level 2.5 for P
[2.5]living
T [ρ(.); q(., .)] of Eq. 48 with the constraints of Eq. 77 and the rate function of Eq. 78 can

be also directly applied to other types of metastability : the set A of absorbing states should be then chosen as the
outer boundary of the domain where the metastable state of interest lives.

IV. LARGE DEVIATIONS AT VARIOUS LEVELS FOR POPULATION BIRTH-DEATH MODELS

In this section, the goal is to apply the general formalism described in the two previous sections to the birth-death
model which is one of the simplest stochastic model for the continuous-time dynamics of a discrete population n.

A. Birth-death model for the discrete population n in the configuration space Ω = {0, 1, 2, ., N}

The Markov generator is parametrized by the birth rates bm and the death rates dm

wn,m = [δn,m+1 − δn,m] bm + [δn,m−1 − δn,m] dm (79)

with the following boundary conditions :
(i) the dead state n = 0 is an absorbing state from which there is no escape

b0 = 0 = d0 (80)

(ii) the maximal state n = N is characterized by the vanishing birth rate

bN = 0 (81)

so that it is not possible to reach the state n = N + 1. One may also consider that there is no maximal population
N → +∞.

So the master Eq. 2 reads

∂tPt(n) =
∑
m

wn,mPt(m) = bn−1Pt(n− 1) + dn+1Pt(n+ 1)− (bn + dn)Pt(n) (82)

For the dead configuration n = 0 with the vanishing rates of Eq. 80, the dynamics reduces to the incoming flow from
the neighboring site n = 1

∂tPt(0) = d1Pt(1) (83)

In various applications, many different choices for the dependence in n of the birth rates bn and of the death rates
dn are relevant. As a consequence, it is interesting to discuss the general case with arbitrary birth and death rates.

B. Spectral analysis of the slowest relaxation mode of section II

For the present birth-death model, the eigenvalues equations of Eqs 14 on Ω∗ = {1, 2, .., N} for the slowest relaxation
mode read for the right eigenvector r(.) in the bulk n = 2, .., N − 1

−ζ1r1(n) = bn−1r1(n− 1) + dn+1r1(n+ 1)− (bn + dn)r1(n) (84)

with the boundary equations for n = 1 and n = N

−ζ1r1(1) = d2r1(2)− (b1 + d1)r1(1)

−ζ1r1(N) = bN−1r1(N − 1)− dNr1(N) (85)
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For the left eigenvector l1(.), the eigenvalues equations read in the bulk n = 2, .., N − 1

−ζ1l1(m) = [l1(m+ 1)− l1(m)] bm + [l1(m− 1)− l1(m)] dm (86)

with the boundary equations for n = 1 and n = N

−ζ1l1(1) = [l1(2)− l1(1)] b1 + [0− l1(1)] d1

−ζ1l1(N) = [l1(N − 1)− l1(N)] dN (87)

For arbitrary birth rates bn and death rates dn, the solution of this spectral problem requires the introduction
of orthogonal polynomials (see [2] and references therein), so that there is no simple explicit closed expression of
the extinction rate ζ1 as a function of all the birth and death rates of the model. However as described below, the
extinction rate can be written explicitly in terms of the empirical observables of the metastable state, both at Level
2.5 and at Level 2.

C. Probability P
[2.5]living
T [ρ(.); q(., .)] to remain living up to T with given empirical density and empirical flows

For a very long dynamical trajectory n(0 ≤ t ≤ T ) of the population in the birth-death process of Eq. 82, the
empirical observables are the empirical time-averaged density of the population n

ρT (n) ≡ 1

T

∫ T

0

dt δn(t),n (88)

and the empirical time-averaged flows between population n and population n± 1

qT (n± 1, n) ≡ 1

T

∑
t∈[0,T ]:n(t+) 6=n(t−)

δn(t+),n±1δx(t−),n (89)

The probability to remain confined in the set Ω∗ = {1, 2.., N} of living configurations with giving empirical observ-
ables [ρ(.); q(., .)] follows the large deviation form of Eq. 48

P
[2.5]living
T [ρ(.); q(., .)] ∝

T→+∞
Cliving2.5 [ρ(.); q(., .)]e−TI

living
2.5 [ρ(.);q(.,.)] (90)

with the constraints obtained from Eq. 50

Cliving2.5 [ρ(.); q(., .)] = δ (ρ(0)) δ

(
N∑
n=1

ρ(n)− 1

)
δ (q(0, 1)) δ (q(1, 2)− q(2, 1)) δ (q(N,N − 1)− q(N − 1, N))[

N−1∏
n=2

δ (q(n, n+ 1) + q(n, n− 1)− q(n+ 1, n)− q(n− 1, n))

]
(91)

while the rate function of Eq. 51 reads

I living2.5 [ρ(.); q(., .)] = d1ρ(1) +

N−1∑
n=1

[
q(n+ 1, n) ln

(
q(n+ 1, n)

bnρ(n)

