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Abstract

A KdV flow is constructed on a space whose structure is described in
terms of the spectrum of the underlying Schrédinger operators. The space
includes the conventional decaying functions and ergodic ones. Especially
any smooth almost periodic function can be initial data for the KdV
equation.

1 Introduction

This article is a continuation of [II], where a KdV flow was constructed on
a space of potentials with reflectionless property on an energy interval [A1, 00).
Since the KdV equation is closely related with 1D Schrodinger operators, we use
the terminology potentials to describe initial data for the KdV equation. When
the previous paper was written, the author intended to remove this reflectionless
property by approximating general potentials by reflectionless potentials, which
made the procedure rather involved. However he has recognized that a direct
extension is possible independently of the last paper. Therefore the present
paper is readable without [I1], although its knowledge would be very helpful for
prompt understanding of the whole context.

Our approach to this problem is essentially based on Sato’s philosophy [I§],
whose analytical version was given by Segal-Wilson [19]. From our point of view
that is an analysis on eigen-spaces of underlying Schrédinger operators which
seems quite natural due to GGKM and Lax.

To give perspective and state the main results several terminologies and
notations have to be prepared. For positive odd integer n let '), be

r, = {g =e"; his a real odd polynomial of degree < n}
and C be a simple smooth closed curve in C U {oo} defined by
C={tw(y) +iy; y R}

with a smooth positive function w on R satisfying w (y) = w (—y), hence C
satisfies o
c=-C, C=C.

D4 are the interior and exterior domains separated by the curve C' defined by

D, ={2€C; [Rez|<w(Imz)},D_={2€C; |Rez|>w(Imz)}.
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The curve C' is chosen so that g € I',, remains bounded on D, or more con-
cretely

w(y)=0 (y*(”*l)) as |y| — oc.
The Hardy spaces associated with curve C is defined by

H (D) = the closure in L?(C) of rational functions with no poles in D
H (D_) = the closure in L? (C) of rational functions with no poles in D_

It is known that
L*(C)=H (Dy)@® H (D_) (not necessarily orthogonal),

and elements of H (Dy) can be extended as analytic functions on Dy respec-
tively. The projections to H (D) are given by

T omi JoN— 2

pru(z) = ! /u()\)d)\ for z € Dy
¢ if ue L?(C).

1w
p_u(z) = 27”,/Cz_)\d/\ for z € D_

We enlarge the space H (D) to admit polynomials. Namely for N € Z; set
Hy (D) = (z— b H (D)

with b € D_, and define a norm in Hy (D4) by

|mN¢Lm@Ww2MwL

Clearly Hy (D4) does not depend on the choice of b, and z™ € Hy (D) if
m< N —1.

In the previous paper we constructed the KdV flow as an action of I';, on
a Grassmann manifold consisting of z2-invariant subspaces of L?(|z| =r). In
the present case we construct an extension of the flow not on a Grassmann
manifold of subspaces of 2V L? (C) but on a space of vector functions a (\) =
(a1 (\),az () on C. An analogue of a z%-invariant subspace is

Wa={aNu(N); ve Hy (Dy)},

where

1
= 5 @) —u(-N)

In the present paper, however, spaces W, will not appear explicitly.
For L € Z a space of symbols of Toeplitz operators is introduced:

AL (C) = a; a (A) is bounded on C and there exists a bounded analytic
L ~ | function f on Dy such that AL (a (\) — f(\)) is bounded on C' [ -



The number L is related to the degree of differentiability of the flow. The
Toeplitz operator with symbol a is defined by

(T'(a)u) (2) = f(2)u(z) + (p+ (a = fu) (2)

for u € Hy (D), which is possible if L > N. This T(a) does not depend on
the choice of f and defines a bounded operator on Hy (D4). We have to treat
vector symbols a (A) and the vector version Ay, (C) of Ap (C) essentially due
to the fact that the underlying Schrodinger operators are second order. The
associated Toeplitz operator is defined by

(T'(a)u) (2) = (T (a1) ue) (2) + (T (az) uo) (2) -

Let
A}"(C)={a€ AL (C); T(a) is invertible on Hy (D)},

Since 1 € Hy (D), z € Ho (D), one can define
w="T(a)'1e H (D)), v=T(a) " z€ Hy (D),
if a € AT (C) and L > 2. Set
ba(2)=a(2)u(z) =1, a(s) =a(z)v(z)— 2 € H(D_).
Then there exist a constant #1 (a) and ¢q € H (D_) such that
¢a(2) =r1(a) 27" + 27 ¢a (2).

We call the functions {¢q, 1} as characteristic functions for a € A" (C),
since a is uniquely determined by them. Define

Mgq (Z) = Z+1/}fl (Z)

= ot @) (== o),

', naturally acts on Ay (C), but not always on A" (C). Schrodinger
operators and the KdV equation are obtained by applying the group I',, to
A (C). Let ey(z) = e®* € I'; and suppose eza € AT (C) for any = € R.
Then

fa(z,2) =" (1+ ¢e,a (2))

satisfies a Schrodinger equation

_aifa (ZC, Z) +4q (x) fa ('Ta Z) = _zzfa (-Ta Z)

with ¢(z) = —20,k1 (eza). One can recover mg, (2) by
Oz fa (, Z)|m:0
Mg (2) = —————=2=0.
S A

A solution to tshe KdV equation is obtained by another family of functions
et,z(2) = €T of I's, namely

q(t,x) = —205kK1 (e zQ)



satisfies
1,4 3 .
atq (t,.’L‘) = Zazq (f,ZE) - §q (t,.’L‘) azq (f,ZE) (Kdv equatlon). (1)

Solutions to the higher order KdV equations can be obtained similarly. This is
the core of Sato’s theory.

The basic quantity m, is closely related to the Weyl functions of Schrédinger
operators. If ¢ takes real values, one can associate a Schrodinger operator

L,= —83 +q
with potential q. Throughout the paper we assume
(Lqu, ) 2y = Ao (U )2y for any u € C5° (R) (2)

with some Ao < 0. Under this condition it is known that L, has a unique
self-adjoint extension, and there exist non-trivial functions fi (z,2) € L? (Ry)
satisfying

—03f+ +qfs = —2"fx.

These functions are unique up to constant multiple. The Weyl functions my
are defined by

amf—i— ($a2)|z:0 O f- (.T,Z)|I:0
my(z) = ———2=2 m_(z) = ———— 5=,
M 0 =T o)
m4 are analytic functions on C\[\g, c0) and satisfy
Immy(2) >0,
Im 2

Such an analytic function on C; is called a Herglotz function. The functions
m4 contain every information of the spectral properties of L,. The simplest
one is the coincidence of the spL, with the domain of analyticity of m, hence
my are analytic on C\[\g,00) and the interior domain D, for the curve C is
supposed to contain the interval [—pug, po] with gop = v/—Xg. One thing which
should be stressed here is that my can be defined for any potential g regardless
of decaying or oscillating. Moreover, since f, (z,2) € L? (R4) holds depending
on Re z 2 0 under a certain condition on a, one see that m, coincides with the
Weyl functions m4., that is,

—mo (—22) if Rez>0
Ma (Z)Z{ m—+((—22)) if Rez<0 )

Hence in this case ¢ is determined by mg owing to the inverse spectral theory.
We call mg, as m-function of a, which will be the fundamental object in this
paper, and call f, (z,z) as Baker-Akhiezer function for L,. For potentials ¢
decaying sufficiently fast fq (2, 2) coincides with the Jost solution. It should be
mentioned that R. Johnson [9] was the first who introduced the Weyl functions
to Sato’s theory.

As we have observed above the invertibility of T (ga) is crucial, which is
verified with the aid of tau-functions in this paper. The tau-function was first



introduced by Hirota and its mathematical meaning was found by Sato. In our
context it is defined as the Fredholm determinant of the operator

g7'T(9a)T (a)"" : Hy (D+) - Hy (D4),

that is
Ta (g) = det (g_lT (ga)T (a)_l) .

However to avoid a technical difficulty one version
72 (g) = dets (97T (9a) T (@) ")

is employed, whose definition is possible when the operator g7 (ga) T (a)*1 —1I
is of Hilbert-Schmidt. The invertibility of T (ga) is equivalent to & (9) # 0.
Any g € T';, can be approximated by rational functions r with the same number
of zeros and poles in D_. For such an r the image of r‘lT(ra)T(a)_1 is
finite dimensional and m..q, 74 (r) are computable by {©q, mq}. Another key
observation is

o (9) #0forany g €'y, <= 74 (r) >0 for any real rational functions
Immg (2) 50
Imz

if a € AV (C) satisfies a ()\) = a (A) on C, which yields ga € A (C) for
such an @ € A" (C). Keeping these facts in mind we define

A (C)y=4 @ c A (C);a(N) =a (A) on C, 74 (1) > 0 for real rational
L+ function r with the same number of zeros and poles in D_ '

One can obtain concrete elements of AZLmjr (C) by defining a directly from m..

For a given potential ¢ assume (2] and define m by (B). Then m is analytic on

C\ ([~ o, o) UiR) (o = v/—Xo) and satisfies
(M.1) m(z) = m(z) and

mm(z) on C\(RUIR)

Im 2
M>O if xeRand |z|> uo
x

Assume further
(M.2) m has an asymptotic behavior:

m(z) =z+ Z mezF+0 (z75*) on D_.

1<k<L-2

Then one has

Theorem 1 If m satisfies (M.1), (M.2) for L > 2, then m (z) = (1,m(z)/z) €
AT} (C) and the m-function my, for m is m.



If g € CF=2(—6,6), then it is known that the asymptotics of (M.2) holds in
a sector

|argz|<g76, |7T7argz|<gfe.

However the domain D_ is wider even for n = 1, and its boundary approaches
to the axis iR if n > 3, therefore it is not trivial to find ¢ satisfying (M.2) in
D_. Later in Theorems Bl @ m associated with the Weyl functions m4 will be
shown to fulfill (M.2) if ¢ decays sufficiently fast or oscillates suitably.
Set
QL (C) = {q(z) = —20:k1 (e;a); a € AT (O)}.

inv

Then my is identified with m4 of ¢ by @) for @ € A7" (C), hence the inverse
spectral theory show that m, determines q. This makes it possible to define

(K (9)q) () = —20:k1 (exga) with g (z) = —20,k1 (exa)
for a € A", (C), g € T'. One has

Theorem 2 Suppose L > max{n +1,3}. Then {K (9)},cr, defines a flow on

Q1 (C). For a real odd polynomial h of degree n the function (K (') q) (z)
is Ct in t and C™ in x and satisfies the (n+ 1) /2th KdV equation. Especially

K (etzs) q () satisfies the KdV equation
1., 3
if g€ Qr(C) for L > 4.

We summarize the procedure to obtain K (g)q for a given q as follows. Define
m by @) and assume the condition (M.2) for m. Solve the equation in Hy (D)
for z € Dy

1= e"g(2) £ () u (2 2) + o

211

LIS TP
C A—2z ’

where m (z) = (1,m(z)/z) and f (2) = (1, f(#)) with a bounded analytic func-
tion f on Dy such that

m(z) —zf (z) =0 (2~ **1) on C,

which is possible due to (M.2). The Baker-Akhiezer function is obtained by
fom (z,2) = g(z) m (2) u(x, 2), and k1 (ezgm) is determined by

ezzfgm (1', Z) =1+kK1 (exgm) 27t “+ o0 (Z_l) .

Then we have (K (g)q) (z) = —204k1 (ezgm). Especially if ¢ = 1, one can
recover ¢ from the Weyl functions m4, which yields another way of the inverse
spectral problem.

Any concrete example of initial data for the KdV flow is provided by The-
orem [II For a given m we have to verify the condition (M.2). There are two
classes of potentials satisfying (M.2).

If ¢) € L*(R) for j = 0, 1,---, L — 2, then (M.2) is valid in C; =
{z € C; Imz > 0} for L (see [15]), which will be shown in Proposition 32



The extended notion of reflection coefficients is defined by

m (2) +m_ (2)

R = v m ()

where my are the Weyl functions for g. The modulus |R(z,¢)| coincides with
that of the conventional reflection coefficient on R if ¢ decays sufficiently fast.

Theorem 3 If R(z,q) satisfies

/OO AMMIR(N, q)| dX < oo, (4)
0

then ¢ € Qp (C) with L=M +2— (n+1) /2 holds.

If R(\, q) = 0 for a.e.\ > A; for some A; <R (which means g is reflectionless
on (A1,00)), the condition (@) is satisfied for any M > 1. This case was already
treated in [12]. The resulting potential ¢ is known to be meromorphic on C and
uniformly bounded on R including all its derivatives.

Since |R(A, q)]| is invariant under the flow K (g), that is

[R(A, q)] = |R(N\, K (9)q)| for ae. XA €R, (5)

the condition (@) is supposed to play a significant role to investigate the flow
K(g) in future. (&) will be shown in a separate paper by using transfer matrices
of K (g).

On the other hand [10] showed for ergodic potential g, (x)

Eac (QUJ) = {)\ S R; |R()‘aQUJ)| = 0} .

Therefore in this case (@] is equivalent to

/ M) < oo. (6)
R+\EGC(‘1w)

In particular for periodic potentials ¥4. (¢w) = X (¢u) (the spectrum of L) is
valid, hence (@) means that the total length of spectral gaps is small, which can
be estimated by the norms of derivatives of q.

For ergodic potentials the condition (6] requires the existence of rich ac spec-
trum, although it admits singular spectrum. This situation can be improved by
replacing (@) by a similar condition on the curve C' = {722; ze(C, Rez > 0},
which enables us to have

Theorem 4 Let {q, (z) = q(w)} be an ergodic process on (Q, F, P, {02}, cr)-
Suppose q., € C" (R). Then, q, € Qr (C) holds for a.e. w € Q for L <
(m—3(n—1)) /6. In this case (K(g)qw) () = fq (0zw) for g € Ty, is valid with
fo (W) = (K(9)q.) (0).

Any almost periodic potentials can be considered as ergodic potentials and
one can apply Theorem Bl or Theorem H to have solutions starting from almost
periodic functions. Under the condition of Theorem [ one has ¢, € Qr, (C) for
every w not for a.e. w.



Rybkin [I7] obtained solutions to the KdV equation with step like initial
data, which is decaying on R, and arbitrary on R_. He employed Hirota’s
tau-function and the Hankel transform on R, which restricts the class of initial
data to step like functions. In our approach the decaying condition on R} can
be removed, since we represent the solutions through information of the Weyl
functions m+ on C4 not on R. Our framework also admits step like initial
data. For instance if ¢ € C*° (R) is almost periodic on one axis Ry or R_ and
decaying on the opposite axis, since such a potential can be easily verified to
satisfy (M.2).

For almost periodic initial data there are several papers. Egorova [4] treated
limit periodic initial data. Damanik-Goldstein [3] and Eichinger-VandenBoom-
Yuditskii [5] considered almost periodic potentials. Their approaches are dif-
ferent from ours and the associated Schrodinger operators must have only ac
spectrum. Tsugawa [21] obtained solutions starting from quasi-periodic initial
data without assuming pure ac spectrum, but he could not show the existence
of global solutions in time.

One of the advantages of Sato’s approach lies on the algebraic nature of
the group I',, acting on the space of symbols. Especially the factor g¢ (z) =

(1 —( _12)_1 plays a role of primes in number theory, which will be frequently
used in the present paper.

Throughout the paper the following notations will be employed:

R = the set of all real numbers

C = the set of all complex numbers

Z = the set of all integers

Ry ={z eR, z >0}, R_={zeR,z<0}
Cy={2€C,Imz>0}, C_={2€C, Imz< 0}
Zy={ne€Z,n>0}, Z_={ne€Z,n<0}

Z denotes the complex conjugate of z: = 4+ iy =z — iy

2 Hardy spaces and Toeplitz operators

In the previous paper [II] we employed Segal-Wilson’s version of Sato’s the-
ory, in which they constructed KdV flow on a Grassmann manifold in H =
L?(|z] =r). In his theory the Fourier space H is used as symbols space of
pseudo-differential operators and the separation

H= (L2closure of {zk}k>0) @ (L2closure of {zk}k<0) =H,®H_

is essential since the H; component exhibits the part of differential operators
and he had to take out differential operators parts from pseudo-differential op-
erators. Therefore the projection py to the Hardy space Hy plays an essential
role.

Since in this framework only a special class of solutions meromorphic on C
is possible to treat, the circle |z| = r should be replaced by a certain unbounded
curve to have more general solutions.



2.1 Hardy spaces and projections

Let C be a simple closed smooth curve passing oo in the Riemann sphere CU {oco}
and oriented anti-clockwisely. We assume C' = —C. The curve C separates Co
into two domains D4, where D, contains the origin 0. The situation was
illustrated in ( f1 ). The curve C' is chosen so that e"(*) remains bounded on C
, where h(z) is a given real polynomial of odd degree.

Set

H (D+) = L?(C)-closure of {rational functions with no poles in Dy} .

Then
L*(C)=H(Dy)® H(D-)

holds. For f € L?(C) define
R

= dX D
pfz) =+ A=z or z € Dy,

and

1
(0f) (2) = lim — &d)\ for z € C.
el0 271 CI’T{|)\—Z\>€}>\7’Z

It is known that © is a bounded operator on L? (C) (see [I] and [2]) and p+

have a finite limit a.e. when z approaches to an element of C'. They satisfy

pef(z) = F(2) /24 (OF) (2)
{p:ﬂdszﬂ2—@ﬂ@){mzec’

and py are projections from L2 (C) onto H (D4) respectively. It should be
noted that py are generally not orthogonal projections. If D is a disc, H (D)
coincides with the conventional Hardy space.

