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Localization and Cantor spectrum for quasiperiodic

discrete Schrödinger operators with asymmetric,

smooth, cosine-like sampling functions

Yakir Forman and Tom VandenBoom

Abstract

We prove Cantor spectrum and almost-sure Anderson localization for quasi-
periodic discrete Schrödinger operators H “ ε∆`V with potential V sampled
with Diophantine frequency α from an asymmetric, smooth, cosine-like function
v P C2pT, r´1, 1sq for sufficiently small interaction ε ď ε0pv, αq. We prove this
result via an inductive analysis on scales, whereby we show that locally the
Rellich functions of Dirichlet restrictions of H inherit the cosine-like structure
of v and are uniformly well-separated.
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1 Introduction and main results

Fix a bounded real sequence V “ tVjujPZ and ε ą 0. We consider the discrete
Schrödinger operator H “ HpV, εq whose pointwise action on sequences in CZ is
given by

pHψqpnq :“ ppε∆ ` V qψq pnq (1.1)

:“ εpψpn` 1q ` ψpn´ 1qq ` Vnψpnq.

Restricted to ℓ2pZq, H is a bounded self-adjoint linear operator. H is called An-
derson localized if it exhibits an ℓ2pZq basis of exponentially decaying eigenvectors.
The Anderson model, where V is sampled random i.i.d. from a nontrivial probabil-
ity distribution, is almost surely Anderson localized; in this sense, localization is a
standard measure of “randomness” of the potential. That said, certain non-random
potentials, e.g. Vn “ cospθ ` nαq, are likewise almost-surely Anderson localized for
small ε and almost every α. Proofs of this fact have historically relied on either the
analyticity of cosine and subsequent uniform positivity of the Lyapunov exponent or
its inherent symmetry. We offer a new perturbative proof of almost-sure localization
and Cantor spectrum for potentials sampled from any C2-smooth Morse function with
two monotonicity intervals along a Diophantine rotation on the circle.

We consider “cosine-like” sampling functions from T “ R{Z into r´1, 1s having
two non-degenerate critical points; that is, we consider functions f P C2pT, r´1, 1sq
having two monotonicity intervals and satisfying a Morse condition

d0 ď |Bθf | ` |B2
θf | ď D0.

We say α P r0, 1szQ is pC, τq-Diophantine when

}nα}T ě C

|n|τ , n P Z. (1.2)

In this case we write α P DCC,τ . It is well-known that Lebesgue almost every α

is Diophantine for some pC, τq. We consider potentials V “ V pθ˚q generated by
sampling a cosine-like v along an irrational rotation by α starting at θ˚, i.e.

Vnpθ˚q “ vpθ˚ ` nαq,

and denote by Hpθ˚q “ HpV pθ˚q, εq.

Theorem (Main Theorem). Let v P C2pT, r´1, 1sq be a function with two monotonic-
ity intervals satisfying a Morse condition

d0 ď |Bθv| ` |B2
θv| ď D0

and let α P DCC,τ . Then there exists ε0 “ ε0pv, αq such that, for ε ă ε0,
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1. The spectrum Σ “ Σpv, αq of Hpθ˚q is a Cantor set, and

2. For Haar almost every θ˚ P T, Hpθ˚q is Anderson localized, i.e. has pure-point
spectrum with exponentially decaying eigenfunctions.

Our approach to the proof of the Main Theorem is an inductive analysis of scales.
Multiscale analysis techniques are a well-established approach to localization in arbi-
trary spatial dimensions, cf. [8, 10, 11, 12, 13, 14, 15], and are quite general in their
scope; for a recent survey of multiscale analysis techniques, see [21]. In one spatial
dimension, as in our model, one has access to additional tools (like the Lyapunov
exponent and transfer matrices) which can simplify the analysis. Indeed, uniform
positivity of the Lyapunov exponent often lends itself to almost-sure nonperturbative
localization results [1, 3]. Such results were initially established by Jitomirskaya for
the Almost Mathieu operator [18], and this strategy has been well-applied in the ana-
lytic regime due to the Hermann “subharmonicity trick,” see e.g. [2, 3, 4, 5, 25], as well
as in the random i.i.d. regime due to Fürstenberg’s Theorem, see e.g. [6, 7, 9, 17, 19].

