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Construction of KdV flow

-a unified approach-

Shinichi KOTANI
Nanjing University, Osaka University

Abstract

A KdV flow is constructed on a space whose structure is described in

terms of the spectrum of the underlying Schrödinger operators. The space

includes the conventional decaying functions and ergodic ones. Especially

any smooth almost periodic function can be initial data for the KdV

equation.

1 Introduction

This article is a continuation of [11], where a KdV flow was constructed on
a space of potentials with reflectionless property on an energy interval [λ1,∞).
Since the KdV equation is closely related with 1D Schrödinger operators, we use
the terminology potentials to describe initial data for the KdV equation. When
the previous paper was written, the author intended to remove this reflectionless
property by approximating general potentials by reflectionless potentials, which
made the procedure rather involved. However he has recognized that a direct
extension is possible independently of the last paper. Therefore the present
paper is readable without [11], although its knowledge would be very helpful for
prompt understanding of the whole context.

Our approach to this problem is essentially based on Sato’s philosophy [18],
whose analytical version was given by Segal-Wilson [19]. From our point of view
that is an analysis on eigen-spaces of underlying Schrödinger operators which
seems quite natural due to GGKM and Lax.

To give perspective and state the main results several terminologies and
notations have to be prepared. For positive odd integer n let Γn be

Γn =
{
g = eh; h is a real odd polynomial of degree ≤ n

}

and C be a simple smooth closed curve in C ∪ {∞} defined by

C = {±ω (y) + iy; y ∈ R}

with a smooth positive function ω on R satisfying ω (y) = ω (−y), hence C
satisfies

C = −C, C = C.

D± are the interior and exterior domains separated by the curve C defined by

D+ = {z ∈ C; |Re z| < ω (Im z)} , D− = {z ∈ C; |Re z| > ω (Im z)} .
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The curve C is chosen so that g ∈ Γn remains bounded on D+, or more con-
cretely

ω (y) = O
(
y−(n−1)

)
as |y| → ∞.

The Hardy spaces associated with curve C is defined by

{
H (D+) = the closure in L2 (C) of rational functions with no poles in D+

H (D−) = the closure in L2 (C) of rational functions with no poles in D−
.

It is known that

L2 (C) = H (D+)⊕H (D−) (not necessarily orthogonal),

and elements of H (D±) can be extended as analytic functions on D± respec-
tively. The projections to H (D±) are given by





p+u (z) =
1

2πi

∫

C

u (λ)

λ− z
dλ for z ∈ D+

p−u (z) =
1

2πi

∫

C

u (λ)

z − λ
dλ for z ∈ D−

if u ∈ L2 (C) .

We enlarge the space H (D+) to admit polynomials. Namely for N ∈ Z+ set

HN (D+) = (z − b)
N
H (D+)

with b ∈ D−, and define a norm in HN (D+) by

‖u‖N =

√∫

C

|u (λ)|2 |λ|−2N |dλ|.

Clearly HN (D+) does not depend on the choice of b, and zm ∈ HN (D+) if
m ≤ N − 1.

In the previous paper we constructed the KdV flow as an action of Γn on
a Grassmann manifold consisting of z2-invariant subspaces of L2 (|z| = r). In
the present case we construct an extension of the flow not on a Grassmann
manifold of subspaces of zNL2 (C) but on a space of vector functions a (λ) =
(a1 (λ) , a2 (λ)) on C. An analogue of a z2-invariant subspace is

Wa = {a (λ) u (λ) ; u ∈ HN (D+)} ,

where




ue (λ) =
1

2
(u (λ) + u (−λ)) , uo (λ) =

1

2
(u (λ)− u (−λ))

a (λ) u (λ) = a1 (λ) ue (λ) + a2 (λ) uo (λ)
.

In the present paper, however, spaces Wa will not appear explicitly.
For L ∈ Z+ a space of symbols of Toeplitz operators is introduced:

AL (C) =

{
a; a (λ) is bounded on C and there exists a bounded analytic
function f on D+ such that λL (a (λ)− f (λ)) is bounded on C

}
.
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The number L is related to the degree of differentiability of the flow. The
Toeplitz operator with symbol a is defined by

(T (a)u) (z) = f (z)u (z) + (p+ (a− f)u) (z)

for u ∈ HN (D+), which is possible if L ≥ N . This T (a) does not depend on
the choice of f and defines a bounded operator on HN (D+). We have to treat
vector symbols a (λ) and the vector version AL (C) of AL (C) essentially due
to the fact that the underlying Schrödinger operators are second order. The
associated Toeplitz operator is defined by

(T (a)u) (z) = (T (a1)ue) (z) + (T (a2)uo) (z) .

Let
Ainv

L (C) = {a ∈ AL (C) ; T (a) is invertible on HL (D+)} .
Since 1 ∈ H1 (D+), z ∈ H2 (D+), one can define

u = T (a)−1 1 ∈ H1 (D+) , v = T (a)−1 z ∈ H2 (D+) ,

if a ∈ Ainv
L (C) and L ≥ 2. Set

ϕa (z) = a (z)u (z)− 1, ψa (z) = a (z) v (z)− z ∈ H (D−) .

Then there exist a constant κ1 (a) and φa ∈ H (D−) such that

ϕa (z) = κ1 (a) z
−1 + z−1φa (z) .

We call the functions {ϕa, ψa} as characteristic functions for a ∈ Ainv
L (C),

since a is uniquely determined by them. Define

ma (z) =
z + ψa (z)

1 + ϕa (z)
+ κ1 (a) (= z + o(1)) .

Γn naturally acts on AL (C), but not always on Ainv
L (C). Schrödinger

operators and the KdV equation are obtained by applying the group Γn to
Ainv

L (C). Let ex(z) = exz ∈ Γ1 and suppose exa ∈ Ainv
L (C) for any x ∈ R.

Then
fa (x, z) = e−xz (1 + ϕexa (z))

satisfies a Schrödinger equation

−∂2xfa (x, z) + q (x) fa (x, z) = −z2fa (x, z)

with q(x) = −2∂xκ1 (exa). One can recover ma (z) by

ma (z) = − ∂xfa (x, z)|x=0

fa (0, z)
.

A solution to the KdV equation is obtained by another family of functions
et,x(z) = exz+tz3

of Γ3, namely

q (t, x) = −2∂xκ1 (et,xa)
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satisfies

∂tq (t, x) =
1

4
∂3xq (t, x)−

3

2
q (t, x) ∂xq (t, x) (KdV equation). (1)

Solutions to the higher order KdV equations can be obtained similarly. This is
the core of Sato’s theory.

The basic quantityma is closely related to the Weyl functions of Schrödinger
operators. If q takes real values, one can associate a Schrödinger operator

Lq = −∂2x + q

with potential q. Throughout the paper we assume

(Lqu, u)L2(R) ≥ λ0 (u, u)L2(R) for any u ∈ C∞
0 (R) (2)

with some λ0 < 0. Under this condition it is known that Lq has a unique
self-adjoint extension, and there exist non-trivial functions f± (x, z) ∈ L2 (R±)
satisfying

−∂2xf± + qf± = −z2f±.
These functions are unique up to constant multiple. The Weyl functions m±
are defined by

m+(z) =
∂xf+ (x, z)|x=0

f+ (0, z)
, m−(z) = − ∂xf− (x, z)|x=0

f− (0, z)
.

m± are analytic functions on C\[λ0,∞) and satisfy

Imm±(z)

Im z
> 0.

Such an analytic function on C+ is called a Herglotz function. The functions
m± contain every information of the spectral properties of Lq. The simplest
one is the coincidence of the spLq with the domain of analyticity of m±, hence
m± are analytic on C\[λ0,∞) and the interior domain D+ for the curve C is
supposed to contain the interval [−µ0, µ0] with µ0 =

√
−λ0. One thing which

should be stressed here is that m± can be defined for any potential q regardless
of decaying or oscillating. Moreover, since fa (x, z) ∈ L2 (R±) holds depending
on Re z ≷ 0 under a certain condition on a, one see that ma coincides with the
Weyl functions m±, that is,

ma (z) =

{
−m+

(
−z2

)
if Re z > 0

m−
(
−z2

)
if Re z < 0

. (3)

Hence in this case q is determined by ma owing to the inverse spectral theory.
We call ma as m-function of a, which will be the fundamental object in this
paper, and call fa (x, z) as Baker-Akhiezer function for Lq. For potentials q
decaying sufficiently fast fa (x, z) coincides with the Jost solution. It should be
mentioned that R. Johnson [9] was the first who introduced the Weyl functions
to Sato’s theory.

As we have observed above the invertibility of T (ga) is crucial, which is
verified with the aid of tau-functions in this paper. The tau-function was first
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introduced by Hirota and its mathematical meaning was found by Sato. In our
context it is defined as the Fredholm determinant of the operator

g−1T (ga)T (a)
−1

: HN (D+) → HN (D+) ,

that is
τa (g) = det

(
g−1T (ga)T (a)

−1
)
.

However to avoid a technical difficulty one version

τ (2)
a

(g) = det2

(
g−1T (ga)T (a)

−1
)

is employed, whose definition is possible when the operator g−1T (ga)T (a)
−1−I

is of Hilbert-Schmidt. The invertibility of T (ga) is equivalent to τ
(2)
a (g) 6= 0.

Any g ∈ Γn can be approximated by rational functions r with the same number
of zeros and poles in D−. For such an r the image of r−1T (ra)T (a)

−1
is

finite dimensional and mra, τa (r) are computable by {ϕa, ma}. Another key
observation is

τ
(2)
a (g) 6= 0 for any g ∈ Γn ⇐⇒ τa (r) ≥ 0 for any real rational functions

⇐⇒ Imma (z)

Im z
> 0

,

if a ∈ Ainv
L (C) satisfies a (λ) = a

(
λ
)
on C, which yields ga ∈ Ainv

L (C) for

such an a ∈ Ainv
L (C). Keeping these facts in mind we define

Ainv
L,+ (C) =

{
a ∈ Ainv

L (C) ; a (λ) = a
(
λ
)
on C, τa (r) ≥ 0 for real rational

function r with the same number of zeros and poles in D−

}
.

One can obtain concrete elements of Ainv
L,+ (C) by defining a directly from m±.

For a given potential q assume (2) and define m by (3). Then m is analytic on
C\ ([−µ0, µ0] ∪ iR) (µ0 =

√
−λ0) and satisfies

(M.1) m(z) = m(z) and





Imm (z)

Im z
> 0 on C\ (R ∪ iR)

m(x)−m(−x)
x

> 0 if x ∈ R and |x| > µ0

.

Assume further
(M.2) m has an asymptotic behavior:

m (z) = z +
∑

1≤k≤L−2

mkz
−k +O

(
z−L+1

)
on D−.

Then one has

Theorem 1 If m satisfies (M.1), (M.2) for L ≥ 2, then m (z) ≡ (1,m(z)/z) ∈
Ainv

L,+ (C) and the m-function mm for m is m.
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If q ∈ CL−2 (−δ, δ), then it is known that the asymptotics of (M.2) holds in
a sector

|arg z| < π

2
− ǫ, |π − arg z| < π

2
− ǫ.

However the domain D− is wider even for n = 1, and its boundary approaches
to the axis iR if n ≥ 3, therefore it is not trivial to find q satisfying (M.2) in
D−. Later in Theorems 3, 4 m associated with the Weyl functions m± will be
shown to fulfill (M.2) if q decays sufficiently fast or oscillates suitably.

Set
QL (C) =

{
q (x) = −2∂xκ1 (exa) ; a ∈ Ainv

L,+ (C)
}
.

Then ma is identified with m± of q by (3) for a ∈ Ainv
L,+ (C), hence the inverse

spectral theory show that ma determines q. This makes it possible to define

(K (g) q) (x) = −2∂xκ1 (exga) with q (x) = −2∂xκ1 (exa)

for a ∈ Ainv
L,+ (C), g ∈ Γn. One has

Theorem 2 Suppose L ≥ max {n+ 1, 3}. Then {K (g)}g∈Γn
defines a flow on

QL (C). For a real odd polynomial h of degree n the function
(
K
(
eth
)
q
)
(x)

is C1 in t and Cn in x and satisfies the (n+ 1) /2th KdV equation. Especially

K
(
etz

3
)
q (x) satisfies the KdV equation

∂tq(t, x) =
1

4
∂3xq(t, x) −

3

2
q(t, x)∂xq(t, x)

if q ∈ QL (C) for L ≥ 4.

We summarize the procedure to obtainK(g)q for a given q as follows. Define
m by (3) and assume the condition (M.2) for m. Solve the equation in HN (D+)
for z ∈ D+

1 = exzg (z)f (z)u (x, z) +
1

2πi

∫

C

exλg (λ) (m (λ)− f (λ))u (x, λ)

λ− z
dλ,

where m (z) = (1,m(z)/z) and f (z) = (1, f(z)) with a bounded analytic func-
tion f on D+ such that

m (z)− zf (z) = O
(
z−L+1

)
on C,

which is possible due to (M.2). The Baker-Akhiezer function is obtained by
fgm (x, z) = g (z)m (z)u (x, z), and κ1 (exgm) is determined by

exzfgm (x, z) = 1 + κ1 (exgm) z−1 + o
(
z−1
)
.

Then we have (K(g)q) (x) = −2∂xκ1 (exgm). Especially if g = 1, one can
recover q from the Weyl functions m±, which yields another way of the inverse
spectral problem.

Any concrete example of initial data for the KdV flow is provided by The-
orem 1. For a given m we have to verify the condition (M.2). There are two
classes of potentials satisfying (M.2).

If q(j) ∈ L1 (R) for j = 0, 1,· · · , L − 2, then (M.2) is valid in C+ ≡
{z ∈ C; Im z ≥ 0} for L (see [15]), which will be shown in Proposition 32.
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The extended notion of reflection coefficients is defined by

R(z, q) =
m+ (z) +m− (z)

m+ (z) +m− (z)

where m± are the Weyl functions for q. The modulus |R(z, q)| coincides with
that of the conventional reflection coefficient on R if q decays sufficiently fast.

Theorem 3 If R(z, q) satisfies

∫ ∞

0

λM |R(λ, q)| dλ <∞, (4)

then q ∈ QL (C) with L =M + 2− (n+ 1) /2 holds.

If R(λ, q) = 0 for a.e.λ ≥ λ1 for some λ1 ≤ R (which means q is reflectionless
on (λ1,∞)), the condition (4) is satisfied for any M ≥ 1. This case was already
treated in [12]. The resulting potential q is known to be meromorphic on C and
uniformly bounded on R including all its derivatives.

Since |R(λ, q)| is invariant under the flow K (g), that is

|R(λ, q)| = |R(λ,K (g) q)| for a.e. λ ∈ R, (5)

the condition (4) is supposed to play a significant role to investigate the flow
K(g) in future. (5) will be shown in a separate paper by using transfer matrices
of K (g).

On the other hand [10] showed for ergodic potential qω (x)

Σac (qω) = {λ ∈ R; |R(λ, qω)| = 0} .

Therefore in this case (4) is equivalent to

∫

R+\Σac(qω)

λMdλ <∞. (6)

In particular for periodic potentials Σac (qω) = Σ (qω) (the spectrum of Lq) is
valid, hence (6) means that the total length of spectral gaps is small, which can
be estimated by the norms of derivatives of q.

For ergodic potentials the condition (6) requires the existence of rich ac spec-
trum, although it admits singular spectrum. This situation can be improved by
replacing (4) by a similar condition on the curve Ĉ =

{
−z2; z ∈ C, Re z > 0

}
,

which enables us to have

Theorem 4 Let {qω (x) = q (θxω)} be an ergodic process on
(
Ω,F , P, {θx}x∈R

)
.

Suppose qω ∈ Cm
b (R). Then, qω ∈ QL (C) holds for a.e. ω ∈ Ω for L ≤

(m− 3 (n− 1)) /6. In this case (K(g)qω) (x) = fg (θxω) for g ∈ Γn is valid with
fg (ω) = (K(g)qω) (0).

Any almost periodic potentials can be considered as ergodic potentials and
one can apply Theorem 3 or Theorem 4 to have solutions starting from almost
periodic functions. Under the condition of Theorem 4 one has qω ∈ QL (C) for
every ω not for a.e. ω.
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Rybkin [17] obtained solutions to the KdV equation with step like initial
data, which is decaying on R+ and arbitrary on R−. He employed Hirota’s
tau-function and the Hankel transform on R, which restricts the class of initial
data to step like functions. In our approach the decaying condition on R+ can
be removed, since we represent the solutions through information of the Weyl
functions m± on C+ not on R. Our framework also admits step like initial
data. For instance if q ∈ C∞ (R) is almost periodic on one axis R+ or R− and
decaying on the opposite axis, since such a potential can be easily verified to
satisfy (M.2).

For almost periodic initial data there are several papers. Egorova [4] treated
limit periodic initial data. Damanik-Goldstein [3] and Eichinger-VandenBoom-
Yuditskii [5] considered almost periodic potentials. Their approaches are dif-
ferent from ours and the associated Schrödinger operators must have only ac
spectrum. Tsugawa [21] obtained solutions starting from quasi-periodic initial
data without assuming pure ac spectrum, but he could not show the existence
of global solutions in time.

One of the advantages of Sato’s approach lies on the algebraic nature of
the group Γn acting on the space of symbols. Especially the factor qζ (z) =(
1− ζ−1z

)−1
plays a role of primes in number theory, which will be frequently

used in the present paper.

Throughout the paper the following notations will be employed:





R = the set of all real numbers
C = the set of all complex numbers
Z = the set of all integers
R+ = {x ∈ R, x ≥ 0} , R− = {x ∈ R, x ≤ 0}
C+ = {z ∈ C, Im z > 0} , C− = {z ∈ C, Im z < 0}
Z+ = {n ∈ Z, n ≥ 0} , Z− = {n ∈ Z, n ≤ 0}
z denotes the complex conjugate of z: x+ iy = x− iy

.

2 Hardy spaces and Toeplitz operators

In the previous paper [11] we employed Segal-Wilson’s version of Sato’s the-
ory, in which they constructed KdV flow on a Grassmann manifold in H ≡
L2 (|z| = r). In his theory the Fourier space H is used as symbols space of
pseudo-differential operators and the separation

H =
(
L2closure of

{
zk
}
k≥0

)
⊕
(
L2closure of

{
zk
}
k<0

)
≡ H+ ⊕H−

is essential since the H+ component exhibits the part of differential operators
and he had to take out differential operators parts from pseudo-differential op-
erators. Therefore the projection p+ to the Hardy space H+ plays an essential
role.

Since in this framework only a special class of solutions meromorphic on C

is possible to treat, the circle |z| = r should be replaced by a certain unbounded
curve to have more general solutions.
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2.1 Hardy spaces and projections

Let C be a simple closed smooth curve passing∞ in the Riemann sphere C∪{∞}
and oriented anti-clockwisely. We assume C = −C. The curve C separates C∞
into two domains D±, where D+ contains the origin 0. The situation was
illustrated in ( f1 ). The curve C is chosen so that eh(z) remains bounded on C
, where h(z) is a given real polynomial of odd degree.

Set

H (D±) = L2 (C) -closure of {rational functions with no poles in D±} .

Then
L2 (C) = H (D+)⊕H (D−)

holds. For f ∈ L2 (C) define

p±f(z) = ± 1

2πi

∫

C

f (λ)

λ− z
dλ for z ∈ D±,

and

(Θf) (z) = lim
ǫ↓0

1

2πi

∫

C∩{|λ−z|>ǫ}

f (λ)

λ− z
dλ for z ∈ C.

It is known that Θ is a bounded operator on L2 (C) (see [1] and [2]) and p±
have a finite limit a.e. when z approaches to an element of C. They satisfy

{
p+f(z) = f (z) /2 + (Θf) (z)
p−f(z) = f (z) /2− (Θf) (z)

for z ∈ C ,

and p± are projections from L2 (C) onto H (D±) respectively. It should be
noted that p± are generally not orthogonal projections. If D+ is a disc, H (D+)
coincides with the conventional Hardy space.

To treat an analogue of z2-action on L2 (C) for a function u on C we define
the even part and the odd part of u by





ue (z) =
1

2
(u (z) + u (−z))

uo (z) =
1

2
(u (z)− u (−z))

.

The numbers ±1 in front of z come from the solutions to ω2 = 1. Any func-
tion on C can be represented as u = ue + uo and this yields an orthogonal
decomposition in L2 (C). It should be noted also that

p+ : L2
e (C) → H (D+) ∩ L2

e (C) and p+ : L2
o (C) → H (D+) ∩ L2

o (C) , (7)

where L2
e (C), L

2
o (C) denote the even part and the odd part respectively.

2.2 Toeplitz operators

In the previous paper [11] we considered z2-invariant subspaces of L2 (C) when
C is a disc with center 0. If the curve C is unbounded, in place of subspaces of
L2 (C) we consider a family of bounded vector functions a (z) = (a1(z), a2(z))
on C. The subspace corresponding to a (z) is

Wa ≡ {a (z)u (z) ; u ∈ H (D+)} ⊂ L2 (C) ,

9



where
a (z)u (z) ≡ a1(z)ue(z) + a2(z)uo(z). (8)

This space will not appear explicitly in the sequel, but the Toeplitz operator
with symbol a (z) plays an essential role.

Set

A(C) =

{
a (λ) ; sup

λ∈C
|a(λ)| <∞

}
,

and
(T (a)u) (z) = p+ (au) (z) for a ∈ A(C).

Then T (a) defines a bounded operator on L2 (C) and is called a Toeplitz oper-
ator with symbol a.

To investigate the differentiability of solutions to the KdV equation we have
to admit the multiplication operation by rational functions on H (D±). To
realize such operations some modification of the spaces H (D±) is necessary.
For an N ∈ Z+ and b ∈ D− set

HN (D+) = (z − b)
N
H (D+) . (9)

Clearly HN (D+) does not depend on b, and

zk ∈ HN (D+) for any integer k ≤ N − 1.

For u ∈ zNL2 (C) we extend the definition of the projections by





(p+u) (z) = lim
D−∋b′,Re b′→∞

(z − b′)N

2πi

∫

C

u (λ)

λ− z
(λ− b′)−N

dλ for z ∈ D+

(p−u) (z) = lim
D−∋b′,Re b′→∞

(z − b′)N

2πi

∫

C

u (λ)

z − λ
(λ− b′)−N

dλ for z ∈ D−

,

(10)
if they exist finitely. It should be noted that if they exist for an N ≥ 0, then
they exist also for any N ′ ≥ N and take the same values.