To treat an analogue of z2-action on L? (C) for a function u on C we define
the even part and the odd part of u by

ue (2) = 5 (u(z) +u(~2)
o (2) = 3 (u(2) —u(~2)

The numbers +1 in front of z come from the solutions to w? = 1. Any func-
tion on C' can be represented as u = u, + u, and this yields an orthogonal
decomposition in L? (C). It should be noted also that

pi: L2 (C) = H (D) NLZ(C) and py : L3 (C) — H(D4) N L3 (C),  (7)

where L2 (C), L2 (C) denote the even part and the odd part respectively.

2.2 Toeplitz operators

In the previous paper [I1] we considered z2-invariant subspaces of L? (C) when
C'is a disc with center 0. If the curve C' is unbounded, in place of subspaces of
L? (C) we consider a family of bounded vector functions a (2) = (a1(z), a2(2))
on C. The subspace corresponding to a (z) is

Wa ={a(2)u(z); ue H(Dy)} C L*(C),



where
a(2)u(z) = a1(2)ue(z) + az(2)uo(2). (8)
This space will not appear explicitly in the sequel, but the Toeplitz operator
with symbol a (z) plays an essential role.
Set
A©) ={a): supla] < ocf,
reC

and
(T (a)u) (2) = pyt (au) (2) for a € A(C).

Then T (a) defines a bounded operator on L? (C) and is called a Toeplitz oper-
ator with symbol a.

To investigate the differentiability of solutions to the KdV equation we have
to admit the multiplication operation by rational functions on H (D4). To
realize such operations some modification of the spaces H (D4 ) is necessary.
Foran N € Zy and b€ D_ set

Hy (Dy)

— (:— )V H(Dy). 9)
Clearly Hy (Dy) does not depend on b, and
2% € Hy (D) for any integer k< N —1.

For u € 2V L2 (C) we extend the definition of the projections by

_ : (z =) [ u) NN
(byu) () = D,sb/l,llgbqoo 2mi cA—z (A-¥) " diforz € Dy
. (2 —b’)N/ u(N) N ’
_ = 1 A—0b d\ f D_
(p-u) (2) D,sb’,llga}b'aoo 2mi cZ—A ( ) or =€

(10)
if they exist finitely. It should be noted that if they exist for an NV > 0, then
they exist also for any N’ > N and take the same values.

The extended p4 are well-defined for a certain au.

Lemma 5 For N € Zy if a € A(C) satisfies
N (a(z) — f(2)) is bounded on C (11)

with a bounded analytic function f on Dy, then, for u € Hy (Dy)

pe(an) () =  (u ) + 5 [ COZLON S i e iy )

27 A—z

(12)

:2_7”' zZ—A

hold. In particular for w € H (D4) we have py (au) € H (Dy) respectively, and
they satisfy

pru=u if ue€ Hy(Dy) p_u=0 if ue Hy(D4)
pru=0 if ue H(D_) "\ pu=u if ue H(D_) '

which implies Hy (Dy) N H (D_) = {0}.

10



Proof. If u € Hy (D4) and b’ € D_,

(z—b’)N/ a(N)u(A) Y
A—b)"Ndx
C

2mi A—z
NN
QLM/C(a(A))\f_(i\))U(A)<§_Zl) A+ f (2)u(z)

holds for z € Dy due to fu(z — )"~ € H(D,). Since (a — f)u € L?(C)

(@) = ) w () <§21)Nd>\/ RS VDTN
- i —

lim
b’ — o0 C )\_Z

is valid, which shows

pe (o) () = f () ule) + o [ LNLON Do ¢ gy (o).

21

On the other hand, due to fu(z — )"~ € H (D)

N N
(zb’)N/C%(Ab/)NdA/C(G(A)zf_(i))U(A) (12) N

holds for z € D_, and (a — f)u € L? (C) implies

b (o) (2) = i EB [ 2O (4 gy

b — 00 21 z—

L[ @)= FO)u)
/C dA

= omi z—A ’

which shows (). If u € H (D_), then due to au € L? (C') we easily have
lim (2 — b’)N/ @ u) N gy - / aWu)
C C

b’ — o0 A—z A—z

for z ¢ C. Therefore, py (au) € H (D4 ) respectively. The rest of the proof is
clear. m

Consequently the projections p1 can be extended to
L% (C) = Hy (Dy)® H(D_) (c AN L2 (0)) (13)

by ([[3) as projections. The norm in L% (C) is defined by

i = [ Jo= " peu ] 10+ [ oo

Moreover this lemma enables us to extend the Toeplitz operator T (a) as a
bounded operator on Hy (D) for a bounded function a satisfying ([[II). Sub-
sequently a subset Az, (C) of A(C) for L € Z; is introduced as follows:

a € A(C); there exists an analytic function f on Dy
AL (C) =

such that sup |f (2)] < oo, sup |AL(a(X) = f (V)| < o0
zeD AeC
(14)

11



Lemma [B] enables us to define the Toeplitz operator on Hy (D4) by
Tn(a)u=p4 (au) € Hy (Dy).

Let L > N> N. Then {Ty (a)} 5y, has the property that if a € Ay (C), then
TN’(CL)|HN(D+) = Tn(a). Therefore we use the notation

T(a) = Tn(a).

The vector version of Ay, (C) and T (a) are defined by

{ AL (C)={a=(a1,a2); a1, as € A (C)} a5)
(T (a)u) (2) =T (a1) ue (2) + T (a2) uo (2)
Set _

AT (C)={a € AL (C); T(a) is invertible on H, (D4)}. (16)

It should be noted that A" (C) > A% (C) holds if L' > L.

2.3 Characteristic functions and m-functions for a € A" (O)

In this section we define several quantities which will be necessary later when
T(a)™" exists.
For a € A" (C) one can define two functions of H (D_) which charac-

terize W, and are closely related to the tau-function introduced later. For
a € A" (C) set

u(z) = (T(a)™'1) () € Hy (Dy)

v(z) = (T(a)" 2) () € Ha (Dy) o

which is possible due to 1 € Hy (D4), z € Hy (D), and

1)eele) + @) -2 € H(D-) (g

2z

Lemma 6 If a € Ay (C), {pa, 0} satisfies the following properties.
(i) Aq (b) #0 on D_ and

-1 1 _ (@a (b)+1)0*(1/1a (b)+b)u
Ta) 5 = Ag (b) (22— 1) ' (19)

(i1) {©a;ta} determines a.
(iii) There exist k1 (a) € C and ¢q € H (D_) such that

¥a (2) =1 (a) 27" + ¢a () 27" (20)

12



Proof. Here the suffix a is omitted. (I8)) implies that for b € D_ we have
decompositions

a1 (2)ue(z ()(Z)

) +
(b) _p(h)+1
2b < z— b —|— > *
a(2)ve(2) + (Z) (2)

(

2b< EZ -2ea- >+ < Z_Z(b)““@zﬁ/gm)

into elements of Hy (D4) and H (D_), hence

(s& zZ _Zﬁ(b) sﬁ(Z)Z+sﬂb(b)>

L
20

Pt _ L (61 _e(h)+1
T T einre wlhie 2!
Ta) = =u 2o 250
which yields
@) (gp(b)+1);;:§2p(b)+b)u:ZAibz "
T(a)(cp(—b)—i—l);;:;p(—b)—b)u:ZAEb;

If A (b) =0, then the invertibility of T (a) implies

(W) +b)u—(pb)+1)v=0

(Y (=b) —=b)u—(p(=b)+1)v=0
Applying T (a) we have

(¥ () +b) —(p(b)+1)z=0

(¥ (=b)=b) = (p(=b)+1)2=0 "
which means

YO)+b=p ) +1=9(-b)—b=p(-b)+1=0,

hence (2I) implies v = v = 0. This contradicts T (a)u =1, T (a) v = z, and we
have A (b) # 0. [[3) can be deduced from ([22]).

Then, [22)) shows that for any rational function f(z) with simple poles only
in D_ and of order O (27!) there exist two even rational functions r1(2), ra(z)
with the same property such that

T (a) (riu+rw) (2) = f(2)

holds, hence

13



Since such rational functions are dense in Hy (Dy), approximating T (a)l,
T (a)z € Hy (D) by rational functions f, and the continuity of T (a)” " show
that T (a)_1 fn converges to 1, z compact uniformly on Dy. Let

_ : ue (2) ve(2) ) _
Z—{z€D+, det( o () 0o (2) ) —0}.
Then, the linear independence of {u, v} implies the discreteness of Z, and hence
for z € D4\ Z the associated 1y, 1(z), m,2(2) converge to {ril)(z), rél)(z)} and
{r§2) (z),rf) (z)} depending on T (a) ™" f, = 1 or T'(a)~" f,, — 2. Since 7, 1,

7,2 have no poles on D, their limits r§-i)
hence

{ ) (2)u(z) + 5" (2)o(z) = 1
ng) (2)u(z) + 7‘52) (2)v(z) = 2

(z) have no singularity on D either,
(23)

holds for z € D,. Since {rj(-i)} are constructed by {p, 1}, one see that {rj(-i)}

depend only on {¢, 1}, hence so does {u,v}. On the other hand (I8)) shows that
a1 (z), ag (z) are recovered from {p,¢}. We remark that

der (e e ) 20 on D

(iii) is proved by applying [@T) of Lemma Bl to a € AL (C). Namely we
have

 (2) = p— (a1(2)uc(2) + az(2)uo(2))
L[ (e = i) ueN) + (a2(A) = fo(W) uo(A)

:2_7T'ic zZ—A

d.

Since a;(X) — fj(A) = O (A72) for j =1, 2 and ue, u, € Hy (Dy),

Mar(h) = L)) ueV), Alaz()) — f2(0) u(N) € L (C)

hold, hence

L/ (@1(A) = fi(A) ueN) + (a2(A) = fo(A) uo(A)
C

2711 zZ—A

=k (a) 27 + g (2) 271

is valid with

(@) = 5 [ (@00 = A 1) + (e23) = F2(3) () 4

L[ M0 = A1) + ax0) = SN 1)
C zZ—A

Owing to this Lemma we call {¢q4,%q} as the characteristic functions of
a or Wg. This Lemma also implies the possibility of a kind of Riemann-Hilbert

14



factorization of (a1(z),az2(z)), namely ([I8), (23)) yield a representation
a1e(z) a1o2)
a2,0(z)  ag.e(z)
-1 1 1
_ ( Lo ) SO ( 1+¢e(z)  ol(2) )
0 =z rPz) P(z) Ve(z)  z+1o(z) )7
where the second term is analytic on D, and the third term is analytic on D_.
The possibility of this factorization is very close to a sufficient condition for the

invertibility of T'(a).
The m-function for W, is defined by

Ma (Z) = 2t Ya (Z)

1o o) + k1 (a). (24)

k1 (@) is added so that we have an asymptotic behavior
me (2) =2+4+0(1) as z — oo in |arg (+2)| < 7/2 —€ (25)

(1) of (@) implies 1 + @gq (2) is not identically 0, hence mq is meromorphic on
D_. Later we will see that m, determines the potential ¢ and is equal to the
Weyl function under a certain condition on a.

A good subset of AT (C) is given by M, (C):
M (C)

| m(2) = (m1(2),ma(2)); m is analytic on C\ ([—po, o] U iR) (26)
| with pg = v/—Xo and satisfies (i), (ii) below:

i) m(z)=1+ Y mpz"+0(27%) on D_ with 1 = (1,1), my, € C%
1<k<L

(ii) my(z)ma(—2z) + mi(—2)ma(2z) # 0 on C\ ([—po, o] UiR)
For m, n € M, (C) define new elements by

(m ) (z) = (m1(2)n1,e(2) + ma(2)n1,0(2), m1(2)n2,0(2) + m2(2)n2.e(2))
i(z) = 2 (m2,e(2) —m1,0(2)) 2 (m1,e(2) — ma,o(2)) )
mi(z)me(—z) + mi(—2)ma(z)’ mi(z)ma(—2) + mi(—z)ma(2)

We have

Lemma 7 M, (C) satisfies the group property:

m-n, me My (C) (27)
m-m=m m=1
Moreover it holds that
Tm-n)=Tm)T (n) (28)

form, n € My, (C). Consequently M, (C) C A (C) is valid.

Proof. First note M (C) C AL (C). This is because for any b € D_ there
exist my, € C? such that

Z myz k= Z Am/k(z—b)_k—i—O(z*L).

1<k<L 1<k<L

15



The group property (27) is clear. To show ([28) note mH (D_) C H (D_) for
any bounded analytic function m on D_. Therefore, if scalers mi, my satisfy
the condition (i) of ([26)), then for u € Hy (D)

P+ (mimou) = py (mapymou) + py (Mmip-_mou) = py (M1pmau)
holds. With this property in mind we have
T(m- -n)u
= py ((min1e +mang o) te + (M1n2,6 + Manae) o)
=Py (mapy (n1,eUe + N2,0Uo)) + Py (Mapy (N1,0Ue + N2 cUo))

=T (m1) (T (n)u), + T (m2) (T (n) w)
=T(m)T (n)u,

o

which shows (28)). m

If a(z) = m(z) = (my1(2),mz2(2)) € Mo (C), then due to m(z) =1 +
myz~ 1+ 0 (2_2) we have

T(m)l =pimi(z) =1, T(m)z=pima(z)z =2+ m
with my = (m11, m12), hence u(z) = 1, v(z) = z — mya. Therefore
{ Pa (z) =mi(z) -1
Ya (2) = —miami(z) + zma(z) — 2
follows, which yields

_ —miamy(z) + zma(2) S zma(z) e
Ma(2) = ma(2) + mi i (2) + mi1 12. (29)

3 Group action on A" (C)

The KdV flow is described by a group action on A7 (C). For m € Z_ and
odd n € Z; let T{™ be

g = re?; r is a rational function of order m which
rim — do not have poles nor zeros on [—po, fio] U iR,
and h is a real odd polynomials of degree < n ’

r, = {g = e”; h is a real odd polynomials of degree < n} C 1"510)

(30)

where pyp = v/—X\p and the order m of a rational function r is defined by
m = degp — deg ¢ when r = p/q with polynomials p, g.

When we consider g = re® € F%m), the curve C is taken so that e remains
bounded on D . Therefore, C is parametrized as

oo Fe@tiy yeR w(y) >0, wly) =w(-y), wis &)
smooth and satisfies w (y) = n :

16



In most of the cases F%O) will be treated. However, in some important cases we
would like to consider q¢g, q¢,qc,g with g € 1"510) to make arguments transpar-
ent, hence the numbers for m which are frequently appears are 0, —1, —2. Note

that any rational function r can be represented as a product of finite numbers
-1 -1 —1
of gc () = (1-¢7"2) ", ac (2)

Fora € A, (C), g € FS{"’ a natural product ga is bounded on C due to
m <0, hence ga € A, (C).Fora € Ar (C)and g € I when L > N+m > 0,
for u € Hy (D4) an identity

T(ga)u =T (a)gu € Hyym (D4) (32)

and
T(ga): Hy (D+) = Hy4m (D4) C Hy (D4).

hold. Tt should be noted that generally one cannot expect [B2) for a € A, (C)
and g € F%m) unless g is even.

The invertibility of T(ga) is crucial in this paper and this will be shown by
using the tau-function, which is defined by the determinant of the difference

between T'(ga) and T'(a), namely
g9 'T(9a)T(a)~".

The tau-function describes the F,(,m) action very well. To define the determinant
we have to show the relevant operators are of Hilbert-Schmidt type.
For a € Ar (C) let f be an analytic function on D such that

sup |f (2)] <oo and sup|z”(a(2) = f(2))| < oo.
z€D4 zeC

For g € I\, go € TU™ and fixed b € D_ define

Squ (z) = QLM/CSEA;\U(/\) d\ foruw e Hy (Dy4)

Hy,u=ypy (gou) forue H(D_) : (33)
Ra (91, 92) u = py (92p—grau) for u € Hy (Dy)

The domains and images for the above maps are as follows:

T (g291a) Hn(Di) = Hyym (Dy) Sgia Hy (Dy) = H(D-)
T(gpa) Hn(Dy)— Hy(Dy)  Hg H(D-)— Hyym (Dy)
g2 Hy (Dy) = Hnym (D+)

H,, is akin to a Hankel operator if D, is the unit disc. Recall that the norms
in Hy (D4) to H (D_) are respectively

2 —2N 2
\//Cwn A2 (), \//me d.
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Lemma 8 Assume L > N > 0. Then we have
(i) Sa defines a Hilbert-Schmidt class operator from Hy (Dy) to H (D_) if

J.

(i1) Suppose N +m > 0. Then Hg, is of Hilbert-Schmidt class from H (D_) to
Hyim (D4) if
/.

ZNaj (Z) — )\N‘d] ()\)
z—A

2
|dz||[dX\| < oo forj=1, 2. (34)

2

A) — -
92N =92 (2) |7 =2bm) | gy < oo (35)

A—2z

(iii) Identities

{ T (g291a) = g2T (g1@) + Ra (91, 92) (36)

R, (91a92) = ngsgla

hold, and R, (g1,92) defines a trace class operator from Hy (Dy) to Hy (D4)
under the conditions (34), (33).

Proof. For u € Hy (D) it holds that

T (g291a) u = p (g2p1g1au) +py (g2p_grau)
= goT (g1a) v+ p (g2p—g1au)
= g2T (91‘1) u+ Hg, Sglau-

If L > N, we have

(b~ (graw) (=) = 5 /C gD, )0y

for u € Hy (D4), z € D_. Note here an identity

N ~
(Sgra) u(2) LLgl(A)(Ab) a(y A=b)"Nu(N)dx

_ " [N () —s(2) —N \2N —2N
- 2mi /C 2\ (A=0)"7" A u (A) A"V dX

for z € C with s (\) = (A — b)Y @ ()) due to u € Hy (D). Since we can regard
Sgia as a map from zVL? (C) to L? (C), we see that Sy, 4 is of Hilbert-Schmidt
class from Hy (D) to H (D_-) if

J.

which is equivalent to (34)) if we replace s (A\) by AVa; here.