For smooth sampling functions, proving uniform positivity of the Lyapunov expo-
nent becomes a substantial challenge. In this case, only perturbative strategies have
thus far been successful. Fröhlich-Spencer-Wittwer established a perturbative ap-
proach to proving almost-sure Anderson localization for symmetric cosine-like smooth
potentials v with sufficiently small interaction for almost every irrational α [14], with
additional work in this direction pioneered by Sinai [24]. Positive Lyapunov expo-
nents and Cantor spectrum were verified via perturbative methods in the general
asymmetric cosine-like case by Wang-Zhang [26, 27].

1.1 What this paper accomplishes

Our result will naturally be compared to the aforementioned works of Fröhlich-
Spencer-Wittwer [14], Sinai [24], and Wang-Zhang [26, 27]. Our main accomplish-
ments relative to these prior works are, respectively:

1. Removing the crucial symmetry assumption on the sampling function v from [14]
in part by an inductive analysis of differences of inverse functions; cf. Section
4.

2. Establishing the existence of open spectral gaps via a novel Cauchy interlacing
argument (cf. Theorem 3.2) and a multiscale induction scheme which preserves
the size of these gaps (cf. Proposition 5.3).

3. Eliminating double-resonances, i.e., those phases θ for which the frequency α

is problematically recurrent relative to the sampling function v infinitely often
(cf. Lemma 6.7).

Each of these steps requires new ideas not present in the above works; we describe the
difficulties which must be overcome, and our approaches to overcoming them, below.

4



1.1.1 Removing symmetry

In [14], the authors prove an analogue to the Main Theorem under the additional
assumption of even symmetry of the sampling function v defining the potential:
vpθq “ vp´θq. This assumption is crucial to their analysis because the symmetry
is inherited by the Rellich functions (i.e., parametrized eigenvalues) EΛ of any Dirich-
let restriction HΛ of H to an interval Λ Ă Z; specifically, if Λ “ rc ´ L, c ` Ls,
then

EΛpθq “ EΛp´θ ´ 2cαq, θ P T.

In particular, it follows that there is antisymmetry in the derivative:

BθE
Λpθq “ ´pBθE

Λqp´θ ´ 2cαq.

These symmetries come with two crucial benefits. First, Rellich curves of HΛ have
predetermined critical points when

}2θc ` 2cα}T “ 0.

These critical points are common to any Rellich curves of HΛ. This fact, alongside
opposite-signed second derivatives (cf. (1.9)), allows one to conclude a uniform local
eigenvalue separation from the classical pointwise eigenvalue separation for eigenval-
ues with eigenvectors localized on a common support (cf. Lemma 1.5). The uniform
local separation of Rellich curves guarantees that different Rellich curves cannot res-
onate with one another, which in turn allows one to, e.g., apply calculus and the
Diophantine condition to single Rellich curves at every step of the induction.

The second important consequence of the symmetry of the Rellich functions is
that the difference of local inverse functions – which plays a crucial role in identifying
double resonances (cf. Figure 1) – is effectively independent of the scale and the
energy, cf. [14, Lemma 5.7]. This means that, in the even setting, one can define
the bad sets of double resonant phases uniformly in the energy. In our construction,
the difference of local inverses of Rellich functions E´1

s,` ´E´1
s,´ depends on the parent

Rellich function, and thus so too do our bad sets of phases. By carefully controlling the
number of double resonances and child Rellich functions coming from each parent (cf.
equation (6.1) below), we can discretize this energy dependence and again construct a
uniform bad set of phases at each scale, whose limit superior we eventually eliminate
to prove Anderson localization.

1.1.2 Opening gaps

Sinai’s paper [24] is likewise foundational in establishing an approach to proving
perturbative localization results in the quasiperiodic setting; indeed, general aspects
of our argument, like the idea illustrated in Figure 3 below, echo some of the ideas
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developed therein. However, Sinai’s paper suffers from fundamental flaws as written,
each of which our approach overcomes.