The extended p± are well-defined for a certain au.

Lemma 5 For N ∈ Z+ if a ∈ A(C) satisfies

zN (a(z)− f(z)) is bounded on C (11)

with a bounded analytic function f on D+, then, for u ∈ HN (D+)





p+ (au) (z) = f (z)u (z) +
1

2πi

∫

C

(a (λ)− f (λ))u (λ)

λ− z
dλ ∈ HN (D+)

p− (au) (z) =
1

2πi

∫

C

(a (λ)− f (λ))u (λ)

z − λ
dλ ∈ H (D−)

(12)

hold. In particular for u ∈ H (D+) we have p± (au) ∈ H (D±) respectively, and
they satisfy

{
p+u = u if u ∈ HN (D+)

p+u = 0 if u ∈ H (D−)
and

{
p−u = 0 if u ∈ HN (D+)

p−u = u if u ∈ H (D−)
,

which implies HN (D+) ∩H (D−) = {0}.
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Proof. If u ∈ HN (D+) and b
′ ∈ D−,

(z − b′)N

2πi

∫

C

a (λ) u (λ)

λ− z
(λ− b′)

−N
dλ

=
1

2πi

∫

C

(a (λ)− f (λ))u (λ)

λ− z

(
z − b′

λ− b′

)N

dλ+ f (z)u (z)

holds for z ∈ D+ due to fu (z − b′)−N ∈ H (D+). Since (a− f)u ∈ L2 (C)

lim
b′→∞

∫

C

(a (λ)− f (λ))u (λ)

λ− z

(
z − b′

λ− b′

)N

dλ =

∫

C

(a (λ)− f (λ))u (λ)

λ− z
dλ

is valid, which shows

p+ (au) (z) = f (z)u (z) +
1

2πi

∫

C

(a (λ) − f (λ))u (λ)

λ− z
dλ ∈ HN (D+) .

On the other hand, due to fu (z − b′)−N ∈ H (D+)

(z − b′)
N
∫

C

a (λ) u (λ)

z − λ
(λ− b′)

−N
dλ =

∫

C

(a (λ) − f (λ))u (λ)

z − λ

(
z − b′

λ− b′

)N

dλ

holds for z ∈ D−, and (a− f)u ∈ L2 (C) implies

p− (au) (z) = lim
b′→∞

(z − b′)N

2πi

∫

C

a (λ) u (λ)

z − λ
(λ− b′)

−N
dλ

=
1

2πi

∫

C

(a (λ)− f (λ))u (λ)

z − λ
dλ,

which shows (12). If u ∈ H (D−), then due to au ∈ L2 (C) we easily have

lim
b′→∞

(z − b′)
N
∫

C

a (λ) u (λ)

λ− z
(λ− b′)

−N
dλ =

∫

C

a (λ) u (λ)

λ− z
dλ

for z /∈ C. Therefore, p± (au) ∈ H (D±) respectively. The rest of the proof is
clear.

Consequently the projections p± can be extended to

L2
N (C) ≡ HN (D+)⊕H (D−)

(
⊂ |λ|N L2 (C)

)
(13)

by (13) as projections. The norm in L2
N (C) is defined by

‖u‖2N =

∫

C

∣∣∣(λ− b)
−N

p+u (λ)
∣∣∣
2

|dλ|+
∫

C

|p−u (λ)|2 |dλ| .

Moreover this lemma enables us to extend the Toeplitz operator T (a) as a
bounded operator on HN (D+) for a bounded function a satisfying (11). Sub-
sequently a subset AL (C) of A (C) for L ∈ Z+ is introduced as follows:

AL (C) =

{
a ∈ A (C) ; there exists an analytic function f on D+

such that sup
z∈D+

|f (z)| <∞, sup
λ∈C

∣∣λL (a (λ)− f (λ))
∣∣ <∞

}
.

(14)
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Lemma 5 enables us to define the Toeplitz operator on HN (D+) by

TN(a)u = p+ (au) ∈ HN (D+) .

Let L ≥ N ′ ≥ N . Then {TN (a)}N≥0 has the property that if a ∈ AL (C), then
TN ′(a)|HN (D+) = TN(a). Therefore we use the notation

T (a) = TN (a).

The vector version of AL (C) and T (a) are defined by

{
AL (C) = {a = (a1, a2) ; a1, a2 ∈ AL (C)}
(T (a)u) (z) = T (a1)ue (z) + T (a2)uo (z)

. (15)

Set
Ainv

L (C) = {a ∈ AL (C) ; T (a) is invertible on HL (D+)} . (16)

It should be noted that Ainv
L (C) ⊃ Ainv

L′ (C) holds if L′ ≥ L.

2.3 Characteristic functions and m-functions for a ∈ Ainv
L (C)

In this section we define several quantities which will be necessary later when
T (a)−1 exists.

For a ∈ Ainv
2 (C) one can define two functions of H (D−) which charac-

terize Wa and are closely related to the tau-function introduced later. For
a ∈ Ainv

2 (C) set





u (z) =
(
T (a)

−1
1
)
(z) ∈ H1 (D+)

v(z) =
(
T (a)

−1
z
)
(z) ∈ H2 (D+)

, (17)

which is possible due to 1 ∈ H1 (D+), z ∈ H2 (D+), and





ϕa (z) = p− (au) (z) = a1(z)ue(z) + a2(z)uo(z)− 1 ∈ H (D−)

ψa (z) = p− (av) (z) = a1(z)ve(z) + a2(z)vo(z)− z ∈ H (D−)

∆a (z) =
(1 + ϕa (−z)) (ψa (z) + z)− (1 + ϕa (z)) (ψa (−z)− z)

2z

. (18)

Lemma 6 If a ∈ Ainv
2 (C), {ϕa, ψa} satisfies the following properties.

(i) ∆a (b) 6= 0 on D− and

T (a)−1 1

z + b
=

(ϕa (b) + 1) v − (ψa (b) + b)u

∆a (b) (z2 − b2)
. (19)

(ii) {ϕa, ψa} determines a.
(iii) There exist κ1 (a) ∈ C and φa ∈ H (D−) such that

ϕa (z) = κ1 (a) z
−1 + φa (z) z−1. (20)

12



Proof. Here the suffix a is omitted. (18) implies that for b ∈ D− we have
decompositions





a1(z)ue(z) + a2(z)uo(z)

z2 − b2

=
1

2b

(
ϕ (b) + 1

z − b
− ϕ (−b) + 1

z + b

)
+

1

2b

(
ϕ (z)− ϕ (b)

z − b
− ϕ (z)− ϕ (−b)

z + b

)

a1(z)ve(z) + a2(z)vo(z)

z2 − b2

=
1

2b

(
ψ (b) + b

z − b
− ψ (−b)− b

z + b

)
+

1

2b

(
ψ (z)− ψ (b)

z − b
− ψ (z)− ψ (−b)

z + b

)

into elements of H2 (D+) and H (D−), hence





T (a)
u

z2 − b2
=

1

2b

(
ϕ (b) + 1

z − b
− ϕ (−b) + 1

z + b

)

T (a)
v

z2 − b2
=

1

2b

(
ψ (b) + b

z − b
− ψ (−b)− b

z + b

) , (21)

which yields





T (a)
(ϕ (b) + 1) v − (ψ (b) + b)u

z2 − b2
=

∆(b)

z + b

T (a)
(ϕ (−b) + 1) v − (ψ (−b)− b)u

z2 − b2
=

∆(b)

z − b

. (22)

If ∆ (b) = 0, then the invertibility of T (a) implies

{
(ψ (b) + b)u− (ϕ (b) + 1) v = 0

(ψ (−b)− b)u− (ϕ (−b) + 1) v = 0
.

Applying T (a) we have

{
(ψ (b) + b)− (ϕ (b) + 1) z = 0

(ψ (−b)− b)− (ϕ (−b) + 1) z = 0
,

which means

ψ (b) + b = ϕ (b) + 1 = ψ (−b)− b = ϕ (−b) + 1 = 0,

hence (21) implies u = v = 0. This contradicts T (a)u = 1, T (a) v = z, and we
have ∆ (b) 6= 0. (19) can be deduced from (22).

Then, (22) shows that for any rational function f(z) with simple poles only
in D− and of order O

(
z−1
)
there exist two even rational functions r1(z), r2(z)

with the same property such that

T (a) (r1u+ r2v) (z) = f(z)

holds, hence

r1(z)u(z) + r2(z)v(z) =
(
T (a)

−1
f
)
(z) .
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Since such rational functions are dense in H2 (D+), approximating T (a) 1,

T (a) z ∈ H2 (D+) by rational functions fn and the continuity of T (a)
−1

show

that T (a)
−1
fn converges to 1, z compact uniformly on D+. Let

Z =

{
z ∈ D+; det

(
ue (z) ve (z)
uo (z) vo (z)

)
= 0

}
.

Then, the linear independence of {u, v} implies the discreteness of Z, and hence

for z ∈ D+\Z the associated rn,1(z), rn,2(z) converge to
{
r
(1)
1 (z), r

(1)
2 (z)

}
and

{
r
(2)
1 (z), r

(2)
2 (z)

}
depending on T (a)

−1
fn → 1 or T (a)

−1
fn → z. Since rn,1,

rn,2 have no poles on D+, their limits r
(i)
j (z) have no singularity on D+ either,

hence {
r
(1)
1 (z)u(z) + r

(1)
2 (z)v(z) = 1

r
(2)
1 (z)u(z) + r

(2)
2 (z)v(z) = z

(23)

holds for z ∈ D+. Since
{
r
(i)
j

}
are constructed by {ϕ, ψ}, one see that

{
r
(i)
j

}

depend only on {ϕ, ψ}, hence so does {u, v}. On the other hand (18) shows that
a1 (z), a2 (z) are recovered from {ϕ, ψ}. We remark that

det

(
ue (z) ve (z)
uo (z) vo (z)

)
6= 0 on D+.

(iii) is proved by applying (47) of Lemma 5 to a ∈ Ainv
2 (C). Namely we

have

ϕ (z) = p− (a1(z)ue(z) + a2(z)uo(z))

=
1

2πi

∫

C

(a1(λ)− f1(λ)) ue(λ) + (a2(λ) − f2(λ)) uo(λ)

z − λ
dλ.

Since aj(λ)− fj(λ) = O
(
λ−2

)
for j = 1, 2 and ue, uo ∈ H1 (D+),

λ (a1(λ) − f1(λ)) ue(λ), λ (a2(λ)− f2(λ)) uo(λ) ∈ L2 (C)

hold, hence

1

2πi

∫

C

(a1(λ) − f1(λ)) ue(λ) + (a2(λ)− f2(λ)) uo(λ)

z − λ
dλ

= κ1 (a) z
−1 + φa (z) z−1

is valid with




κ1 (a) =
1

2πi

∫

C

((a1(λ)− f1(λ)) ue(λ) + (a2(λ) − f2(λ)) uo(λ)) dλ

φa (z) =
1

2πi

∫

C

λ ((a1(λ)− f1(λ)) ue(λ) + (a2(λ) − f2(λ)) uo(λ))

z − λ
dλ

.

Owing to this Lemma we call {ϕa, ψa} as the characteristic functions of
a or Wa. This Lemma also implies the possibility of a kind of Riemann-Hilbert
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factorization of (a1(z), a2(z)), namely (18), (23) yield a representation
(
a1,e(z) a1,o(z)
a2,o(z) a2,e(z)

)

=

(
1 0
0 z

)−1
(
r
(1)
1 (z) r

(1)
1 (z)

r
(2)
2 (z) r

(2)
2 (z)

)(
1 + ϕe (z) ϕo (z)
ψe (z) z + ψo (z)

)
,

where the second term is analytic on D+ and the third term is analytic on D−.
The possibility of this factorization is very close to a sufficient condition for the
invertibility of T (a).

The m-function for Wa is defined by

ma (z) =
z + ψa (z)

1 + ϕa (z)
+ κ1 (a) . (24)

κ1 (a) is added so that we have an asymptotic behavior

ma (z) = z + o (1) as z → ∞ in |arg (±z)| < π/2− ǫ (25)

(i) of (6) implies 1 + ϕa (z) is not identically 0, hence ma is meromorphic on
D−. Later we will see that ma determines the potential q and is equal to the
Weyl function under a certain condition on a.

A good subset of Ainv
L (C) is given by ML (C):

ML (C)

=

{
m (z) = (m1 (z) ,m2 (z)) ; m is analytic on C\ ([−µ0, µ0] ∪ iR)
with µ0 =

√
−λ0 and satisfies (i), (ii) below:

}
(26)

(i) m(z) = 1+
∑

1≤k<L

mkz
−k +O

(
z−L

)
on D− with 1 = (1, 1), mk ∈ C2.

(ii) m1(z)m2(−z) +m1(−z)m2(z) 6= 0 on C\ ([−µ0, µ0] ∪ iR)
For m, n ∈ ML (C) define new elements by




(m · n) (z) = (m1(z)n1,e(z) +m2(z)n1,o(z),m1(z)n2,o(z) +m2(z)n2,e(z))

m̂(z) =

(
2 (m2,e(z)−m1,o(z))

m1(z)m2(−z) +m1(−z)m2(z)
,

2 (m1,e(z)−m2,o(z))

m1(z)m2(−z) +m1(−z)m2(z)

)
.

We have

Lemma 7 ML (C) satisfies the group property:
{

m · n, m̂ ∈ ML (C)
m · m̂ = m̂ ·m = 1

. (27)

Moreover it holds that
T (m · n) = T (m)T (n) (28)

for m, n ∈ ML (C). Consequently ML (C) ⊂ Ainv
L (C) is valid.

Proof. First note ML (C) ⊂ AL (C). This is because for any b ∈ D− there
exist m̃k ∈ C2 such that

∑

1≤k<L

mkz
−k =

∑

1≤k<L

m̃k (z − b)
−k

+O
(
z−L

)
.
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The group property (27) is clear. To show (28) note mH (D−) ⊂ H (D−) for
any bounded analytic function m on D−. Therefore, if scalers m1, m2 satisfy
the condition (i) of (26), then for u ∈ HN (D+)

p+ (m1m2u) = p+ (m1p+m2u) + p+ (m1p−m2u) = p+ (m1p+m2u)

holds. With this property in mind we have

T (m · n)u
= p+ ((m1n1,e +m2n1,o)ue + (m1n2,o +m2n2,e)uo)

= p+ (m1p+ (n1,eue + n2,ouo)) + p+ (m2p+ (n1,oue + n2,euo))

= T (m1) (T (n)u)e + T (m2) (T (n)u)o
= T (m) T (n)u,

which shows (28).

If a (z) = m (z) = (m1 (z) ,m2 (z)) ∈ M 2 (C), then due to m (z) = 1 +
m1z

−1 +O
(
z−2

)
we have

T (m)1 = p+m1(z) = 1, T (m)z = p+m2(z)z = z +m12

with m1 = (m11,m12), hence u(z) = 1, v(z) = z −m12. Therefore

{
ϕa (z) = m1(z)− 1

ψa (z) = −m12m1(z) + zm2(z)− z

follows, which yields

ma(z) =
−m12m1(z) + zm2(z)

m1(z)
+m11 =

zm2(z)

m1(z)
+m11 −m12. (29)

3 Group action on Ainv
L (C)

The KdV flow is described by a group action on Ainv
L (C). For m ∈ Z− and

odd n ∈ Z+ let Γ
(m)
n be





Γ
(m)
n =





g = reh; r is a rational function of order m which
do not have poles nor zeros on [−µ0, µ0] ∪ iR,
and h is a real odd polynomials of degree ≤ n





Γn =
{
g = eh; h is a real odd polynomials of degree ≤ n

}
⊂ Γ

(0)
n

, (30)

where µ0 =
√
−λ0 and the order m of a rational function r is defined by

m = deg p− deg q when r = p/q with polynomials p, q.

When we consider g = reh ∈ Γ
(m)
n , the curve C is taken so that eh remains

bounded on D+. Therefore, C is parametrized as

C =

{
±ω (y) + iy; y ∈ R, ω (y) > 0, ω (y) = ω (−y) , ω is
smooth and satisfies ω (y) = O

(
y−(n−1)

)
as y → ∞

}
. (31)
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In most of the cases Γ
(0)
n will be treated. However, in some important cases we

would like to consider qζg, qζ1qζ2g with g ∈ Γ
(0)
n to make arguments transpar-

ent, hence the numbers for m which are frequently appears are 0, −1, −2. Note
that any rational function r can be represented as a product of finite numbers

of qζ (z) =
(
1− ζ−1z

)−1
, qζ (z)

−1.

For a ∈ AL (C), g ∈ Γ
(m)
n a natural product ga is bounded on C due to

m ≤ 0, hence ga ∈ AL (C) . For a ∈ AL (C) and g ∈ Γ
(m)
n when L ≥ N+m ≥ 0,

for u ∈ HN (D+) an identity

T (ga)u = T (a) gu ∈ HN+m (D+) (32)

and
T (ga) : HN (D+) → HN+m (D+) ⊂ HN (D+) .

hold. It should be noted that generally one cannot expect (32) for a ∈ AL (C)

and g ∈ Γ
(m)
n unless g is even.

The invertibility of T (ga) is crucial in this paper and this will be shown by
using the tau-function, which is defined by the determinant of the difference
between T (ga) and T (a), namely

g−1T (ga)T (a)−1.

The tau-function describes the Γ
(m)
n action very well. To define the determinant

we have to show the relevant operators are of Hilbert-Schmidt type.
For a ∈ AL (C) let f be an analytic function on D+ such that

sup
z∈D+

|f (z)| <∞ and sup
z∈C

∣∣zL (a (z)− f (z))
∣∣ <∞.

For g1 ∈ Γ
(0)
n , g2 ∈ Γ

(m)
n and fixed b ∈ D− define





Sau (z) =
1

2πi

∫

C

ã (λ)

z − λ
u (λ) dλ for u ∈ HN (D+)

Hg2u = p+ (g2u) for u ∈ H (D−)

Ra (g1, g2) u = p+ (g2p−g1au) for u ∈ HN (D+)

. (33)

The domains and images for the above maps are as follows:





T (g2g1a) HN (D+) → HN+m (D+)
T (g1a) HN (D+) → HN (D+)
g2 HN (D+) → HN+m (D+)

Sg1a HN (D+) → H (D−)
Hg2 H (D−) → HN+m (D+) .

Hg2 is akin to a Hankel operator if D+ is the unit disc. Recall that the norms
in HN (D+) to H (D−) are respectively

√∫

C

|u (λ)|2 |λ|−2N |dλ|,
√∫

C

|u (λ)|2 |dλ|.
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Lemma 8 Assume L ≥ N ≥ 0. Then we have
(i) Sa defines a Hilbert-Schmidt class operator from HN (D+) to H (D−) if

∫

C2

∣∣∣∣
zN ãj (z)− λN ãj (λ)

z − λ

∣∣∣∣
2

|dz| |dλ| <∞ for j = 1, 2. (34)

(ii) Suppose N +m ≥ 0. Then Hg2 is of Hilbert-Schmidt class from H (D−) to
HN+m (D+) if

∫

C2

∣∣∣∣
g2 (λ)− g2 (z)

λ− z

∣∣∣∣
2

|z|−2(N+m) |dz| |dλ| <∞. (35)

(iii) Identities {
T (g2g1a) = g2T (g1a) +Ra (g1, g2)

Ra (g1, g2) = Hg2Sg1a

(36)

hold, and Ra (g1, g2) defines a trace class operator from HN (D+) to HN (D+)
under the conditions (34), (35).

Proof. For u ∈ HN (D+) it holds that

T (g2g1a) u = p+ (g2p+g1au) + p+ (g2p−g1au)

= g2T (g1a)u+ p+ (g2p−g1au)

= g2T (g1a)u+Hg2Sg1au.

If L ≥ N , we have

(p− (g1au)) (z) =
1

2πi

∫

C

g1 (λ) ã (λ)

z − λ
u (λ) dλ

for u ∈ HN (D+), z ∈ D−. Note here an identity

(Sg1a)u (z) =
1

2πi

∫

C

g1 (λ) (λ− b)
N
ã (λ)

z − λ
(λ− b)

−N
u (λ) dλ

=
z−M

2πi

∫

C

g1 (λ) (s (λ)− s (z))

z − λ
(λ− b)

−N
λ2Nu (λ) λ−2Ndλ

for z ∈ C with s (λ) = (λ− b)N ã (λ) due to u ∈ HN (D+). Since we can regard
Sg1a as a map from zNL2 (C) to L2 (C), we see that Sg1a is of Hilbert-Schmidt
class from HN (D+) to H (D−) if

∫

C2

∣∣∣∣g1 (λ)
s (λ) − s (z)

z − λ
(λ− b)

−N
λ2N

∣∣∣∣
2

|λ|−2N |dz| |dλ| <∞,

which is equivalent to (34) if we replace s (λ) by λN ãj here.
On the other hand the assumption m ≤ 0 implies supz∈D+

|g2 (z)| < ∞,
hence Hg2 defines an operator from H (D−) to H (D+). We find a condition for
Hg2 also to be of Hilbert-Schmidt class. Note

Hg2u (z) =
1

2πi

∫

C

g2 (λ)

λ− z
u (λ) dλ =

1

2πi

∫

C

g2 (λ)− g2 (z)

λ− z
u (λ) dλ
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for u ∈ H (D−), z ∈ D+. Then, Hg2 is of Hilbert-Schmidt class from H (D−)
to HN+m (D+) if

∫

C2

∣∣∣∣
g2 (λ)− g2 (z)

λ− z

∣∣∣∣
2

|z|−2(N+m) |dz| |dλ|

which is (35).