On the other hand the assumption m < 0 implies sup.cp, |92 ()] < oo,
hence Hgy, defines an operator from H (D_) to H (D). We find a condition for
H,, also to be of Hilbert-Schmidt class. Note

_ 1 92_(/\)u _ 1 92(/\)*92(Z)u
Hy,u(z) /c (A) dX /c (A) dA

2w A—z 271 A—2z

s(N) —s(2)

2
22 A7 dz1 ax] < oo,

g\ (A—b)"N AN

18



for w e H(D_), z € D4. Then, Hg, is of Hilbert-Schmidt class from H (D_)
to HN+m (D+) if
/.

For later purpose we find a sufficient condition on g € I‘%m) under which
[B9) is satisfied. From now on we assume without loss of generality the curve C

fulfills
sup/ |[dA| < o0, (37)
2eC J|z—al<10eC

and there exists a neighborhood U of the closure of D and € > 0 such that

g2 (N) — 92 (2)

2
—2(N+m
| [Tz [N

which is (33]). m

z, A el |z—AN<e=(z—Nt+AeUfortel0l]. (38)
For g € F%m) let ¢ > 0 be a constant such that

A" < Jg ()] < el
Ul <ol ooz e (39)

For N € Z, set

9(z) =g

2
—2(N+m
L0 20 g3 )

o)
CZ

which is the square of the Hilbert-Schmidt norm of the operator

Hy:H(D_) — Hyym (Dy).

Lemma 9 If N > max{n,1 —m} hold, there exists a constant cy depending
only on ¢ such that A < ¢g.

Proof. Let ¢ be 0 < ¢ < 1. We first show that there exists a constant ¢;
depending on the constant ¢ of (39) such that

‘9(2) —g(A)’ - cl{ |2 if |2 — Al < €|l (40)

z=A 27 (™A™ [z = Al> €|
holds for z, A € C. Since

7g(iiiw :/O g (A= 2)t+2)dt

for z, A € C, the properties [B8)), (39) show that there exists a constant ¢; such

that
’g (2) —g (V)

m+n—1
’ <ecilz I _xj<en|-
Z—A

The other estimate is clear and we have ([0).
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Note A S Al + AQ with
Ay = c%/ | 20D | =2V gy
[z—=A<e[A|

Ay =c3 72 (™ + ™2 272N |dz | |d
|z—=A|>€|A|

Since the exponent of the integrand of A; is equal to
2(m+n—-1)—2(N+m),

Ay < o0 is valid if N > n —1/2. On the other hand, there exists a constant c;
such that

As < e / A2 (1P 4 AP 720 2 ).
|z—=A|>€|A]|

The right side is finite if
2N < -1, —2(N+m) < -1

which is equivalent to N +m > 1. The above constants c1, co can be chosen
depending on ¢, hence so does cy. m

The dependence of the constant ¢y on the constant ¢ will be used in the
proof of the continuity of the tau-function later.

4 Derivation of Schrodinger operator and KdV
equation

Schrédinger operators and solutions to the KdV equation can be obtained from
T (e**a), T (e“‘”z3 a) under their invertibility. This section is devoted to the

rigorous derivation of these equations.

4.1 Differentiability

The KdV flow is constructed by one-parameter group g; (z) = et"?) with odd
polynomial h, and for the construction the differentiability of T (g:a) with re-
spect to ¢t will be necessary. In this section we extend the definition T (a). For
a polynomial h of degree n

hu € Hyipn (Dy) if we Hy(Dy),
so for a € Ay, (C) define
T (ha)u = py (hau) =T (a) hu € Hyyn (D),
which is possible if L > N + n. For a = (a1,a2) € AL, (C) we define

T (ha)u =T (hay)ue + T (has) u,
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Lemma 10 Leta € Ay, (C) and g; (z) = et"®) € T,,. Assume gra € AR, (C)
foranyt € R. Then if L > N +n, for any u € Hy (D)

8tT (gta) u="T (hgta) S HN+n (D+)
T (gia) " u=—T(ga) ' T (hga) T (g1a) ' u € Hyin (D)
holds. Any higher derivative OFT (g,ga)_1 u exists if L > N + kn.

Proof. Let Ny = N +n. Recall T (a)u = T (a1) ue + T (a2) uo if @ = (a1, a2)
(see (77?)). The first identity follows easily from

1
t—s

T (gia)u—T (gsa)u
t—s

1 t t
=T / p+ (g-hau) dr = / T (hg-a) udr.

To show the second identity first we verify the continuity of T(gta)flu in
Hy, (D4) with respect to t. Applying (ii) of Lemma R with g1 = 1, g2 = ¢g and
replacing N by N;, we have

T (gta) = g:T (a) + Ra (1, g1)

with
Rq (Lgt) = Hgf,Sa-

Therefore
-1 -1 -1 -1 -1 -1
T(ga) " = (1+T(a) " g7 Ra(Lg)) T(a)'g;

holds. We show g; 'R, (1,9;) is continuous in the Hilbert-Schmidt norm on
Hpy, (D4), which is reduced to that of g; ' H,, as an operator from H (D_) to
Hpy, (D4). The HS-norm of g; ' H,, is

t
2

LF 0 M GO I WNE PRIt

A:
A—z

C?2

The proof is carried out similarly to that of (35). Observe

g (N ge(2) 7 = gs (M) gs (2)7" /t

— T (B)=h()) | gr
<c(lol ) (- s)

IN

’h()\)—h(z)
A—2z

for z, A € C. Then separating the integral [I]) on |\ — z| < €|A| and |A — z| >
€|Al, we have

Agcl(t—s)Q/

[A—z|<e|A|

2
ta /u e A7 |g: (V) g (2) 7" = 95 () g6 (z)*l\ 2| 72N (dz| dA
—z|>€

The first term is dominated by ¢z (¢ — s)% if

2(n—1 2(n—1 —2N;
(121770 4+ AP0 272N ]

2(n—1)—2N; < -1 => N; >n,
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which is satisfied if N > 0. The second term tends to 0 as s — ¢ if —2N; < —1,
which is always valid if N; > 1. Therefore we have the continuity of g; ' Rq (1, g¢)
in the HS-norm on Hy, (D), which implies T (g;a)” " u is continuous in ¢ for
any fixed u € Hy, (D4) if L > N + n. Consequently noting the identity

e (T (grrea) " =T (ga)") = T(gerca) ¢ (T (g10) = T (gr4ca)) T (900) ",

we have the Lemma. The existence of higher derivatives can be shown similarly.
]

4.2 Derivation of Schrodinger operator
First we derive a Schrodinger operator from a € A; (C) and g = e, with

e (2) = ",

The curve C is chosen so that e, (z) remains bounded for any fixed x € R,
namely

C— { tw(y) + iy, y € R; w(y) is a positive even smooth } (42)

function on R such that w (y) = O (1) as |y| = o

Recall
a(z) f (z) = a1(2) fe(2) + a2(2) fo(2)

for a vector function a (z) = (a1(2), a2(z)) and a function f(z) on C. For L > 3,

a € Ay (C) assume e a € AT (C) for any € R. Let u, € Hy (D) be
uy =T (eqa)” " 1€ Hy (D)

and set
wy = p_ (ezauy) € H(D_).

Then, for a bounded analytic vector f (z) on D4 satisfying a (A) = a(\) —
fO =0\t onC

1 g (A
wy (2) = ¢\ a(})

= 2 (A) dA
2 Jo zf)\u()

holds. Since Lemma [0 implies §Ju, € Hj1 (Dy) for j < L —1,

1 A& () g (V) + @ (A) By (N)

Opw (2) = 5— [ " dA
2mi Jo ) Z2—A ,
1 a NG -
Pw, (2) = —— Ja A a (N ugy () +2xa (A) Opug (A) + @ () Ozug ()\)dA
2mi )¢ z—=A

(43)
Since u, € Hy (Dy), the expansion

(z=N"'= D TR MM (T

1<k<M
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shows

- L—1_xA3
+z*L+1i/ AT AN, (ydx
C

> T Fs(@) + 2L (2) (44)

1<k<L—-1

with w, € H(D-). Since dyu, € Hz(D4), 0?u, € Hz(Dy), {@3) shows
similarly

_ —k ot —L+2~(1)
Ostws (2) = Lngher 2 sk(@) +2 133(62)(2) €H(D-). (45)
Rwy (2) = Yy cper g2 "si(a) + 271057 (2)

with @(El), P el (D_). The notations in ([I8) and Lemma [6] imply

{ Wy (2) = Pe,a (2) _ (46)

s1(z) = k1 (ega)

Set
fa(@,2) =a(2)uz (2) =™ (1 + @e,a (2)) - (47)

Proposition 11 Let L > 3 and assume eza € A (C) for any x € R. Set
q(x) = =25 (x) = —20,k1 (eza) .

Then, a Schriodinger equation

— 03 fa (2,2) + ¢(2) fa (2, 2) = —2°fa (x,2) (48)
holds, and {sk(2)}o<t<y_o in ([#4) is determined by a recurrence relation

Sp 42815k — 2834, =0, (1<k<L-3) (49)
for given s1 (), {Sk(o)}nggsz-
Proof. The identity w, = eyau, — 1 yields

)

Oz Wy = €, (zauy, + adyuy)
2w, = e, (zQ(wQE + ad?u, + 2za@muz)

which implies
02wy — 220w, = eza (aium — z2uz) ) (50)
Here we have used the identity

22a(2)u(2) = a(z) 2%u ().

Our strategy is to modify (B0) so that the left hand side is an element of H (D_)
and the right hand side is an element of (e;a) H3 (D). From (@5

20w, = sy () + Z 2R (@) + 2 EP D (2) = 8 (x) + ve
2<k<L—2
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follows with v, € H (D_), which combined with (B0) yields

2wy + 28w, — 20,
=eza (8§um — ZQUI) + 220, u, + 257 (ezau, — 1) — 2v,

=eqa (aiuz — 22ug + 25huy) . (51)
Note
2wy + 28wy — 2v, € H (D), 02uy — 2%uy + 28hu, € Hz (D).
Then, applying p+ to (BI) we have
0="T (eza) (Quy — z*uy + 251uy)
and the invertibility of T (e;a) on Hs (D) yields (@S]).
(’ﬁuz — 22u, + 25'1um =0.
Since

0 = 02w, + 25w, — 2u,

= Z (i + 28155 — 28341) 2R 4 27 L3,
1<k<L—3

with v, € H (D_), we have (Z9). m
Remark 12 ¢(x), fq (z,2) themselves are well-defined as continuous functions
if L > 2, and Oy fo (x, 2) exists as a continuous function. Although the Schrodinger

equation ([{8) is satisfied if L > 3, it seems that 92 fq (z,2) exists even if L = 2
due to [{8). However we have no rigorous proof.

Now the m-function mg has another representation by fq, (z, 2).
Corollary 13 It holds that

8zfa ('T’ Z)
fa (1'; Z) =0

Proof. Set b(2) = Opus (2)],_0» b(z) = 0, fa (x, 2)|,—o- Then

= —mg (2). (52)

b(z) € Hy (D4+) and a(z)b(z) =b(z)

hold. Since e fq (z,2) = 1 + w4 (2), [@3) shows

W) ==z two )+ 3 =0+ e)

1<k<L—2
=—z-—51(0)+w(z)

with w € H (D_). Applying p; to the identity

a(z)b(z)=—2z—51(0) +w(z)
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we have
T (a)b(z) = —z = 51(0),
hence
b(z) =-T (a)_1 z—s1(0)T (a)_1 1,
which implies
b(z) = a(2)b(z) = = (2 + Ya (2)) = 51(0) (1 + ¢a (2)) .

Consequently we have

Oufa(z,2)|  _ =(24%a(2) = 51(0) (14 ¢a(2))

fa (.T,Z) =0 1+<Pa (Z)
= —myg (z) + K1 (a) — 51(0) = —Mga (Z)

due to s1(0) = k1 (a). m

4.3 Derivation of KdV equation

Our next task is to derive the KdV equation from g = e; , with
zz-i—tzs .

eru(z)=¢

In this case the curve C is determined by requesting e; (%) to be bounded on
C, hence

tw (y) + iy, y € R; w is smooth positive even on R,
C= . 2 .
and w satisfies w (y) = O (y ) as y — 00.

For L > 4 let a € A (C) and assume e; ,a € AY" (C) for any t, x € R. Let
Uy = T(erpa) "1 € Hy (Dy) and wy, = p_ (e;0afr,) € H(D_). Then,
Lemma [I0 implies

wy g (2) = Z 2 Fsp(t,x) + 27 E MWy 4 (2) with s, € C, Wy, € H(D_)
1<k<L—1

for t, x € R.
Proposition 14 Let L > 4 and assume e; .a € A (C) for any t, x € R. Set
q(t,x) = —20381 (t,2) = —20yK1 (€,40) .

Then q satisfies the KdV equation

Dualt,2) = 30%a(t,) — Sa(t, 2)dualt, ). (53)

Proof. In this case N = 1, n = 3. Our strategy for the proof is similar to that
of the last one. Since wy ; = e;zaur, —1 € H(D_)

{ OpWi = €45 (2QUL 5 + 0L UL 1)

_ 3
O,y = €t x (Z aut . + aatut,z)
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which leads us to
2 2
atwt,z =z axwt,ac + €tz (atut,z -z azut,x) .
Since
220wy = 28| + s + 542"t mod 2" H (D_),

substituting 1 = e; zau;, — wy , and

Z = Z€t AUt x — ZWt,g
= azwt,z - et,zaazut,x — ZWt,x
=52 — 51— 5027 — e a0, up s
= (s} —

= () -

-1
$2) 27 — 51 (€1,2QUt g — Wi z) — €4,2,A0, Ut ¢

s+ 87) 27 — erpa (s1use + Optiy z)
(= means mod z~'H (D_)) into the above identity yields

Zzazwt,z
s1((s) —s2+ s%) 27t — e pa(siup g + Duis,z)) + 85 + szt

= sh (€120 ftn — wiq) + (8] (s — s2 + S?) + s5) 27— e pa (s1upp + Optiy 1)

= —shwe 4 (87 (5] — s2+ 87) +83) 27" + erpa((sh — 51) Ut — iz,

Therefore

Ot = —shina + (s (55 — 52+ 53) +55) =~

+ et,0a ((sh — 81) Ut,p + Opus,e — 220Ut — Optiy )

1

holds, and we have

(54)

/ 2 —
(8 — 81) Utz + Otz — 270Ut o — Opliy,e = 0
/ / / 2 / -1 —
OrwWi z + SoWt 5 — (sl (sl — 59+ 51) + 53) z7 =0

due to the invertibility of T (e; za) on Hs (D, ). Since the coefficient of 2~ for
the second identity vanishes, it follows that

st + shs1 — (sh (sp —s2 + s%) +s5) = 0.
Here the identities for k =1, 2 and ¢'*°a in @9) of Proposition [I1]

s +2s)s1 —2s5 =0
sy +2s)sa —2s5 =0

allow us to have

051

—5’251 + (s’l (s’l — S2 + s%) + 5’3)

= —s1(s7/2+ s)s1) + (3'1)2 + 825 — s)59 + 55 /2 + s} 50
—s1 (/2 + s181) + (1) + s8]+ (/24 s1s)' /2
= s1'/4+3(s1)° /2,
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which is (B3)) by substituting q(t,z) = —20;$1 (t,x). m

The above calculation does not reveal explicitly the reason why the KdV
equation appears. There is a hidden algebraic structure behind discovered by
Sato [1§].

The invertibility of T (e; ya) plays an essential role in the above calculation.
The non-existence of T (e; ,a)” " at some point (t,#) means that the solution
q(t, z) has a singularity at (¢, ).

5 Tau-function

Hirota introduced an object 7, called tau-function whose mathematical meaning
was discovered by Sato later. In this paper the tau-function will be used to prove
the invertibility of T (ga).

The tau-function defined in [IT] is written in the present context as

Ta (9) = det (¢7'T' (ga) T(a)™"). (55)

The operator ¢g~'T (ga) T(a)~! is a map on Hy (D) and the determinant is
well-defined if the operator ¢g='T (ga) T'(a)~* — I is of trace class on Hy (Dy).
The identity (B6]) implies

9T (9a)T(a)" —I=g 'Ra(1,9)T(a)",
hence it is sufficient for this that Rq (1,g) is of trace class. Since Rq (1,9) is a
product of Hy and Sq, there are two cases where Rq (1, g) is of trace class.
(i) H, is of trace class.

(ii) Hy and S are of Hilbert-Schmidt class.

(i) is the case for g € FE)O) (rational function of order 0) due to Lemma B7
However for other cases one has to impose an extra condition on a. To avoid
this inconvenience we use the modified determinant dets, namely

dety (I + A) = det(I + A)e 4.

It is known that this determinant can be extended to any operator A of Hilbert-
Schmidt (HS in short) class. Since I+ A is invertible if and only if dets (I + A) #
0, this dety is sufficient to verify the existence of T (ga)”". Set

72 (g) = dety (97'T (ga)T(a)™") forac AP (C), g€ i, (56)

7 (g) can be defined if Rq (1,9) = HyS, is of HS class, which is valid if Hy is
of HS-class as a map from H (D_) to Hyym (D4), and Lemma [0 implies that
H, is of HS class if

N > max{n,1—m}, (57)
which implies

L > max{n,1 —m}. (58)
Conversely the existence of N satisfying (&7 follows from (GS).