)
− q(n+ 1, n) + bnρ(n)

]

+

N−1∑
n=1

[
q(n, n+ 1) ln

(
q(n, n+ 1)

dn+1ρ(n+ 1)

)
− q(n, n+ 1) + dn+1ρ(n+ 1)

]
(92)

The stationarity constraints of Eq. 91 for the empirical flows means that the total current [q(n, n+ 1)− q(n+ 1, n)]
on the link between n and (n+1) cannot depend on n and should vanish as a consequence of the boundary conditions
at n = 1 and n = N

0 = q(2, 1)− q(1, 2) = ... == q(n+ 1, n)− q(n, n+ 1) = ... = q(N,N − 1)− q(N − 1, N) (93)

It is thus convenient to replace the two flows on each link by the new function qs of their middle-point (n+ 1/2)

q(n, n+ 1) = q(n+ 1, n) = qs(n+ 1/2) (94)
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in order to rewrite the level 2.5 of Eq. 90 where the only remaining constraints involve the empirical density ρ(.)

P
[2.5]living
T [ρ(.); qs(.)] ∝

T→+∞
δ (ρ(0)) δ

(
N∑
n=1

ρ(n)− 1

)
e−TI

living
2.5 [ρ(.);qs(.)] (95)

while the corresponding rate function obtained from Eq. 92 reads

I living2.5 [ρ(.); qs(.)] = d1ρ(1)

+

N−1∑
n=1

[
qs(n+ 1/2) ln

(
q2s(n+ 1/2)

bnρ(n)dn+1ρ(n+ 1)

)
− 2qs(n+ 1/2) + bnρ(n) + dn+1ρ(n+ 1)

]
(96)

D. Probability P
[2]living
T [ρ(.)] to remain living up to T with given empirical density

For the present model, the contraction explained around Eq. 54 can be explicitly computed as follows. For a given
empirical density ρ(.), the optimization of the rate function of Eq. 96 with respect to the link flow qs(n+ 1/2)

0 =
∂I living2.5 [ρ(.); qs(.)]

∂qs(n+ 1/2)
= ln

(
q2s(n+ 1/2)

bnρ(n)dn+1ρ(n+ 1)

)
(97)

yields the optimal value

qopts (n+ 1/2) =
√
bnρ(n)dn+1ρ(n+ 1) (98)

So the probability to remain living during T with the empirical density ρ(.) follows the large deviation form of Eq. 54

P
[2]living
T [ρ(.)] '

T→+∞
δ (ρ(0)) δ

(
N∑
n=1

ρ(n)− 1

)
e−TI

living
2 [ρ(.)] (99)

where the rate function I living2 [ρ(.)] at Level 2 is obtained from the optimal value of the rate function at the Level 2.5
of Eq. 96

I living2 [ρ(.)] = I2.5[ρ(.); qopts (.)] (100)

= d1ρ(1) +

N−1∑
n=1

[
bnρ(n) + dn+1ρ(n+ 1)− 2

√
bnρ(n)dn+1ρ(n+ 1)

]
= d1ρ(1) +

N−1∑
n=1

[√
bnρ(n)−

√
dn+1ρ(n+ 1)

]2
(101)

E. Probability P livingT ∝T→+∞ e−Tζ1 to remain living up to T

As explained in the subsection III D 2 for the general case, the exact optimization procedure to obtain ζ1 governing
the probability to remain living up to T

P livingT ∝
T→+∞

e−Tζ1 (102)

via the contraction of the Level 2.5 is equivalent to the spectral problem of subsection IV B for the slowest relaxation
mode.

As explained in the subsection III D 1, the estimation of ζper1 obtained via the perturbation theory in the absorbing
rate d−1 can be recovered from the Level 2.5 via the procedure explained before Eq. 59. Here we can obtain it directly
from the Level 2 of Eq. 99 as follows. One just needs to require that all the bulk contributions of the rate function

I living2 [ρ(.)] of Eq. 101 vanish√
bnρ∗(n)−

√
dn+1ρ∗(n+ 1) = 0 for n = 1, 2, .., N − 1 (103)
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The solution of this recurrence reads

ρ∗(n) = ρ∗(1)

n−1∏
j=1

bj
dj+1

 (104)

where ρ∗(1) is determined by the normalization

1 =

N∑
n=1

ρ∗(n) = ρ∗(1)

1 +

N∑
n=2

n−1∏
j=1

bj
dj+1

 = ρ∗(1)

[
1 +

b1
d2

+
b1b2
d2d3

+ ...+
b1b2...bN−1
d2d3...dN

]
(105)

So the leading contribution for the slowest relaxation rate reduces to the flow entering the absorbing state x = 0 from
the neighboring site y = 1

ζper1 = d1ρ∗(1) =
d1

1 +

N∑
n=2

n−1∏
j=1

bj
dj+1

(106)

As mentioned after Eq. 42, this perturbative estimation will be small even if the absorbing rate d1 is not particularly
small, as long as the empirical density ρ∗(1) is small for population n = 1, i.e. as long as the denominator of Eq. 106
involving all the other rates of the model is large.