Sinai’s approach to studying quasiperiodic operators is a priori a natural one:
for fixed frequency α having best rational approximants αs “ ps{qs with qs having
controlled growth rate qs`1 À ps ` 1q2qs, approximate the whole-line operator H

via the qs-periodic operators H
psq
ε pθq. In Sinai’s construction, the transition between

steps s and s ` 1 involves approximating H
ps`1q
ε pθq with shifts H

psq
ε pθ ` nαs`1q. By

the definition of the periodic approximants αs, one has

|αs ´ αs`1| “ 1

qsqs`1

Á 1

ps ` 1q2q2s
and so the general error incurred in an inductive step s ÞÑ s`1 is, at best, polynomial
in q´1

s . In contrast, in this inductive step there are double-resonant eigenfunctions
whose centers of localization are separated at distances qs. The separation between the
resultant Rellich functions is exponentially small in qs, comparable to εqs. Thus, after
making an inductive step using periodic approximations, the uniform local separation
between Rellich curves – even coming from previous scales! – is completely destroyed,
taking along with it the ability to consider only self-resonances of a given Rellich curve.

Critiques aside, Sinai’s intuition regarding the importance of the gaps between
children of resonant Rellich curves is informative. Describing these gaps in our regime
is perhaps the most novel contribution in this work; we do so by proving the Rellich
functions at scale s ` 1 are simultaneously interlaced by a pair of auxiliary curves
which are C1 close to the parent curves from scale s, which must be monotone with
opposite-signed derivatives; cf. Lemma 3.8.

1.1.3 Eliminating double resonances

Compared to the works of Fröhlich-Spencer-Wittwer and Sinai, relatively recent
progress on understanding localization for smooth quasiperiodic discrete Schrödinger
operators was made by Wang and Zhang [26]. Therein, the authors show perturba-
tively that the Lyapunov exponent of the associated transfer matrices is arbitrarily
close to | log ε|, and they likewise prove a Large Deviation Theorem. Their proof
again proceeds by studying an auxiliary transfer matrix which is in some sense an
asymptotic approximation to the Schrödinger transfer matrix as ε decreases to zero.
In a follow-up paper [27], the authors use the characterization of spectral energies as
corresponding to non-uniform hyperbolicity of the associated transfer matrix to prove
Cantor spectrum in the model.

In the one-dimensional setting, uniformly positive Lyapunov exponents and a
Large Deviation Theorem are key ingredients to proving Anderson localization; how-
ever, alone they are insufficient to identify a full-measure set of phases for which
localization holds. This final ingredient for localization, often called “elimination of
double resonances,” requires a careful understanding of the sets of double resonant
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phases at each inductive step. These bad sets of phases depend crucially on the
energies for which they are resonant.

In our construction, given a Morse, two-monotonicity interval Rellich curve Es at
scale s, we can identify the bad sets of phases for Es and control their sizes using
the Morse condition. One can control all of the bad sets simultaneously, then, by
controlling the number of Rellich children Es`1 one constructs at each step. Here
again the Diophantine condition and the Morse, two-monotonicity interval structure
of each Es are crucial in order to separate the double-resonant energy regions, in turn
allowing us to define at most 1{ρ3s´1 children of Es, each having bad sets of phases

of size at most ρ
1{5
s (cf. the proof of Lemma 6.7). Choosing our scales appropriately,

we will have summability of the cumulative size of all bad sets at all scales, and the
Borel-Cantelli lemma will apply. We sketch the first step of our inductive procedure
below.

1.2 Idea of the proof

For an interval Λ “ ra, bs Ă Z, we denote by HΛ the restriction of H to Λ with
Dirichlet boundary conditions, ψpa´ 1q “ ψpb` 1q “ 0. Letting |Λ| :“ b´ a` 1, one
can identify HΛ with the |Λ| ˆ |Λ| matrix

HΛ “

»
—————–

Va ε

ε Va`1 ε
. . .

. . .
. . .

ε Vb´1 ε

ε Vb

fi
ffiffiffiffiffifl
.