In the definitions of 74 (g), 7&°) (g) the operator =17 (ga) T(a)~! is a map

on Hy (Dy), hence 74 (9), P (9) may depend on N. However we have
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Lemma 15 Fora € AL (C), g € ™) gssume that N, N' € Zy satisfy (57)
and the two operators

T(a): Hy (D4+) = Hy (Dy)
T(a): Hy' (Dy) — Hy' (Dy)

are bijective. Then the determinants and the modified determinants on Hy (D)

and Hy: (Dy) in {23) and (26) are equal, hence 74 (g), 2 (g9) do not depend
on N.

To show this lemma we use a metric free nature of determinant. For the
necessary facts of determinant refer to [20].

Lemma 16 Let H, Hy be two Hilbert spaces and Hi be a subspace of H as
vector spaces. Assume Hy is dense. Suppose a linear operator A on H is of
Hilbert-Schmidt class and satisfies

AH, C Hi and Apg, = A|H1 is of Hilbert-Schmidt class in H;.
Then
dety (IH + A) = detg (IH1 + AHI)
holds. If A is of trace class, then det (Iyy + A) = det (I, + Am,) holds as well.
Proof. Let {e,},~,; be a complete orthonormal basis of H; and {f,},~,; be
the orthonormal vectors in H generated from {e,},~; by the Gram-Schmidt
process. Since H; is dense in H, {fy},~; turns to be complete in H. Let V,

be the n-dimensional subspace generated by {er},,~, and P,, @, be the
orthogonal projections to V;, from Hy, H respectively. Then it is known that

deto (IH1 + PnAHIPn) — detg(IHl + AH1)
as n — oo. (59)

detg (IH + QnAQn) — detQ(IH + A)

Let B, E be n x n matrices whose entries are
Z bijej — B = (bij), and F = ((ei,ej)H) .
1<j<n

If we denote

Al = ((Aei,ej)Hl) = ((Afiafj)H)1gi,jgn’

1<ij>n’
then the identity AZ = BAI EB* yields
dety (Iy + Q,AQ,) = dety (I, + AL
= dety (I, + BA" EB*)
= dety (I, + BA["B7")
= dety (I, + AF") = dets (I, + Py Aw, Py)

due to BEB* = I,,. This together with (B9) completes the proof for dety. The
proof for det is similar. m
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Proof of Lemma Note that for N’ > N an identity
N’ _ _
g Ry (1,9)Tn (@)~ =g 'R (1,9)Ty (@)™ (60)
Hy(Dy)

holds on Hy (D4). On the other hand, for u € H (D) the identity

(b—2)Nu(z)=1lim(b—2)" (1 —-e2) Nu(z)

e—0

implies H (D4.) is dense in Hy (D4). Then, applying Lemma [I6] to

H=Hy (D-i-) , Hi=Hy (D+)a A= g_leN/) (1,9) T'ne (a)71

yields the lemma.

This Lemma yields flexibility in choosing N, namely N can be arbitrary
if (B1) is satisfied for given L, m, n. Therefore 7P (9) can be defined for
ac A (C), g¢€ T'"™ under the condition (]). However it should be noted

that for any rational function r € F((Jm) Lemma BT shows 7T (ra) T(a) ™' — I is
of finite rank on any space Hy (D4 ) with N such that —m < N < L. Therefore,

72 (1), 7a () can be defined for r € ™ a € AP (C) if L > —m.

5.1 Cocycle property of tau-function

The tau-function is a key material to study the KdV flow and in this section we
give fundamental properties for the tau-function.
Note
acAL(C), geT™ — ga e AL (C),
since ¢ is analytic and bounded on D, . Assume further
ac A (C), g €T, gy e,

We consider three tau-functions 75> ( % 2) i

- o (9192), Ta~ (91), Tgra (g2) simultaneously,

which is possible if L € Z satisfies (26) and g1a € A7 (C).
For simplicity of notations set

Ea(91,92) =t (((9192) 7' T (92010) T(g1a) "1 — I) (97 ' T(g10)T (@) ~ 1) )
= tr ((9192) " Ra (91,92) T(910) "' Ra (1,91) T(a) ") . (61)

Lemma 17 Assume L satisfies [58) and let N be one N of (57). Then we have
the followings.

(i) The map T (g1a) is bijective on Hy (D4) if and only if 72 (g1) # 0.
Similarly the map

T (9291a) : Hy (D4) = Hym (D)

is bijective if and only if 7 (9192) # 0.
(i) If 7 (g1) # 0, then it holds that

72 (g192) = 782 (91) 732 (92) exp (— Ea (91, 92)) - (62)
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Additionally if r1 € F(()O), ry € F(()m) and 74 (11) # 0, then
Ta (T172) = 74, (1) Trya (T2) - (63)
(iii) Suppose g1 satisfies g1 (2) = g1 (—z). Then, it holds that T (g2g1a) =
T (g2a) g1 and , ,
Tarh (92) = 78 (92) -
Similarly, for rational functions r1 € F(()O), ry € F(()m) satisfying m1 (2) = r1 (—2)

we have
Tria (12) = Ta (12),  Ta (r172) = Ta (1) Ta (12) .

Proof. The identity (6] implies

95 ' T (92910) T (g1@) " =T+ g5 'Ra (91,92) T (g1a) "

with the Hilbert-Schmidt class operator Rg (g1,92). Then general theory of
Fredholm determinant shows that the operator g5 T (gag1a) T (g1a)”" is bi-

jective if and only if deto (g;lT (gggla)T(gla)_l) # 0, which implies the

bijectivity of T (g2g1@). The bijectivity of T (g1a) follows by letting g» = 1.
The definition of the tau-function says

757 (9192) = deta ((9192) 7' T (91920) T(a@) ") .
On the other hand it holds that
(9192)7'T (9192a) T(a) ™"
= (97" (92'T (92010) T(910) ) 1) (97 'T(1@)T(a)7") . (64)
Note the identity

detsy (G=' (I + A) G) = dets (I + A)
{ dety (I 4+ A) (I 4 B)) = dety (I + A)dety (I + B) e t(AB)

for Hilbert-Schmidt operators A, B and a bounded operator G having bounded
inverse. Then taking determinant in ([64]) yields

7 (g192) = deta (g7 95 T (g9192a) T(g2a) "' g1) dets (g7 ' T(g1a)T(a)~?)
X exp (—tr (gf 95 'Ra (91,92) T (g10) " 9197 'Ra (1,1) T (a)_l))
=72 (1) 77} (92) exp (—Ea (91, 92))
For r € 1"(()0) Lemma 7 implies that r='7" (ra) T'(a)~! is of finite rank, hence

Ta (1) can be defined. Taking the determinant in (G4]) we easily have (G3]).
Suppose g1(z) = g1(—z). For u € Hy (D4), a = (a1, az2) we have

T (g291@) u = p+ (9192a1) Ue + P+ (919202) Uo

= P+ (9201) grue + P+ (9202) g1uo

= p+ (g2a1) (g1u), + p+ (9202) (g1u),
=T (g2a) (q1u),
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which implies T (g2g1a) = T (g2a) g1 on Hy (D), hence

T (g291a) T(g1a)~" =T (g2a) 19, ' T(a)™" = T (g2a) T(a) ™"
is valid. This shows
732 (92) = dety (95 'T (g291a) T(g1a) ") = deta (g5 ' T (92a) T(a) ") = 782 (g2) -

5.2 Continuity of tau-functions

Since the determinant dets is estimated by the HS-norm, the continuity of
7,52) (g) with respect to g € F%m) follows from that of g7 'Rg4 (1,g) with re-
spect to the HS-norm, which is reduced to the continuity of H; = py (¢9-) on

H (D_) with respect to the HS-norm due to

Ro(1,9) = HySq (see Lemma [), (65)
where

Ra(l,g) :Hy (Dy)— Hy (Ds)

H, H(D_) — Hy (D3)

Sa . Hy (D) — H (D)

The condition for L, n is (G8]), namely
L > max{n,1 —m}
and N is arbitrary if it satisfies (57). Denote

dn (91, 92)

(.

)

0 n -0 e
Z—A

1/2
|27 [dz| |dA| )

if g1, 90 € I, we have

Lemma 18 Let a € A" (C) with L satisfying ([38). Assume g1, go € rim
and dn (g1,1) < ¢1. Then there exists a constant cq depending on ¢1, a, N such
that

P (1) — 782 (92)’ < cadn (91, 92) - (66)

Proof. Recall the definition 75° (9) = deta (I +97'Ra (1,9)T (a)fl) for g €
F%m), and
_ -1 - -1
g 1Ra (Lg)T(a) =g 1HgSaT(a’) :
The HS-norm of this operator is dominated by dx (g, 1), hence if dy (g,1) < oo,

then 4 (9) is defined finitely. Generally if [|Al| ;. [|[B| gg < c1 there exists a

constant co depending only on ¢; such that

|dety (I + A) —dety (I + B)| < c2 ||A— Bl g -
Therefore 7'512) (g1) — rf’ (92) can be estimated by those of the HS-norms of
g7 "Hy, — g5 "Hy, on the space Hy (D), which is just equal to dy (g1,92). ®

For later purpose we give a sufficient condition for the convergence of Tl(f) (gx)-
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Lemma 19 Assume the following properties for g, g € F%O) :

(i) there exist c1, ca > 0 such that for z € U

a<lge(2) <o g ()l Sezlz™ (67)
(i1) gk (2) = g (2) as k — oo for any z € C

where U is a neighborhood of the closure of Dy satisfying (38). Then, for
re I"E)m) and a € Ay, (C) with

L > max{n,1 —m},

it holds that
Té2) (rgx) — 7'((12) (rg) .

Proof. Choose an integer N > 0 such that L > N > max {n,1 —m}. Set

9(x) g —ge (=) g (V)

Ak(z,)\): T\

Since
i rgirg)? = [ 180N Y o],
C

it is sufficient for dr n (rgx,rg) — 0 as k — oo to show that there exists a
function f integrable with respect to |z| > |dz| |dA| such that

1Ak (2, VP < f(z,0).

Note
Ap(zA) =7(2) g(z)tE Ny (>\Z) :;(z)g (2)
() e (2) L (A) gk (/\Z):; (2) g (z).
Then (@) implies
2 i 2= Al < e[\

zZ—A

r<z>9k<z>—r<A>gk<A>’<q{ o]” |
SV (el A 2= A el

Set

fi(z0) =[] (IZImM*1 Iooxj<epl + N2 + I/\Im)I\z—A|>e|A|) :

Since ’r (2) " gk (z)fl‘ < co]2|7™, it is sufficient to show the integrability of

f1(z, )\)2. The rest of proof proceeds just as the proof of Lemma @ The expo-
nent of the first term is 2 (n — 1) — 2N, which is less than if N > n. The integral
of the second term is dominated by

/ A2 172 (1P IAP™) 127N (]
CZ

which is finite if

—IN< -1, —2m—-2N<—-1=N>1,1-—m.
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6 Non-negativity condition of AY" (O)

Generally potentials arising from a € Aé{,w (C) are complex valued, so to obtain
real potentials some sort of realness for a and g is required. a € Ay (C),

g€ F%m) are called real if they satisfy

a(M)=a(X) for xeC, g(z)= g(z) for z € C. (68)

If @ and g are real in this sense, then clearly we have

3

Ya (2) = Pa (Z), Ya(2)=vVa(Z), Mma(z) =ma(Z)
7a(9), 767 (9) € R

and the associated potential takes real values.
Define a subclass of A7

Aszjr ) = {a e AT (C); 782 (r) > 0 for any real rational r € FE)O)}
= {a € A" (C); 74 (r) > 0 for any real rational r € 1"80)} :
The second identity follows from the identity

73 (1) = 7Tq (1) exp (—tr (rilT(m) T(a) ' — I)) .

Ta () is well-defined for any rational function r € 1"80) since the relevant operator
is of finite rank. Our strategy to show % (g) >0 forreal g € T is as follows:

i) Show T((12) r) > 0 for any real r € 'Y and @ € A (0).
0 L+
ii) Approximate a general real g € F%O) by a sequence of real rj € T,
g 0
(iil) Use the continuity of 7',(12) (+) to have 7'512) (gr,;l) > 0 for sufficiently large k
and show gr; 'a € A7, (C).
(iv) Apply the cocycle property of 7 () to have 7 (9) > 0, namely

7 (g) =2 (gritre) =72 (g5 ") 72 (k) exp (—Ea (gt 7k)) > 0.

gry,

This programme will be realized in the next section. At the same time a close
connection of the m-function with the Weyl function for Schrodinger operators
will be revealed.

6.1 Non-degeneracy of Tau-functions for a € A}, (C)
To investigate properties of mq and 7 for a € szer (C) we prepare several
lemmas. In this section the curve C is parametrized by

C={tw(y) +iy; y R}

with a smooth function w(y) > 0 satisfying w(y) = w(—y) and w(y) =
O (y~(»=b).
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Lemma 20 Leta(x), b(x) be real valued analytic functions on an interval I C R
satisfying

T —y
a(@)? + b(z)2 > 0 foranyx, yel

a(x)>0
Then we have either a(x) = 0 identically or a(x) >0 for any x € I .
Proof. Since the first assumption implies

a(y)b(x) — a@)b(y) > 0 for any z > y

if a(z) has a zero at zg € I, setting x = x¢ or y = 2 we have
a(y)b(zg) > 0 for any y < xg (69)
a(x)b(zg) <0 for any x > a9

The second assumption implies b(xg) # 0, hence ([69) together with the property
a(z) > 0 shows a(z) = 0 on (—oo,x9) NI or (zg,00) N I. Then the analyticity
of a yields the vanishing of a(z) on I. m

In what follows 74 (1) for r € 1"80)
that 74 () > 0 holds for any real r € Fgo) ifa e Aszjr (C). In what follows we

have to assume a € AZLmjr (C) with L > 2 since in the proofs we use ¢q, Mmaq.
Let

will be used instead of 74> (r). Recall

pe(z)=1+(""2, g (2)=(1 —Cilz)_l for (e D_.

Lemma 21 Leta € Aszjr (C) with L > 2. Then the followings are valid.
(i) Immg (2)/Imz >0 on D_\R and mq (2) is analytic on D_.

(i) 14 @q(2)#0 on D_.

(iti) Ta (qz,Pwy) = (14 ¢a (21)) (1 + ¢a (22))
T, x93 € D_NR ifxl 7é T2.

Mq (1) — Mg (x2)
Aq (z2) (21 — 22)

> 0 for any

Proof. In the formula in LemmaBTsetting ¢, = ¢, (o =¢(, ¢ =n, b =7¢€ D_,

we see that qcqzpnpr is @ real element of I"E)O), hence 7, (quanpﬁ) > 0 if

ac Aszer (C). Lemma BT implies that
nli_ggo Ta (chzpnpﬁ) =Ta (ngz) ;

hence we have 74 (quf) > 0 for all ( € D_. On the other hand from Lemma

B we have
2 Immgq (¢)
Im¢

which implies Immq (¢) /Im¢ > 0 for ¢ € {( € D_; pa (() +1#0} = Z,.
Note ¢q (() = 0 as ( — oo, hence the set Z, is discrete. Suppose mq ({o) = 0
for some (g € Z,NC,. Then the maximum principle for the harmonic function
—Immyg () shows Imm, () = 0 identically there, which contradicts mg ({) =
(+0 (C’l) as ( — 00, hence > 0 on Z,NC,. One has the same property also

a (ac0g) = I#a () +1
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in C_. On the other hand mg (¢) has poles at {y € D_\Z, since pq (¢) + 1
and 1q () 4+ ¢ do not vanish simultaneously due to A, (¢) # 0. However this is
impossible if we apply the same argument to mq (¢ )71, which implies

I a
mg (z) is analytic and M
mz

> 0 holds on D_\R.

This in particular means 1 + g (2) # 0 on D_\R. The remaining problem is
the existence or non-existence of poles of mgq (z) on D_ NR. We rewrite the
identity in Lemma [37] as

o (geupey) = Lal@) +6) (P (@) +1) — (va (&) +1) Wa (@) +¢)
. Aa(G) (G - Go) :

which is valid for any (3, (2 € D_. Set (1 = x1, (o =22 € D_NR and

a(@) = pa (@) + 1, b(z) = tq (2) + 2.

e (#1)b(x2) —a(ea)b )
a(xy T2) —a(x2 L1
Ta (421 Pa>) =
Aq (72) (21 — 22)
holds, and the property Aq () # 0, Aq () = —1 as x| — oo implies Aq () < 0
on D_ NR, which together with 74 (¢z,pz,) > 0 (due to a € A7" (C)) shows

a(z1)b(x2) —a(x2)b(z1)

Tl — T2

<0.

Moreover, in the inequality 74 (¢z, Pz, ) = 0 letting x93 — 0o, we have 74 (qz, P2y ) —
Ta (¢z, ) just by the same argument as above and

a(z1) =¢a (1) +1="74(gs,) >0

is valid. The condition a (z)*+b(z)? > 0 follows from A, (z) # 0, hence one can
apply Lemma 20l to have a(z) > 0, since a (x) — 1 as |z| — co. We have shown
(i) and (ii). To show (iii) first assume z7 # 22 and suppose Tq (¢u;Pzy) = 0.
Then

0=

b — b —
a(z1)b(zz) —a(xa)blzr) o (21) @ (22) c(x2) —c(z1)
T — T2 Ty — X2
with ¢(z) = b(z)/a(z). Observing c(z) is analytic and ¢/(z) > 0, this identity
implies ¢(x) is identically constant, which contradicts c¢(x) = = + o (1) as |z| —
00, hence we have 74 (¢z,pPzy) > 0if 21 # z2. B

Lemma 22 Leta € Alejr (C) with L > 2 and r € Fgo) be real. Then 74 (r) >0
holds, which in particular means ra € Aszjr (C).