V. LARGE DEVIATIONS FOR THE BIRTH-DEATH MODEL IN A SWITCHING ENVIRONMENT

Since population stochastic models in a randomly switching environment have attracted a lot of interest recently
[104–106], this section is devoted to a simple birth-death model in an environment that can switch between two
possible states σ = ±1.

A. Birth-death model in an environment switching between two possible states σ = ±1

The two possible states σ = ± of the environment determine the dynamics for the population n as follows. In the
positive environment σ = +1, only births are possible with positive birth rates bn > 0 for population n = 1, .., N − 1.
In the negative environment σ = −1, only deaths are possible with positive death rates dn > 0 for n = 1, 2, .., N . At
population n = 1, .., N , the environment state σ can switch to the opposite value (−σ) with the switching rate γσn
that may depend on the value n of the population if one wishes to describe some influence of the population on the
environment. The dynamics for the joint distribution Pσt (n) to be at population n = 1, 2, .., N and in the environment
σ = ± is described by the master equations

∂tP
+
t (n) = bn−1P

+
t (n− 1)− bnP+

t (n)− γ+n P+
t (n) + γ−n P

−
t (n)

∂tP
−
t (n) = dn+1P

−
t (n+ 1)− dnP−t (n) + γ+n P

+
t (n)− γ−n P−t (n) (107)

while the dynamics of the dead configuration n = 0 only involves the absorbing flow governed by the death rate d−1

∂tPt(0) = d1P
−
t (1) (108)

B. Probability P
[2.5]living
T [ρ(.); q(., .)] to remain living up to T with given empirical density and empirical flows

For the dynamics of Eq. 107, the probability at Level 2.5 of Eq. 48

P
[2.5]living
T [ρ±(.); j±(.); q±(.)] ∝

T→+∞
Cliving2.5 [ρ±(.); j±(.); q±(.)]e−TI

living
2.5 [ρ±(.);j±(.);q±(.)] (109)

involve the following empirical time-averaged observables [ρ±(.); j±(.); q±(.)] for a long trajectory [n(0 ≤ t ≤ T );σ(0 ≤
t ≤ T ) :
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(i) The empirical densities of the population n and of the environment σ = ±1

ρσ(n) ≡ 1

T

∫ T

0

dtδσ(t),σ δn(t),n (110)

satisfy the global normalization on the set of living configurations

N∑
n=1

[
ρ+(n) + ρ−(n)

]
= 1 (111)

(ii) The empirical current between populations n and (n+ 1) in the environment σ = +

j+(n+ 1/2) ≡ 1

T

∑
t∈[0,T ]:n(t+)6=n(t−)

δσ(t),+δn(t+),n+1δn(t−),n (112)

and the empirical current between populations n and (n− 1) in the environment σ = −

j−(n− 1/2) ≡ 1

T

∑
t∈[0,T ]:n(t+) 6=n(t−)

δσ(t),−δn(t+),n−1δn(t−),n (113)

are labelled by their middle-point (n± 1/2) to simplify the notations.
(iii) At population n, the switching events between the two sates σ = ±1 of the environment are described by the

empirical switching flows

q+(n) ≡ 1

T

∑
t∈[0,T ]:σ(t+)=−6=σ(t−)=+

δn(t),n

q−(n) ≡ 1

T

∑
t∈[0,T ]:σ(t+)=+6=σ(t−)=−

δn(t),n (114)

The stationarity conditions mean that the total flow into the state (n, σ) should be balanced by the total flow out
of the state (n, σ). These conditions read for population n = 2, .., N − 1 and the two possible states σ = ±1 of the
environment

0 = j+(n− 1/2)− j+(n+ 1/2)− q+(n) + q−(n)

0 = j−(n+ 1/2)− j−(n− 1/2) + q+(n)− q−(n) (115)

with the boundary equations for n = 1 and n = N correspond to j+(1/2) = 0 = j+(N + 1/2). The sum of the two
Eqs 115 yield that the total empirical current [j+(n+ 1/2)− j−(n+ 1/2)] vanishes for all n

0 = j+(3/2)− j−(3/2) = ... = j+(n+ 1/2)− j−(n+ 1/2) = ... = j+(N − 1/2)− J−(N − 1/2) (116)

As a consequence, it is possible to eliminate all the empirical negative currents in terms of the empirical positive
currents

j−(n+ 1/2) = j+(n+ 1/2) (117)

while the remaining stationarity conditions involving the empirical switching flows q±(n) read

q−(n)− q+(n) = j+(n+ 1/2)− j+(n− 1/2) (118)

In summary, the large deviations of Eq. 109 can be written without the empirical negative current j−(.) with the
following constraints

Cliving2.5 [ρ±(.); j+(.); q±(.)] = δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)
N∏
n=1