For later purpose we find a sufficient condition on g ∈ Γ
(m)
n under which

(35) is satisfied. From now on we assume without loss of generality the curve C
fulfills

sup
z∈C

∫

|z−λ|≤1,λ∈C

|dλ| <∞, (37)

and there exists a neighborhood U of the closure of D+ and ǫ > 0 such that

z, λ ∈ C, |z − λ| ≤ ǫ =⇒ (z − λ) t+ λ ∈ U for t ∈ [0, 1] . (38)

For g ∈ Γ
(m)
n let c > 0 be a constant such that

{
c−1 |z|m ≤ |g (z)| ≤ c |z|m
|g′ (z)| ≤ c |z|m+n−1 hold for z ∈ U . (39)

For N ∈ Z+ set

∆ =

∫

C2

∣∣∣∣
g (z)− g (λ)

z − λ

∣∣∣∣
2

|z|−2(N+m) |dz| |dλ| ,

which is the square of the Hilbert-Schmidt norm of the operator

Hg : H (D−) → HN+m (D+) .

Lemma 9 If N ≥ max {n, 1−m} hold, there exists a constant c0 depending
only on c such that ∆ ≤ c0.

Proof. Let ǫ be 0 < ǫ < 1. We first show that there exists a constant c1
depending on the constant c of (39) such that

∣∣∣∣
g (z)− g (λ)

z − λ

∣∣∣∣ ≤ c1

{
|z|m+n−1 if |z − λ| ≤ ǫ |λ|
|z|−1 (|z|m + |λ|m) if |z − λ| > ǫ |λ| (40)

holds for z, λ ∈ C. Since

g (z)− g (λ)

z − λ
=

∫ 1

0

g′ ((λ− z) t+ z)dt

for z, λ ∈ C, the properties (38), (39) show that there exists a constant c1 such
that ∣∣∣∣

g (z)− g (λ)

z − λ

∣∣∣∣ ≤ c1 |z|m+n−1 I|z−λ|≤ǫ|λ|.

The other estimate is clear and we have (40).
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Note ∆ ≤ ∆1 +∆2 with





∆1 = c21

∫

|z−λ|≤ǫ|λ|
|z|2(m+n−1) |z|−2(N+m) |dz| |dλ|

∆2 = c21

∫

|z−λ|>ǫ|λ|
|λ|−2 (|z|m + |λ|m)

2 |z|−2(N+m) |dz| |dλ|
.

Since the exponent of the integrand of ∆1 is equal to

2 (m+ n− 1)− 2 (N +m) ,

∆1 <∞ is valid if N > n− 1/2. On the other hand, there exists a constant c2
such that

∆2 ≤ c2

∫

|z−λ|>ǫ|λ|
|λ|−2

(
|z|2m + |λ|2m

)
|z|−2(N+m) |dz| |dλ| .

The right side is finite if

−2N < −1, − 2(N +m) < −1

which is equivalent to N +m ≥ 1. The above constants c1, c2 can be chosen
depending on c, hence so does c0.

The dependence of the constant c0 on the constant c will be used in the
proof of the continuity of the tau-function later.

4 Derivation of Schrödinger operator and KdV

equation

Schrödinger operators and solutions to the KdV equation can be obtained from

T (exza), T
(
exz+tz3

a
)
under their invertibility. This section is devoted to the

rigorous derivation of these equations.

4.1 Differentiability

The KdV flow is constructed by one-parameter group gt (z) = eth(z) with odd
polynomial h, and for the construction the differentiability of T (gta) with re-
spect to t will be necessary. In this section we extend the definition T (a). For
a polynomial h of degree n

hu ∈ HN+n (D+) if u ∈ HN (D+) ,

so for a ∈ AL (C) define

T (ha)u = p+ (hau) = T (a)hu ∈ HN+n (D+) ,

which is possible if L ≥ N + n. For a = (a1, a2) ∈ AL (C) we define

T (ha) u = T (ha1)ue + T (ha2)uo
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Lemma 10 Let a ∈ AL (C) and gt (z) = eth(z) ∈ Γn. Assume gta ∈ Ainv
N+n (C)

for any t ∈ R. Then if L ≥ N + n, for any u ∈ HN (D+)

{
∂tT (gta)u = T (hgta)u ∈ HN+n (D+)

∂tT (gta)
−1
u = −T (gta)

−1
T (hgta)T (gta)

−1
u ∈ HN+n (D+)

holds. Any higher derivative ∂kt T (gta)
−1
u exists if L ≥ N + kn.

Proof. Let N1 = N + n. Recall T (a)u = T (a1)ue + T (a2)uo if a = (a1, a2)
(see (??)). The first identity follows easily from

T (gta)u− T (gsa)u

t− s
=

1

t− s

∫ t

s

p+ (gτhau) dτ =
1

t− s

∫ t

s

T (hgτa) udτ .

To show the second identity first we verify the continuity of T (gta)
−1 u in

HN1
(D+) with respect to t. Applying (ii) of Lemma 8 with g1 = 1, g2 = g and

replacing N by N1, we have

T (gta) = gtT (a) +Ra (1, gt)

with
Ra (1, gt) = HgtSa.

Therefore

T (gta)
−1 =

(
I + T (a)−1 g−1

t Ra (1, gt)
)−1

T (a)−1 g−1
t

holds. We show g−1
t Ra (1, gt) is continuous in the Hilbert-Schmidt norm on

HN1
(D+), which is reduced to that of g−1

t Hgt as an operator from H (D−) to
HN1

(D+). The HS-norm of g−1
t Hgt is

∆ =

∫

C2

∣∣∣∣∣
gt (λ) gt (z)

−1 − gs (λ) gs (z)
−1

λ− z

∣∣∣∣∣

2

|z|−2N1 |dz| |dλ| . (41)

The proof is carried out similarly to that of (35). Observe
∣∣∣∣∣
gt (λ) gt (z)

−1 − gs (λ) gs (z)
−1

λ− z

∣∣∣∣∣ ≤
∣∣∣∣
h (λ) − h (z)

λ− z

∣∣∣∣
∫ t

s

∣∣∣eτ(h(λ)−h(z))
∣∣∣ dτ

≤ c
(
|z|n−1

+ |λ|n−1
)
(t− s)

for z, λ ∈ C. Then separating the integral (41) on |λ− z| ≤ ǫ |λ| and |λ− z| >
ǫ |λ|, we have

∆ ≤ c1 (t− s)
2
∫

|λ−z|≤ǫ|λ|

(
|z|2(n−1)

+ |λ|2(n−1)
)
|z|−2N1 |dz| |dλ|

+ c1

∫

|λ−z|>ǫ|λ|
|λ|−2

∣∣∣gt (λ) gt (z)−1 − gs (λ) gs (z)
−1
∣∣∣
2

|z|−2N1 |dz| |dλ| .

The first term is dominated by c2 (t− s)
2
if

2 (n− 1)− 2N1 < −1 =⇒ N1 ≥ n,
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which is satisfied if N ≥ 0. The second term tends to 0 as s→ t if −2N1 < −1,
which is always valid ifN1 ≥ 1. Therefore we have the continuity of g−1

t Ra (1, gt)

in the HS-norm on HN1
(D+), which implies T (gta)

−1
u is continuous in t for

any fixed u ∈ HN1
(D+) if L ≥ N + n. Consequently noting the identity

ǫ−1
(
T (gt+ǫa)

−1 − T (gta)
−1
)
= T (gt+ǫa)

−1 ǫ−1 (T (gta)− T (gt+ǫa))T (gta)
−1 ,

we have the Lemma. The existence of higher derivatives can be shown similarly.

4.2 Derivation of Schrödinger operator

First we derive a Schrödinger operator from a ∈ A1 (C) and g = ex with

ex (z) = exz.

The curve C is chosen so that ex (z) remains bounded for any fixed x ∈ R,
namely

C =

{
±ω (y) + iy, y ∈ R; ω (y) is a positive even smooth
function on R such that ω (y) = O (1) as |y| → ∞

}
. (42)

Recall
a (z) f (z) = a1(z)fe(z) + a2(z)fo(z)

for a vector function a (z) = (a1(z), a2(z)) and a function f(z) on C. For L ≥ 3,
a ∈ AL (C) assume exa ∈ Ainv

L (C) for any x ∈ R. Let ux ∈ H1 (D+) be

ux = T (exa)
−1

1 ∈ H1 (D+)

and set
wx = p− (exaux) ∈ H (D−) .

Then, for a bounded analytic vector f (z) on D+ satisfying ã (λ) = a (λ) −
f (λ) = O

(
λ−L

)
on C

wx (z) =
1

2πi

∫

C

exλã (λ)

z − λ
ux (λ) dλ

holds. Since Lemma 10 implies ∂jxux ∈ Hj+1 (D+) for j ≤ L− 1,





∂xwx (z) =
1

2πi

∫

C

exλ
λã (λ)ux (λ) + ã (λ) ∂xux (λ)

z − λ
dλ

∂2xwx (z) =
1

2πi

∫

C

exλ
λ2ã (λ) ux (λ) + 2λã (λ) ∂xux (λ) + ã (λ) ∂2xux (λ)

z − λ
dλ

.

(43)
Since ux ∈ H1 (D+), the expansion

(z − λ)
−1

=
∑

1≤k≤M

z−kλk−1 + z−MλM (z − λ)
−1
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shows

wx (z) =
∑

1≤k≤L−1

z−k 1

2πi

∫

C

λk−1exλã (λ) ux (λ) dλ

+ z−L+1 1

2πi

∫

C

λL−1exλã (λ)

z − λ
ux (λ) dλ

≡
∑

1≤k≤L−1

z−ksk(x) + z−L+1w̃x(z) (44)

with w̃x ∈ H (D−). Since ∂xux ∈ H2 (D+), ∂
2
xux ∈ H3 (D+), (43) shows

similarly
{

∂xwx (z) =
∑

1≤k≤L−2 z
−ks′k(x) + z−L+2w̃

(1)
x (z)

∂2xwx (z) =
∑

1≤k≤L−3 z
−ks′′k(x) + z−L+3w̃

(2)
x (z)

∈ H (D−) . (45)

with w̃
(1)
x , w̃

(2)
x ∈ H (D−). The notations in (18) and Lemma 6 imply

{
wx (z) = ϕexa (z)
s1(x) = κ1 (exa)

. (46)

Set
fa (x, z) = a (z)ux (z) = e−xz (1 + ϕexa (z)) . (47)

Proposition 11 Let L ≥ 3 and assume exa ∈ Ainv
L (C) for any x ∈ R. Set

q(x) = −2s′1(x) = −2∂xκ1 (exa) .

Then, a Schrödinger equation

− ∂2xfa (x, z) + q(x)fa (x, z) = −z2fa (x, z) (48)

holds, and {sk(x)}2≤k≤L−2 in (44) is determined by a recurrence relation

s′′k + 2s′1sk − 2s′k+1 = 0, (1 ≤ k ≤ L− 3) (49)

for given s1 (x), {sk(0)}2≤k≤L−2.

Proof. The identity wx = exaux − 1 yields
{
∂xwx = ex (zaux + a∂xux)
∂2xwx = ex

(
z2aux + a∂2xux + 2za∂xux

) ,

which implies
∂2xwx − 2z∂xwx = exa

(
∂2xux − z2ux

)
. (50)

Here we have used the identity

z2a (z)u (z) = a (z) z2u (z) .

Our strategy is to modify (50) so that the left hand side is an element of H (D−)
and the right hand side is an element of (exa)H3 (D+). From (45)

z∂xwx = s′1(x) +
∑

2≤k≤L−2

z−k+1s′k(x) + z−L+3w̃(1)
x (z) = s′1 (x) + vx
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follows with vx ∈ H (D−), which combined with (50) yields

∂2xwx + 2s′1wx − 2vx

= exa
(
∂2xux − z2ux

)
+ 2z∂xux + 2s′1 (exaux − 1)− 2vx

= exa
(
∂2xux − z2ux + 2s′1ux

)
. (51)

Note

∂2xwx + 2s′1wx − 2vx ∈ H (D−) , ∂2xux − z2ux + 2s′1ux ∈ H3 (D+) .

Then, applying p+ to (51) we have

0 = T (exa)
(
∂2xux − z2ux + 2s′1ux

)
,

and the invertibility of T (exa) on H3 (D+) yields (48).

∂2xux − z2ux + 2s′1ux = 0.

Since

0 = ∂2xwx + 2s′1wx − 2vx

=
∑

1≤k≤L−3

(
s′′k + 2s′1sk − 2s′k+1

)
z−k + z−L+3ṽx

with ṽx ∈ H (D−), we have (49).

Remark 12 q(x), fa (x, z) themselves are well-defined as continuous functions
if L ≥ 2, and ∂xfa (x, z) exists as a continuous function. Although the Schrödinger
equation (48) is satisfied if L ≥ 3, it seems that ∂2xfa (x, z) exists even if L = 2
due to (48). However we have no rigorous proof.

Now the m-function ma has another representation by fa (x, z).

Corollary 13 It holds that

∂xfa (x, z)

fa (x, z)

∣∣∣∣
x=0

= −ma (z) . (52)

Proof. Set b(z) = ∂xux (z)|x=0, b̃(z) = ∂xfa (x, z)|x=0. Then

b(z) ∈ H2 (D+) and a (z) b(z) = b̃(z)

hold. Since exzfa (x, z) = 1 + wx (z), (45) shows

b̃(z) = −z (1 + w0 (z)) +
∑

1≤k≤L−2

z−ks′k(0) + z−L+2w̃
(1)
0 (z)

= −z − s1(0) + w (z)

with w ∈ H (D−). Applying p+ to the identity

a (z) b(z) = −z − s1(0) + w (z)
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we have
T (a) b(z) = −z − s1(0),

hence
b(z) = −T (a)

−1
z − s1(0)T (a)

−1
1,

which implies

b̃(z) = a (z) b(z) = − (z + ψa (z))− s1(0) (1 + ϕa (z)) .

Consequently we have

∂xfa (x, z)

fa (x, z)

∣∣∣∣
x=0

=
− (z + ψa (z))− s1(0) (1 + ϕa (z))

1 + ϕa (z)

= −ma (z) + κ1 (a)− s1(0) = −ma (z)

due to s1(0) = κ1 (a).

4.3 Derivation of KdV equation

Our next task is to derive the KdV equation from g = et,x with

et,x(z) = exz+tz3

.

In this case the curve C is determined by requesting et,x(z) to be bounded on
C, hence

C =

{
±ω (y) + iy, y ∈ R; ω is smooth positive even on R,

and ω satisfies ω (y) = O
(
y−2

)
as y → ∞.

}
.

For L ≥ 4 let a ∈ AL (C) and assume et,xa ∈ Ainv
L (C) for any t, x ∈ R. Let

ut,x = T (et,xa)
−1

1 ∈ H1 (D+) and wt,x = p− (et,xaft,x) ∈ H (D−). Then,
Lemma 10 implies

wt,x (z) =
∑

1≤k≤L−1

z−ksk(t, x) + z−L+1w̃t,x(z) with sk ∈ C, w̃t,x ∈ H (D−)

for t, x ∈ R.

Proposition 14 Let L ≥ 4 and assume et,xa ∈ Ainv
L (C) for any t, x ∈ R. Set

q(t, x) = −2∂xs1 (t, x) = −2∂xκ1 (et,xa) .

Then q satisfies the KdV equation

∂tq(t, x) =
1

4
∂3xq(t, x)−

3

2
q(t, x)∂xq(t, x). (53)

Proof. In this case N = 1, n = 3. Our strategy for the proof is similar to that
of the last one. Since wt,x = et,xaut,x − 1 ∈ H (D−)

{
∂xwt,x = et,x (zaut,x + a∂xut,x)

∂twt,x = et,x
(
z3aut,x + a∂tut,x

) ,
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which leads us to

∂twt,x = z2∂xwt,x + et,xa
(
∂tut,x − z2∂xut,x

)
.

Since
z2∂xwt,x ≡ zs′1 + s′2 + s′3z

−1 mod z−1H (D−) ,

substituting 1 = et,xaut,x − wt,x and

z = zet,xaut,x − zwt,x

= ∂xwt,x − et,xa∂xut,x − zwt,x

≡ s′1z
−1 − s1 − s2z

−1 − et,xa∂xut,x

≡ (s′1 − s2) z
−1 − s1 (et,xaut,x − wt,x)− et,xa∂xut,x

≡
(
s′1 − s2 + s21

)
z−1 − et,xa (s1ut,x + ∂xut,x)

(≡ means mod z−1H (D−)) into the above identity yields

z2∂xwt,x

≡ s′1
((
s′1 − s2 + s21

)
z−1 − et,xa (s1ut,x + ∂xut,x)

)
+ s′2 + s′3z

−1

= s′2 (et,xaft,x − wt,x) +
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)
z−1 − et,xa (s1ut,x + ∂xut,x)

= −s′2wt,x +
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)
z−1 + et,xa ((s′2 − s1) ut,x − ∂xut,x)

Therefore

∂twt,x ≡ −s′2wt,x +
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)
z−1

+ et,xa
(
(s′2 − s1)ut,x + ∂tut,x − z2∂xut,x − ∂xut,x

)

holds, and we have

{
(s′2 − s1)ut,x + ∂tut,x − z2∂xut,x − ∂xut,x = 0

∂twt,x + s′2wt,x −
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)
z−1 ≡ 0

. (54)

due to the invertibility of T (et,xa) on H3 (D+). Since the coefficient of z−1 for
the second identity vanishes, it follows that

∂ts1 + s′2s1 −
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)
= 0.

Here the identities for k = 1, 2 and etz
3

a in (49) of Proposition 11

{
s′′1 + 2s′1s1 − 2s′2 = 0
s′′2 + 2s′1s2 − 2s′3 = 0

allow us to have

∂ts1 = −s′2s1 +
(
s′1
(
s′1 − s2 + s21

)
+ s′3

)

= −s1 (s′′1/2 + s′1s1) + (s′1)
2
+ s21s

′
1 − s′1s2 + s′′2/2 + s′1s2

= −s1 (s′′1/2 + s′1s1) + (s′1)
2
+ s21s

′
1 + (s′′1/2 + s′1s1)

′
/2

= s′′′1 /4 + 3 (s′1)
2
/2,
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which is (53) by substituting q(t, x) = −2∂xs1 (t, x).

The above calculation does not reveal explicitly the reason why the KdV
equation appears. There is a hidden algebraic structure behind discovered by
Sato [18].

The invertibility of T (et,xa) plays an essential role in the above calculation.

The non-existence of T (et,xa)
−1

at some point (t, x) means that the solution
q(t, x) has a singularity at (t, x).

5 Tau-function

Hirota introduced an object τa called tau-function whose mathematical meaning
was discovered by Sato later. In this paper the tau-function will be used to prove
the invertibility of T (ga).

The tau-function defined in [11] is written in the present context as

τa (g) = det
(
g−1T (ga)T (a)−1

)
. (55)

The operator g−1T (ga)T (a)−1 is a map on HN (D+) and the determinant is
well-defined if the operator g−1T (ga)T (a)−1 − I is of trace class on HN (D+).
The identity (36) implies

g−1T (ga)T (a)
−1 − I = g−1Ra (1, g)T (a)

−1
,

hence it is sufficient for this that Ra (1, g) is of trace class. Since Ra (1, g) is a
product of Hg and Sa, there are two cases where Ra (1, g) is of trace class.

(i) Hg is of trace class.
(ii) Hg and Sa are of Hilbert-Schmidt class.

(i) is the case for g ∈ Γ
(0)
0 (rational function of order 0) due to Lemma 37.

However for other cases one has to impose an extra condition on a. To avoid
this inconvenience we use the modified determinant det2, namely

det2 (I +A) = det(I +A)e−trA.

It is known that this determinant can be extended to any operator A of Hilbert-
Schmidt (HS in short) class. Since I+A is invertible if and only if det2 (I +A) 6=
0, this det2 is sufficient to verify the existence of T (ga)−1. Set

τ (2)
a

(g) = det2
(
g−1T (ga)T (a)−1

)
for a ∈ Ainv

L (C) , g ∈ Γ(m)
n . (56)

τ
(2)
a (g) can be defined if Ra (1, g) = HgSa is of HS class, which is valid if Hg is
of HS-class as a map from H (D−) to HN+m (D+), and Lemma 9 implies that
Hg is of HS class if

N ≥ max {n, 1−m} , (57)

which implies
L ≥ max {n, 1−m} . (58)

Conversely the existence of N satisfying (57) follows from (58).

In the definitions of τa (g), τ
(2)
a (g) the operator g−1T (ga)T (a)−1 is a map

on HN (D+), hence τa (g), τ
(2)
a (g) may depend on N . However we have
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Lemma 15 For a ∈ AL (C), g ∈ Γ
(m)
n assume that N , N ′ ∈ Z+ satisfy (57)

and the two operators

{
T (a) : HN (D+) → HN (D+)

T (a) : HN ′ (D+) → HN ′ (D+)

are bijective. Then the determinants and the modified determinants on HN (D+)

and HN ′ (D+) in (55) and (56) are equal, hence τa (g), τ
(2)
a (g) do not depend

on N .

To show this lemma we use a metric free nature of determinant. For the
necessary facts of determinant refer to [20].

Lemma 16 Let H, H1 be two Hilbert spaces and H1 be a subspace of H as
vector spaces. Assume H1 is dense. Suppose a linear operator A on H is of
Hilbert-Schmidt class and satisfies

AH1 ⊂ H1 and AH1
≡ A|H1

is of Hilbert-Schmidt class in H1.

Then
det2 (IH +A) = det2 (IH1

+AH1
)

holds. If A is of trace class, then det (IH +A) = det (IH1
+AH1

) holds as well.

Proof. Let {en}n≥1 be a complete orthonormal basis of H1 and {fn}n≥1 be
the orthonormal vectors in H generated from {en}n≥1 by the Gram-Schmidt
process. Since H1 is dense in H , {fn}n≥1 turns to be complete in H . Let Vn
be the n-dimensional subspace generated by {ek}1≤k≤n and Pn, Qn be the
orthogonal projections to Vn from H1, H respectively. Then it is known that

{
det2 (IH1

+ PnAH1
Pn) → det2(IH1

+AH1
)

det2 (IH +QnAQn) → det2(IH +A)
as n→ ∞. (59)

Let B, E be n× n matrices whose entries are

fi =
∑

1≤j≤n

bijej → B = (bij) , and E =
(
(ei, ej)H

)
.