Proof. First note that for r{, ro € FE)O) and a € Aszjr

Ta (11) > 0, 74 (r2) > 0 = 74 (r172) > 0.
This is because r1a € Aszjr (C) since the cocycle property implies

Tra (7) = Ta (171) >0 foranyrealr €T

(0)
Ta (11 0
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and
Ta (1172) = Ta (1) Trya (r2) > 0.

Generally real r € 1"80) is a product of

(1) 4cqzPnPy with n, € D_\R

(2) gspt with s, t € D_NR

(3) gcqzpspr with ¢ € D_\R, s, t € D_NR
(4) gsqpypy with n € D_\R, s,t € D_NR

(70)

Therefore, if 74 (1) > 0 is proved for any r of these 4 cases, we have 74 (r) > 0
for any real r € FE)O).

We begin from the case (1) and let r (z) = (chzpnpﬁ) (z). Then (II3) of
Lemma [37] implies

n+ ¢+ lpa () + 112 [9a () + 1
(4TmnTm () [Aq (n)]

Ta (1) =

2

1 (1) = 710 Q) | e () = ma () -

772762 772_4‘2

due to realness of a. Note ¢4 (2) +1 # 0 for any z € D_ due to Lemma 211
Owing to the symmetry of r with respect to {, 7, one can assume Im({ > 0,

x ‘

Imn > 0. The condition a € A”“’ (C) implies 74 (quanpﬁ) > 0 for any 7,

¢ € D_NC,. Assume 7, (qgo qC—Opnopn—o) = 0 for some 19, (o € D_ and consider
the analytic function

Maq (Z) — Mg (Co) 22— 52

T ) et 2 G

The property 74 (qgo q?)png) > 0 shows
|f(z)] <1 forany z € D_NCy, (72)

and the assumption implies the equality at ([T2)) for z = 19, which concludes
f(2) = €' with a € R identically on D_ N C,. Then

(ma () — ¢ma (G0) ) 2% + €ina Q)& — ma () o
(1 _ eioz) 22 + eiaCOQ _ 5

me (2) =

holds, which contradicts mgq (2) = z + 0(1) as z — oo. Therefore we have
|7 (2)] <1 always, which is nothing but 74 (r) > 0.

The case (2) is already proved in Lemma 20l if s # ¢. Suppose s =t and let
sn € D_NR be a sequence converging to s. Then, 74 (¢s,ps) > 0 is valid due to
sn # s for any n > 1. Moreover one can show easily 7, (qsqs’nl) — 1 asn — oo.
Taking sufficiently large n such that 74 (qsqs’nl) > 0 and fixing it we see from
the cocycle property

Ta (qus) = Ta (Tn ((anps)) = Ta (Tn) Tr,a (anps) >0,
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where r, = ¢q;.", since r,a € AZL”i (C) due to 74 (ry) > 0.
Similarly one can show 74 (chzpsps) > 0 as a limiting case of (1). Setting
1 = q¢qepsps we have

Ta (chzpspt) = Ta (r1q-spt) = Ta (1) Trya (¢-spt) > 0,

which shows the case (3). The case (4) can be shown similarly. m

The next task is to approximate general g € I'), by rational functions.

Lemma 23 Let g € T',,. Then there exists a sequence of rational functions
{ri}is1 C Fgo) such that r, — g in the sense of (67).

Proof. Let U be a neighborhood of D, whose boundary is described by an

|*(n*1)

equation |z| = c|y for large |y| with sufficiently large ¢ > 0. For integer

k>1let
1+ 2\"
bk (2) = 1—%
2k

Note limg_,o0 @k (2) = €*. For a positive constant ¢ < k an inequality
e 2 < (2)] <€ if |Rez| <a (73)
holds. If h(z) = ¢12™+ lower degree terms, then

co = sup |[Reh (2)| < o0 (74)
zeU

is valid. Define real rational functions by

ri(z) = ¢ (h(2)).

The zeros and poles of r;(z) are determined by the equation h (z) = £2k. If a
is chosen so that a > co, then clearly there exist a constant c3 > 1 such that

c§1§|rk(z)|§03 for zeU and k>1

holds. Moreover

- h(z) k-1 . .
()] = W) 64 (1 ()] = W (2)] | —— 2 ‘1 i
2%

shows
Iri(2)| < eqlz["™" for z€ U and k > 1.

Since limg_ o0 71 (2) = €™*) = g(2), all conditions of Lemma [[0 are satisfied. m

Now we have

Proposition 24 Let g € T be real and a € A’L’“jr (C) with L > max {n,2}.
Then, 7 (9) > 0 holds, hence ga € AZL",Z_ (C) is valid.
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Proof. L > max{n,1} is necessary for the definition of 7 (g) for g € T

and L > 2 is required to apply Lemma[22l First note that if 7 (9) > 0 holds,
then ga € A7 (C). To show this let {ry},, be the sequence of Lemma 23]

approximating g and r be any real rational function of F(()O). Then r, — ¢
implies
72 (gr) = lim 72 (rer) >0
k—o0

and ©
+(2) (r) _Ta (97“)

exp (Fq (g,7)) >0,
() P (Ea (9,7))

nv

which means ga € A7"Y (C).
Now {g;€ = gr,;l}k>1 also satisfies the conditions of (G7) with g = 1, hence
Lemma [T9] shows
klgrolo 71(12) (grk_l) = 7'512) (1)=1.

Fix a sufficiently large & > 1 such that 71(12) (gr,?l) > 0. Then the above
argument shows gr; 'a € Alejr (C). Applying Lemma 22 to gr, 'a € AZLmjr (@)

and the rational function r; we have Téf),la
k

(rg) > 0. The cocycle property of

tau-functions implies

2 (g) =78 (gry tre) = 78 (97 Y) Téfgla (rv) exp (—Ea (gr3 " 7x)) > 0.

If g = re” with real r € F(()O), then
Té2) (9) = 7'((12) (r) TT((QL) (eh) exp (—Ea (T, eh)) >0,

which completes the proof. m

6.2 m-function and Weyl function

Since for a € Aszer (C) we know eza € Aszer (C) (ex(z) = €#) from Theorem
[0 Proposition [[1l shows that we have a Schrodinger equation

— 02 falr,2) + q(2) falr,2) = =22 fa(x, 2).
Since ¢ is real valued, the Schrédinger operator
Ly=-9*+¢q

turns to be a symmetric operator on L? (R), one can consider the Weyl’s classi-
fication of the boundaries +co0 and the Weyl functions m if the boundaries are
of limit point type. In this section we establish the connection between the m-
function and the spectral theory of L, initiated by Weyl. Necessary knowledge
for this section will be obtained in [I3].

Lemma 25 (Boundary classification) For any z € C\R

dim {f € L (Ry); Lof =zf}
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is independent of z. According to 1 or 2 of the dimension the boundary +oo is
called limit point type or limit circle type respectively. It is also valid that if +oo
is of limit circle type, then

dim {f € L>(Ry); Lof =zf} =2

for any z € C.

If the boundary +oc is of limit point type, then there exists a non-trivial
solution fy (x,z) to Lyfy = zf4 which is in L? (Ry). fy is unique up to
constant multiple. The Weyl function is defined by

_L02)
er(Oa Z)

The boundary —oo also has the same classification, and if it is of limit point
type, the Weyl function at —oo is defined by

f2(0,2)
f-(0,2)
with the L? (R_) non-trivial solution f_ (x, 2).

A general sufficient condition for the limit point type which is suitable for
our purpose is known by [8]. A proof is given for completeness sake.

m(2)

m_(z) =

Lemma 26 If there exists a positive solution f on Ry to Lyf = Ao f for some
Mo € R, then the boundary oo is of limit point type.

Proof. Define .
u(w) = 1(a) [ )y

Then u satisfies Lyu = Agu. We show u ¢ L? (R, ), which implies that +o0 is
of limit point type due to Lemma 25l For this purpose set

/

()= [ £y and o) = (~s(0) 1)’

Then ¢(z) > 0 and
—s(z)™t = C+/ t(y)dy
0

with some constant ¢. Since s(z)~! > 0, we have
x
/ t (y) dy < —¢,
0

which implies
/ t(y) dy < —c < 00, (75)
0

On the other hand

/Ooou(z)de = /Ooos’(x)ls(z)de = /Owﬁ = /O"Otc(l_z)
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holds. Since for any t(z) > 0

/Ooot (y) dy + /Ooot (y) ' dy = /OOO (t (y) + t(y)_l) dy > /Ooogdy — 0,

([T shows . .
/O u(e)de :/O % — o0,

which completes the proof. m

Suppose the boundaries +oo are of limit point type. Then, it is known that
the symmetric operator L, has a unique self-adjoint extension in L? (R) and
mx (2) are analytic functions on C\spL, satisfying Imm4 (2) /Imz > 0.

Now we consider relationship between mg (z) and m4 (z). The definition of

fa(2,2)
fa(@.2) = a(2) (T (es0) 1) (2)

implies
feya(@.2) = e, (2)a (=) (T (esey@) ' 1) () = €, (2) fu (x + 1. 2).

Therefore, Corollary [I3] shows
_ amfeya (7, 2)

0z fa )
—Meya (2) = AN _ Oufa(r+y,2)

I:O_ fa(1'+y,z>

v Jfa(y,2)

hence it holds that
fa(z,2) = fa (0,2) exp (—/ Me,a (2) dy) ) (77)
0

Proposition 27 Let a € Alejr with L > 3 and q be the associated potential.
Then the boundaries oo are of limit point type for the Schrédinger operator
Lq. The m-function mq and the Weyl functions my are connected with mq by

mato={ 5 R ™

Proof. The key ingredient for the proof is (76), which shows
OeMe,a (2) = =22 — q(x) + Me,a (2)°, (79)
since fq (7, z) satisfies Ly fq (2, 2) = —2%fq (z, 2). ([9) implies
Or Imme,q (2) = —ITm2? + 2Reme,q (2) Imme,q (2),

which together with (7)) yields
o) = 17 0.2 exp (=2 [ Reme, ) do
0
Immg (2) r Im 2?2
= fa (0,2)] ———"=exp </ 7613/) :
) 0 (2)

Imme,q (2 Imme,a
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Then an identity

b b
[ Va1 o = 10,2 P (1—exp (— / mfji()dy))

follows. Since Im 22 = 2RezImz and Immg (2) /Imz > 0 hold due to (i) of
Lemma 21], if Re z > 0, we have

o Immg (2)

| e ar < g 0.0 T < o (50)
On the other hand, if z = A € D_ NR, then (7)) implies fq (x,A) /fa (0, ) is a
positive solution to L,f = —A?f, hence the boundary +oo is of limit point type
owing to Lemma Since fq (7,2) € L? (Ry) if Rez > 0 and Im 2z # 0, the
uniqueness of such a solution justifies f, (z,2) = fi (v, —22), which shows the
identity mq (2) = —my (—2z2) if Rez > 0. The boundary —oco can be treated
similarly, and we obtain mq (2) = m_ (—2?) if Rez < 0, which completes the
proof. m

This Proposition says that for a € Alejr its m-function mg (2) is analytically
continuable up to C\ ([0, po] UiR) (o = v/—Ao) although originally we knew
its analyticity only on D_.

The next issue is to show the converse statement of Proposition This
proposition and Lemma 21l implies that m = mg for a € AZL”i (C) satisfies

mm(z) on C\(RUIR)

Im=z
m(x) — m(—x)

(81)

>0 if zeRand |z] > po
x

It should be remarked that the analyticity of m on D_ implies 1 + g (2) # 0
on D_ since 1+ ¢4 (2) and z + 14 (z) do not vanish simultaneously due to
Ag (2) # 0. In the process of the proof we need an operation

227C2
f(z) =10

for a function f on C as long as they have meaning. Then {d;} cep_ Is commu-
tative and d¢d_¢ = id.

(def) (2) = - f(©)

Proposition 28 Let L > 2. For a € Ay (C) suppose that mq is analytic on
C\ ([~po, o] UiR) and satisfies (81). Then, a € AT" (C) holds.

Proof. We have to show 74 (r) > 0 for any real rational function r € F(()O).
Since such r is a product of the 4 types of rational functions of ([70)), first we
prove 7q (1) > 0 for r of (TQ). If r is of the type (1) with n, { € D_NCy, then
Ta (1) is given by () and 74 (r) > 0 is equivalent to |f(z)| < 1 on D_NC4
with

=2

Ma (Z) — Mg (O 22 —¢

ma () — ma (¢) 2* = (2

flz) =



Set w = ¢2. Then

7) — Ma (V) —ma (VW) 2 — W
e Ma (Vz) = ma (Vw) z =W

holds. Since mgq (1/2) is analytic on C; and Immg (1/2) > 0, Schwarz lemma
implies |f(v/z)| < 1 for z, ¢ € C4, unless mq (1/2) is

az+b
cz+d

ma (V) =

with some constants a, b, ¢, d satisfying ad — be # 0, which is impossible since
ma (v/2) = /z+0(1) as z — oo. Therefore we have |f(z)] < 1if Rez, Imz > 0,
Re(, Im{ > 0. On the other hand, when z € C_ we use the identity

ey MV ma ()T
o e VA v

If Re¢ >0, Im(¢ > 0, then Imw > 0 implies

Z—w

<

z2—w
and
Immg (—vz) >0, Immg (vVw) >0
due to Im /2 < 0, Im y/w > 0, hence
ma (—Vz
ma (—v/z

which implies |f(z)] < 1if Rez < 0, Imz > 0, Re{, Im¢ > 0. The rest of the
cases can be proved by the symmetry and we have 74 (1) > 0.
For the type (2) r = qsp;

o (1) = (1+¢a(s) (1 + pa(=1)) ma(s) —ma(t)
“ Ag (1) s—t '

)—72
) —

Recall
(1+¢a(s) (1+ ¢a (1))
Ag (1)

On the other hand the property Immg (2) /Imz > 0 implies

>0 if |s|, [t| > po.

m! (1) = lim Mq (t + i€) ~Ma (t —ie) ~ im Immg (¢ Jr i€) >0,
e—0 2ie e—0  Im (¢t + ie)

which shows

Ma (8) — Mg (1)

t >0 if Sate (—OO,—,U,0) or (,U@,OO)-
s —

If s € (—oo,—pp) and ,t € (po,o0), then from (m(z) —m(—z)) /z > 0 an

inequality
M (8) —mg (t) <0
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follows, hence we have 74 (1) > 0 for the case (2). If r = 4cqepspe, the cocycle
property implies

Ta (1) = Ta (qung 1quspt) =Tq (qug) Tacpra (pg 1quspt) :

Since the m-function for gcpra is decdgma, which satisfies [®I) due to Lemma
B9 we have Tacpza (pspt) # 0 in view of the last argument, and

—1 —1 Va
quTa (pz quspt) = TqCZDZa (pz qz) qupza (pspt) = AqCTT‘l (C) qufa (pspt) 7£ 0

is valid. Therefore we have 74 (r) > 0. The case (4) © = ¢sq¢p,p7 can be treated
similarly, hence 74 () > 0 for r of any type of (Z0).

The property 74 (1) > 0 for general real r € F(()O) can be obtained by observ-
ing

Ta (r172) = 7a (1) Tra (12) > 0

if 74 (r1) > 0 and the m-function m,, 4 satisfies (81 since m,., o is obtained by
repeating the operation dedy, di to mq. If 74 (r1) = 0, approximating r; by
real rational functions r,, such that 74 (r,) > 0 one sees 74 (r172) > 0, which
completes the proof. m

It is certainly better to prove 74 (r) > 0 directly by showing

det (ma (ng?—”;; (_nj)> #0 (see Lemma [37)

for mg, satisfying (BIl), however the author has no such proof.

6.3 Proof of Theorem [1

inv

A more concrete criterion for an m to be in A7 is given by the two conditions
(M.1), (M.2) in Introduction. Recall the definitions. Suppose an analytic func-

tion m on C\ ([—po, po] UiR) (o = v/—Ao) satisfies
(M.1) m(2) has the property (&I]), namely

I
mnl) .o o C\®UR)
) = m(2) 2
——=— "2 >0 if zeRand |z|> po
x
(M.2) m has an asymptotic behavior:
m(z) =z+ Z mez "+ 0 (271 on D_. (83)

1<k<L-2

Proof of Theorem [
Suppose m satisfies (M.1), (M.2) and set m(z) = (1,m(z)/z). To see
m € M, (C) only the condition (ii) of (26), namely

ma(2)ma(—2) + mi(—2)ma(z) # 0 on C\ ((—jo, o] UiR)  (84)
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must be verified. For this m (z) the left hand side of [84) is (m (2) — m (—2)) /=,
which is not 0 since Im (m (z) — m (—z)) > 0if Imz > 0 and m(x) —m(—z) # 0
if |x| > po. Since the identity m = my, is clear, Proposition 28 implies m €
AZLmjr (C), which proves the theorem.

It may be interesting to see to what extent mg for a € A”w (C) has the
property (M.2).

Proposition 29 Let C' = ¢C with o > 1. Then mq for a € A”w (C) satisfies
(M.2) on D" =oD_ replacing L by L — 1 — (n—1) /2.