δ
[
q−(n)− q+(n)− j+(n+ 1/2) + j+(n− 1/2)

]
(119)
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and the following rate function at Level 2.5

I living2.5 [ρ±(.); j+(.); q±(.)] = d1ρ
−(1) +

N−1∑
n=1

[
j+(n+ 1/2) ln

(
j+(n+ 1/2)

bnρ+(n)

)
− j+(n+ 1/2) + bnρ

+(n)

]

+

N−1∑
n=1

[
j+(n+ 1/2) ln

(
j+(n+ 1/2)

dn+1ρ−(n+ 1)

)
− j+(n+ 1/2) + dn+1ρ

−(n+ 1)

]

+

N∑
n=1

[
q+(n) ln

(
q+(n)

γ+n ρ+(n)

)
− q+(n) + γ+n ρ

+(n)

]
+

N∑
n=1

[
q−(n) ln

(
q−(n)

γ−n ρ−(n)

)
− q−(n) + γ−n ρ

−(n)

]
(120)

C. Explicit contraction over the switching activity a(n) to obtain the intermediate Level 2.25

It is convenient to replace the two switching flows q±(n) by the switching activity a(n) and the switching current
i(n) representing their symmetric and antisymmetric parts

a(n) ≡ q+(n) + q−(n)

i(n) ≡ q+(n)− q−(n) (121)

i.e.

q+(n) =
a(n) + i(n)

2

q−(n) =
a(n)− i(n)

2
(122)

The constraints of Eq. 119 involve the switching current i(n) but not the the switching activity a(n)

Cliving[ρ±(.); j+(.); i(.)] = δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)
N∏
n=1

δ
[
j+(n− 1/2)− j+(n+ 1/2)− i(n)

]
(123)

As a consequence, as in many other Markov jump processes [31, 38, 39, 41, 45], the rate function obtained from Eq.
120

I living2.5 [ρ±(.); j+(.); i(.); a(.)] = d1ρ
−(1)

+

N−1∑
n=1

[
j+(n+ 1/2) ln

(
[j+(n+ 1/2)]

2

bnρ+(n)dn+1ρ−(n+ 1)

)
− 2j+(n+ 1/2) + bnρ

+(n) + dn+1ρ
−(n+ 1)

]

+

N∑
n=1

[
a(n) + i(n)

2
ln

(
a(n) + i(n)

2γ+n ρ+(n)

)
+
a(n)− i(n)

2
ln

(
a(n)− i(n)

2γ−n ρ−(n)

)
− a(n) + γ+n ρ

+(n) + γ−n ρ
−(n)

]
(124)

can be optimized over the switching activity a(n)

0 =
∂I living2.5 [ρ±(.); j+(.); i(.); a(.)]

∂a(n)
=

1

2
ln

(
a2(n)− i2(n)

4γ+n ρ+(n)γ−n ρ−(n)

)
(125)

in order to obtain the optimal value aopt(n) as a function of the other empirical observables

aopt(n) =

√
i2(n) + 4γ+n ρ+(n)γ−n ρ−(n) (126)

Plugging this optimal value into the rate function at Level 2.5 of Eq. 124 yields the rate function at Level 2.25

I living2.25 [ρ±(.); j+(.); i(.)] = I living2.5 [ρ±(.); J−(.); i(.); aopt(.)] = d1ρ
−(1) (127)

+

N−1∑
n=1

[
j+(n+ 1/2) ln

(
[j+(n+ 1/2)]

2

bnρ+(n)dn+1ρ−(n+ 1)

)
− 2j+(n+ 1/2) + bnρ

+(n) + dn+1ρ
−(n+ 1)

]

+

N∑
n=1

i(n) ln


√
i2(n) + 4γ+n ρ+(n)γ−n ρ−(n) + i(n)

2γ+n ρ+(n)

+ γ+n ρ
+(n) + γ−n ρ

−(n)−
√
i2(n) + 4γ+n ρ+(n)γ−n ρ−(n)





18

that will govern the probability to remain living up to T with the empirical observables [ρ±(.); j+(.); i(.)]

P
[2.25]living
T [ρ±(.); j+(.); i(.)] ∝

T→+∞
e−TI

living
2.25 [ρ±(.);j+(.);i(.)]

δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)
N∏
n=1

δ
[
j+(n− 1/2)− j+(n+ 1/2)− i(n)

]
(128)

One can now use the last constraint to eliminate the switching currents i(n) = [j+(n− 1/2)− j+(n+ 1/2)] and one
obtains that the probability to remain living up to T with the empirical observables [ρ±(.); j+(.)] only involves the
normalization contraint for the empirical density

P
[2.25]living
T [ρ±(.); j+(.)] ∝

T→+∞
δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)
e−TI

living
2.25 [ρ±(.);j+(.)] (129)

while the corresponding rate function reads

Iliving2.25 [ρ±(.); j+(.)] = d1ρ
−(1) (130)

+

N−1∑
n=1

[
j+(n+ 1/2) ln

( [
j+(n+ 1/2)

]2
bnρ+(n)dn+1ρ−(n+ 1)

)
− 2j+(n+ 1/2) + bnρ

+(n) + dn+1ρ
−(n+ 1)

]

+

N∑
n=1

[j+(n− 1/2)− j+(n+ 1/2)
]
ln


√

[j+(n− 1/2)− j+(n+ 1/2)]2 + 4γ+n ρ+(n)γ−n ρ−(n) +
[
j+(n− 1/2)− j+(n+ 1/2)

]
2γ+n ρ+(n)




+

N∑
n=1

[
γ+n ρ

+(n) + γ−n ρ
−(n)−

√
[j+(n− 1/2)− j+(n+ 1/2)]2 + 4γ+n ρ+(n)γ−n ρ−(n)

]

To obtain the probability to remain living up to T with the empirical densities [ρ±(.)] only, one needs to integrate
Eq. 129 over the empirical current j+(.)

P livingT [ρ±(.)] ∝
T→+∞

δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)∫
Dj+(.)e−TI

living
2.25 [ρ±(.);j+(.)]

∝
T→+∞

δ

(
N∑
n=1

[
ρ+(n) + ρ−(n)

]
− 1

)
e−TI

living
2 [ρ±(.)] (131)

The optimization of the rate function I living2.25 [ρ±(.); j+(.)] at Level 2.25 of Eq. 130 over the current j+(.) needed to

obtain the rate function I living2 [ρ±(.)] at Level 2 is somewhat heavy and will not be discussed further.
As a final remark, let us mention that the continuous-space analog of the birth-death model in a switching en-

vironment of Eq. 107 corresponds to the run-and-tumble process with space-dependent velocities v±(x) and space-
dependent switching rates γ±(x) : their large deviations properties at various levels studied recently for the case
without absorption [44] are somewhat simpler in the continuous model because the empirical currents j±(x) are then
completely determined by the empirical densities ρ±(x) as a consequence of the deterministic motion at velocities
v±(x) when the environment is state (±).

D. Probability P livingT to remain living up to T

As explained in the subsection III D 2, the exact optimization procedure to obtain ζ1 via the contraction of the
Level 2.5 is equivalent to the spectral problem for the slowest relaxation mode described in section II. So here we will
only discuss how the estimation of ζper1 of the perturbation theory in the absorbing rate d−1 can be obtained directly
from the Level 2.5 via the procedure explained before Eq. 59. To obtain the steady state on the set Ω∗ of living
configurations, one requires the vanishing of all the bulk contributions of the rate function at Level 2.5 of Eq. 120

j+∗ (n+ 1/2) = bnρ
+
∗ (n) for n = 1, .., N − 1

j+∗ (n+ 1/2) = dn+1ρ
−
∗ (n+ 1) for n = 1, .., N − 1

q+∗ (n) = γ+n ρ
+
∗ (n) for n = 1, .., N

q−∗ (n) = γ−n ρ
−
∗ (n) for n = 1, .., N (132)
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and the satisfaction of all the constraints of Eq. 119

1 =

N∑
n=1

[
ρ+∗ (n) + ρ−∗ (n)

]
0 = q−∗ (n)− q+∗ (n)− j+∗ (n+ 1/2) + j+∗ (n− 1/2) for n = 2, .., N − 1

0 = q−∗ (1)− q+∗ (1)− j+∗ (3/2)

0 = q−∗ (N)− q+∗ (N) + j+∗ (N − 1/2) (133)

One can use the two first equations of Eq. 132 to rewrite the densities ρ±∗ (.) in terms of the positive steady current
j+∗ (.)

ρ+∗ (n) =
j+∗ (n+ 1/2)

bn
for n = 1, 2, .., N − 1

ρ−∗ (n) =
j+∗ (n− 1/2)

dn
for n = 2, 2, .., N (134)

Plugging the two last equations of Eq. 132 for n = 1 and n = N into the two last equations of Eq. 133 allow to
compute the two missing densities

ρ−∗ (1) = j+∗ (3/2)
1 +

γ+
1

b+1

γ−1

ρ+∗ (N) = j+∗ (N − 1/2)
1 +

γ−N
dN

γ+N
(135)

Plugging the two last equations of Eq. 132 for n = 2, .., N − 1 into the second equation of Eq. 133 allows to compute
the empirical current j+∗ (n+ 1/2) on all the links

j+∗ (n+ 1/2) = j+∗ (n− 1/2)

1 +
γ−n
dn

1 + γ+
n

bn

 = ... = j+∗ (3/2)

n∏
j=2

1 +
γ−j
dj

1 +
γ+
j

bj

 for n = 2, .., N − 1 (136)

in terms of j+∗ (3/2) that should now be computed from the normalization of the total density