If we denote

AH1

n =
(
(Aei, ej)H1

)
1≤i,j≥n

, AH
n =

(
(Afi, fj)H

)
1≤i,j≤n

,

then the identity AH
n = BAH1

n EB∗ yields

det2 (IH +QnAQn) = det2
(
In +AH

n

)

= det2
(
In +BAH1

n EB∗)

= det2
(
In +BAH1

n B−1
)

= det2
(
In +AH1

n

)
= det2 (IH1

+ PnAH1
Pn)

due to BEB∗ = In. This together with (59) completes the proof for det2. The
proof for det is similar.
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Proof of Lemma 15. Note that for N ′ ≥ N an identity

g−1R
(N ′)
a (1, g)TN ′ (a)

−1

∣∣∣∣
HN (D+)

= g−1R(N)
a

(1, g)TN (a)
−1

(60)

holds on HN (D+). On the other hand, for u ∈ H (D+) the identity

(b− z)
N
u (z) = lim

ǫ→0
(b− z)

N
(1− ǫz)

−N
u (z)

implies H (D+) is dense in HN (D+). Then, applying Lemma 16 to

H = HN ′ (D+) , H1 = HN (D+) , A = g−1R
(N ′)
a (1, g)TN ′ (a)−1

yields the lemma.

This Lemma yields flexibility in choosing N , namely N can be arbitrary

if (57) is satisfied for given L, m, n. Therefore τ
(2)
a (g) can be defined for

a ∈ Ainv
L (C), g ∈ Γ

(m)
n under the condition (58). However it should be noted

that for any rational function r ∈ Γ
(m)
0 Lemma 37 shows r−1T (ra)T (a)−1−I is

of finite rank on any spaceHN (D+) with N such that −m ≤ N ≤ L. Therefore,

τ
(2)
a (r), τa (r) can be defined for r ∈ Γ

(m)
0 , a ∈ Ainv

L (C) if L ≥ −m.

5.1 Cocycle property of tau-function

The tau-function is a key material to study the KdV flow and in this section we
give fundamental properties for the tau-function.

Note
a ∈ AL (C) , g ∈ Γ(m)

n =⇒ ga ∈ AL (C) ,

since g is analytic and bounded on D+. Assume further

a ∈ Ainv
L (C) , g1 ∈ Γ(0)

n , g2 ∈ Γ(m)
n .

We consider three tau-functions τ
(2)
a (g1g2), τ

(2)
a (g1), τ

(2)
g1a (g2) simultaneously,

which is possible if L ∈ Z+ satisfies (26) and g1a ∈ Ainv
L (C).

For simplicity of notations set

Ea (g1, g2) = tr
((

(g1g2)
−1 T (g2g1a)T (g1a)

−1g1 − I
) (
g−1
1 T (g1a)T (a)

−1 − I
))

= tr
(
(g1g2)

−1
Ra (g1, g2) T (g1a)

−1Ra (1, g1)T (a)
−1
)
. (61)

Lemma 17 Assume L satisfies (58) and let N be one N of (57). Then we have
the followings.

(i) The map T (g1a) is bijective on HN (D+) if and only if τ
(2)
a (g1) 6= 0.

Similarly the map

T (g2g1a) : HN (D+) → HN+m (D+)

is bijective if and only if τ
(2)
a (g1g2) 6= 0.

(ii) If τ
(2)
a (g1) 6= 0, then it holds that

τ (2)
a

(g1g2) = τ (2)
a

(g1) τ
(2)
g1a (g2) exp (−Ea (g1, g2)) . (62)
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Additionally if r1 ∈ Γ
(0)
0 , r2 ∈ Γ

(m)
0 and τa (r1) 6= 0, then

τa (r1r2) = τa (r1) τr1a (r2) . (63)

(iii) Suppose g1 satisfies g1 (z) = g1 (−z). Then, it holds that T (g2g1a) =
T (g2a) g1 and

τ (2)g1a (g2) = τ (2)
a

(g2) .

Similarly, for rational functions r1 ∈ Γ
(0)
0 , r2 ∈ Γ

(m)
0 satisfying r1 (z) = r1 (−z)

we have
τr1a (r2) = τa (r2) , τa (r1r2) = τa (r1) τa (r2) .

Proof. The identity (61) implies

g−1
2 T (g2g1a)T (g1a)

−1
= I + g−1

2 Ra (g1, g2)T (g1a)
−1

with the Hilbert-Schmidt class operator Ra (g1, g2). Then general theory of

Fredholm determinant shows that the operator g−1
2 T (g2g1a)T (g1a)

−1
is bi-

jective if and only if det2

(
g−1
2 T (g2g1a) T (g1a)

−1
)

6= 0, which implies the

bijectivity of T (g2g1a). The bijectivity of T (g1a) follows by letting g2 = 1.
The definition of the tau-function says

τ (2)
a

(g1g2) = det2
(
(g1g2)

−1T (g1g2a) T (a)
−1
)
.

On the other hand it holds that

(g1g2)
−1T (g1g2a)T (a)

−1

=
(
g−1
1

(
g−1
2 T (g2g1a)T (g1a)

−1
)
g1
) (
g−1
1 T (g1a)T (a)

−1
)
. (64)

Note the identity

{
det2

(
G−1 (I +A)G

)
= det2 (I +A)

det2 ((I +A) (I +B)) = det2 (I +A) det2 (I +B) e−tr(AB)

for Hilbert-Schmidt operators A, B and a bounded operator G having bounded
inverse. Then taking determinant in (64) yields

τ (2)
a

(g1g2) = det2
(
g−1
1 g−1

2 T (g1g2a)T (g2a)
−1g1

)
det2

(
g−1
1 T (g1a)T (a)

−1
)

× exp
(
−tr

(
g−1
1 g−1

2 Ra (g1, g2)T (g1a)
−1
g1g

−1
1 Ra (1, g1)T (a)

−1
))

= τ (2)
a

(g1) τ
(2)
g1a (g2) exp (−Ea (g1, g2))

For r ∈ Γ
(0)
0 Lemma 37 implies that r−1T (ra)T (a)−1 is of finite rank, hence

τa (r) can be defined. Taking the determinant in (64) we easily have (63).
Suppose g1(z) = g1(−z). For u ∈ HN (D+), a = (a1, a2) we have

T (g2g1a)u = p+ (g1g2a1)ue + p+ (g1g2a2)uo

= p+ (g2a1) g1ue + p+ (g2a2) g1uo

= p+ (g2a1) (g1u)e + p+ (g2a2) (g1u)o
= T (g2a) (g1u) ,
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which implies T (g2g1a) = T (g2a) g1 on HN (D+), hence

T (g2g1a)T (g1a)
−1 = T (g2a) g1g

−1
1 T (a)−1 = T (g2a)T (a)

−1

is valid. This shows

τ (2)g1a (g2) = det2
(
g−1
2 T (g2g1a)T (g1a)

−1
)
= det2

(
g−1
2 T (g2a) T (a)

−1
)
= τ (2)

a
(g2) .

5.2 Continuity of tau-functions

Since the determinant det2 is estimated by the HS-norm, the continuity of

τ
(2)
a (g) with respect to g ∈ Γ

(m)
n follows from that of g−1Ra (1, g) with re-

spect to the HS-norm, which is reduced to the continuity of Hg = p+ (g·) on
H (D−) with respect to the HS-norm due to

Ra (1, g) = HgSa (see Lemma 8), (65)

where 



Ra (1, g) : HN (D+) → HN (D+)
Hg : H (D−) → HN (D+)
Sa : HN (D+) → H (D−)

.

The condition for L, n is (58), namely

L ≥ max {n, 1−m}
and N is arbitrary if it satisfies (57). Denote

dN (g1, g2)

=

( ∫

C2

∣∣∣∣∣
g1 (z)

−1
g1 (λ)− g2 (z)

−1
g2 (λ)

z − λ

∣∣∣∣∣

2

|z|−2N |dz| |dλ|
)1/2

if g1, g2 ∈ Γ
(m)
n , we have

Lemma 18 Let a ∈ Ainv
L (C) with L satisfying (58). Assume g1, g2 ∈ Γ

(m)
n

and dN (g1, 1) ≤ c1. Then there exists a constant ca depending on c1, a, N such
that ∣∣∣τ (2)

a
(g1)− τ (2)

a
(g2)

∣∣∣ ≤ cadN (g1, g2) . (66)

Proof. Recall the definition τ
(2)
a (g) = det2

(
I + g−1Ra (1, g)T (a)−1

)
for g ∈

Γ
(m)
n , and

g−1Ra (1, g)T (a)
−1

= g−1HgSaT (a)
−1

.

The HS-norm of this operator is dominated by dN (g, 1), hence if dN (g, 1) <∞,

then τ
(2)
a (g) is defined finitely. Generally if ‖A‖HS , ‖B‖HS ≤ c1 there exists a

constant c2 depending only on c1 such that

|det2 (I +A)− det2 (I +B)| ≤ c2 ‖A−B‖HS .

Therefore τ
(2)
a (g1) − τ

(2)
a (g2) can be estimated by those of the HS-norms of

g−1
1 Hg1 − g−1

2 Hg2 on the space HN (D+), which is just equal to dN (g1, g2).

For later purpose we give a sufficient condition for the convergence of τ
(2)
a (gk).
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Lemma 19 Assume the following properties for gk, g ∈ Γ
(0)
n :





(i) there exist c1, c2 > 0 such that for z ∈ U

c1 ≤ |gk (z)| ≤ c2, |g′k (z)| ≤ c2 |z|n−1

(ii) gk (z) → g (z) as k → ∞ for any z ∈ C

, (67)

where U is a neighborhood of the closure of D+ satisfying (38). Then, for

r ∈ Γ
(m)
0 and a ∈ AL (C) with

L ≥ max {n, 1−m} ,

it holds that
τ (2)
a

(rgk) → τ (2)
a

(rg) .

Proof. Choose an integer N ≥ 0 such that L ≥ N ≥ max {n, 1−m}. Set

∆k (z, λ) =
g (z)

−1
g (λ)− gk (z)

−1
gk (λ)

z − λ
.

Since

dL,N (rgk, rg)
2 =

∫

C2

|∆k (z, λ)|2 |z|−2N |dz| |dλ| ,

it is sufficient for dL,N (rgk, rg) → 0 as k → ∞ to show that there exists a

function f integrable with respect to |z|−2N |dz| |dλ| such that

|∆k (z, λ)|2 ≤ f (z, λ) .

Note

∆k (z, λ) = r (z)
−1
g (z)

−1 r (λ) g (λ)− r (z) g (z)

z − λ

− r (z)
−1
gk (z)

−1 r (λ) gk (λ)− r (z) gk (z)

z − λ
.

Then (40) implies
∣∣∣∣
r (z) gk (z)− r (λ) gk (λ)

z − λ

∣∣∣∣ ≤ c1

{
|z|m+n−1 if |z − λ| ≤ ǫ |λ|
|z|−1

(|z|m + |λ|m) if |z − λ| > ǫ |λ| .

Set

f1 (z, λ) = |z|−m
(
|z|m+n−1

I|z−λ|≤ǫ|λ| + |λ|−1
(|z|m + |λ|m) I|z−λ|>ǫ|λ|

)
.

Since
∣∣∣r (z)−1

gk (z)
−1
∣∣∣ ≤ c2 |z|−m

, it is sufficient to show the integrability of

f1 (z, λ)
2
. The rest of proof proceeds just as the proof of Lemma 9. The expo-

nent of the first term is 2 (n− 1)−2N , which is less than if N ≥ n. The integral
of the second term is dominated by

∫

C2

|λ|−2 |z|−2m
(
|z|2m + |λ|2m

)
|z|−2N |dz| |dλ| ,

which is finite if

−2N < −1, − 2m− 2N < −1 =⇒ N ≥ 1, 1−m.
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6 Non-negativity condition of Ainv
N (C)

Generally potentials arising from a ∈ Ainv
N (C) are complex valued, so to obtain

real potentials some sort of realness for a and g is required. a ∈ AN (C),

g ∈ Γ
(m)
n are called real if they satisfy

a (λ) = a
(
λ
)

for λ ∈ C, g(z) = g(z) for z ∈ C. (68)

If a and g are real in this sense, then clearly we have

{
ϕa (z) = ϕa (z), ψa (z) = ψa (z), ma (z) = ma (z)

τa(g), τ
(2)
a (g) ∈ R

,

and the associated potential takes real values.
Define a subclass of Ainv

L :

Ainv
L,+ (C) =

{
a ∈ Ainv

L (C) ; τ (2)
a

(r) ≥ 0 for any real rational r ∈ Γ
(0)
0

}

=
{
a ∈ Ainv

L (C) ; τa (r) ≥ 0 for any real rational r ∈ Γ
(0)
0

}
.

The second identity follows from the identity

τ (2)
a

(r) = τa (r) exp
(
−tr

(
r−1T (ra)T (a)

−1 − I
))

.

τa (r) is well-defined for any rational function r ∈ Γ
(0)
0 since the relevant operator

is of finite rank. Our strategy to show τ
(2)
a (g) > 0 for real g ∈ Γ

(0)
n is as follows:

(i) Show τ
(2)
a (r) > 0 for any real r ∈ Γ

(0)
0 and a ∈ Ainv

L,+ (C).

(ii) Approximate a general real g ∈ Γ
(0)
n by a sequence of real rk ∈ Γ

(0)
0 .

(iii) Use the continuity of τ
(2)
a (·) to have τ

(2)
a

(
gr−1

k

)
> 0 for sufficiently large k

and show gr−1
k a ∈ Ainv

L,+ (C).

(iv) Apply the cocycle property of τ
(2)
a (·) to have τ

(2)
a (g) > 0, namely

τ (2)
a

(g) = τ (2)
a

(
gr−1

k rk
)
= τ (2)

a

(
gr−1

k

)
τ
(2)

gr−1

k
a

(rk) exp
(
−Ea

(
gr−1

k , rk
))
> 0.

This programme will be realized in the next section. At the same time a close
connection of the m-function with the Weyl function for Schrödinger operators
will be revealed.

6.1 Non-degeneracy of Tau-functions for a ∈ Ainv
L,+ (C)

To investigate properties of ma and τ
(2)
a for a ∈ Ainv

L,+ (C) we prepare several
lemmas. In this section the curve C is parametrized by

C = {±ω (y) + iy; y ∈ R}

with a smooth function ω (y) > 0 satisfying ω (y) = ω (−y) and ω (y) =
O
(
y−(n−1)

)
.
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Lemma 20 Let a(x), b(x) be real valued analytic functions on an interval I ⊂ R

satisfying 



a(y)b(x) − a(x)b(y)

x− y
≥ 0

a(x)2 + b(x)2 > 0
a (x) ≥ 0

for any x, y ∈ I

Then we have either a(x) = 0 identically or a(x) > 0 for any x ∈ I .

Proof. Since the first assumption implies

a(y)b(x) − a(x)b(y) ≥ 0 for any x > y,

if a(x) has a zero at x0 ∈ I, setting x = x0 or y = x0 we have

{
a(y)b(x0) ≥ 0 for any y < x0
a(x)b(x0) ≤ 0 for any x > x0

. (69)

The second assumption implies b(x0) 6= 0, hence (69) together with the property
a(x) ≥ 0 shows a(x) = 0 on (−∞, x0) ∩ I or (x0,∞) ∩ I. Then the analyticity
of a yields the vanishing of a(x) on I.

In what follows τa (r) for r ∈ Γ
(0)
0 will be used instead of τ

(2)
a (r). Recall

that τa (r) ≥ 0 holds for any real r ∈ Γ
(0)
0 if a ∈ Ainv

L,+ (C). In what follows we

have to assume a ∈ Ainv
L,+ (C) with L ≥ 2 since in the proofs we use ϕa, ma.

Let
pζ (z) = 1 + ζ−1z, qζ (z) =

(
1− ζ−1z

)−1
for ζ ∈ D−.

Lemma 21 Let a ∈ Ainv
L,+ (C) with L ≥ 2. Then the followings are valid.

(i) Imma (z) / Im z > 0 on D−\R and ma (z) is analytic on D−.
(ii) 1 + ϕa (z) 6= 0 on D−.

(iii) τa (qx1
px2

) = (1 + ϕa (x1)) (1 + ϕa (x2))
ma (x1)−ma (x2)

∆a (x2) (x1 − x2)
> 0 for any

x1, x2 ∈ D− ∩ R if x1 6= x2.

Proof. In the formula in Lemma 37 setting ζ1 = ζ, ζ2 = ζ, ζ′1 = η, ζ′2 = η ∈ D−,

we see that qζqζpηpη is a real element of Γ
(0)
0 , hence τa

(
qζqζpηpη

)
≥ 0 if

a ∈ Ainv
L,+ (C). Lemma 37 implies that

lim
η→∞

τa

(
qζqζpηpη

)
= τa

(
qζqζ

)
,

hence we have τa

(
qζqζ

)
≥ 0 for all ζ ∈ D−. On the other hand from Lemma

37 we have

τa

(
qζqζ

)
= |ϕa (ζ) + 1|2 Imma (ζ)

Im ζ
,

which implies Imma (ζ) / Im ζ ≥ 0 for ζ ∈ {ζ ∈ D−; ϕa (ζ) + 1 6= 0} ≡ Zϕ.
Note ϕa (ζ) → 0 as ζ → ∞, hence the set Zϕ is discrete. Suppose ma (ζ0) = 0
for some ζ0 ∈ Zϕ∩C+. Then the maximum principle for the harmonic function
− Imma (ζ) shows Imma (ζ) = 0 identically there, which contradicts ma (ζ) =
ζ +O

(
ζ−1
)
as ζ → ∞, hence > 0 on Zϕ ∩C+. One has the same property also
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in C−. On the other hand ma (ζ) has poles at ζ0 ∈ D−\Zϕ since ϕa (ζ) + 1
and ψa (ζ)+ ζ do not vanish simultaneously due to ∆a (ζ) 6= 0. However this is

impossible if we apply the same argument to ma (ζ)
−1

, which implies

ma (z) is analytic and
Imma (z)

Im z
> 0 holds on D−\R.

This in particular means 1 + ϕa (z) 6= 0 on D−\R. The remaining problem is
the existence or non-existence of poles of ma (z) on D− ∩ R. We rewrite the
identity in Lemma 37 as

τa (qζ1pζ2) =
(ψa (ζ2) + ζ2) (ϕa (ζ1) + 1)− (ϕa (ζ2) + 1) (ψa (ζ1) + ζ1)

∆a (ζ2) (ζ1 − ζ2)
,

which is valid for any ζ1, ζ2 ∈ D−. Set ζ1 = x1, ζ2 = x2 ∈ D− ∩ R and

a(x) = ϕa (x) + 1, b(x) = ψa (x) + x.

Then

τa (qx1
px2

) =
a (x1) b (x2)− a (x2) b (x1)

∆a (x2) (x1 − x2)

holds, and the property ∆a (x) 6= 0, ∆a (x) → −1 as |x| → ∞ implies ∆a (x) < 0
on D− ∩R, which together with τa (qx1

px2
) ≥ 0 (due to a ∈ Ainv

L,+ (C)) shows

a (x1) b (x2)− a (x2) b (x1)

x1 − x2
≤ 0.

Moreover, in the inequality τa (qx1
px2

) ≥ 0 letting x2 → ∞, we have τa (qx1
px2

) →
τa (qx1

) just by the same argument as above and

a (x1) = ϕa (x1) + 1 = τa (qx1
) ≥ 0

is valid. The condition a (x)
2
+b(x)2 > 0 follows from ∆a (x) 6= 0, hence one can

apply Lemma 20 to have a(x) > 0, since a (x) → 1 as |x| → ∞. We have shown
(i) and (ii). To show (iii) first assume x1 6= x2 and suppose τa (qx1

px2
) = 0.

Then

0 =
a (x1) b (x2)− a (x2) b (x1)

x1 − x2
= a (x1) a (x2)

c (x2)− c (x1)

x1 − x2

with c(x) = b(x)/a(x). Observing c(x) is analytic and c′(x) ≥ 0, this identity
implies c(x) is identically constant, which contradicts c(x) = x+ o (1) as |x| →
∞, hence we have τa (qx1

px2
) > 0 if x1 6= x2.

Lemma 22 Let a ∈ Ainv
L,+ (C) with L ≥ 2 and r ∈ Γ

(0)
0 be real. Then τa (r) > 0

holds, which in particular means ra ∈ Ainv
L,+ (C).

Proof. First note that for r1, r2 ∈ Γ
(0)
0 and a ∈ Ainv

L,+

τa (r1) > 0, τa (r2) > 0 =⇒ τa (r1r2) > 0.

This is because r1a ∈ Ainv
L,+ (C) since the cocycle property implies

τr1a (r) =
τa (rr1)

τa (r1)
≥ 0 for any real r ∈ Γ

(0)
0 ,
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and
τa (r1r2) = τa (r1) τr1a (r2) > 0.

Generally real r ∈ Γ
(0)
0 is a product of





(1) qζqζpηpη with η, ζ ∈ D−\R
(2) qspt with s, t ∈ D− ∩R

(3) qζqζpspt with ζ ∈ D−\R, s, t ∈ D− ∩R

(4) qsqtpηpη with η ∈ D−\R, s, t ∈ D− ∩ R

. (70)

Therefore, if τa (r) > 0 is proved for any r of these 4 cases, we have τa (r) > 0

for any real r ∈ Γ
(0)
0 .

We begin from the case (1) and let r (z) =
(
qζqζpηpη

)
(z). Then (113) of

Lemma 37 implies

τa (r) =
|η + ζ|2

∣∣η + ζ
∣∣2 |ϕa (η) + 1|2 |ϕa (ζ) + 1|2

(4 Im η Im ζ) |∆a (η)|2

×



∣∣∣∣∣
ma (η)−ma (ζ)

η2 − ζ
2

∣∣∣∣∣

2

−
∣∣∣∣
ma (η)−ma (ζ)

η2 − ζ2

∣∣∣∣
2

 (71)

due to realness of a. Note ϕa (z) + 1 6= 0 for any z ∈ D− due to Lemma 21.
Owing to the symmetry of r with respect to ζ, η, one can assume Im ζ > 0,

Im η > 0. The condition a ∈ Ainv
L,+ (C) implies τa

(
qζqζpηpη

)
≥ 0 for any η,

ζ ∈ D−∩C+. Assume τa

(
qζ0qζ0pη0

pη0

)
= 0 for some η0, ζ0 ∈ D− and consider

the analytic function

f(z) =
ma (z)−ma (ζ0)

ma (z)−ma (ζ0)

z2 − ζ0
2

z2 − ζ20
.