Proof. To verify the property (M.2) recall the definition of the m-function mgq
with a € Am” (©):
_Z + Ya (2)

Ma (2) 1+<Pa(2’)+’ﬂ(a)
with
va(2)=a(2)T(a)"'1-1
{wa(z):a(z)T(a) IZ_Z EH(D*)v

and K1 (@) = im0 20q (2). Set u=T(a) "1 € Hi (D), v=T(a) 'z €
Hy (D). Since (I2) implies

271 zZ—A

for u € Hy, (D), we have

o) = (au) () = 5 [ LTI,

R L

The expansion

1 — Zz—kAk 1 —M )\]\/
zZ—A zZ—A
k=1
implies
<Pa (2) = Sk 2y 2 "y (u) + 27 EF16 (2)
VYa (2) = Yuot 2 Moy (v) + 271720, (2)
with

52 (Z): / )‘L72 (a()\)if()\))v(A)dAGH(D,)

Since AY=1 (a (\) — £ (\)u (N\) € L2 (C), Schwarz inequality implies

N

|d\| L—1 o u 2 clyv !
3P < g [ 5 [N @)~ 0w < el
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for z € C' due to Lemma B2 Similarly we have |0y (2)]* < ¢|z|"~". Therefore

Ya (2) = Zk;l 2Rl (u) + O (z*L/)
Va (2) = Zﬁ;Q 2R (v) + O (Z*L,Jrl)
holds on €' with L' = L — 1 — (n — 1) /2, which implies

L'—2

Mme (2) =2+ Z ez " 40 (ziL,Jrl) .
k=1

7 KdV flow

We are ready to construct the KdV flow.

7.1 Definition of the flow and Theorem

We define the KdV flow by making use of the m-functions and the continuity
of mg, () with respect to a is necessary, which is shown by representing m/, by
the tau-function. The identities in (II2)) implies

(1)
Ta (QC)Q
TLS,Q) (qf

= 7_(2)7(%)2 exp tr ((qEQT (q?a) — 2q51T (qca) +T (a)) T (a)fl) )

Mg (¢) =

The cocycle property shows

ngi) ¢
Mga (¢) = # exptr (47T (¢29a) — 247'T (gcga) + T (9a) ) T (9a) ")
Tga \9¢

2 (9a2) .
=3 3'a (9) exptrBy
Ta (99¢)

for g € T, with
By =q;°T (9¢2a) T (ga)~" —2¢; 'T (9qca) T (ga) ' + 1
+ ((gqg)flT (9¢2a) T (ga)~"' g - I) (g_lT(ga)T(a)_1 - 1)
-2 ((gqgf1 T (9gca) T (9a)' g — I) (g’lT (9a) T (a)"" - I)

=By — g 'Bag+ 9 'BoT (9a) T (a) ",

where
_ 1 _ -1
By = a; 2T (gqga) T (ga)” — 2qC Ip (99ca@)T (ga)™ " + 1.
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Then we have
trB; = trg~! (qC_QT (94ia) — 2qC_1T (9qca) +T (ga)) T(a)"".
Since for v € Hy (Dy)
4. °T (94¢a) — 297 ' T (9qca) + T (9a) v ()

e (k@ e 1) a0
=y

27 P dA
_ L [ G=xgVaWye®),
211 c (g_)\)Q )

the above operator is of rank 2, and the trace turns to

_ 1 [ 0N
tI‘Bl = i /C 7(£ _ )\)2dA

with

0(9.0) =g (\aW (T(@ g ) N =-a) (T(@)  g7) V),

hence (2)( )
L 1 [ 0N
mga(C)*mTa (9) exp Q_M/cmd/\ (85)
holds.

Lemma 30 For L > max{n + 1,3} let a1, az € Aszjr (C). Then

(i) Suppose Mq, = Ma,. Then Mgq, = Mgyq, for any g € T'y.

(ii) Suppose O,k1 (eza1) = Opk1 (exaz) for any © € R. Then Oyk1 (ezg9ar) =
O.k1 (ezgas) for any g € Ty, and x € R.

Proof. Propositions 24] 27] 2§ provide necessary ingredients. Suppose mgq, =
Ma, for a1, ay € A7"} (C). Then Lemma [38 implies

Mgepnay (2) = (d¢dyma,) (2) = (d¢dyma,) (2) = Mgcpnasz ().

Repeating this operation finite times one can show m,q, = M;q, for any real
rational function r € F((JO). For g € T',, we approximate it by real rational

functions ry € F(()O), which is possible by Lemma We show the convergence

My, q (C) = myq () for each fixed ¢ € D_ by making use of (83]). Lemma 9

shows
& (mq?) & (gqf)

ko0 7(2) (qug)2 2 (gqg)Q.

On the other hand © (1%, \) = O (g, \) in L? (C) is valid if L > max{n + 1,3},
hence

lim my, , (€) = my, () (86)

k—o0
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follows. Consequently one sees

m;;al (C) = khﬁnc}o m;kal (§> = thH;o m’/!‘kag (C) = m;az (C)

for ¢ € D_. Since generally myq (() = {4+ 0(1), we have mgyq, = Mgya,-
(ii) is proved by the uniqueness of the correspondence between the Weyl
functions m4 and the potential g. That is, mq, = Mg, follows from

—20,k1 (eza1) = —20,k1 (eza2) = q(z).
Then (i) yields myq, = Mga,, which implies again by the uniqueness
—20,k1 (exga1) = —20,k1 (exgaz2) .
We have used the condition L > max {n + 1,3} to have the differentiability. m
Set

Q1 (C) = {q; q(x) = =201 (ea) with real a € A7*} (C)}.
Then this Lemma allows us to define

(K (9)q) (x) = —20,k1 (exga) if q = =20,k (eza) € Qr (C)

for g € I'n, and we have Theorem 2] We call the flow {K (9)} cp, as KdV
flow.

It might be helpful to remark that one can define an equivalent flow on the
space of m-functions. Let

My (C) = {m; m(z) = mqa(z) for a € AT} (O)},
and define
g Mg =Myq for mg € My, (C).

(1) of Lemma [@l justifies this definition. The set

M (€)= (UML (ac>>

L>1 \o>1

is equal to the set of all functions m satisfying (M.1), (M.2) on o D_. Theorem
dimplies g - m € My (C) for m € M (C).

7.2 Tau-function representation of the flow

Hirota introduced his tau-function as the function u(t, z) such that —202 log u(t, x)
is a solution to the KdV equation and he tried to find an equation satisfied by
u(t,z). Sato discovered the intrinsic meaning of u(t,z) and found that solu-
tions to the KdV equation can be described by the tau-functions. Although the
theorems in this paper can be proved without this representation, in view of its
historical significance we show it in the present framework.

To define the tau-function 74 (¢) we have to assume that the operator

g 'T(9a)T (a) —I: Hy (D+) = Hy (D)
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is of trace class. We assume in this section the condition [34) of Lemma [ for
Aa (A), N =1, that is

J.

which shows the operator Sy is of HS from H; (D) to H (D_). This condition
can be verified in the same manner as Lemma [ for a(z) = (1,m (z) /z) if m
satisfies (M.1), (M.2) for sufficiently large L.

Let

226]' (Z) — AQaj ()\)
zZ—A

|dz| |[dA] < oo with a; (z) = a;(2) — fi(z), (87)

xz+t23

ex(2) =€ €T, e (z)=ce €.

In Proposition [Tl for a € Az (C) satisfying e,a € AY™ (C) for any z € R we
have introduced the potential ¢ associated with a of Schrédinger operator by
q(z) = —20yk1 (ega). The k1 (a) is described by the characteristic functions as

K1 (a) = Clggo (Pa (C) .

Proposition 31 Assume a € Aszjr (C) and (87). Then an identity
k1 (eza) = O, log 74 (€x)

holds, which yields
q(z) = —20%log 74 (ex)

if L > 2. Generally for g €T, and a € A’L’“jr (C) with L > max{n, 2}

(K (9) q) (x) = =202 10g 7a (gez)

holds. Especially the solution q(t,z) to the KdV equation starting from q(x) is
given by

q(t,x) = 203 log Ta (e10) ,
ifa € AZLnjj_ (C) for L > 4. The condition L > 4 is necessary for the differen-
tiability of q(t,x) int (see Proposition [1]]).

Proof. The definition of ¢4 implies

(@) =l Gpa (€)= Jim ¢ [ £eCay

(—o0 {—o0 2_7T'Z C C—)\
a(\ a)”?
L ) (T (@) ™
C—oo 27 J o ¢—A
- % @ (7@ 1) () an (88)

On the other hand the formal identity
Ta (€0) = det (eng (eca)T (a)*l) = det (1 e H, ST (a)*l)

is justified by reproving below in a way different from that of Lemma [I7] that
e- H, ST (a)”" defines a trace class operator on Hy (D). For v € Hy (D)
it holds that

Sav (2) = 1 /c Mdk =/( (apw)z 427t (Sgl)v) (2)

27 z—
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with

l (aw) = QLM/Ca(A)v(A) d\
e |
1 (Aa(N)—za(2)v(N)
=50 ), 3 dA\e H(D-)

since @ (\) = O (A\™F) for L > 2. Hence for z € Dy

_ 41 (aw) ec(A=2) _ _
YH. Sqv(z) = == / d\+e ' He 2zt SY
e, Sav (2) o Jo DA +e, 270550 (2)
1 — e~ €*
= 1 (aw) ——— + e He 2T S0 (2) (89)

holds. Since S5 defines an HS operator from H; (D) to H (D_) under (&1),

e~ H, »~15" turns to a trace class operator on Hj (D), which makes it
possible to define 7, (e.) rigorously. Moreover in this case for w € H (D_)

1 e(A—z) _ 1
e He 27w (2) = —/ ((37 — e) A tw (\) da
21 Jo A=z
holds due to
1 1

1
Alw(Ndh=— [ A lw () dr =0
omi for—a WO omi J N0 :

Hence the square of the HS-norm of e te'H, 27! is

b = (2m) 7 /C )

Since there exists a constant ¢ such that

1
/ (etf()‘fz) — 1) dt‘ <ec
0

holds for € € R, A, z € C, the dominated convergence theorem shows lim,_,¢ 0. =
0. Consequently we have

2

e(A—z) _1q
c 721272 dA |dz]

e(A—2) -1

ee(/\fz) -1
e(A—2z2) ‘

<crev/be =o(e). (90)

trace

e He 2 ST (@)™

The first term of (89) generates a rank 1 operator and

lim 181 (a,v) 1me® l (aw) = L/Ca (A v (N)dA.

e—0 € z 21

Noting an identity (see ([20]))

det (I + A) = exp (trlog (I + A)) = exp (trA +o (||A||fme))
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if || All}0ee < 1, we have
Ta (€c) = exp (tr (ee_lHeeSaT (a)fl) +o (e))

— oxp (6%/06 ) (@) 1) () dr+ o (e))

T

—1+ 62%, aw (T (a)”" 1) (\)dA+ o (e)

for sufficiently small € due to ([@0). Then (88]) implies

and the cocycle property shows

hm Ta (eere) — Ta (ez) _ hm TeIa (65) - 1
e—0 € e—0 €

Ta (€z) = K1 (e2a) Tq (€) ,

hence 9, log 74 (€2) = k1 (eza) holds. The rest of the proof is automatic. m

8 Sufficient conditions for ¢ € Q; (C)

A sufficient condition for ¢ € Qr, (C) was given in (83) in terms of its Weyl
functions m4 (see Theorem [I)). In this section we provide concrete examples
of this class including the well-known cases. Throughout this section we treat
g = e with real odd polynomial h of degree n, hence the curve C is taken so
that g is bounded on D, namely

C— Tw(y) +iy; yeR w(y) >0, w(y) =w(-y),
w is smooth and satisfies w (y) = O (y_(”_l)) asy — oo |-

8.1 Decaying potentials

If a potential ¢ satisfies ¢ € L' (R,), it is known that for 0 # k € C, =
{z € C; Im z > 0} there exists the Jost solution fi (x,k) of

_aif-i- (xa k) + q(:E)f+ (xa k) = k2f+ (xa k)

such that

as r — 09,

(£l —emrow
fo(z, k) = ike™* 4+ 0 (1)

where ’ denotes the derivative with respect to z. Therefore

_ 12 0,v7)

my () = TV

f+ (Oa \/z)

and one can see that m (z) is extendable to C\ {0} as a continuous function.
f+ (x, k) is obtained as a unique solution to an integral equation

00 e2ik(sfac) -1

e R fy (2, k) = 1+/ o4 (s) ey (s, k) ds.

x

50



Rybkin ([I5]) showed

N+1
eI (2 k) =14 Z f: (z) (Qi]{;)_j +o (k;*Nfl) (91)

j=1

for ¢ such that ¢9) € L' (R) for j = 0, 1,---, L. The small o is uniform with
respect to x > 0. The coefficients {f; (z)} are determined inductively by

{fl()Q **f q
fiv1(z) = —ff (x) = [~ ()f;()s, (G=1)

Therefore one can show f;41 is L—j times differentiable and f]L ARESA (Ry).

Since -
(efizkf_i_ (x, k))/ — / 62”“(5*95)(1 (s) eiiksf_,_ (8, k) ds

substituting (@II) we have asymptotic behavior

L+1
( ﬂzkf Z g; () (2tk)~ I+o (k:*N*l) ,
which leads us to
L+1 B
my (2) = —v— +ZCJ J/Q—l—o( (L“)/Q) if z— ocoon Cy.
j=1

An analogous asymptotic behavior for m_(z) is possible if ¢9) € L' (R) for

j=0,1,---, L by replacing c; by (—1)jJrl ¢j, which shows

Proposition 32 If ¢U) € L' (R) for j = 0, 1,---, L, then (M.2) is satisfied
with L + 2 for any curve C, and we have q € Q41 (C). Therefore one can
define the KdV flow K(g)q for g € Ty, if L > 1. For the KdV equation L > 3 is
required to guarantee the differentiability.

One cannot apply this proposition to the interesting case ¢(z) = ¢ (x) /z
with smooth periodic function ¢ satisfying ¢ (0) = 0, however there is a possi-
bility of estimating directly m4 in this case by a sort of perturbation.

8.2 Reflection coefficients

To obtain another class of ¢ satisfying (M.2) we prepare the necessary termi-
nologies from the spectral theory of Schrédinger operators. Since my (z) take
values in C; for z € C,, we start from

Lemma 33 For any complex numbers my € C4 set

1 myme_ my +m_
m=-—————\ my=—t— R=-—t
my +m_ my +m_ my +m_

Then, mi, mgo € C4, |R| <1 hold, and & = (argm;)/m € [0,1] (7 =1, 2)
satisfy

1

b5

S le-3

S| <5 IRl. (92)

)

|
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For z € C, set

1 , mg(z) _ er(Z)m* (Z)
T ) GG gy
& () = Zargm; (2) (= tmlogy (2)) . = 1,2

m(z) = —

Then, {m;,j = 1,2} are Herglotz functions. m (z) defined by

[ —my(=2%) if Rez>0
m(2) = { m_ (—2%) if Rez<0

satisfies the asymptotic behavior ([83) if and only if m4 satisfy
my (—2%) = —z (1 - Zﬁ;; ckz "+ 0 (sz))
m_ (—2z?) :—z(l— Pl 2ck( z)” k—l—O(z_L))

as z — oo on D_ N {Rez > 0}. It is known that if ¢ € CF=2(]0,6)) for some
d > 0, then defining inductively the functions ¢; () by

ci(x) =0, e (z)=q(@)/2,

¢j (@) = (¢j_y (@) = Xp2 e (@) ¢ (2))/2, j =3
one has ¢, = ¢, (0). The coefficients for m_ (—z2) can be obtained by consider-
ing ¢ (—x) in place of ¢(z). Then, if ¢ € C*=2(—4,6), ([@4) implies

(94)

m(=22) = 527 (14 Sl e 40 (7))
1
my(=22) = —32 (1+ T e 40 (1))

on D_N{Rez > 0} with some a, by € R, where M = [(L — 1) /2] ([z] denotes
the integer part of ). m4 can be recovered from my, ma by

1
m4 = —2—ml (1 + 1 +4m1m2) .

(5 7 <i§)
:< fol2)
1—fe(z +OZL

with f(z) = 25;21 ckz~F. Let N be the least number such that (1 - (—1)k) ek #
0. N should be odd and N > 3, since f (z) = c2272 + O (273). Then one sees

(95)

Observe

1+ 4my (—2%)ma(—27)

M
L dmy (=2 ma(=2%) = = Y dez™* + 0 (2747 (96)

with di, € R, dy # 0. However one cannot expect to have (@6) from (@3)).
We would like to have a partial converse:
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Lemma 34 For Herglotz functions my suppose my, ma are given by (93) and
satisfy (94) with M', L' such that 2M' < L'. Then m satisfies the conditions
(M.1), (M.2) in (83) with L =1+ [L'/2].

Proof. We have only to verify (M.2). Since

my +m_ = —ml_l, mym_ = —ml_lmg,
we have
my = 1 (—mll Fy/mi? +4m11m2) = b (1 + \/m) )
2 2my
Then

.2 .2 M
\/1+4m1( 2)me(=2%) _ _n 1+ 3 %Z_Q(k—N)JFO(Z—Luer)

dn k=N+1 "N
M’
=M1+ Z d;vzfﬂk*N) +0 (ziL,JFQN)
k=N+1
M’
_ N Z &z~ +N L 0 (ZfL'JrN)
k=N+1

holds with other constants dj,. Since L' — N > L' — M’ > L'/2, we have the
lemma. m

The asymptotic behavior of m; is translated to that of &; as follows. If
Imz > 0, then Imm;(z) > 0, hence 0 < &; (2) <1 holds. logm; are of Herglotz
as well, since Imlog m;(z) = 7&; (#) > 0. On the other hand (ii) of (7)) implies
that my(z), ma(z) take real values on (—oo,Ag) and mq(A\) > 0 there. Let
A1 < Ao be a unique zero of mgo(z) if it has, and set Ay = Xg if it has not.
Assume in the sequel

r

Then m; are represented as

L ([Pa Do
e e =)

—Z A — & (N) -1
mz(z):*\/Q_z 1_Zzexp< N —62( ))\_2>0/2d/\)

The function argm. (A +40) is intensively investigated by Gesztesy-Simon [6]
in connection with inverse spectral problems, and they call argm. (A +40) /7
as xi-function. To have (@8] for some L > 1 it is sufficient that

o
0

§j()\)%'d)\<oo for j =1, 2. (97)

0

(98)

¢ (A)—%‘d)\<oo, G=1,2) (99)
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hold for an M > 1. This is due to the expansion
M—1

T N e [T L~ [TAS)
AO A_def;) A MeF ) dX + S e dx, (100)

and the estimate

/AU ﬁd/\'g//\o o S T /A MM ()][dA. (101)

We control |€; (A) — 1/2] by another quantity. The reflection coefficient R(z)
is defined by

@) +m(2)
m(2) +m-(z)

This quantity was considered by Gesztesy-Simon, Rybkin and others as a gener-
alization of the conventional reflection coefficient defined for decaying potentials.