1 =

N−1∑
n=1

ρ+∗ (n) + ρ+∗ (N) + ρ−∗ (1) +

N∑
n=2

ρ−∗ (n) (137)

= j+∗ (3/2)
1 +

γ+
1

b+1

γ−1
+

N−1∑
n=1

[
1

bn
+

1

d−n+1

]
j+∗ (n+ 1/2) + j+∗ (N − 1/2)

1 +
γ−N
dN

γ+N

= j+∗ (3/2)

1 +
γ+
1

b+1

γ−1
+

1

b+1
+

1

d−2

+

N−2∑
n=2

[
1

bn
+

1

d−n+1

]
j+∗ (n+ 1/2) + j+∗ (N − 1/2)

 1

bN−1
+

1

dN
+

1 +
γ−N
dN

γ+N


The solution of Eq. 136 leads to the final result for j+∗ (3/2)

1

j+∗ (3/2)
=

1 +
γ+
1

b+1

γ−1
+

1

b+1
+

1

d−2

+

N−2∑
n=2

(
1

bn
+

1

d−n+1

)
n∏
j=2

1 +
γ−j
dj

1 +
γ+
j

bj



+

 1

bN−1
+

1

dN
+

1 +
γ−N
dN

γ+N

N−1∏
j=2

1 +
γ−j
dj

1 +
γ+
j

bj

 (138)

So the perturbative evaluation for the slowest relaxation rate involves the probability ρ−∗ (1) of Eq. 135

ζper1 = d−1 ρ
−
∗ (1) =

d−1
γ−1

(
1 +

γ+1
b+1

)
j+∗ (3/2) (139)
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where j+∗ (3/2) has been written in Eq. 138 in terms of all the rates of the model. This perturbative estimation ζper1

will be small even if the absorbing rate d−1 is not particularly small, if the empirical current j+∗ (3/2) is small i.e. if its
inverse 1

j+∗ (3/2)
written in Eq. 138 is large.

VI. CONCLUSION

In this paper, we have applied the large deviations at Level 2.5 to Markov processes with absorbing states in order
to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their empirical time-averaged
density and of their empirical time-averaged flows over a large time-window T . The case of Markov jump processes
has been analyzed in detail in the main text, while the adaptation to diffusion processes in dimension d iss described
in Appendix A. In both cases, we have explained how the full optimization of the extinction rate at Level 2.5 over all
empirical observables allows to recover the standard spectral problem for the slowest relaxation mode and we have
discussed the link with the Doob generator of the process conditioned to survive up to time T . Finally, this general
formalism has been illustrated with the application to the population birth-death model in a stable or in a switching
environment.

Our main conclusion is thus that the large deviations at Level 2.5 that have been introduced to characterize the
possible dynamical fluctuations of non-equilibrium steady states of Markov processes directly provide the appropriate
framework to analyze the fluctuations properties of metastable quasi-stationary states.

Appendix A: Adaptation to diffusion processes in dimension d with absorbing states

In this Appendix, we consider diffusion processes described by the Fokker-Planck dynamics with drift ~v(~x) and
diffusion coefficient D(~x) in dimension d

∂tPt(~x) = −~∇.
[
Pt(~x)~v(~x)−D(~x)~∇Pt(~x)

]
≡ FPt(~x) (A1)

on the set of living configurations ~x /∈ A, while A respresent the set of absorbing states. The goal is to describe how
the analysis of the main text concerning Markov jump processes should be adapted when the Markov matrix w is
replaced by the Fokker-Planck differential operator F of Eq. A1.

1. Reminder on the spectral analysis of the slowest relaxation mode before extinction

The eigenvalues Eqs 14 on the set of living configurations ~x /∈ A have to be adapted as follows : the equation for
the positive right eigenvector r1(~x) for ~x /∈ A involves the Fokker-Planck generator F of Eq. A1

−ζ1r1(~x) = Fr1(~x) = −~∇. [r1(~x)~v(~x)] + ~∇.
[
D(~x)~∇r1(~x)

]
(A2)

while the equation for the positive left eigenvector l1(~x) for ~x /∈ A involves the adjoint operator F†

−ζ1l1(~x) = F†l1(~x) = ~v(~x).~∇l1(~x) + ~∇.
[
D(~x)~∇l1(~x)

]
(A3)

The Doob generator that has the probability distribution of Eq. 22

πinterior(~x) = l1(~x)r1(~x) (A4)

as steady state is the generalization of Eq. 24 given by the differential operator

F̂ = l1(.)F 1

l1(.)
+ ζ1 (A5)

One obtains that the process conditioned to survive satisfy the modified Fokker-Planck dynamics

∂tP̂t(~x) = F̂ P̂t(~x) = −~∇.
[
P̂t(~x)~u(~x)−D(~x)~∇P̂t(~x)

]
(A6)
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where the only change with respect to the initial dynamics of Eq. A1 is that the initial drift ~v(~x) has been replaced
by the effective drift

~u(~x) ≡ ~v(~x) + 2D(~x)
~∇l1(~x)

l1(~x)
(A7)

Since the left eigenvector l1(~x) vanishes on A while it is positive for x /∈ A, this effective drift ~u(~x) becomes very large
near the surface of A and prevents the conditioned process to reach A.