The property τa

(
qζ0qζ0pzpz

)
≥ 0 shows

|f(z)| ≤ 1 for any z ∈ D− ∩ C+, (72)

and the assumption implies the equality at (72) for z = η0, which concludes
f(z) = eiα with α ∈ R identically on D− ∩C+. Then

ma (z) =

(
ma (ζ0)− eiαma (ζ0)

)
z2 + eiαma (ζ0)ζ

2
0 −ma (ζ0) ζ0

2

(1− eiα) z2 + eiαζ20 − ζ0
2

holds, which contradicts ma (z) = z + o (1) as z → ∞. Therefore we have
|f(z)| < 1 always, which is nothing but τa (r) > 0.

The case (2) is already proved in Lemma 20 if s 6= t. Suppose s = t and let
sn ∈ D−∩R be a sequence converging to s. Then, τa (qsnps) > 0 is valid due to
sn 6= s for any n ≥ 1. Moreover one can show easily τa

(
qsq

−1
sn

)
→ 1 as n→ ∞.

Taking sufficiently large n such that τa
(
qsq

−1
sn

)
> 0 and fixing it we see from

the cocycle property

τa (qsps) = τa (rn (qsnps)) = τa (rn) τrna (qsnps) > 0,
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where rn = qsq
−1
sn , since rna ∈ Ainv

L,+ (C) due to τa (rn) > 0.

Similarly one can show τa

(
qζqζpsps

)
> 0 as a limiting case of (1). Setting

r1 = qζqζpsps we have

τa

(
qζqζpspt

)
= τa (r1q−spt) = τa (r1) τr1a (q−spt) > 0,

which shows the case (3). The case (4) can be shown similarly.

The next task is to approximate general g ∈ Γn by rational functions.

Lemma 23 Let g ∈ Γn. Then there exists a sequence of rational functions

{rk}k≥1 ⊂ Γ
(0)
0 such that rk → g in the sense of (67).

Proof. Let U be a neighborhood of D+ whose boundary is described by an

equation |x| = c |y|−(n−1)
for large |y| with sufficiently large c > 0. For integer

k ≥ 1 let

φk (z) =



1 +

z

2k

1− z

2k




k

.

Note limk→∞ φk (z) = ez. For a positive constant a ≤ k an inequality

e−2a ≤ |φk (z)| ≤ e2a if |Re z| ≤ a (73)

holds. If h(z) = c1z
n+ lower degree terms, then

c2 ≡ sup
z∈U

|Reh (z)| <∞ (74)

is valid. Define real rational functions by

rk(z) = φk (h (z)) .

The zeros and poles of rk(z) are determined by the equation h (z) = ±2k. If a
is chosen so that a > c2, then clearly there exist a constant c3 > 1 such that

c−1
3 ≤ |rk(z)| ≤ c3 for z ∈ U and k ≥ 1

holds. Moreover

|r′k(z)| = |h′(z)| |φ′k (h (z))| = |h′(z)|

∣∣∣∣∣∣∣

1 +
h (z)

2k

1− h (z)

2k

∣∣∣∣∣∣∣

k−1
∣∣∣∣1−

h (z)

2k

∣∣∣∣
−2

shows
|r′k(z)| ≤ c4 |z|n−1

for z ∈ U and k ≥ 1.

Since limk→∞ rk(z) = eh(z) = g(z), all conditions of Lemma 19 are satisfied.

Now we have

Proposition 24 Let g ∈ Γ
(0)
n be real and a ∈ Ainv

L,+ (C) with L ≥ max {n, 2}.
Then, τ

(2)
a (g) > 0 holds, hence ga ∈ Ainv

L,+ (C) is valid.
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Proof. L ≥ max {n, 1} is necessary for the definition of τ
(2)
a (g) for g ∈ Γ

(0)
n

and L ≥ 2 is required to apply Lemma 22. First note that if τ
(2)
a (g) > 0 holds,

then ga ∈ Ainv
L,+ (C). To show this let {rk}k≥1 be the sequence of Lemma 23

approximating g and r be any real rational function of Γ
(0)
0 . Then rk → g

implies
τ (2)
a

(gr) = lim
k→∞

τ (2)
a

(rkr) ≥ 0

and

τ (2)ga (r) =
τ
(2)
a (gr)

τ
(2)
a (g)

exp (Ea (g, r)) ≥ 0,

which means ga ∈ Ainv
L,+ (C).

Now
{
gk = gr−1

k

}
k≥1

also satisfies the conditions of (67) with g = 1, hence

Lemma 19 shows
lim
k→∞

τ (2)
a

(
gr−1

k

)
= τ (2)

a
(1) = 1.

Fix a sufficiently large k ≥ 1 such that τ
(2)
a

(
gr−1

k

)
> 0. Then the above

argument shows gr−1
k a ∈ Ainv

L,+ (C). Applying Lemma 22 to gr−1
k a ∈ Ainv

L,+ (C)

and the rational function rk we have τ
(2)

gr−1

k
a

(rk) > 0. The cocycle property of

tau-functions implies

τ (2)
a

(g) = τ (2)
a

(
gr−1

k rk
)
= τ (2)

a

(
gr−1

k

)
τ
(2)

gr−1

k
a

(rk) exp
(
−Ea

(
gr−1

k , rk
))
> 0.

If g = reh with real r ∈ Γ
(0)
0 , then

τ (2)
a

(g) = τ (2)
a

(r) τ (2)ra

(
eh
)
exp

(
−Ea

(
r, eh

))
> 0,

which completes the proof.

6.2 m-function and Weyl function

Since for a ∈ Ainv
L,+ (C) we know exa ∈ Ainv

L,+ (C) (ex(z) = exz) from Theorem
1, Proposition 11 shows that we have a Schrödinger equation

−∂2xfa(x, z) + q(x)fa(x, z) = −z2fa(x, z).

Since q is real valued, the Schrödinger operator

Lq = −∂2x + q

turns to be a symmetric operator on L2 (R), one can consider the Weyl’s classi-
fication of the boundaries ±∞ and the Weyl functions m± if the boundaries are
of limit point type. In this section we establish the connection between the m-
function and the spectral theory of Lq initiated by Weyl. Necessary knowledge
for this section will be obtained in [13].

Lemma 25 (Boundary classification) For any z ∈ C\R

dim
{
f ∈ L2 (R+) ; Lqf = zf

}
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is independent of z. According to 1 or 2 of the dimension the boundary +∞ is
called limit point type or limit circle type respectively. It is also valid that if +∞
is of limit circle type, then

dim
{
f ∈ L2 (R+) ; Lqf = zf

}
= 2

for any z ∈ C.

If the boundary +∞ is of limit point type, then there exists a non-trivial
solution f+ (x, z) to Lqf+ = zf+ which is in L2 (R+). f+ is unique up to
constant multiple. The Weyl function is defined by

m+(z) =
f ′
+(0, z)

f+(0, z)

The boundary −∞ also has the same classification, and if it is of limit point
type, the Weyl function at −∞ is defined by

m−(z) = −f
′
−(0, z)

f−(0, z)

with the L2 (R−) non-trivial solution f− (x, z).
A general sufficient condition for the limit point type which is suitable for

our purpose is known by [8]. A proof is given for completeness sake.

Lemma 26 If there exists a positive solution f on R+ to Lqf = λ0f for some
λ0 ∈ R, then the boundary +∞ is of limit point type.

Proof. Define

u(x) = f(x)

∫ x

0

f(y)−2dy.

Then u satisfies Lqu = λ0u. We show u /∈ L2 (R+), which implies that +∞ is
of limit point type due to Lemma 25. For this purpose set

s(x) =

∫ x

0

f (y)
−2
dy and t(x) =

(
−s(x)−1

)′
.

Then t(x) > 0 and

−s(x)−1 = c+

∫ x

0

t (y)dy

with some constant c. Since s(x)−1 > 0, we have

∫ x

0

t (y) dy < −c,

which implies ∫ ∞

0

t (y)dy ≤ −c <∞. (75)

On the other hand
∫ ∞

0

u(x)2dx =

∫ ∞

0

s′(x)−1s(x)2dx =

∫ ∞

0

dx

(−s(x)−1)
′ =

∫ ∞

0

dx

t(x)
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holds. Since for any t(x) > 0

∫ ∞

0

t (y) dy +

∫ ∞

0

t (y)
−1
dy =

∫ ∞

0

(
t (y) + t (y)

−1
)
dy ≥

∫ ∞

0

2dy = ∞,

(75) shows ∫ ∞

0

u(x)2dx =

∫ ∞

0

dx

t(x)
= ∞,

which completes the proof.

Suppose the boundaries ±∞ are of limit point type. Then, it is known that
the symmetric operator Lq has a unique self-adjoint extension in L2 (R) and
m± (z) are analytic functions on C\spLq satisfying Imm± (z) / Im z > 0.

Now we consider relationship between ma (z) and m± (z). The definition of
fa (x, z)

fa (x, z) = a (z)
(
T (exa)

−1
1
)
(z)

implies

feya (x, z) = ey (z)a (z)
(
T (exeya)

−1 1
)
(z) = ey (z) fa (x+ y, z) .

Therefore, Corollary 13 shows

−meya (z) =
∂xfeya (x, z)

feya (x, z)

∣∣∣∣
x=0

=
∂xfa (x+ y, z)

fa (x+ y, z)

∣∣∣∣
x=0

=
∂yfa (y, z)

fa (y, z)
, (76)

hence it holds that

fa (x, z) = fa (0, z) exp

(
−
∫ x

0

meya (z) dy

)
. (77)

Proposition 27 Let a ∈ Ainv
L,+ with L ≥ 3 and q be the associated potential.

Then the boundaries ±∞ are of limit point type for the Schrödinger operator
Lq. The m-function ma and the Weyl functions m± are connected with ma by

ma (z) =

{
−m+

(
−z2

)
if Re z > 0

m−
(
−z2

)
if Re z < 0

. (78)

Proof. The key ingredient for the proof is (76), which shows

∂xmexa (z) = −z2 − q(x) +mexa (z)
2
, (79)

since fa (x, z) satisfies Lqfa (x, z) = −z2fa (x, z). (79) implies

∂x Immexa (z) = − Im z2 + 2Remexa (z) Immexa (z) ,

which together with (77) yields

|fa (x, z)|2 = |fa (0, z)|2 exp
(
−2

∫ x

0

Remeya (z)

)
dy

= |fa (0, z)|2 Imma (z)

Immexa (z)
exp

(
−
∫ x

0

Im z2

Immeya (z)
dy

)
.
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Then an identity

∫ b

0

|fa (x, z)|2 dx = |fa (0, z)|2
Imma (z)

Im z2

(
1− exp

(
−
∫ b

0

Im z2

Immeya (z)
dy

))

follows. Since Im z2 = 2Re z Im z and Imma (z) / Im z > 0 hold due to (i) of
Lemma 21, if Re z > 0, we have

∫ ∞

0

|fa (x, z)|2 dx ≤ |fa (0, z)|2
Imma (z)

Im z2
<∞. (80)

On the other hand, if z = λ ∈ D− ∩R, then (77) implies fa (x, λ) /fa (0, λ) is a
positive solution to Lqf = −λ2f , hence the boundary +∞ is of limit point type
owing to Lemma 26. Since fa (x, z) ∈ L2 (R+) if Re z > 0 and Im z 6= 0, the
uniqueness of such a solution justifies fa (x, z) = f+(x,−z2), which shows the
identity ma (z) = −m+

(
−z2

)
if Re z > 0. The boundary −∞ can be treated

similarly, and we obtain ma (z) = m−
(
−z2

)
if Re z < 0, which completes the

proof.

This Proposition says that for a ∈ Ainv
L,+ itsm-functionma (z) is analytically

continuable up to C\ ([−µ0, µ0] ∪ iR) (µ0 =
√
−λ0) although originally we knew

its analyticity only on D−.
The next issue is to show the converse statement of Proposition 27. This

proposition and Lemma 21 implies that m = ma for a ∈ Ainv
L,+ (C) satisfies





Imm (z)

Im z
> 0 on C\ (R ∪ iR)

m(x)−m(−x)
x

> 0 if x ∈ R and |x| > µ0

. (81)

It should be remarked that the analyticity of m on D− implies 1 + ϕa (z) 6= 0
on D− since 1 + ϕa (z) and z + ψa (z) do not vanish simultaneously due to
∆a (z) 6= 0. In the process of the proof we need an operation

(dζf) (z) =
z2 − ζ2

f (z)− f (ζ)
− f (ζ)

for a function f on C as long as they have meaning. Then {dζ}ζ∈D−

is commu-

tative and dζd−ζ = id.

Proposition 28 Let L ≥ 2. For a ∈ Ainv
L (C) suppose that ma is analytic on

C\ ([−µ0, µ0] ∪ iR) and satisfies (81). Then, a ∈ Ainv
L,+ (C) holds.

Proof. We have to show τa (r) ≥ 0 for any real rational function r ∈ Γ
(0)
0 .

Since such r is a product of the 4 types of rational functions of (70), first we
prove τa (r) ≥ 0 for r of (70). If r is of the type (1) with η, ζ ∈ D− ∩ C+, then
τa (r) is given by (71) and τa (r) > 0 is equivalent to |f(z)| < 1 on D− ∩ C+

with

f(z) =
ma (z)−ma (ζ)

ma (z)−ma (ζ)

z2 − ζ
2

z2 − ζ2
.
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Set w = ζ2. Then

f(
√
z) =

ma (
√
z)−ma (

√
w)

ma (
√
z)−ma (

√
w)

z − w

z − w

holds. Since ma (
√
z) is analytic on C+ and Imma (

√
z) > 0, Schwarz lemma

implies |f(√z)| < 1 for z, ζ ∈ C+, unless ma (
√
z) is

ma

(√
z
)
=
az + b

cz + d

with some constants a, b, c, d satisfying ad − bc 6= 0, which is impossible since
ma (

√
z) =

√
z+o (1) as z → ∞. Therefore we have |f(z)| < 1 if Re z, Im z > 0,

Re ζ, Im ζ > 0. On the other hand, when z ∈ C− we use the identity

f(−
√
z) =

ma (−√
z)−ma (

√
w)

ma (−√
z)−ma (

√
w)

z − w

z − w
.

If Re ζ > 0, Im ζ > 0, then Imw > 0 implies
∣∣∣∣
z − w

z − w

∣∣∣∣ < 1

and
Imma

(
−
√
z
)
> 0, Imma

(√
w
)
> 0

due to Im
√
z < 0, Im

√
w > 0, hence

∣∣∣∣∣
ma (−√

z)−ma (
√
w)

ma (−√
z)−ma (

√
w)

z − w

z − w

∣∣∣∣∣ <
∣∣∣∣∣
ma (−√

z)−ma (
√
w)

ma (−√
z)−ma (

√
w)

∣∣∣∣∣ < 1,

which implies |f(z)| < 1 if Re z < 0, Im z > 0, Re ζ, Im ζ > 0. The rest of the
cases can be proved by the symmetry and we have τa (r) > 0.

For the type (2) r = qspt

τa (r) =
(1 + ϕa (s)) (1 + ϕa (−t))

∆a (t)

ma (s)−ma (t)

s− t
.

Recall
(1 + ϕa (s)) (1 + ϕa (−t))

∆a (t)
> 0 if |s| , |t| > µ0.

On the other hand the property Imma (z) / Im z > 0 implies

m′
a
(t) = lim

ǫ→0

ma (t+ iǫ)−ma (t− iǫ)

2iǫ
= lim

ǫ→0

Imma (t+ iǫ)

Im (t+ iǫ)
≥ 0,

which shows

ma (s)−ma (t)

s− t
≥ 0 if s, t ∈ (−∞,−µ0) or (µ0,∞) .

If s ∈ (−∞,−µ0) and , t ∈ (µ0,∞), then from (m (x)−m (−x)) /x > 0 an
inequality

ma (s)−ma (t) ≤ 0
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follows, hence we have τa (r) ≥ 0 for the case (2). If r = qζqζpspt, the cocycle
property implies

τa (r) = τa

(
qζpζp

−1

ζ
qζpspt

)
= τa

(
qζpζ

)
τqζpζa

(
p−1

ζ
qζpspt

)
.

Since the m-function for qζpζa is dζdζma, which satisfies (81) due to Lemma
39, we have τqζpζ

a (pspt) 6= 0 in view of the last argument, and

τqζpζ
a

(
p−1

ζ
qζpspt

)
= τqζpζ

a

(
p−1

ζ
qζ

)
τqζpζ

a (pspt) = ∆qζpζ
a

(
ζ
)
τqζpζ

a (pspt) 6= 0

is valid. Therefore we have τa (r) > 0. The case (4) r = qsqtpηpη can be treated
similarly, hence τa (r) > 0 for r of any type of (70).

The property τa (r) ≥ 0 for general real r ∈ Γ
(0)
0 can be obtained by observ-

ing
τa (r1r2) = τa (r1) τr1a (r2) ≥ 0

if τa (r1) > 0 and the m-function mr1a satisfies (81) since mr1a is obtained by
repeating the operation dζdζ , dt to ma. If τa (r1) = 0, approximating r1 by
real rational functions rn such that τa (rn) > 0 one sees τa (r1r2) ≥ 0, which
completes the proof.

It is certainly better to prove τa (r) > 0 directly by showing

det

(
ma (ζi)−ma (−ηj)

ζ2i − η2j

)
6= 0 (see Lemma 37)

for ma satisfying (81), however the author has no such proof.

6.3 Proof of Theorem 1

A more concrete criterion for an m to be in Ainv
L,+ is given by the two conditions

(M.1), (M.2) in Introduction. Recall the definitions. Suppose an analytic func-
tion m on C\ ([−µ0, µ0] ∪ iR) (µ0 =

√
−λ0) satisfies

(M.1) m (z) has the property (81), namely





Imm (z)

Im z
> 0 on C\ (R ∪ iR)

m(x)−m(−x)
x

> 0 if x ∈ R and |x| > µ0

. (82)

(M.2) m has an asymptotic behavior:

m (z) = z +
∑

1≤k≤L−2

mkz
−k +O

(
z−L+1

)
on D−. (83)

Proof of Theorem 1

Suppose m satisfies (M.1), (M.2) and set m (z) ≡ (1,m (z) /z). To see
m ∈ ML (C) only the condition (ii) of (26), namely

m1(z)m2(−z) +m1(−z)m2(z) 6= 0 on C\ ([−µ0, µ0] ∪ iR) (84)
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must be verified. For this m (z) the left hand side of (84) is (m (z)−m (−z)) /z,
which is not 0 since Im (m (z)−m (−z)) > 0 if Im z > 0 and m(x)−m(−x) 6= 0
if |x| > µ0. Since the identity m = mm is clear, Proposition 28 implies m ∈
Ainv

L,+ (C), which proves the theorem.

It may be interesting to see to what extent ma for a ∈ Ainv
L,+ (C) has the

property (M.2).

Proposition 29 Let C′ = σC with σ > 1. Then ma for a ∈ Ainv
L,+ (C) satisfies

(M.2) on D′
− = σD− replacing L by L− 1− (n− 1) /2.

Proof. To verify the property (M.2) recall the definition of the m-function ma

with a ∈ Ainv
L,+ (C):

ma (z) =
z + ψa (z)

1 + ϕa (z)
+ κ1 (a)

with {
ϕa (z) = a (z)T (a)

−1
1− 1

ψa (z) = a (z)T (a)
−1
z − z

∈ H (D−) ,

and κ1 (a) = limz→∞ zϕa (z). Set u = T (a)
−1

1 ∈ H1 (D+), v = T (a)
−1
z ∈

H2 (D+). Since (12) implies

p− (au) (z) =
1

2πi

∫

C

(a (λ)− f (λ))u (λ)

z − λ
dλ ∈ H (D−)

for u ∈ HL (D+), we have





ϕa (z) = p− (au) (z) =
1

2πi

∫

C

(a (λ)− f (λ)) u (λ)

z − λ
dλ

ψa (z) = p− (av) (z) =
1

2πi

∫

C

(a (λ)− f (λ)) v (λ)

z − λ
dλ

.

The expansion

1

z − λ
=

M∑

k=1

z−kλk−1 + z−M λM

z − λ

implies {
ϕa (z) =

∑L−1
k=1 z

−kℓk−1 (u) + z−L+1δ1 (z)

ψa (z) =
∑L−2

k=1 z
−kℓk−1 (v) + z−L+2δ2 (z)

with 



ℓk (u) =
1

2πi

∫

C

λk (a (λ)− f (λ))u (λ) dλ

δ1 (z) =
1

2πi

∫

C

λL−1 (a (λ)− f (λ))u (λ)

z − λ
dλ ∈ H (D−)

δ2 (z) =
1

2πi

∫

C

λL−2 (a (λ)− f (λ)) v (λ)

z − λ
dλ ∈ H (D−)

.

Since λL−1 (a (λ)− f (λ))u (λ) ∈ L2 (C), Schwarz inequality implies

|δ1 (z)|2 ≤ 1

4π2

∫

C

|dλ|
|z − λ|2

∫

C

∣∣λL−1 (a (λ)− f (λ))u (λ)
∣∣2 |dλ| ≤ c |z|n−1
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for z ∈ C′ due to Lemma 42. Similarly we have |δ2 (z)|2 ≤ c |z|n−1. Therefore





ϕa (z) =
∑L′−1

k=1 z−kℓk−1 (u) +O
(
z−L′

)

ψa (z) =
∑L′−2

k=1 z−kℓk−1 (v) +O
(
z−L′+1

)

holds on C′ with L′ = L− 1− (n− 1) /2, which implies

ma (z) = z +

L′−2∑

k=1

ckz
−k +O

(
z−L′+1

)
.

7 KdV flow

We are ready to construct the KdV flow.

7.1 Definition of the flow and Theorem 2

We define the KdV flow by making use of the m-functions and the continuity
of ma (ζ) with respect to a is necessary, which is shown by representing m′

a
by

the tau-function. The identities in (112) implies

m′
a
(ζ) =

τa

(
q2ζ

)

τa (qζ)
2

=
τ
(2)
a

(
q2ζ

)

τ
(2)
a (qζ)

2
exp tr

((
q−2
ζ T

(
q2ζa
)
− 2q−1

ζ T (qζa) + T (a)
)
T (a)−1

)
.