R(z) =

8.3 Proof of Theorems [3], [4

Assume

/OO MR ()| d) < oo (102)
0

Then Lemma B3] implies that ([@9) holds, and from ([I00), (I0TI]) one has

0 & (A) — M-1 -
7/)\ JAT‘M - kZ:O 27 A AF (&- (A) — %) dX\+ O (z*MJrn/271)

|~

0

if z € D_. Applying Lemma B4 with L' = 2M — n + 2 we see that this m
satisfies (M.2) with

L=1+[L')2|=14[M—-n/2+1]=M+1—(n—1)/2,

which yields Theorem

The condition ([I02)) implies that the ac spectrum is large, which restricts
the possible potential class strongly. We try to relax the condition (I02) by
replacing it with a condition on a curve surrounding [\g, 00).

We prepare two curves

C ={+w(y) +iy; y € R} withw(y)=cy= ™Y for |y >1
Cy = {£wi (y) +iy; y € R} with wy (y) = ey~ (M= for |y| > 1

for ny > n, and

az{—z2;z60, Rez >0} ={z+iw(z); s €R, > Ao}
Ci1={-2%2€Ci, Rez>0} ={zti (z); 2 €R, = > A}

with @ (z) = ez'="/2, & (z) = ¢12*~™/2 for £ > 1. Then one can assume
D_cD_.
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Lemma 35 Let M € Z be M > n/2. Assume g € C*M="(—6,6) and
/ |z R(2)| |dz| < oo (103)

holds. Then, the m satisfies (M.2) with L < M +1—(n—1) /2 on the curve C.

Proof. Let ¢ be ¢(z) = —¢i (—2z) in Lemma HE0 with k¥ = (ny — 1) /2. Then
¢ maps C\[0,00) onto Dy _ = {z; Imz| > &1 (Rez), Rez > Ao} conformally.
Without loss of generality we can assume —a? < X\o. (03] implies

/Om [6 ()M R (6 ()] lde (V)] < o

which is equivalent to
/ MM R(¢(N)]dX < o0
0

due to ¢' (A\) =1+ 0(1). Hence Lemma [33 implies

f
0

Since m; (¢ (2)) (j = 1, 2) are Herglotz functions and its argument on R is
7€ (¢ (N)), applying the formula (76) to m; (¢ (2)) yields

([ et

([0

We have assumed here —a? < \; for simplicity. Then for z € C4

el mee?)

with f () =& (#(N)) — 1/2. Lemma H0 implies

& (60\) - %‘ dA < . (104)

mi((2)) =

ma(¢(2)) =
mi(z

¢ (2) =2 — g1 (—2) — (—2) T2 gy () (105)

with functions g; analytic near z = oo taking real values on R, hence

Z¢ - 1/ AR F () dA
0
is analytic at z = co, and the identity

Y N LG B S e I e °°AMfA>
| e =)+ o

holds. The estimate
< AMF ‘ / M g
d)\| < A d\
[, ™ S e [, P
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for z € C. Since ny > n, (I05) shows for some ¢ > 0

gt (2)| > el "** ifze D_.

Therefore
1 2M—1 _
~ —J _ n/2—
me) = 57= ;; e

on D_. However the assumption ¢ € C2M=" (=5, §) and (@5) imply

M—(n—1)/2

1 _k _ n/2—
:2—\/—_,2 1+ kz:; ai (—z) +O(z M+n/2 1)

mi(z)

on a sector {e < argz < m — €}, hence a; = 0 for even j, which implies

1 M—(n—1)/2
my(—2%) = % 14 Z apz 2k +0 (z_QM"’”_Q)
k=1

on D_. A similar calculation for mg(—z:Q) is possible and one can obtain

M—(n—1)/2
m2(_z2) =21+ Z bk272k +0 (2721\/I+n72) ,
k=1

which together with Lemma B4 for L = 2M + 2 — n completes the proof. m

To apply Lemma B3] to ergodic potentials we need a lemma. The necessary
terminologies can be found in Appendix.

Lemma 36 Suppose the Lyapunov exponent v (\) satisfies

/wvw@mx<m (106)

for some m > 4. Then, for a.e. w € Q) the condition (I03) is fulfilled on the
curve Cy by any integer M such that

M<mm{%_1,M}. (107)
Proof. Set

PO = VEAN () I () + =3/ X7 (3) Ty ()

c=E(q.(0)/2)
w(z) =E(mz (z,w))

Since v/—zw(z) is of Herglotz, one has

w(z)=——2z

c 1 < p(N)
- dA
\/z+\/z/>\0 A—z
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hence

mq
w(z) = Z wg(2) + w(z) (108)
k=—1
with 1/
wi(z) = ex (=2) "7V
cci=-1,c0=—c, cp = (—1)F* Sl A (M) dA
~ mi —mi— oo Amlp (/\)
W(z) = (~1)™ (=2)7™ 2 [ S
holds due to the assumption (I06), where my = [m]. Set
_ —Rew(z) ,
x(2) = o s
—Rewy(z)
xk(z) = m, Im wj (2)
~, v —Reuw(z) -,
%) = o )
Noting

(—z — Z.y>71c71/2 — g k1/2 (71)k (1 i iyz’l)_k_l/Q
=i P2 (<) (1 (k+1/2)iga™! + 0 (9 !)?)
forz>1,0<y <1, we have
Xk (@ + iy) = O (27452

On the other hand, the estimates

/OO AP <
o (A—2) -

yield a bound for the last term w of (I08). Then, we have

R +iy) =0 (y2a=m =),

7 [T eman =12

0

imply
my

x(z+iy) = Z xk(z +iy) + X (z +iy) = O (yx’3/2 + y72z7m1*1/2) .
k=—1

This together with Imw (z +14y) = O (z'/2) (due to N (A) ~ VA as A — o)

yields
V2x (@) Imw(z) =0 (y:r +y~ 2x7m1)1/2.
Therefore, if the curve is parametnzed as &+ iz~ ("1/2=1) pear x = 0o, applying

([I37) we have

B [ 1 IRGwldE) < [ VG G

<c/ ( —(n1/2-1),, +x(n172)x,m1)1/2 iz,
1
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which is finite for M such that
M—-(n/2-1)/2-1/2<-1land M + (n1/2—1) —mq1/2 < —1.

Then, Fubini’s theorem implies the condition (I03]). m

Now one can prove Theorem [l Suppose the Lyapunov exponent 7 (\) sat-
isfies

/OO A" (A) dA < oo. (109)
0

Since and Lemma B3l and ([I07) require

L+(n1)/21§M<min<%1,m2n1),
ny should satisfy
4L+2n—-2<n  <m—2L—n+3. (110)

If
m—2L—-n+3—(4L+2n—-2)=m—6L—3n+5> 2,

one can choose an odd integer n; satisfying (II0). Then applying Lemma
and Lemma Bl we have ¢, € Qp, (C) for ae. wif L < (m—3(n—1))/6. On
the other hand from

40,0 (Y) = qu (z +y) = (K (2) qu) (y)
the identity
fq (02w) = (K(9)g0,.) (0) = (K(9)K (ex) qu) (0) = (K (ez) K(9)qw) (0) = K(9)qu ()

follows. Moreover Kotani-Krishna [I1] showed that ¢, € CJ” (R) implies

/ A/ 20 (X)) dA < oo,
0

which is sufficient for (I09) and completes the proof of Theorem Ml

9 Appendix

9.1 Calculation of 7, (r), m,q (2) for rational functions r

This section is devoted to the calculation of 74 (), m.q (2) for general rational
function 7 in terms of the characteristic functions {¢ga, ¢} and m-function mg.
The simplest rational functions are

pe(z) =1+ (e I;E)l) for (e D_ .
gc(z)=(1-2¢") " ery

Any rational function can be represented as a product of these simple functions.
We treat r € F(()m) with m < 0. Recall

Ta (9) = det (97'T (ga) T(a)™")
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for a € A" (C), which is well-defined if g~'T (ga) T'(a)~! — I is of trace class
in some space Hy (D4). Let M = L — N > 0 and observe for u € Hy (D)

T (ga)T(a)" u = py (gp+aT(a) " u) +py (gp-aT(a)  u)
=gu+ Hyp_ (aT(a)"'u)

with Hy : Hy (D-) (= 2™ H (D_)) — H (D) defined by

Hyo () = s (0 () = 5 [ Lo 0yar (111)

T2 JoA—z
Here v € H (D_) is
v=p_ (aT(a)'u) =aT(a) 'u—u.
The key identity is (I9):

11 (a(®)+b)u—(pa(d)+1Dv
T (a) T A (0) (22— 0?) forbe D_.

Lemma 37 Let a € A7 (C) and r € Fém).

(i) For any N such that —m < N < L the operator r—*T (ra)T(a)~! — I has
a finite rank on Hy (D4) not greater than the numbers of the poles of r. Hence
Ta (1) is well-defined for any r € I‘((Jm).

(i) Suppose L > 2. For (, (1, (2 € C\ ([—po, o] UiR)

Ta (QC) =1+ ¢a(C)

Ta (4c4c) = (14 9a (01)) (1 + pa (C2)) 2 (1) —ma () . (112)

1 — Q2

(#ii) Suppose L > 2. Suppose r € I"E)O) has simple zeroes {nj}1<j<n and simple

poles {Cj}1<j<n in D_. Then H, has a finite rank not greater than n, and it
holds that ~—

Ta (7)

\

Aqg (n) 7" ()7 (¢5) ¢ —n
(113)

(¢a (G) +1) (pa (=) +1) det( L ) det(ma@)ma(m))
ni— G ’

Jj=1

with 7 (z) = r(z)7 L.

Proof. Let {(; }?:1 be the poles of r. For simplicity assume they are simple.
Then r can be expressed as




and

n

r(2) 7 (H) (2) =Y fi(2)u () with fi(2) =

j=1

Ty

G W

which means that the map r~17T (ra) T'(a)~! — [ is of finite rank.

To compute 74 (1), we take the independent vectors f; and obtain the coef-
ficients of the image of = H, for u =T (a)”" f;.

If L > 2, one can use the characteristic functions and m-function. Let r = g¢.
Then n =1 and f; = 1, hence 7(2) ™! (H,v) (2) = v (¢). For u =1

v=aT(a)"'1—-1=p,,
which yields 74 (¢¢c) = 1 4 ¢q (). If r = ¢ qc,, then n =2 and

) G-z

(z=C)r(z) G -G

1 _ G-z
(z=CQ)r(z) G-
Foruzfl,uzfg

{ vy =al(a)'fi—fi=

vo=al(a) " fy— fo=

fi(z) = , f2(2) =

(2 o1
AL Va

1
G1 *Cz(pa_ Cl*(zwa

hence
_ L+o (G) v ()
Ta (qC1q§2)—d€t( Vs (41) 1+ v (§2) )
_ (G A+ %a(6)) A+ va(C2)) = (1 +pa(G)) (G2 + Ya (¢2))
1 — Q2 ’

which is (IT2]).
Now go back to (IT3). Since f;(z) is a rational function with poles at n; and
fj(00) =0, an identity

(2) = n#
fi(=) (Z_CJ Z (z =) (z—m)

1=1

with

(e = m) r
= 1 ] _ J
T =) =G ()
is valid. Then (I9)) yields

-1 1 (a (=1i) + Vv — (Ya (=1i) —ni) u
i = Z”ﬂ z—m‘z ; Aa () (2 = n2)

and

Sy (a (=m) + 1) (Ya + 2) = (Ya (=m) — 0i) (Pa + 1)
—Y Ag (0i) (22 = n7)

= (pa+1) > 7ij (a(=m) + 1) Z@(m)ﬂz;(_?).

al(a)™'f; =

%
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Therefore, noting f;(¢;) = d;5, we have

= det ((6 ( 1f]) (Gi) — f; (Ci))1§¢,j§n)
*det((aT 1f]) (¢)

(4a G+ 1) Y ‘
s (¢a (Gi) +1) (pa (—n5) +1) ot (1) de Ma (i) — Ma (—7;)
_1;[ Aq (1) dt(”)dt< G- )

Ma (i) — Ma (=) a (=) + 1
G —n ( '

a

where

det(nj)det<(m_§j)r,1( )?’(CJ)) ﬁm det(nii@)’

J

which is (I13]). m
It should be remarked that if n; # (;, then

det< CJ>¢0

W
0= ? for any @
Zm*@'

This is because the identity

implies the rational function f(z) = 2?21 uj (z — Q)fl satisfies f (n;) = 0 for
i=1,2,---, n, which shows f(z) = 0 identically.

The next task is to compute m,.q for rational functions r. In principle the
computation for general rational r is possible similarly as the previous lemma,
however to grasp the picture it is enough to know the change of m,.q for r = q¢py,
since the formula of m,q for general r can be obtained by iteration of q¢py,.

Lemma 38 Let a € AY" and (, n € D_ and assume T4 (qcpy) # 0. Then

Magcpya (2) = (d¢dyma) (2) -

Proof. Let r = ¢¢p, with ¢, n € D_. First we have to compute ¢,q, ¥rq. Then
_ T2 . n n

r(z)" ' =r + —— with ry = ——, 7’277<1+—) (115)
z+n ¢ ¢

holds. To compute @,q set w; =T (7’11)71 1. The definition implies 1 + ¢.q =
rawy, hence (13)) yields

(awr) (2) =7 (2)"" (14 ¢ra (2)) (116)
— T2 (1 + Yra (_77)) n T2 ((,DTa (Z) — Vra (—77)),
zZ+n z+n
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which is a decomposition in Hy (D) @ H (D_). Applying p, we have

T2 (1 + Yra (_77)).

T =
(a)wr =11+ prra

Therefore (I9]) implies

1
=rT(a)" "1 1+ 0ra (=) T (a) ™
wy =T (a) " 1+72(1+¢ra(-7) T (a) P
Ma, —r1(a)u—v
:T1U+u1( (n) - 1(2))
22—

with
[y = 2 (1 + Ya (77)) (1 + Yra (_77))
Aq (1) ’

where u =T (@) ' 1, v =T (a)” " z, from which it follows that

Ma — Ma (1)

(117)

The identity (II6) shows the left hand side is meromorphic on D_ vanishing at

z = (, hence

Ma (¢) — ma ()
22

holds, which together with (II7)) shows

M1 =T

2 _ 2 _
1+ ¢ra =117 (1 + ¢a) (1 - é) — ”ma o) - m;2(")> S
This identity also shows
2 _ 2
k1 (ra) = Zli_)rrolo 2pra (2) =C+n+ k1 (a) — m (119)

Similarly one has 9,4, namely wy =T (ra)*1 z satisfies

(aws) (2
=7(2)"" (z+ ¥ra (2))

=1+ Yra (— ra (2) — Ura (—
=r12+1712 + 172 0+ ¥ra 77)+T27/’ (2) = Yra (=1)
z+n z+7n

)

hence
-n + wra (_77)

T =
(a)wy =112+ 12 + 19 P

which yields
(ma (n) — k1 (a)u—v

227772

w2 =110+ U + f2

with

= 2 (¢a (m) +1) (=0 + ¥ra (—1))
’ Aq (1) '
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Then
awy =11 (2 +%a) + (14 ¢a) (rg — M2—ma22_m;2(77))
with
_ (Sﬁa (77) + 1) (777 + 1/}7"11 (*77))
a Ag (77) ’

hence setting z = ¢ we have

=0,

r1 (¢ (O) + (142 (0)) < uw)

CQ _772

which yields

H2 = T2

ot (1o melon),

ma (¢) — ma (1) C+mn
and
z+ Yra (2)
_raf; ma() —ki(a) ) — o Ma — Ma (C)
=2 (1 2ol (g () o (1) ") (120)
Consequently m,q is computed from ([IT), (IT9) and ([I20) as
—m Ma (¢) — ma (0)
_ (Ma (2) a(C) — CZ 2 e (6) - Ma ({) — ma (0)
Ma (¢) — Ma (n) _ Ma (2) —ma (n) ¢ 2 —n?
22 222
= (d¢dyma) (2)
[

This formula can be easily understood if we first show the identity mg.q =
d¢meq. The reason why we do not take this procedure is that we have defined
mg for a such that T (a) maps Hy (D) to Hy (D) bijectively, hence mg q,
Mp.a are out of the present framework. However, a slight modification of the
definition of mg might allow us to show

Mgea = Mpea = de07

and the identity of the Lemma would be more straightly understandable.

9.2 Properties of m-functions and Herglotz functions
The m-function mg for a € Aszer (C) has the following properties:
me is analytic on C\ ([—po, po] UiR) and mq (2) = mq (Z)

I a a - a \7 121
%Z(Z)>Oforz€@\]&m(z) m(x)>0for|z|>ﬂo. (121)
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with pg = +/—M\g. For such function m define
my (2) = —m (V=2), m_(2)=m(—v—z) forz € Cj.