For more details about this spectral analysis of the slowest mode and the corresponding conditioned Doob process
for diffusion processes in dimensions d = 1, 2, 3 with explicit examples, we refer to the recent works [107, 108] and
references therein.

2. Large deviations at various levels for metastable quasi-stationary states

a. Reminder on the large deviations at Level 2.5 for the time-averaged density and the time-averaged current

For a very long dynamical trajectory ~x(0 ≤ t ≤ T ) of the Fokker-Planck dynamics of Eq. A1, the joint distribution
of the empirical density

ρ(~x) ≡ 1

T

∫ T

0

dt δ(d)(~x(t)− ~x) (A8)

and of the empirical current ~j(~x)

~j(~x) ≡ 1

T

∫ T

0

dt
d~x(t)

dt
δ(d)(~x(t)− ~x) (A9)

satisfy the large deviation form [28, 29, 33, 34, 37, 49–51]

P
[2.5]
T [ρ(.),~j(.)] '

T→+∞
C2.5[ρ(.),~j(.)]e−TI2.5[ρ(.),~j(.)] (A10)

where the constitutive constraints

C2.5[ρ(.),~j(.)] = δ

(∫
dd~xρ(~x)− 1

)[∏
~x

δ
(
~∇.~j(~x)

)]
(A11)

contains the normalization of the empirical density ρ(.) and the stationarity constraint given by the divergence-free

property for the empirical current ~j(.), while the rate function is explicit for any Fokker-Planck dynamics in terms of
the drift ~v(~x) and of the diffusion coefficient D(~x)

I2.5[ρ(.),~j(.)] =

∫
dd~x

4D(~x)ρ(~x)

[
~j(~x)− ρ(~x)~v(~x) +D(~x)~∇ρ(~x)

]2
(A12)

b. Probability P
[2.5]living
T [ρ(.);~j(.)] to remain living up to T with given empirical density and empirical current

To obtain from Eq. A10 the probability to remain living up to time T with given empirical observables, one needs
to impose that the empirical density vanishes on the set A of absorbing sites

ρ(~x) = 0 for ~x ∈ A (A13)

and that the empirical current entering the set A of absorbing states vanishes, i.e. using the normal vector ~nA to the
surface ∂A of A

~j(~x).~nA = 0 for ~x ∈ ∂A (A14)
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So the probability P
[2.5]living
T [ρ(.);~j(.)] to remain living up to T with given empirical density and empirical current

P
[2.5]living
T [ρ(.),~j(.)] '

T→+∞
Cliving2.5 [ρ(.),~j(.)]e−TI

living
2.5 [ρ(.),~j(.)] (A15)

involve the constraints

Cliving2.5 [ρ(.),~j(.)] =

[∏
~x∈A

δ (ρ(~x))

][ ∏
~x∈∂A

δ
(
~j(~x).~nA

)]
δ

(∫
~x/∈A

dd~xρ(~x)− 1

)[∏
~x/∈A

δ
(
~∇.~j(~x)

)]
(A16)

and the rate function

I living2.5 [ρ(.),~j(.)] =

∫
~x/∈A

dd~x

4D(~x)ρ(~x)

[
~j(~x)− ρ(~x)~v(~x) +D(~x)~∇ρ(~x)

]2
(A17)

c. Equivalence between the exact optimization of the Level 2.5 and the spectral problem of subsection A 1

As in Eq. 58, the probability P livingT ∝ e−Tζ1 to remain living up to T that involves the slowest relaxation mode
ζ1 discussed subsection A 1 can be also computed via the integration of the Level 2.5 of Eq. A15 over the empirical
density ρ(.) and the empirical current ~j(.)

P livingT =

∫
Dρ(.)

∫
D~j(.)P [2.5]living

T [ρ(.);~j(.)] (A18)

In order to solve this optimization problem, let us introduce the following Lagrangian for ~x /∈ A with the Lagrange
multipliers (ω, ν(.)) to take into account the constraints of normalization and stationarity

L[ρ(.),~j(.)] =

∫
~x/∈A

dd~x

4D(~x)ρ(~x)

[
~j(~x)− ρ(~x)~v(~x) +D(~x)~∇ρ(~x)

]2
− ω

(∫
~x/∈A

dd~xρ(~x)− 1

)
+

∫
~x/∈A

dd~xν(~x)~∇.~j(~x)

=

∫
~x/∈A

dd~x

4D(~x)ρ(~x)

[
~j(~x)− ρ(~x)~v(~x) +D(~x)~∇ρ(~x)

]2
− ω

(∫
~x/∈A

dd~xρ(~x)− 1

)
−
∫
~x/∈A

dd~x~j(~x).~∇ν(~x) (A19)