The cocycle property shows

m′
ga (ζ) =

τ
(2)
ga

(
q2ζ

)

τ
(2)
ga (qζ)

2
exp tr

((
q−2
ζ T

(
q2ζga

)
− 2q−1

ζ T (qζga) + T (ga)
)
T (ga)

−1
)

=
τ
(2)
a

(
gq2ζ

)

τ
(2)
a (gqζ)

2
τ (2)
a

(g) exp trB1

for g ∈ Γn with

B1 = q−2
ζ T

(
gq2ζa

)
T (ga)

−1 − 2q−1
ζ T (gqζa)T (ga)

−1
+ I

+
((
gq2ζ
)−1

T
(
gq2ζa

)
T (ga)

−1
g − I

)(
g−1T (ga)T (a)

−1 − I
)

− 2
(
(gqζ)

−1
T (gqζa)T (ga)

−1
g − I

)(
g−1T (ga)T (a)

−1 − I
)

= B2 − g−1B2g + g−1B2T (ga)T (a)
−1

,

where
B2 = q−2

ζ T
(
gq2ζa

)
T (ga)−1 − 2q−1

ζ T (gqζa)T (ga)−1 + I.
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Then we have

trB1 = trg−1
(
q−2
ζ T

(
gq2ζa

)
− 2q−1

ζ T (gqζa) + T (ga)
)
T (a)

−1
.

Since for v ∈ HN (D+)

q−2
ζ T

(
gq2ζa

)
− 2q−1

ζ T (gqζa) + T (ga) v (z)

=
1

2πi

∫

C

g (λ)
(
qζ (z)

−1
qζ (λ) − 1

)2
ã (λ) v (λ)

λ− z
dλ

=
1

2πi

∫

C

(λ− z) g (λ) ã (λ) v (λ)

(ζ − λ)
2 dλ,

the above operator is of rank 2, and the trace turns to

trB1 =
1

2πi

∫

C

Θ(g, λ)

(ζ − λ)
2 dλ

with

Θ (g, λ) = g (λ)
(
λã (λ)

(
T (a)

−1
g−1

)
(λ)− ã (λ)

(
T (a)

−1
g−1z

)
(λ)
)
,

hence

m′
ga (ζ) =

τ
(2)
a

(
gq2ζ

)

τ
(2)
a (gqζ)

2
τ (2)
a

(g) exp

(
1

2πi

∫

C

Θ(g, λ)

(ζ − λ)
2 dλ

)
(85)

holds.

Lemma 30 For L ≥ max {n+ 1, 3} let a1, a2 ∈ Ainv
L,+ (C). Then

(i) Suppose ma1
= ma2

. Then mga1
= mga2

for any g ∈ Γn.
(ii) Suppose ∂xκ1 (exa1) = ∂xκ1 (exa2) for any x ∈ R. Then ∂xκ1 (exga1) =
∂xκ1 (exga2) for any g ∈ Γn and x ∈ R.

Proof. Propositions 24, 27, 28 provide necessary ingredients. Suppose ma1
=

ma2
for a1, a2 ∈ Ainv

L,+ (C). Then Lemma 38 implies

mqζpηa1
(z) = (dζdηma1

) (z) = (dζdηma2
) (z) = mqζpηa2

(z) .

Repeating this operation finite times one can show mra1
= mra2

for any real

rational function r ∈ Γ
(0)
0 . For g ∈ Γn we approximate it by real rational

functions rk ∈ Γ
(0)
0 , which is possible by Lemma 23. We show the convergence

m′
rka

(ζ) → m′
ga (ζ) for each fixed ζ ∈ D− by making use of (85). Lemma 19

shows

lim
k→∞

τ
(2)
a

(
rkq

2
ζ

)

τ
(2)
a (rkqζ)

2
=
τ
(2)
a

(
gq2ζ

)

τ
(2)
a (gqζ)

2
.

On the other hand Θ (rk, λ) → Θ(g, λ) in L2 (C) is valid if L ≥ max {n+ 1, 3},
hence

lim
k→∞

m′
rka

(ζ) = m′
ga (ζ) (86)
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follows. Consequently one sees

m′
ga1

(ζ) = lim
k→∞

m′
rka1

(ζ) = lim
k→∞

m′
rka2

(ζ) = m′
ga2

(ζ)

for ζ ∈ D−. Since generally mga (ζ) = ζ + o (1), we have mga1
= mga2

.
(ii) is proved by the uniqueness of the correspondence between the Weyl

functions m± and the potential q. That is, ma1
= ma2

follows from

−2∂xκ1 (exa1) = −2∂xκ1 (exa2) = q(x).

Then (i) yields mga1
= mga2

, which implies again by the uniqueness

−2∂xκ1 (exga1) = −2∂xκ1 (exga2) .

We have used the condition L ≥ max {n+ 1, 3} to have the differentiability.

Set

QL (C) =
{
q; q(x) = −2∂xκ1 (exa) with real a ∈ Ainv

L,+ (C)
}
.

Then this Lemma allows us to define

(K (g) q) (x) = −2∂xκ1 (exga) if q = −2∂xκ1 (exa) ∈ QL (C)

for g ∈ Γn, and we have Theorem 2. We call the flow {K (g)}g∈Γn
as KdV

flow.
It might be helpful to remark that one can define an equivalent flow on the

space of m-functions. Let

ML (C) =
{
m; m(z) = ma(z) for a ∈ Ainv

L,+ (C)
}
,

and define
g ·ma = mga for ma ∈ ML (C) .

(i) of Lemma 6 justifies this definition. The set

M∞ (C) =
⋂

L≥1

(⋃

σ>1

ML (σC)

)

is equal to the set of all functions m satisfying (M.1), (M.2) on σD−. Theorem
1 implies g ·m ∈ M∞ (C) for m ∈ M∞ (C).

7.2 Tau-function representation of the flow

Hirota introduced his tau-function as the function u(t, x) such that−2∂2x log u(t, x)
is a solution to the KdV equation and he tried to find an equation satisfied by
u(t, x). Sato discovered the intrinsic meaning of u(t, x) and found that solu-
tions to the KdV equation can be described by the tau-functions. Although the
theorems in this paper can be proved without this representation, in view of its
historical significance we show it in the present framework.

To define the tau-function τa (g) we have to assume that the operator

g−1T (ga)T (a)
−1 − I : HN (D+) → HN (D+)
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is of trace class. We assume in this section the condition (34) of Lemma 8 for
λa (λ), N = 1, that is

∫

C2

∣∣∣∣
z2ãj (z)− λ2ãj (λ)

z − λ

∣∣∣∣
2

|dz| |dλ| <∞ with ãj (z) = aj(z)− fj(z), (87)

which shows the operator Sλa is of HS from H1 (D+) to H (D−). This condition
can be verified in the same manner as Lemma 9 for a(z) = (1,m (z) /z) if m
satisfies (M.1), (M.2) for sufficiently large L.

Let
ex(z) = exz ∈ Γ1, et,x(z) = exz+tz3 ∈ Γ3.

In Proposition 11 for a ∈ A3 (C) satisfying exa ∈ Ainv
3 (C) for any x ∈ R we

have introduced the potential q associated with a of Schrödinger operator by
q(x) = −2∂xκ1 (exa). The κ1 (a) is described by the characteristic functions as

κ1 (a) = lim
ζ→∞

ζϕa (ζ) .

Proposition 31 Assume a ∈ Ainv
L,+ (C) and (87). Then an identity

κ1 (exa) = ∂x log τa (ex)

holds, which yields
q(x) = −2∂2x log τa (ex) ,

if L ≥ 2. Generally for g ∈ Γn and a ∈ Ainv
L,+ (C) with L ≥ max {n, 2}

(K (g) q) (x) = −2∂2x log τa (gex)

holds. Especially the solution q(t, x) to the KdV equation starting from q(x) is
given by

q(t, x) = −2∂2x log τa (et,x) ,

if a ∈ Ainv
L,+ (C) for L ≥ 4. The condition L ≥ 4 is necessary for the differen-

tiability of q(t, x) in t (see Proposition 14).

Proof. The definition of ϕa implies

κ1 (a) = lim
ζ→∞

ζϕa (ζ) = lim
ζ→∞

ζ
1

2πi

∫

C

ϕa (λ)

ζ − λ
dλ

= lim
ζ→∞

ζ
1

2πi

∫

C

ã (λ)
(
T (a)

−1
1
)
(λ)

ζ − λ
dλ

=
1

2πi

∫

C

ã (λ)
(
T (a)

−1
1
)
(λ) dλ. (88)

On the other hand the formal identity

τa (eǫ) = det
(
e−1
ǫ T (eǫa)T (a)

−1
)
= det

(
I + e−1

ǫ HeǫSaT (a)
−1
)

is justified by reproving below in a way different from that of Lemma 17 that
e−1
ǫ HeǫSaT (a)

−1
defines a trace class operator on H1 (D+). For v ∈ H1 (D+)

it holds that

Sav (z) =
1

2πi

∫

C

ã (λ) v (λ)

z − λ
dλ = ℓ1 (a,v) z

−1 + z−1
(
S(1)
a
v
)
(z)
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with 



ℓ1 (a,v) =
1

2πi

∫

C

ã (λ) v (λ) dλ

S
(1)
a v (z) =

1

2πi

∫

C

λã (λ) v (λ)

z − λ
dλ

=
1

2πi

∫

C

(λã (λ)− zã (z)) v (λ)

z − λ
dλ ∈ H (D−)

,

since ã (λ) = O
(
λ−L

)
for L ≥ 2. Hence for z ∈ D+

e−1
ǫ HeǫSav (z) =

ℓ1 (a,v)

2πi

∫

C

eǫ(λ−z)

(λ− z)λ
dλ+ e−1

ǫ Heǫz
−1S(1)

a
v (z)

= ℓ1 (a,v)
1− e−ǫz

z
+ e−1

ǫ Heǫz
−1S(1)

a
v (z) (89)

holds. Since S
(1)
a defines an HS operator from H1 (D+) to H (D−) under (87),

e−1
ǫ Heǫz

−1S
(1)
a turns to a trace class operator on H1 (D+), which makes it

possible to define τa (eǫ) rigorously. Moreover in this case for w ∈ H (D−)

e−1
ǫ Heǫz

−1w (z) =
1

2πi

∫

C

(
eǫ(λ−z) − 1

λ− z
− ǫ

)
λ−1w (λ) dλ

holds due to

1

2πi

∫

C

1

λ− z
λ−1w (λ) dλ =

1

2πi

∫

C

λ−1w (λ) dλ = 0,

Hence the square of the HS-norm of ǫ−1e−1
ǫ Heǫz

−1 is

δǫ ≡ (2π)
−2
∫

C2

∣∣∣∣
eǫ(λ−z) − 1

ǫ (λ− z)
− 1

∣∣∣∣
2

|λ|−2 |z|−2 |dλ| |dz| .

Since there exists a constant c such that
∣∣∣∣
eǫ(λ−z) − 1

ǫ (λ− z)
− 1

∣∣∣∣ =
∣∣∣∣
∫ 1

0

(
etǫ(λ−z) − 1

)
dt

∣∣∣∣ ≤ c

holds for ǫ ∈ R, λ, z ∈ C, the dominated convergence theorem shows limǫ→0 δǫ =
0. Consequently we have

∥∥∥e−1
ǫ Heǫz

−1S(1)
a
T (a)

−1
∥∥∥
trace

≤ c1ǫ
√
δǫ = o (ǫ) . (90)

The first term of (89) generates a rank 1 operator and

lim
ǫ→0

1

ǫ
ℓ1 (a,v)

1− e−ǫz

z
= ℓ1 (a,v) =

1

2πi

∫

C

ã (λ) v (λ) dλ.

Noting an identity (see ([20]))

det (I +A) = exp (tr log (I +A)) = exp
(
trA+O

(
‖A‖2trace

))
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if ‖A‖trace < 1, we have

τa (eǫ) = exp
(
tr
(
e−1
ǫ HeǫSaT (a)

−1
)
+ o (ǫ)

)

= exp

(
ǫ

1

2πi

∫

C

ã (λ)
(
T (a)

−1
1
)
(λ) dλ+ o (ǫ)

)

= 1 + ǫ
1

2πi

∫

C

ã (λ)
(
T (a)

−1
1
)
(λ) dλ+ o (ǫ)

for sufficiently small ǫ due to (90). Then (88) implies

lim
ǫ→0

τa (eǫ)− 1

ǫ
= κ1 (a) ,

and the cocycle property shows

lim
ǫ→0

τa (ex+ǫ)− τa (ex)

ǫ
= lim

ǫ→0

τexa (eǫ)− 1

ǫ
τa (ex) = κ1 (exa) τa (ex) ,

hence ∂x log τa (ex) = κ1 (exa) holds. The rest of the proof is automatic.

8 Sufficient conditions for q ∈ QL (C)

A sufficient condition for q ∈ QL (C) was given in (83) in terms of its Weyl
functions m± (see Theorem 1). In this section we provide concrete examples
of this class including the well-known cases. Throughout this section we treat
g = eh with real odd polynomial h of degree n, hence the curve C is taken so
that g is bounded on D+, namely

C =

{
±ω (y) + iy; y ∈ R, ω (y) > 0, ω (y) = ω (−y) ,

ω is smooth and satisfies ω (y) = O
(
y−(n−1)

)
as y → ∞

}
.

8.1 Decaying potentials

If a potential q satisfies q ∈ L1 (R+), it is known that for 0 6= k ∈ C+ ≡
{z ∈ C; Im z ≥ 0} there exists the Jost solution f+ (x, k) of

−∂2xf+ (x, k) + q(x)f+ (x, k) = k2f+ (x, k)

such that {
f+ (x, k) = eixk + o (1)
f ′
+ (x, k) = ikeixk + o (1)

as x→ ∞,

where ′ denotes the derivative with respect to x. Therefore

m+ (z) =
f ′
+ (0,

√
z)

f+ (0,
√
z)

and one can see that m+ (z) is extendable to C+\ {0} as a continuous function.
f+ (x, k) is obtained as a unique solution to an integral equation

e−ixkf+ (x, k) = 1 +

∫ ∞

x

e2ik(s−x) − 1

2ik
q (s) e−iksf+ (s, k) ds.
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Rybkin ([15]) showed

e−ixkf+ (x, k) = 1 +

N+1∑

j=1

fj (x) (2ik)
−j

+ o
(
k−N−1

)
(91)

for q such that q(j) ∈ L1 (R) for j = 0, 1,· · · , L. The small o is uniform with
respect to x ≥ 0. The coefficients {fj (x)} are determined inductively by

{
f1(x) = −Q(x) ≡ −

∫∞
x
q (s) ds

fj+1(x) = −f ′
j (x)−

∫∞
x q (s) fj (s) ds, (j ≥ 1)

.

Therefore one can show fj+1 is L−j times differentiable and f
(L−j+1)
j+1 ∈ L1 (R+).

Since (
e−ixkf+ (x, k)

)′
=

∫ ∞

x

e2ik(s−x)q (s) e−iksf+ (s, k) ds,

substituting (91) we have asymptotic behavior

(
e−ixkf+ (x, k)

)′
=

L+1∑

j=1

gj (x) (2ik)
−j

+ o
(
k−N−1

)
,

which leads us to

m+ (z) = −
√
−z +

L+1∑

j=1

cj (−z)−j/2
+ o

(
z−(L+1)/2

)
if z → ∞ on C+.

An analogous asymptotic behavior for m−(z) is possible if q(j) ∈ L1 (R) for

j = 0, 1,· · · , L by replacing cj by (−1)
j+1

cj , which shows

Proposition 32 If q(j) ∈ L1 (R) for j = 0, 1,· · · , L, then (M.2) is satisfied
with L + 2 for any curve C, and we have q ∈ QL+1 (C). Therefore one can
define the KdV flow K(g)q for g ∈ Γn if L ≥ 1. For the KdV equation L ≥ 3 is
required to guarantee the differentiability.

One cannot apply this proposition to the interesting case q(x) = ϕ (x) /x
with smooth periodic function ϕ satisfying ϕ (0) = 0, however there is a possi-
bility of estimating directly m± in this case by a sort of perturbation.

8.2 Reflection coefficients

To obtain another class of q satisfying (M.2) we prepare the necessary termi-
nologies from the spectral theory of Schrödinger operators. Since m± (z) take
values in C+ for z ∈ C+, we start from

Lemma 33 For any complex numbers m± ∈ C+ set

m1 = − 1

m+ +m−
, m2 =

m+m−
m+ +m−

, R =
m+ +m−
m+ +m−

.

Then, m1, m2 ∈ C+, |R| ≤ 1 hold, and ξj = (argmj) /π ∈ [0, 1] (j = 1, 2)
satisfy ∣∣∣∣ξ1 −

1

2

∣∣∣∣ ,
∣∣∣∣ξ2 −

1

2

∣∣∣∣ ≤
1

2
|R| . (92)
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For z ∈ C+ set




m1(z) = − 1

m+(z) +m−(z)
, m2(z) =

m+(z)m−(z)

m+(z) +m−(z)

ξj (z) =
1

π
argmj (z)

(
=

1

π
Im logmj (z)

)
, (j = 1, 2)

. (93)

Then, {mj , j = 1, 2} are Herglotz functions. m (z) defined by

m (z) =

{
−m+

(
−z2

)
if Re z > 0

m−
(
−z2

)
if Re z < 0

satisfies the asymptotic behavior (83) if and only if m± satisfy





m+

(
−z2

)
= −z

(
1−

∑L−1
k=2 ckz

−k +O
(
z−L

))

m−
(
−z2

)
= −z

(
1−∑L−1

k=2 ck (−z)
−k

+O
(
z−L

)) . (94)

as z → ∞ on D− ∩ {Re z > 0}. It is known that if q ∈ CL−2 ([0, δ)) for some
δ > 0, then defining inductively the functions cj (x) by

{
c1 (x) = 0, c2 (x) = q(x)/2,

cj (x) = (c
′

j−1 (x)−
∑j−1

ℓ=1 cℓ (x) cj−ℓ (x))/2, j ≥ 3

one has ck = ck(0). The coefficients for m−
(
−z2

)
can be obtained by consider-

ing q (−x) in place of q(x). Then, if q ∈ CL−2(−δ, δ), (94) implies




m1(−z2) =
1

2
z−1

(
1 +

∑M
k=1 akz

−2k +O
(
z−L

))

m2(−z2) = −1

2
z
(
1 +

∑M
k=1 bkz

−2k +O
(
z−L

)) (95)

on D− ∩ {Re z > 0} with some ak, bk ∈ R, where M = [(L− 1) /2] ([x] denotes
the integer part of x). m± can be recovered from m1, m2 by

m± = − 1

2m1

(
1±

√
1 + 4m1m2

)
.

Observe

1 + 4m1(−z2)m2(−z2) =
(
m+(−z2)−m−(−z2)
m+(−z2) +m−(−z2)

)2

=

(
fo(z) +O

(
z−L

)

1− fe(z) +O (z−L)

)2

with f(z) =
∑L−1

k=2 ckz
−k. LetN be the least number such that

(
1− (−1)

k
)
ck 6=

0. N should be odd and N ≥ 3, since f (z) = c2z
−2 +O

(
z−3
)
. Then one sees

1 + 4m1(−z2)m2(−z2) = −
M∑

k=N

dkz
−2k +O

(
z−L−N

)
(96)

with dk ∈ R, dN 6= 0. However one cannot expect to have (96) from (95).
We would like to have a partial converse:
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Lemma 34 For Herglotz functions m± suppose m1, m2 are given by (93) and
satisfy (95) with M ′, L′ such that 2M ′ < L′. Then m satisfies the conditions
(M.1), (M.2) in (83) with L = 1 + [L′/2].

Proof. We have only to verify (M.2). Since

m+ +m− = −m−1
1 , m+m− = −m−1

1 m2,

we have

m± =
1

2

(
−m−1

1 ∓
√
m−2

1 + 4m−1
1 m2

)
= − 1

2m1

(
1±

√
1 + 4m1m2

)
.

Then

√
1 + 4m1 (−z2)m2 (−z2)

dN
= z−N

√√√√1 +
M ′∑

k=N+1

dk
dN

z−2(k−N) +O (z−L′+2N )

= z−N


1 +

M ′∑

k=N+1

d′kz
−2(k−N) +O

(
z−L′+2N

)



= z−N +

M ′∑

k=N+1

d′kz
−2k+N +O

(
z−L′+N

)

holds with other constants d′k. Since L′ − N ≥ L′ −M ′ > L′/2, we have the
lemma.

The asymptotic behavior of mj is translated to that of ξj as follows. If
Im z > 0, then Immj(z) > 0, hence 0 ≤ ξj (z) ≤ 1 holds. logmj are of Herglotz
as well, since Im logmj(z) = πξj (z) ≥ 0. On the other hand (ii) of (71) implies
that m1(z), m2(z) take real values on (−∞, λ0) and m1(λ) > 0 there. Let
λ1 ≤ λ0 be a unique zero of m2(z) if it has, and set λ1 = λ0 if it has not.
Assume in the sequel

∫ ∞

0

∣∣∣∣ξj (λ)−
1

2

∣∣∣∣ dλ <∞ for j = 1, 2. (97)

Then mj are represented as





m1(z) =
1

2
√−z exp

(∫ ∞

λ0

ξ1 (λ)− Iλ>0/2

λ− z
dλ

)

m2(z) = −
√−z
2

λ1 − z

−z exp

(∫ ∞

λ0

ξ2 (λ)− Iλ>0/2

λ− z
dλ

) . (98)

The function argm+ (λ+ i0) is intensively investigated by Gesztesy-Simon [6]
in connection with inverse spectral problems, and they call argm+ (λ+ i0) /π
as xi-function. To have (95) for some L ≥ 1 it is sufficient that

∫ ∞

0

λM
∣∣∣∣ξj (λ)−

1

2

∣∣∣∣ dλ <∞, (j = 1, 2) (99)
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hold for an M ≥ 1. This is due to the expansion

−
∫ ∞

λ0

f (λ)

λ− z
dλ =

M−1∑

k=0

z−k−1

∫ ∞

λ0

λkf (λ) dλ+ z−M

∫ ∞

λ0

λMf (λ)

λ− z
dλ, (100)

and the estimate
∣∣∣∣
∫ ∞

λ0

λMf (λ)

λ− z
dλ

∣∣∣∣ ≤
∫ ∞

λ0

∣∣λMf (λ)
∣∣

|λ− z| dλ ≤ 1

|Im z|

∫ ∞

λ0

∣∣λMf (λ)
∣∣ dλ. (101)

We control |ξj (λ)− 1/2| by another quantity. The reflection coefficient R(z)
is defined by

R(z) =
m+(z) +m−(z)

m+(z) +m−(z)
.