Then my become Herglotz functions, namely they analytic functions on C\[Ag, 00)
satisfying

Imm(z)

m+ (z) =m4 (Z) and >0 for any z € C\R

Im=z
my (x) +m_ () <0 for x < Ao

A necessary and sufficient condition for m to be a Herglotz function is that m
has a representation

m(z)a+ﬂz+/o; <€:z§2§+1>0(d§)

with a real a;, non-negative 5 and measure ¢ on R satisfying

e 1

The present m are represented as

mi(z):ai+5iZ+A (glz—gsﬁ)ai(df).

The original m is recovered by m+ by
_f —my(=2%) if Rez>0
m(2) = { m_ (=2%) if Rez<0
Lemma 39 Ifm satisfies the property (I21), then so do dsm, dcdzm if [s| > po,
¢ € C\ (RUR).
Proof. If s > 0, Rez > 0, then setting w = —22 € C_, u = —s% < Ao we have

2’2*82 w—u

e (2) = —my (=2%) + mq (—5?) e (78 ) B my (w) — m (u) e ().

Since m is of Herglotz,

my (wu)) = um+ (w) _ B, + /:O mﬂ (d))

0

and we see Im (my (w) — my (w)) / (w —u) > 0 due to Imw < 0, u < A\, which
implies Imdym (z) > 0. If s < 0, Rez > 0, then

22782 w—u

g (w) +me (u)

dsmg (2)

I
[
|
—~
V)
no
~—
\

—m_ (u).

Since

My () £ m () _ e () —ma () | me () fme(0)

w—1Uu w—u w—u
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due to my (u) + m_ (u) < 0, we have dsmg (2) € C;. The cases (s < 0,
Rez < 0), (s >0, Rez < 0) can be treated similarly.
On the other hand note

2.7 ¢-¢
ded=m (2) = - me )
e (2) = ——— o2 <m(<>—m(<> (C)>

m(z) =m () m(¢)—m(C)
We can assume Imz, Im{ > 0. To compute the imaginary part the term

(CQ - ZQ) / (m ) - W) can be neglected, and

z2_22 _ +m(c):m(z)w—ma
Z2_C2 B §2_C w—a
m(z) =m ()  m(¢)—m(C)
with
w= 2= _ C2—Z2
m(z) =m Q)" m(¢) ~m(Q)
Hence

(m (z)w— wa) (W —a)

jw — al”

Im d¢dgm (z) = Im

_ lw|* Imm(z) — aImw (m(z) — m (¢)) — a®Imm (¢)

jw —af®
B |w|? Im m(z) — aIm (22 = ¢?) —a?Imm (¢)
B w — af’

Suppose Re z, Re{ > 0, then

lw|? Tm m(z) — aIm (2 = ¢*) —a®Imm (¢)
2

ImvImu uU—v I (u)
= — mmy (u
Imm (v) m(u) —my (v)
with u = —22, v = —(% € C_. The Herglotz representation for m, shows
my(u) —my (v) /Oo 1
= dX
u—v B+ o ()\fu)()\fv)a—k( )
o0 1 3
Imm (u) = By +/ —504 (dA)
Ao A —ul
which implies
2
ImovImu U—v

Immy(u) >0

Immy (v)  |mg(u) —my (v)

if u, v € C_. The case Rez > 0, Re( < 0 is computed similarly, that is
lw/*Imm(z) — aIm (2 = ¢*) —a®Imm (¢)

2

Imol
T (u) mvImu

- | u=-v

i R ET—y
since Imm4 (u) < 0, Imm_ (v) > 0 if Imu < 0, Imv > 0, which completes the
proof. m

>0,

~ Imm_ (v)
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9.3 Conformal maps

Although Riemann mapping theorem says that every simply connected domain
on C can be an image of a conformal map on C,, sometimes a quantitative
estimate of it is necessary. In this section we provide a model of conformal map
from C\(—o0,0] to D, of [@3).

A conformal map ¥ on C; is easily obtained if Im’ (z) has a definite sign
on C;. A simple such example is 1 (2) = /2, and a more general conformal
map in this framework can be constructed for an integer k£ > 1 by an integral

k—1/2
k+1/2

Ui (2) = \/2+/OOO Vet t(1+0)7 2 qt.

This vy, satisfies
Re ¢y (2) > 0, Im ey, (2) >0, Retyy, (2) > 0, Ime)y, (2) <0

for z € C4, hence ¢, maps C, to 1 (Cy) (C C4), and ¢y, (2) = ¥y, () maps
C+ to ¢ (C4) (C C4) conformally. Since vy, (z) takes real values on [0, 00),
Y (2) and @ (2) can be extended as conformal maps from C\(—o00,0] to a
domain in {Rez > 0} and a domain in C respectively. Set

VAl (k)
BEACED N
by = 2ay (2akkz(k+1/2) J(k—1/2)% + )

ak:2f0132(1—52)k ds =

Lemma 40 The image ¢i, (C\(—00,0]) is described as follows:
¢r (C\(—00,0])) =C\ {2z € C; [Imz| <w(Rez), Rez < ai}

with positive smooth function w (z) on (—oo,a}) such that

) 2ax (fx)karl/2 (1 + 0 (x’l)) as T — —00
w(m)—{ bk(ai—x)l/Q(l—i—O(a%—x)) as :C—>ai—0 (122)
Moreover, ¢ takes a form of
O (2) = 2+ fi(2) + 2 ¥ 2 fy(2) (123)

with some real rational functions fi, fo (that is, f; (z) = f; (Z) for j =1, 2)
satisfying
= (k2 - 1/4) !
fz( ) 2(-1)"a

Conversely, qﬁ;l (w) has an expression
O (w) = w+ g1 (w) + w2 ga(w) (124)

with real g1, g2 analytic in a neighborhood of co. Moreover, it holds that

g1(00) = — (K —1/4)"",  ga(00) = —2(—=1)* ay.
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Proof. Setting s = /(2 +1t) /(1 +t), we have

Vz

\/2+2(z—1)_k/ 5 (32—1)1671 ds.

1

k—1/2
Ck+1/2

Yk (2)
Since the integral [ s* (s* — l)kf1 ds is an odd polynomial of degree 2k + 1,

the integral

k—1/2
Ck+41/2

vz 1
p(2) (z—1)"+ 2\/571 /0 5% (s* — l)ki ds

defines a polynomial of degree k, and

U (2) = (= 1) 7" (Vap (2) —p (1)) (125)

holds. It should be noted that /zp (z) — p (1) has zero of degree k at z = 1, so
91 (2) has no singularity at z = 1. Set

s(x) = Reyy (x +140), t(x) =Imep (z +i0)
for © € R. Then, (I25) implies
s(z) = —p(1) (z —1)7" forx <0
(@=1)"" (Vap(x) —p(1)) forz>0 "
{ (x—1) "% V=zp(x) forz<0
0

He) = forz >0

and their asymptotics are

(>{ak(1+kx+0(x2)) as x — —0
T a (—z)" (1+ka='+0(z72)) as z— —o0
k—1/2
) = 7k+1/2\/7_z(1+0(z)) as x — —0 ’
V=2 (14+0 (z71)) as ¥ — —0o
where we have used
0= o 00 = 1 (1)

2

From (28]
o (2) = n (2)° = 2+ fi(z) + 2712 a(2)

follows, which yields (I23)) with

{ Az = =17 (p(1) + 2p(2)?) — 2
h(2)==2E-1)""p)p()
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and

if >0
if <0
if >0

. 0
Im ¢y, (x 4 i0) = { V—zzFfo(z) if x<0
is valid, hence (28) shows

p—k+1/2
Re¢k(x+i0):x+f1(x)+f2(x)><{ 0 (126)
126

R
T 6 (& + 0) = 25 (~a) /2 10 (=) 1)

as r — —oo, and

Re ¢ (z +i0) = a} + <2kzak (Zli§§)>x+0(x2)
k—1/2

i g (2 +10) = 23— ary/=a +0 (( 3/2)

as x — —0. Since Re ¢y, (z +1i0) = s(x) — ¢ (2)°, Im ¢y, (z +i0) = 25 (z) ¢ (z),
@2) implies

Re ¢, (z +40) is increasing and moving from — co to oo
Im ¢, (x +40) >0 on (—o0,0) and 0 on [0, 00)

Therefore, w can be defined by an equation
w (Re ¢y (x 4+ i0)) = Im ¢y, (x + 00).

due to ([24), and (I24), @), 24) show w () satisfies (122)).
We use (I27) to show ([[24). Set ¥ (z) = 22. 9 is a conformal map from

{Rez > 0} to C\(—o0,0] and define 1y, (s) = 1 (¢ (s)). Then the function

F(s) =11 (s) —s
=p (=) s (=) () - 1),
is a rational function whose poles only at s = £1 and has expansion
F(S) = 01571 + 025*3 4+ 4 ck572k+1 + Ck+1872k+

at s = oo with ¢; = (2k? — 1/2)_1 and cx+1 = —p(1), namely the first coefficient
of even order starts from 2k. We consider an equation for a given ¢:

s+ F(s) =t (127)
and find a solution of a form
s=t+ G(t).

Since the even coeflicients of the power series of F' vanish up to 2 (k — 1), Lemma
ATshows that there exists uniquely such G that G is real and analytic near ¢ = co
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and the odd coefficients of G vanishes up to 2 (k — 1). ¥y () is one-to-one on
{|]#| > r1} and its inverse is given by w + G(w) on {|Jw| > r2}. Since ¢y (2) =
9 (Y, (2)) is a conformal map from C\(—o0,0] to ¢y (C\(—o0,0]), its inverse is

given by ¢! (w) = (ﬂJ’lﬁ’l) (w) for w € ¢p, (C\(—00,0]). Let
G (1) =5 (G (VG (VD) (=G (VA)

G2 () = 57 (G (VD) - G (V) G, (V0 )

Then G (t) = Gy (t2) + tG2(t?), and we have
(9071971) (w)
= (Vo + G1 (w) + VuGs(w))”
=w+ Gy (w)? +w ((Gg(w) +1)? - 1) + 2v/wG (w) (Ga(w) +1).

L
Vi

Since G has the even coefficients vanishing up to 2 (k — 1), w*G (w) is analytic
near w = oo. Therefore, setting

{ g1(w) = Gy (w) + wGa(w) (Ga(w) + 2)
go(w) = 20w*Gy (w) (Go(w) + 1) ’
we have

¢t (w) = w+ g1(w) + w2 gy (w)

with some g1, g2 analytic in a neighborhood of co satisfying

-1
g1(00) = — (K2 = 1/4)" ", ga(00) = —2(~1)" as,
which completes the proof. m

o0 —q

Lemma 41 Let F be a power series of s~ given by F(s) = ijl ajs™7 and
assume it has the positive radius of convergence and consider an equation:

t=s+F(s). (128)

(i) This equation is uniquely solvable if ‘t_1| is sufficiently small and it has a
form:
s=t+G(t)

with a convergent power series of t—1 given by
o0
G(t)=> ajt™. (129)
j=1

(i) xp, is determined from {aj}?zl for each n > 1. The first three coefficients

are

2
r1 = —ay, o = —asz, r3 = —a; —as.

(iii) Suppose F(s) has a form

k oo
F(S) = Za2j71872j+1 + Z a]‘Sij (130)
j=1

j=2k
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for an k > 1. Then, the coefficients x; of G(t) vanish for even j up to 2 (k —1).
Moreover, if azj # 0, then xoj = —az;.

Proof. Replacing s by s~! and ¢ by ¢t~! we see the equation (I28) is equivalent

to s
t= ————. 131
1+ sF(s™1) (131)
The condition on F' implies
dt d*t
t(0)=0,—(0)=1,—5(0)=0
=0 Tw=15%0=0

hence the complex function theory shows the existence of the solution s(t) of
(I31) in a neighborhood of 0 satisfying

é d?s

S(O) =0, dt (0) =1, E (0) =0,

which implies the existence of G of the form of (I29). One can show inductively
that the coefficient z,, is determined from {a; }?:1. To show (iii) one can assume
a; = 0 for every j > 2k owing to (ii). The relation between F, G is rewritten as

F(s)+G(F(s)+s)=0.

o~

If we define f(s) = —f (—s), then the above equation turns to
ﬁ(s)+@(ﬁ(s)+s) = 0.

Therefore, if F (s) = F(s), the uniqueness implies G (s) = G(s), which shows
the first part of (iii). To show the second part we note that if

F(s) = Z]:ll ajS_j +aps™F = Fi(s)+ aps~k
G(s) = Z];l wjs ™)+ wpsTF 4 >k zis™I

= G(l)(s) + :Cksik 4+ G(g) (S)

and with some b,,

Fi(s) + Gy (s + Fi(s)) = bes Tk 4+ 0 (s_k_l)
holds, which is verified by induction, then the identity

—k —k —k —k

Fi(s) + aps™ 4+ Gy(s + Fi(s) + axs ™) + ap (s + Fi(s) + aps™")
+G o) (s + Fi(s) +ars™ ) =0
together with
Gy(s + Fi(s) + arps %) = Gy(s + Fi(s)) + O (57]“2)

implies x; = —ap — bg. Since, if k is even and ag; = 0 for any j < k/2, then
(ii) implies 2, = 0, and hence b, = 0. However, clearly by is determined from
{a;j} < j<p_y» hence by = 0 is valid if ag; = 0 for any j < k/2 — 1 regardless of
the value ar. Consequently we have xj, = —ay, if £ is even and as; = 0 for any
j<k/2—1holds. m
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9.4 Estimates of relevant integral
Suppose the curve C' is of the form:
C={twy) +iy; yeR wly) =0 (y ")}

with w (y) > 0, w (y) = w (—y). Assume (B1), namely

sup/ |[dA| < oo.
zeC Jjz—n|<1,0eC

Lemma 42 Let C' = oC with 0 > 1. Then
1 _ n—1 /
/C|)\72|d)\|—0(|z| ) forze C'.

_ Zl
Proof. Let

/ 1 |d/\|:/ EN +/ EX
c|r—z? m(—2)<oltm = A= 2> =) >am ) [ — 2|

Efl+12

with § € (0,1) specified later. Since C' is parametrized as w (t) + it, we see
1/2

1+ w'(t)?
11:/ ( EW()) zdt < ermp(2) 7
[t—Im z|<6|Im z| (£ —Imz)” + (w(t) — Re z)

where
p(z) = ianec;|1m<Afz>\s{5\12mz| IRe (z — \)|
€1 = SUPyep (1 + w’(t)Q) /

15 is estimated as

(14w (t)2)?dt
. 2
(3

g::/
[t—Im z|>[Im 2|8 |(w (t) —Rez) + i (t — Im z)|

dt dx 1
< ——— =q — =cz|Imz| .
[t—Im z|>|Im 2| |t—Imz| |z|>]Im 2|8 |ZC|

Therefore, we have

dA _ _
/ [ 5 <camp(z) Y pepmz .
c|A—z|

We have to show
p(2) > cs[imz[~" 7Y, (132)

if 0 is chosen suitably. Assume Re z, Im z > 0. Note that in the region
AeC;m(z—N)|<éImz}={AeC;(1—0)Imz<ImA< (1+0)Imz}.
Since w (t) = == for sufficiently large ¢, inequalities
[Re (2 —A)| > Rez—ReX > ow (07! |Imz|) —w ((1—6) [Imz|)
= (a" - (1- 5)_("_1)) Im 2|~
are valid for z € C'. Therefore, if
o> (1—6)" ",

we have (I32). =
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9.5 Ergodic Schrodinger operators

This section provides several basic facts on 1D Schrodinger operators with er-
godic potentials, which are necessary in this paper.

Let (Q2, F, P) be a probability space and {0,},.p be a one parameter group
of F-measurable transformations on 2 which satisfies

P(0;'A) = P(A) for any z € R and A € F. (stationarity) (133)
(Q, F, P {0, }zeR) is called ergodic if it satisfies
P(9;1A®A):0foranyx€R:>P(A):O or 1. (134)
For an F-measurable real valued function ) on €2 set
@ (2) = Q (bow), we .

Then we obtain an ergodic potential {q,,},,co- A simple but important example
is quasi-periodic potentials. Set Q = R"/Z" and for a € R™

0yw = ra + w, P = the Lebesgue measure on R"/Z".

This (€, F, P, {0}, g) is ergodic if o is rationally independent and the resulting
¢ (x) is a quasi-periodic function. If n = 1, we have a periodic function and for
n = oo in a certain sense we have an almost periodic function. One has more
random ergodic potentials. For a technical reason we assume

E(|Q|) = /Q 10 ()| P (dw) < 00 and Q (@) > Ao forany we Q. (135)

[E denotes the expectation by P. Then one can consider the associated Schrodinger
operator
L, = —8§ + Q-
Under the condition (I35) it is known that inf sp L, > Ao and the boundaries
400 are of limit point type for L, for a.e. w € . One can apply the Weyl
spectral theory to each L.
The Floquet exponent is defined by

w(z) = E (mx (z,w)) (the two expectations coincide), (136)

by which the Lyapounov exponent and integrated density of states are
obtained by

v(z) = —Rew(z) (>0), N(A):%Imw()\) (AeR).

N () is non-negative, continuous and non-decreasing on R. [10] found an iden-
tity

()= 35 (e T ) )

for z € Cy. Set
v (z
x (2) = %)

" Imz

—Imw' (z) > 0.

72



Then applying the Schwarz inequality we have

E (R (=) < ¢4x—<>\/E (e )

< \/4)(—(2)\/1@ (Imm+ (z,w) 1— Imm_ (z,w)>
=/2x () Imw (z) (due to ([I34)). (137)

It is also known that

Yo ={AeR; y(\)=0}={1eR; R(\,w) =0} forae we. (138)
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