While the optimization can be written with these variables (see [51] for instance), it is technically simpler (as in the

analog Eq. 60 for Markov jump processes) to replace the empirical current ~j(~x) by the effective empirical drift ~u(~x)
computed from the empirical current and the empirical density

~u(~x) ≡
~j(~x) +D(~x)~∇ρ(~x)

ρ(~x)
(A20)

After some integration by parts for the last term to eliminate the gradient of the empirical density, the Lagrangian of
Eq. A19 translates into

L̃[ρ(.), ~u(.)] = ω +

∫
~x/∈A

dd~xρ(~x)

[
[~u(~x)− ~v(~x)]

2

4D(~x)
− ω − ~u(~x).~∇ν(~x)− ~∇

(
D(~x)~∇ν(~x)

)]
(A21)

The optimization with respect to the optimal drift u(~x) leads to the optimal value

~uopt(~x) = ~v(~x) + 2D(~x)~∇ν(~x) (A22)

The optimization of the Lagrangian with respect to the empirical density ρ(~x) yields for this optimal drift the following
closed equation for the Lagrange multiplier ν(.)

−ω = − [~uopt(~x)− ~v(~x)]
2

4D(~x)
+ ~uopt(~x).~∇ν(~x) + ~∇

(
D(~x)~∇ν(~x)

)
= D(~x)

[
~∇ν(~x)

]2
+ ~v(~x).~∇ν(~x) + ~∇

(
D(~x)~∇ν(~x)

)
(A23)



23

The optimal value of the Lagrangian of Eq. A21 that determines the slowest relaxation rate ζ1 reduces to the Lagrange
multiplier ω

ζ1 = L̂opt = ω (A24)

The comparison of the optimal drift of Eq. A22 and the Doob drift of Eq. A7 leads to the change of variables

~∇ν(~x) =
~∇l1(~x)

l1(~x)
(A25)

that transforms indeed Eq. A23 into the spectral eigenvalue equation of Eq. A3 for the left eigenvector l1(.).

d. Large deviations for general time-additive observables of the trajectory ~x(0 ≤ t ≤ T ) before extinction

As explained in subsection III E for Markov jump processes, the large deviations at Level 2.5 allows to derive
the large deviations of any time-additive observable of the Markov trajectory using their decomposition in terms of
empirical observables. Here the empirical density ρ(.) allows to reconstruct any time-additive observable AT that
involves some function α(~x)

AT ≡
1

T

∫ T

0

dt α(~x(t)) =

∫
dd~x α(~x) ρ(~x) (A26)

while the empirical current ~j(.) allows to reconstruct any time-additive observable BT that involves some function
~β(~x)

BT ≡
1

T

∫ T

0

dt
d~x(t)

dt
.~β(~x(t)) =

∫
dd~x ~j(~x).~β(~x) (A27)

As a consequence, the large deviations at Level 2.5 for P
[2.5]living
T [ρ(.);~j(.)] of Eq. A15 allows to analyze the large

deviations of any time-additive observable of the form (AT + BT ) for trajectories living up to time T .

3. Application to the continuous-space analog of the birth-death model of section IV

When the discrete population n of the birth-death Markov jump process of Eq. 82 is replaced by the continuous
variable x, one is led to consider the Fokker-Planck dynamics with drift v(x) and diffusion coefficient D(x) for x > 0

∂tPt(x) = −∂x [Pt(x)v(x)−D(x)∂xPt(x)] (A28)

with absorption at the origin x = 0, and reflecting boundary condition at the other boundary x = N . Again, for
the spectral analysis of the slowest mode and the corresponding conditioned Doob process with explicit examples, we
refer to the recent works [107, 108] and references therein.

For this one-dimensional interval x ∈]0, N ], the current divergence-free constraint ∂xj(x) = 0 and the boundary
conditions of zero current at the two boundary x = 0 and x = N yield that the empirical current identically vanishes
j(x) = 0. So the Level 2.5 of Eq. A15 directly reduces to the Level 2 involving only the empirical density ρ(.)

P
[2]living
T [ρ(.)] '

T→+∞
δ (ρ(0)) δ

(∫ N

0

dxρ(x)− 1

)
e−TI

living
2 [ρ(.)] (A29)

where the constitutive constraints impose the normalization of the empirical density ρ(x) on [0, N ] and its vanishing
ρ(0) = 0 at the origin x = 0, while the rate function obtained from Eq. A12

I living2 [ρ(.)] =

∫ N

0

dx

4D(x)ρ(x)
[ρ(x)v(x)−D(x)ρ′(x)]

2
=

∫ N

0

dx
ρ(x)D(x)

4

[
v(x)

D(x)
− ρ′(x)

ρ(x)

]2
(A30)

represents the extinction rate of a metastable state as a function of its empirical density ρ(x). Eq. A30 is the analog
of Eq. 101 concerning the discrete birth-death model.
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