This quantity was considered by Gesztesy-Simon, Rybkin and others as a gener-
alization of the conventional reflection coefficient defined for decaying potentials.

8.3 Proof of Theorems 3, 4

Assume ∫ ∞

0

λM |R (λ)| dλ <∞. (102)

Then Lemma 33 implies that (99) holds, and from (100), (101) one has

−
∫ ∞

λ0

ξj (λ)−
1

2
λ− z

dλ =

M−1∑

k=0

z−k−1

∫ ∞

λ0

λk
(
ξj (λ)−

1

2

)
dλ+O

(
z−M+n/2−1

)

if z ∈ D−. Applying Lemma 34 with L′ = 2M − n + 2 we see that this m
satisfies (M.2) with

L = 1 + [L′/2] = 1 + [M − n/2 + 1] =M + 1− (n− 1) /2,

which yields Theorem 3.
The condition (102) implies that the ac spectrum is large, which restricts

the possible potential class strongly. We try to relax the condition (102) by
replacing it with a condition on a curve surrounding [λ0,∞).

We prepare two curves

{
C = {±ω (y) + iy; y ∈ R} with ω (y) = cy−(n−1) for |y| ≥ 1

C1 = {±ω1 (y) + iy; y ∈ R} with ω1 (y) = cy−(n1−1) for |y| ≥ 1

for n1 > n, and

{
Ĉ =

{
−z2; z ∈ C, Re z > 0

}
= {x± iω̂ (x) ; x ∈ R, x ≥ λ0}

Ĉ1 =
{
−z2; z ∈ C1, Re z > 0

}
= {x± iω̂1 (x) ; x ∈ R, x ≥ λ0}

with ω̂ (x) = ĉx1−n/2, ω̂1 (x) = ĉ1x
1−n1/2 for x ≥ 1. Then one can assume

D− ⊂ D1,−.
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Lemma 35 Let M ∈ Z be M ≥ n/2. Assume q ∈ C2M−n (−δ, δ) and
∫

Ĉ1

∣∣zMR(z)
∣∣ |dz| <∞ (103)

holds. Then, the m satisfies (M.2) with L ≤M +1− (n− 1) /2 on the curve C.

Proof. Let φ be φ (z) = −φk (−z) in Lemma 40 with k = (n1 − 1) /2. Then

φ maps C\[0,∞) onto D̂1,− = {z; |Im z| > ω̂1 (Re z) , Re z > λ0} conformally.
Without loss of generality we can assume −a2k < λ0. (103) implies

∫ ∞

0

∣∣∣φ (λ)M R (φ (λ)))
∣∣∣ |dφ (λ)| <∞.

which is equivalent to ∫ ∞

0

∣∣λMR(φ (λ))
∣∣ dλ <∞

due to φ′ (λ) = 1 + o (1). Hence Lemma 33 implies

∫ ∞

0

λM
∣∣∣∣ξj (φ (λ))−

1

2

∣∣∣∣ dλ <∞. (104)

Since mj (φ (z)) (j = 1, 2) are Herglotz functions and its argument on R is
πξj (φ (λ)), applying the formula (76) to mj (φ (z)) yields





m1(φ (z)) =
1

2
√
−z exp

(∫ ∞

0

ξ1 (φ (λ))− 1/2

λ− z
dλ

)

m2(φ (z)) = −
√
−z
2

exp

(∫ ∞

0

ξ2 (φ (λ))− 1/2

λ− z
dλ

) .

We have assumed here −a2k ≤ λ1 for simplicity. Then for z ∈ C+

m1(z) =
1

2
√
−φ−1 (z)

exp

(∫ ∞

0

f (λ)

λ− φ−1 (z)
dλ

)

with f (λ) = ξ1 (φ (λ))− 1/2. Lemma 40 implies

φ−1 (z) = z − g1 (−z)− (−z)−(n1−1)/2+1/2 g2(−z) (105)

with functions gj analytic near z = ∞ taking real values on R, hence

u (z) ≡
M−1∑

k=0

φ−1
(
z2
)−k−1

∫ ∞

0

λkf (λ) dλ

is analytic at z = ∞, and the identity

−
∫ ∞

0

f (λ)

λ− φ−1 (z)
dλ = u

(√
z
)
+ φ−1 (z)

−M
∫ ∞

0

λMf (λ)

λ− φ−1 (z)
dλ

holds. The estimate
∣∣∣∣
∫ ∞

λ0

λMf (λ)

λ− φ−1 (z)
dλ

∣∣∣∣ ≤
1

|Imφ−1 (z)|

∫ ∞

λ0

∣∣λMf (λ)
∣∣ dλ
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for z ∈ C+. Since n1 > n, (105) shows for some c > 0

∣∣Imφ−1 (z)
∣∣ ≥ c |z|−n/2+1 if z ∈ D̂−.

Therefore

m1(z) =
1

2
√
−z




2M−1∑

j=1

ãj
√
−z−j

+O
(
z−M+n/2−1

)



on D̂−. However the assumption q ∈ C2M−n (−δ, δ) and (95) imply

m1(z) =
1

2
√−z


1 +

M−(n−1)/2∑

k=1

ak (−z)−k
+O

(
z−M+n/2−1

)



on a sector {ǫ < arg z < π − ǫ}, hence ãj = 0 for even j, which implies

m1(−z2) =
1

2z


1 +

M−(n−1)/2∑

k=1

akz
−2k +O

(
z−2M+n−2

)



on D−. A similar calculation for m2(−z2) is possible and one can obtain

m2(−z2) = −1

2
z


1 +

M−(n−1)/2∑

k=1

bkz
−2k +O

(
z−2M+n−2

)

 ,

which together with Lemma 34 for L = 2M + 2− n completes the proof.

To apply Lemma 35 to ergodic potentials we need a lemma. The necessary
terminologies can be found in Appendix.

Lemma 36 Suppose the Lyapunov exponent γ (λ) satisfies

∫ ∞

0

λmγ (λ) dλ <∞ (106)

for some m > 4. Then, for a.e. ω ∈ Ω the condition (103) is fulfilled on the

curve Ĉ1 by any integer M such that

M < min

{
n1

4
− 1,

m− n1

2

}
. (107)

Proof. Set




ρ (λ) =
√
−λN (λ) I[λ0,0] (λ) +

1

π

√
−λγ (λ) I(0,∞) (λ)

c = E (qω(0)/2)

w (z) = E (m± (z, ω))

.

Since
√
−zw(z) is of Herglotz, one has

w (z) = −
√
−z − c√

−z +
1√
−z

∫ ∞

λ0

ρ (λ)

λ− z
dλ,
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hence

w (z) =

m1∑

k=−1

wk(z) + w̃(z) (108)

with 



wk(z) = ck (−z)−k−1/2

c−1 = −1, c0 = −c, ck = (−1)
k−1 ∫∞

λ0
λk−1ρ (λ) dλ

w̃(z) = (−1)m1 (−z)−m1−1/2 ∫∞
λ0

λm1ρ (λ)

λ− z
dλ

holds due to the assumption (106), where m1 = [m]. Set




χ(z) =
−Rew(z)

Im z
− Imw′(z)

χk(z) =
−Rewk(z)

Im z
− Imw′

k(z)

χ̃(z) =
−Re w̃(z)

Im z
− Im w̃′(z)

.

Noting

(−x− iy)
−k−1/2

= ix−k−1/2 (−1)
k (

1 + iyx−1
)−k−1/2

= ix−k−1/2 (−1)
k
(
1− (k + 1/2) iyx−1 +O

(
yx−1

)2)

for x ≥ 1, 0 < y < 1, we have

χk (x+ iy) = O
(
x−k−5/2y

)
.

On the other hand, the estimates
∣∣∣∣∣

∫ ∞

λ0

λm1ρ (λ)

(λ− z)
j dλ

∣∣∣∣∣ ≤ y−j

∫ ∞

λ0

|λ|m1 ρ (λ) dλ (j = 1, 2)

yield a bound for the last term w̃ of (108). Then, we have

χ̃ (x+ iy) = O
(
y−2x−m1−1/2

)
,

imply

χ(x + iy) =

m1∑

k=−1

χk(x+ iy) + χ̃ (x+ iy) = O
(
yx−3/2 + y−2x−m1−1/2

)
.

This together with Imw (x+ iy) = O
(
x1/2

)
(due to N (λ) ∼

√
λ as λ → ∞)

yields √
2χ (z) Imw (z) = O

(
yx−1 + y−2x−m1

)1/2
.

Therefore, if the curve is parametrized as x+ ix−(n1/2−1) near x = ∞, applying
(137) we have

E

(∫

Ĉ

|z|M |R (z, ω)| |dz|
)

≤
∫

Ĉ

|z|M
√
2χ (z) Imw (z) |dz|

≤ c

∫ ∞

1

xM
(
x−(n1/2−1)x−1 + x(n1−2)x−m1

)1/2
dx,
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which is finite for M such that

M − (n1/2− 1) /2− 1/2 < −1 and M + (n1/2− 1)−m1/2 < −1.

Then, Fubini’s theorem implies the condition (103).

Now one can prove Theorem 4. Suppose the Lyapunov exponent γ (λ) sat-
isfies ∫ ∞

0

λmγ (λ) dλ <∞. (109)

Since and Lemma 35 and (107) require

L+ (n− 1) /2− 1 ≤M < min

(
n1

4
− 1,

m− n1

2

)
,

n1 should satisfy

4L+ 2n− 2 < n1 < m− 2L− n+ 3. (110)

If
m− 2L− n+ 3− (4L+ 2n− 2) = m− 6L− 3n+ 5 > 2,

one can choose an odd integer n1 satisfying (110). Then applying Lemma 35
and Lemma 36 we have qω ∈ QL (C) for a.e. ω if L < (m− 3 (n− 1)) /6. On
the other hand from

qθxω (y) = qω (x+ y) = (K (ex) qω) (y)

the identity

fg (θxω) = (K(g)qθxω) (0) = (K(g)K (ex) qω) (0) = (K (ex)K(g)qω) (0) = K(g)qω (x)

follows. Moreover Kotani-Krishna [11] showed that qω ∈ Cm
b (R) implies

∫ ∞

0

λm+1/2γ (λ) dλ <∞,

which is sufficient for (109) and completes the proof of Theorem 4.

9 Appendix

9.1 Calculation of τa (r), mra (z) for rational functions r

This section is devoted to the calculation of τa (r), mra (z) for general rational
function r in terms of the characteristic functions {ϕa, ψa} and m-function ma.

The simplest rational functions are
{
pζ (z) = 1 + zζ−1 ∈ Γ

(1)
0

qζ (z) =
(
1− zζ−1

)−1 ∈ Γ
(−1)
0

for ζ ∈ D− .

Any rational function can be represented as a product of these simple functions.

We treat r ∈ Γ
(m)
0 with m ≤ 0. Recall

τa (g) = det
(
g−1T (ga)T (a)−1

)
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for a ∈ Ainv
L (C), which is well-defined if g−1T (ga)T (a)−1 − I is of trace class

in some space HN (D+). Let M = L−N ≥ 0 and observe for u ∈ HN (D+)

T (ga)T (a)−1u = p+

(
gp+aT (a)

−1u
)
+ p+

(
gp−aT (a)

−1u
)

= gu+Hgp−
(
aT (a)−1u

)

with Hg : HM (D−)
(
= z−MH (D−)

)
→ H (D+) defined by

Hgv (z) = p+ (gv) (z) =
1

2πi

∫

C

g (λ)

λ− z
v (λ) dλ. (111)

Here v ∈ H (D−) is

v = p−
(
aT (a)−1u

)
= aT (a)−1u− u.

The key identity is (19):

T (a)
−1 1

z + b
=

(ψa (b) + b)u− (ϕa (b) + 1) v

∆a (b) (z2 − b2)
for b ∈ D−.

Lemma 37 Let a ∈ Ainv
L (C) and r ∈ Γ

(m)
0 .

(i) For any N such that −m ≤ N ≤ L the operator r−1T (ra)T (a)−1 − I has
a finite rank on HN (D+) not greater than the numbers of the poles of r. Hence

τa (r) is well-defined for any r ∈ Γ
(m)
0 .

(ii) Suppose L ≥ 2. For ζ, ζ1, ζ2 ∈ C\ ([−µ0, µ0] ∪ iR)




τa (qζ) = 1 + ϕa (ζ)

τa (qζ1qζ2) = (1 + ϕa (ζ1)) (1 + ϕa (ζ2))
ma (ζ1)−ma (ζ2)

ζ1 − ζ2

. (112)

(iii) Suppose L ≥ 2. Suppose r ∈ Γ
(0)
0 has simple zeroes {ηj}1≤j≤n and simple

poles {ζj}1≤j≤n in D−. Then Hr has a finite rank not greater than n, and it
holds that

τa (r)

=




n∏

j=1

(ϕa (ζj) + 1) (ϕa (−ηj) + 1)

∆a (ηj) r′ (ηj) r̂′ (ζj)


det

(
1

ηi − ζj

)
det

(
ma (ζi)−ma (−ηj)

ζ2i − η2j

)
,

(113)

with r̂ (z) = r(z)−1.

Proof. Let {ζj}nj=1 be the poles of r. For simplicity assume they are simple.
Then r can be expressed as

r (z) = r (∞) +

n∑

j=1

rj
z − ζj

with rj = lim
z→ζj

(z − ζj) r (z) =
1

r̂′ (ζj)
,

hence for v ∈ H (D−)

(Hrv) (z) =
1

2πi

∫

C

r (λ)

λ− z
v (λ) dλ =

n∑

j=1

rjv (ζj)

z − ζj
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and

r(z)−1 (Hrv) (z) =

n∑

j=1

fj(z)v (ζj) with fj(z) =
rj

(z − ζj) r(z)
, (114)

which means that the map r−1T (ra) T (a)−1 − I is of finite rank.
To compute τa (r), we take the independent vectors fj and obtain the coef-

ficients of the image of r−1Hr for u = T (a)−1 fj .
If L ≥ 2, one can use the characteristic functions andm-function. Let r = qζ .

Then n = 1 and f1 = 1, hence r(z)−1 (Hrv) (z) = v (ζ). For u = 1

v = aT (a)−11− 1 = ϕa,

which yields τa (qζ) = 1 + ϕa (ζ). If r = qζ1qζ2 , then n = 2 and

f1 (z) =
r1

(z − ζ1) r(z)
=

ζ2 − z

ζ2 − ζ1
, f2 (z) =

r2
(z − ζ2) r(z)

=
ζ1 − z

ζ1 − ζ2
.

For u = f1, u = f2




v1 = aT (a)−1f1 − f1 =
ζ2

ζ2 − ζ1
ϕa − 1

ζ2 − ζ1
ψa

v2 = aT (a)−1f2 − f2 =
ζ1

ζ1 − ζ2
ϕa − 1

ζ1 − ζ2
ψa

,

hence

τa (qζ1qζ2) = det

(
1 + v1 (ζ1) v1 (ζ2)
v2 (ζ1) 1 + v2 (ζ2)

)

=
(ζ1 + ψa (ζ1)) (1 + ϕa (ζ2))− (1 + ϕa (ζ1)) (ζ2 + ψa (ζ2))

ζ1 − ζ2
,

which is (112).
Now go back to (113). Since fj(z) is a rational function with poles at ηi and

fj(∞) = 0, an identity

fj(z) =
rj

(z − ζj) r(z)
=

n∑

i=1

rij
(z − ζj) (z − ηi)

with

rij = lim
z→ηi

rj (z − ηi)

(z − ζj) r(z)
=

rj
(ηi − ζj) r′ (ηi)

is valid. Then (19) yields

T (a)−1fj =
∑

i

rijT (a)
−1 1

z − ηi
=
∑

i

rij
(ϕa (−ηi) + 1) v − (ψa (−ηi)− ηi)u

∆a (ηi) (z2 − η2i )

and

aT (a)−1fj =
∑

i

rij
(ϕa (−ηi) + 1) (ψa + z)− (ψa (−ηi)− ηi) (ϕa + 1)

∆a (ηi) (z2 − η2i )

= (ϕa + 1)
∑

i

rij (ϕa (−ηi) + 1)
ma −ma (−ηi)
∆a (ηi) (z2 − η2i )

.
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Therefore, noting fj(ζi) = δij , we have

τa (r) = det
((
δij +

(
aT (a)−1fj

)
(ζi)− fj (ζi)

)
1≤i,j≤n

)

= det
((
aT (a)−1fj

)
(ζi)
)

= det

(
(ϕa (ζi) + 1)

n∑

k=1

rkj
ma (ζi)−ma (−ηk)

ζ2i − η2k

ϕa (−ηk) + 1

∆a (ηk)

)
.

=




n∏

j=1

(ϕa (ζi) + 1) (ϕa (−ηj) + 1)

∆a (ηj)


det (rij) det

(
ma (ζi)−ma (−ηj)

ζ2i − η2j

)
,

where

det (rij) = det

(
1

(ηi − ζj) r′ (ηi) r̂′ (ζj)

)
=




n∏

j=1

1

r′ (ηi) r̂′ (ζj)


det

(
1

ηi − ζj

)
,

which is (113).

It should be remarked that if ηi 6= ζj , then

det

(
1

ηi − ζj

)
6= 0.

This is because the identity

0 =

n∑

j=1

uj
ηi − ζj

for any i

implies the rational function f(z) =
∑n

j=1 uj (z − ζj)
−1

satisfies f (ηi) = 0 for
i = 1, 2, · · · , n, which shows f(z) = 0 identically.

The next task is to compute mra for rational functions r. In principle the
computation for general rational r is possible similarly as the previous lemma,
however to grasp the picture it is enough to know the change ofmra for r = qζpη,
since the formula of mra for general r can be obtained by iteration of qζpη.

Lemma 38 Let a ∈ Ainv
2 and ζ, η ∈ D− and assume τa (qζpη) 6= 0. Then

mqζpηa
(z) = (dζdηma) (z) .

Proof. Let r = qζpη with ζ, η ∈ D−. First we have to compute ϕra, ψra. Then

r(z)−1 = r1 +
r2

z + η
with r1 = −η

ζ
, r2 = η

(
1 +

η

ζ

)
(115)

holds. To compute ϕra set w1 = T (ra)
−1

1. The definition implies 1 + ϕra =
raw1, hence (115) yields

(aw1) (z) = r (z)−1 (1 + ϕra (z)) (116)

= r1 +
r2 (1 + ϕra (−η))

z + η
+
r2 (ϕra (z)− ϕra (−η))

z + η
,
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which is a decomposition in H1 (D+)⊕H (D−). Applying p+, we have

T (a)w1 = r1 +
r2 (1 + ϕra (−η))

z + η
.

Therefore (19) implies

w1 = r1T (a)−1 1 + r2 (1 + ϕra (−η))T (a)−1 1

z + η

= r1u+ µ1
(ma (η)− κ1 (a))u− v

z2 − η2

with

µ1 =
r2 (1 + ϕa (η)) (1 + ϕra (−η))

∆a (η)
,

where u = T (a)
−1

1, v = T (a)
−1
z, from which it follows that

aw1 = (1 + ϕa)

(
r1 − µ1

ma −ma (η)

z2 − η2

)
. (117)

The identity (116) shows the left hand side is meromorphic on D− vanishing at
z = ζ, hence

µ1
ma (ζ)−ma (η)

ζ2 − η2
= r1

holds, which together with (117) shows

1 + ϕra = r1r (1 + ϕa)

(
1− ζ2 − η2

ma (ζ)−ma (η)

ma −ma (η)

z2 − η2

)
. (118)

This identity also shows

κ1 (ra) = lim
z→∞

zϕra (z) = ζ + η + κ1 (a)−
ζ2 − η2

ma (ζ)−ma (η)
. (119)

Similarly one has ψra, namely w2 = T (ra)
−1
z satisfies

(aw2) (z)

= r (z)
−1

(z + ψra (z))

= r1z + r2 + r2
−η + ψra (−η)

z + η
+ r2

ψra (z)− ψra (−η)
z + η

,

hence

T (a)w2 = r1z + r2 + r2
−η + ψra (−η)

z + η
,

which yields

w2 = r1v + r2u+ µ2
(ma (η)− κ1 (a))u− v

z2 − η2

with

µ2 =
r2 (ϕa (η) + 1) (−η + ψra (−η))

∆a (η)
.
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Then

aw2 = r1 (z + ψa) + (1 + ϕa)

(
r2 − µ2

ma −ma (η)

z2 − η2

)

with

µ2 =
r2 (ϕa (η) + 1) (−η + ψra (−η))

∆a (η)
,

hence setting z = ζ we have

r1 (ζ + ψa (ζ)) + (1 + ϕa (ζ))

(
r2 − µ2

ma (ζ)−ma (η)

ζ2 − η2

)
= 0,

which yields

µ2 = r2
ζ2 − η2

ma (ζ)−ma (η)

(
1− ma (ζ) − κ1 (a)

ζ + η

)
,

and

z + ψra (z)

=
r2
r1

(
1− ma (ζ)− κ1 (a)

ζ + η

)
(1 + ϕra (z))− r2r (1 + ϕa)

ma −ma (ζ)

ζ + η
(120)

Consequently mra is computed from (117), (119) and (120) as

mra (z) =
z + ψra (z)

1 + ϕra (z)
+ κ1 (ra)

=

(ma (z)−ma (ζ))
ma (ζ)−ma (η)

ζ2 − η2

ma (ζ) −ma (η)

ζ2 − η2
− ma (z)−ma (η)

z2 − η2

+ma (ζ)− ma (ζ)−ma (η)

ζ2 − η2

= (dζdηma) (z)

This formula can be easily understood if we first show the identity mqζa =
dζma. The reason why we do not take this procedure is that we have defined
ma for a such that T (a) maps HN (D+) to HN (D+) bijectively, hence mqζa,
mpζa

are out of the present framework. However, a slight modification of the
definition of ma might allow us to show

mqζa = mpζa
= dζma,

and the identity of the Lemma would be more straightly understandable.

9.2 Properties of m-functions and Herglotz functions

The m-function ma for a ∈ Ainv
L,+ (C) has the following properties:

ma is analytic on C\ ([−µ0, µ0] ∪ iR) and ma (z) = ma (z)
Imma (z)

Im z
> 0 for z ∈ C\R, ma (x)−ma (−x)

x
> 0 for |x| > µ0.

(121)
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with µ0 =
√
−λ0. For such function m define

m+ (z) = −m
(√

−z
)
, m− (z) = m

(
−
√
−z
)

for z ∈ C+.

Thenm± become Herglotz functions, namely they analytic functions onC\[λ0,∞)
satisfying

m± (z) = m± (z) and
Imm±(z)

Im z
≥ 0 for any z ∈ C\R

m+ (x) +m− (x) < 0 for x < λ0
.

A necessary and sufficient condition for m to be a Herglotz function is that m
has a representation

m (z) = α+ βz +

∫ ∞

−∞

(
1

ξ − z
− ξ

ξ2 + 1

)
σ (dξ)

with a real α, non-negative β and measure σ on R satisfying

∫ ∞

−∞

1

ξ2 + 1
σ (dξ) <∞.

The present m± are represented as

m± (z) = α± + β±z +

∫ ∞

λ0

(
1

ξ − z
− ξ

ξ2 + 1

)
σ± (dξ) .

The original m is recovered by m± by

m (z) =

{
−m+

(
−z2

)
if Re z > 0

m−
(
−z2

)
if Re z < 0

.

Lemma 39 Ifm satisfies the property (121), then so do dsm, dζdζm if |s| > µ0,
ζ ∈ C\ (R ∪ iR).

Proof. If s > 0, Re z > 0, then setting w ≡ −z2 ∈ C−, u = −s2 < λ0 we have

dsm (z) =
z2 − s2

−m+ (−z2) +m+ (−s2) +m+

(
−s2

)
=

w − u

m+ (w)−m+ (u)
+m+ (u) .

Since m+ is of Herglotz,

m+ (w)−m+ (u)

w − u
= β+ +

∫ ∞

λ0

1

(λ− w) (λ− u)
σ+ (dλ)

and we see Im (m+ (w)−m+ (u)) / (w − u) > 0 due to Imw < 0, u < λ0, which
implies Im dsm (z) > 0. If s < 0, Re z > 0, then

dsma (z) =
z2 − s2

−m+ (−z2)−m− (−s2)−m−
(
−s2

)
=

w − u

m+ (w) +m− (u)
−m− (u) .

Since

m+ (w) +m− (u)

w − u
=
m+ (w) −m+ (u)

w − u
+
m+ (u) +m− (u)

w − u
∈ C−
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due to m+ (u) + m− (u) < 0, we have dsma (z) ∈ C+. The cases (s < 0,
Re z < 0), (s > 0, Re z < 0) can be treated similarly.

On the other hand note

dζdζm (z) =
z2 − ζ

2

z2 − ζ2

m (z)−m (ζ)
− ζ2 − ζ

2

m (ζ)−m (ζ)

−
(

ζ2 − ζ
2

m (ζ) −m (ζ)
−m (ζ)

)
.

We can assume Im z, Im ζ > 0. To compute the imaginary part the term(
ζ2 − ζ

2
)
/
(
m (ζ)−m (ζ)

)
can be neglected, and

z2 − ζ
2

z2 − ζ2

m (z)−m (ζ)
− ζ2 − ζ

2

m (ζ)−m (ζ)

+m (ζ) =
m (z)w −m (ζ)a

w − a

with

w =
z2 − ζ2

m (z)−m (ζ)
, a =

ζ2 − ζ
2

m (ζ)−m (ζ)
.

Hence

Im dζdζm (z) = Im

(
m (z)w −m (ζ)a

)
(w − a)

|w − a|2

=
|w|2 Imm(z)− a Imw (m(z)−m (ζ))− a2 Imm (ζ)

|w − a|2

=
|w|2 Imm(z)− a Im

(
z2 − ζ2

)
− a2 Imm (ζ)

|w − a|2

Suppose Re z, Re ζ > 0, then

|w|2 Imm(z)− a Im
(
z2 − ζ2

)
− a2 Imm (ζ)

=
Im v Imu

Imm+ (v)
−
∣∣∣∣

u− v

m+(u)−m+ (v)

∣∣∣∣
2

Imm+(u)

with u = −z2, v = −ζ2 ∈ C−. The Herglotz representation for m+ shows




m+(u)−m+ (v)

u− v
= β+ +

∫ ∞

λ0

1

(λ− u) (λ− v)
σ+ (dλ)

Imm+(u) = β+ +

∫ ∞

λ0

1

|λ− u|2
σ+ (dλ)

,

which implies

Im v Imu

Imm+ (v)
−
∣∣∣∣

u− v

m+(u)−m+ (v)

∣∣∣∣
2

Imm+(u) > 0

if u, v ∈ C−. The case Re z > 0, Re ζ < 0 is computed similarly, that is

|w|2 Imm(z)− a Im
(
z2 − ζ2

)
− a2 Imm (ζ)

= −
∣∣∣∣

u− v

m+(u) +m− (v)

∣∣∣∣
2

Imm+(u)−
Im v Imu

Imm− (v)
> 0,

since Imm+(u) < 0, Imm− (v) > 0 if Imu < 0, Im v > 0, which completes the
proof.
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9.3 Conformal maps

Although Riemann mapping theorem says that every simply connected domain
on C can be an image of a conformal map on C+, sometimes a quantitative
estimate of it is necessary. In this section we provide a model of conformal map
from C\(−∞, 0] to D−

ω of (43).
A conformal map ψ on C+ is easily obtained if Imψ′ (z) has a definite sign

on C+. A simple such example is ψ∞ (z) =
√
z, and a more general conformal

map in this framework can be constructed for an integer k ≥ 1 by an integral

ψk (z) =
k − 1/2

k + 1/2

√
z +

∫ ∞

0

√
z + t (1 + t)−k−3/2 dt.

This ψk satisfies

Reψk (z) > 0, Imψk (z) > 0, Reψ′
k (z) > 0, Imψ′

k (z) < 0

for z ∈ C+, hence ψk maps C+ to ψk (C+) (⊂ C+), and φk (z) = ψk (z)
2
maps

C+ to φk (C+) (⊂ C+) conformally. Since ψk (z) takes real values on [0,∞),
ψk (z) and φk (z) can be extended as conformal maps from C\(−∞, 0] to a
domain in {Re z > 0} and a domain in C respectively. Set





ak = 2
∫ 1

0
s2
(
1− s2

)k−1
ds =

√
πΓ (k)

2Γ (k + 3/2)

bk = 2ak

(
2a2kk (k + 1/2)

2
/ (k − 1/2)

2
+ 1
)−1/2

.

Lemma 40 The image φk (C\(−∞, 0]) is described as follows:

φk (C\(−∞, 0]) = C\
{
z ∈ C; |Im z| ≤ ω (Re z) , Re z ≤ a2k

}

with positive smooth function ω (x) on (−∞, a2k) such that

ω (x) =

{
2ak (−x)−k+1/2 (

1 +O
(
x−1

))
as x→ −∞

bk
(
a2k − x

)1/2 (
1 +O

(
a2k − x

))
as x→ a2k − 0

. (122)

Moreover, φk takes a form of

φk (z) = z + f1(z) + z−k+1/2f2(z) (123)

with some real rational functions f1, f2 (that is, fj (z) = fj (z) for j = 1, 2)
satisfying {

f1(∞) =
(
k2 − 1/4

)−1

f2(∞) = 2 (−1)
k
ak

.

Conversely, φ−1
k (w) has an expression

φ−1
k (w) = w + g1 (w) + w−k+1/2g2(w) (124)

with real g1, g2 analytic in a neighborhood of ∞. Moreover, it holds that

g1 (∞) = −
(
k2 − 1/4

)−1
, g2 (∞) = −2 (−1)

k
ak.
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Proof. Setting s =
√
(z + t) / (1 + t), we have

ψk (z) =
k − 1/2

k + 1/2

√
z + 2 (z − 1)

−k
∫ √

z

1

s2
(
s2 − 1

)k−1
ds.

Since the integral
∫ z

0
s2
(
s2 − 1

)k−1
ds is an odd polynomial of degree 2k + 1,

the integral

p (z) =
k − 1/2

k + 1/2
(z − 1)

k
+ 2

√
z
−1
∫ √

z

0

s2
(
s2 − 1

)k−1
ds

defines a polynomial of degree k, and

ψk (z) = (z − 1)
−k (√

zp (z)− p (1)
)

(125)

holds. It should be noted that
√
zp (z)− p (1) has zero of degree k at z = 1, so

ψk (z) has no singularity at z = 1. Set

s(x) = Reψk (x+ i0) , t (x) = Imψk (x+ i0)

for x ∈ R. Then, (125) implies

s(x) =

{
−p(1) (x− 1)

−k
for x < 0

(x− 1)
−k

(
√
xp (x)− p (1)) for x ≥ 0

,

t(x) =

{
(x− 1)

−k √−xp (x) for x < 0
0 for x ≥ 0

,

and their asymptotics are

s(x) =

{
ak
(
1 + kx+O

(
x2
))

as x→ −0

ak (−x)−k (1 + kx−1 +O
(
x−2

))
as x→ −∞

t (x) =





k − 1/2

k + 1/2

√
−x (1 +O (x)) as x→ −0

√−x
(
1 +O

(
x−1

))
as x→ −∞

,

where we have used




p (1) = (−1)
k−1

ak, p(0) =
k − 1/2

k + 1/2
(−1)

k

p(z) = zk −
(
k − 2

4k2 − 1

)
zk−1 + · · ·

.

From (125)

φk (z) = ψk (z)
2
= z + f1(z) + z−k+1/2f2(z)

follows, which yields (123) with

{
f1(z) = (z − 1)

−2k
(
p (1)

2
+ zp(z)2

)
− z

f2(z) = −2 (z − 1)
−2k

p (1) p (z) zk
,
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and




Reφk (x+ i0) = x+ f1(x) + f2(x)×
{
x−k+1/2 if x > 0
0 if x < 0

Imφk (x+ i0) =

{
0 if x > 0√
−xx−kf2(x) if x < 0

(126)

is valid, hence (25) shows





Reφk (x+ i0) = x+
(
k2 − 1/4

)−1
+O

(
(−x)−1

)

Imφk (x+ i0) = 2ak (−x)−k+1/2
+O

(
(−x)−k−1/2

)

as x→ −∞, and





Reφk (x+ i0) = a2k +

(
2ka2k +

(
k − 1/2

k + 1/2

)2
)
x+O

(
x2
)

Imφk (x+ i0) = 2
k − 1/2

k + 1/2
ak

√−x+O
(
(−x)3/2

)

as x → −0. Since Reφk (x+ i0) = s(x)2 − t (x)
2
, Imφk (x+ i0) = 2s (x) t (x),

(22) implies

{
Reφk (x+ i0) is increasing and moving from−∞ to ∞
Imφk (x+ i0) > 0 on (−∞, 0) and 0 on [0,∞)

.

Therefore, ω can be defined by an equation

ω (Reφk (x+ i0)) = Imφk (x+ i0) .

due to (24), and (126), (65), (24) show ω (x) satisfies (122).
We use (125) to show (124). Set ϑ (z) = z2. ϑ is a conformal map from

{Re z > 0} to C\(−∞, 0] and define ψ̃k (s) = ψk (ϑ (s)). Then the function

F (s) = ψ̃k (s)− s

= −p (1)
(
s2 − 1

)−k
+ s

((
s2 − 1

)−k
p
(
s2
)
− 1
)
.

is a rational function whose poles only at s = ±1 and has expansion

F (s) = c1s
−1 + c2s

−3 + · · ·+ cks
−2k+1 + ck+1s

−2k+

at s = ∞ with c1 =
(
2k2 − 1/2

)−1
and ck+1 = −p(1), namely the first coefficient

of even order starts from 2k. We consider an equation for a given t:

s+ F (s) = t (127)

and find a solution of a form

s = t+G(t).

Since the even coefficients of the power series of F vanish up to 2 (k − 1), Lemma
41 shows that there exists uniquely suchG thatG is real and analytic near t = ∞
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and the odd coefficients of G vanishes up to 2 (k − 1). ψ̃k (z) is one-to-one on
{|z| > r1} and its inverse is given by w + G(w) on {|w| > r2}. Since φk (z) =
ϑ (ψk (z)) is a conformal map from C\(−∞, 0] to φk (C\(−∞, 0]), its inverse is

given by φ−1
k (w) =

(
ϑψ̃−1ϑ−1

)
(w) for w ∈ φm (C\(−∞, 0]). Let





G1 (t) =
1

2

(
G
(√
t
)
+G

(
−
√
t
)) (

= Ge

(√
t
))

G2 (t) =
1

2
√
t

(
G
(√
t
)
−G

(
−
√
t
)) (

=
1√
t
Go

(√
t
)) .

Then G (t) = G1

(
t2
)
+ tG2(t

2), and we have
(
ϑψ̃−1ϑ−1

)
(w)

=
(√
w +G1 (w) +

√
wG2(w)

)2

= w +G1 (w)
2
+ w

(
(G2(w) + 1)

2 − 1
)
+ 2

√
wG1 (w) (G2(w) + 1) .

Since G has the even coefficients vanishing up to 2 (k − 1), wkG1 (w) is analytic
near w = ∞. Therefore, setting

{
g1(w) = G1 (w)

2
+ wG2(w) (G2(w) + 2)

g2(w) = 2wkG1 (w) (G2(w) + 1)
,

we have
φ−1
k (w) = w + g1(w) + w−k+1/2g2(w)

with some g1, g2 analytic in a neighborhood of ∞ satisfying

g1(∞) = −
(
k2 − 1/4

)−1
, g2 (∞) = −2 (−1)

k
ak,

which completes the proof.

Lemma 41 Let F be a power series of s−1 given by F (s) =
∑∞

j=1 ajs
−j and

assume it has the positive radius of convergence and consider an equation:

t = s+ F (s). (128)

(i) This equation is uniquely solvable if
∣∣t−1

∣∣ is sufficiently small and it has a
form:

s = t+G(t)

with a convergent power series of t−1 given by

G(t) =

∞∑

j=1

xjt
−j. (129)

(ii) xn is determined from {aj}nj=1 for each n ≥ 1. The first three coefficients
are

x1 = −a1, x2 = −a2, x3 = −a21 − a3.

(iii) Suppose F (s) has a form

F (s) =

k∑

j=1

a2j−1s
−2j+1 +

∞∑

j=2k

ajs
−j (130)
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for an k ≥ 1. Then, the coefficients xj of G(t) vanish for even j up to 2 (k − 1).
Moreover, if a2j 6= 0, then x2j = −a2j.

Proof. Replacing s by s−1 and t by t−1 we see the equation (128) is equivalent
to

t =
s

1 + sF (s−1)
. (131)

The condition on F implies

t(0) = 0,
dt

ds
(0) = 1,

d2t

ds2
(0) = 0,

hence the complex function theory shows the existence of the solution s(t) of
(131) in a neighborhood of 0 satisfying

s(0) = 0,
ds

dt
(0) = 1,

d2s

dt2
(0) = 0,

which implies the existence of G of the form of (129). One can show inductively
that the coefficient xn is determined from {aj}nj=1. To show (iii) one can assume

aj = 0 for every j ≥ 2k owing to (ii). The relation between F , G is rewritten as

F (s) +G (F (s) + s) = 0.

If we define f̂(s) = −f (−s), then the above equation turns to

F̂ (s) + Ĝ
(
F̂ (s) + s

)
= 0.

Therefore, if F̂ (s) = F (s), the uniqueness implies Ĝ (s) = G(s), which shows
the first part of (iii). To show the second part we note that if





F (s) =
∑k−1

j=1 ajs
−j + aks

−k ≡ F1(s) + aks
−k

G(s) =
∑k−1

j=1 xjs
−j + xks

−k +
∑∞

j=k+1 xjs
−j

≡ G(1)(s) + xks
−k +G(2)(s)

,

and with some bm

F1(s) +G(1) (s+ F1(s)) = bks
−k +O

(
s−k−1

)

holds, which is verified by induction, then the identity

F1(s) + aks
−k +G(1)(s+ F1(s) + aks

−k) + xk
(
s+ F1(s) + aks

−k
)−k

+G(2)(s+ F1(s) + aks
−k) = 0

together with

G(1)(s+ F1(s) + aks
−k) = G(1)(s+ F1(s)) +O

(
s−k−2

)

implies xk = −ak − bk. Since, if k is even and a2j = 0 for any j ≤ k/2, then
(ii) implies xk = 0, and hence bk = 0. However, clearly bk is determined from
{aj}1≤j≤k−1, hence bk = 0 is valid if a2j = 0 for any j ≤ k/2− 1 regardless of
the value ak. Consequently we have xk = −ak if k is even and a2j = 0 for any
j ≤ k/2− 1 holds.
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9.4 Estimates of relevant integral

Suppose the curve C is of the form:

C =
{
±ω (y) + iy; y ∈ R, ω (y) = O

(
y−(n−1)

)}

with ω (y) > 0, ω (y) = ω (−y). Assume (37), namely

sup
z∈C

∫

|z−λ|≤1,λ∈C

|dλ| <∞.

Lemma 42 Let C′ = σC with σ > 1. Then∫

C

1

|λ− z|2
|dλ| = O

(
|z|n−1

)
for z ∈ C′.

Proof. Let∫

C

1

|λ− z|2
|dλ| =

∫

|Im(λ−z)|≤δ|Im z|

|dλ|
|λ− z|2

+

∫

|Im(z−λ)|>δ|Im z|

|dλ|
|λ− z|2

≡ I1 + I2

with δ ∈ (0, 1) specified later. Since C is parametrized as ω (t) + it, we see

I1 =

∫

|t−Im z|≤δ|Im z|

(
1 + ω′(t)2

)1/2

(t− Im z)
2
+ (ω(t)− Re z)

2 dt ≤ c1πρ (z)
−1

,

where {
ρ (z) = infλ∈C;|Im(λ−z)|≤δ|Im z| |Re (z − λ)|
c1 = supt∈R

(
1 + ω′(t)2

)1/2 .

I2 is estimated as

I2 =

∫

|t−Im z|>|Im z|δ

(
1 + ω′(t)2

)1/2
dt

|(ω (t)− Re z) + i (t− Im z)|2

≤ c1

∫

|t−Im z|>|Im z|δ

dt

|t− Im z|2
= c1

∫

|x|>|Im z|δ

dx

|x|2
= c2 |Im z|−1

.

Therefore, we have
∫

C

|dλ|
|λ− z|2

≤ c1πρ (z)
−1 + c2 |Im z|−1 .

We have to show
ρ (z) ≥ c3 |Im z|−(n−1)

, (132)

if δ is chosen suitably. Assume Re z, Im z > 0. Note that in the region

{λ ∈ C; |Im (z − λ)| ≤ δ Im z} = {λ ∈ C; (1− δ) Im z ≤ Imλ ≤ (1 + δ) Im z} .
Since ω (t) = t−(n−1) for sufficiently large t, inequalities

|Re (z − λ)| ≥ Re z − Reλ ≥ σω
(
σ−1 |Im z|

)
− ω ((1− δ) |Im z|)

=
(
σn − (1− δ)

−(n−1)
)
|Im z|−(n−1)

are valid for z ∈ C′. Therefore, if

σn > (1− δ)−(n−1) ,

we have (132).
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9.5 Ergodic Schrödinger operators

This section provides several basic facts on 1D Schrödinger operators with er-
godic potentials, which are necessary in this paper.

Let (Ω,F , P ) be a probability space and {θx}x∈R
be a one parameter group

of F -measurable transformations on Ω which satisfies

P
(
θ−1
x A

)
= P (A) for any x ∈ R and A ∈ F . (stationarity) (133)

(
Ω,F , P, {θx}x∈R

)
is called ergodic if it satisfies

P
(
θ−1
x A⊖A

)
= 0 for any x ∈ R =⇒ P (A) = 0 or 1. (134)

For an F -measurable real valued function Q on Ω set

qω (x) = Q (θxω) , ω ∈ Ω.

Then we obtain an ergodic potential {qω}ω∈Ω. A simple but important example
is quasi-periodic potentials. Set Ω = Rn/Zn and for α ∈ Rn

θxω = xα+ ω, P = the Lebesgue measure on R
n/Zn.

This
(
Ω,F , P, {θx}x∈R

)
is ergodic if α is rationally independent and the resulting

qω (x) is a quasi-periodic function. If n = 1, we have a periodic function and for
n = ∞ in a certain sense we have an almost periodic function. One has more
random ergodic potentials. For a technical reason we assume

E (|Q|) =
∫

Ω

|Q (ω)|P (dω) <∞ and Q (ω) ≥ λ0 for any ω ∈ Ω. (135)

E denotes the expectation by P . Then one can consider the associated Schrödinger
operator

Lω = −∂2x + qω.

Under the condition (135) it is known that inf sp Lω ≥ λ0 and the boundaries
±∞ are of limit point type for Lω for a.e. ω ∈ Ω. One can apply the Weyl
spectral theory to each Lω.

The Floquet exponent is defined by

w(z) = E (m± (z, ω)) (the two expectations coincide), (136)

by which the Lyapounov exponent and integrated density of states are
obtained by

γ (z) = −Rew(z) (≥ 0) , N (λ) =
1

π
Imw(λ) (λ ∈ R) .

N (λ) is non-negative, continuous and non-decreasing on R. [10] found an iden-
tity

γ (z)

Im z
− Imw′ (z) =

1

4
E

((
1

Imm+ (z, ω)
+

1

Imm− (z, ω)

)
|R (z, ω)|2

)

for z ∈ C+. Set

χ (z) =
γ (z)

Im z
− Imw′ (z) ≥ 0.
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Then applying the Schwarz inequality we have

E (|R (z, ω)|) ≤
√
4χ (z)

√
E

(
1

Imm+ (z, ω)
+

1

Imm− (z, ω)

)−1

≤
√
4χ (z)

√
E

(
Imm+ (z, ω) + Imm− (z, ω)

4

)

=
√
2χ (z) Imw (z) (due to (136)). (137)

It is also known that

Σω
ac = {λ ∈ R; γ (λ) = 0} = {λ ∈ R; R (λ, ω) = 0} for a.e. ω ∈ Ω. (138)
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