Notice that the base dynamics of our model imply

HΛpθ ` nαq “ HΛ`npθq

for any n P Z, θ P T; furthermore, by the regularity of our sampling function v, any
one-parameter family of Dirichlet restrictions HΛpθq exhibits |Λ| Rellich functions
(i.e., parametrized eigenvalues Epθq) which are necessarily simple and C2.

Generalized eigenvalues of the whole-line operator H (i.e., energies E with solu-
tions ψ to Hψ “ Eψ growing at most polynomially) are limit points of the eigenvalues
of the finite-volume operators HΛ as Λ grows to Z; furthermore, they are spectrally
dense in the spectrum of H [22, 23]. By the Poisson formula

ψpnq “ εRΛ
θ,Epn, aqψpa´ 1q ` εRΛ

θ,Epn, bqψpb ` 1q, n P Λ, E R sppHΛpθqq

exponential off-diagonal decay of Green’s functions RΛ
θ,E “ pHΛpθq ´ Eq´1 can be

favorably leveraged against the at-most polynomial growth of generalized eigenfunc-
tions ψ on Λ. If we can inductively construct intervals of increasing length on which
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we have Green’s function decay at (or near) generalized eigenvalues, we can thus
prove exponential decay of generalized eigenfunctions, hence Anderson localization.

The initial step in our induction involves constructing intervals Λ1 “ Λ1pθ˚, E˚q
from the degenerate interval Λ0 “ t0u in a way which is stable in θ˚ and E˚. At
this zeroth scale, the eigenvalue of HΛ0pθ˚q is precisely the value of the sampling
function vpθ˚q. The difficult aspect of the induction is identifying how the structural
assumptions on v are reflected by the Rellich functions of HΛs at future scales s ě 1.

In non-resonant situations where |Vm ´ E| ě ρ " ε is large for all m P Λ, the
Green’s function exhibits off-diagonal decay at a rate of ε{ρ on Λ by a classical
Neumann series argument (cf. Lemma 5.1). One thus focuses on those cases when
|Vm ´ E| is small:

S0pθ˚, E˚q “ tm P Z : |Vmpθ˚q ´ E˚| À ρu.

If an element m P S0 is separated by some relatively large distance L from any other
element of S0, we call it simple resonant (for v, ρ, and L). For simple resonant m,

one can build an interval Λ
p1q
1 “ rm ´ L{2, m ` L{2s so that any eigenvector of the

associated Dirichlet restriction HΛ
p1q
1 pθq with eigenvalue near E˚ will be localized near

m, again by the Poisson formula (1.11). By classical perturbation theory (cf. Lemma

1.2 and Proposition 2.1), it follows that HΛ
p1q
1 has a single Rellich function E1pθq

near E˚ for θ near θ˚, and thus E1 will be well-approximated in C2 by the sampling
function E0 :“ v (cf. Proposition 2.2).

The obstruction to localization, then, are double resonances, where (at least)
two resonant sites mj are within L of one another. These double resonances are
unavoidable; an illustration of such a resonance can be seen in Figure 1.

nα

v

EnpvqJ
0
,n

I0,n,´ I0,n,`

Figure 1: Double resonance of the sampling function v: if θ0,n,´ P I0,n,´ is the value such that
vpθ0,n,´q “ vpθ0,n,´ ` nαq “ Enpvq, then 0 and n are in S0pθ0,n,´, Enq.
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In our setting, the Diophantine condition and the structure of v guarantee that
at most two resonant sites m1 and m2 can be nearby for appropriate choices of ρ
and L; furthermore, each of these nearby pairs pm1, m2q must be well-separated from
one another. Indeed, let v : T Ñ r´1, 1s be our Morse sampling function with two
monotonicity intervals I˘ and denote by v˘ :“ v|I˘ the monotone restrictions of v.
By the Morse condition, one sees (cf. Lemma 4.2)

|v˘pθq ´ v˘pθ1q| Á }θ ´ θ1}2T, θ, θ1 P I˘. (1.3)

By the Morse condition and (1.3), double resonant sites on the orbit of θ˚ cannot
occur near critical points of v; we thus find a lower bound ν “ νpρ, Lq " ρ on |v1|
for double resonant phases θ P I0,n,˘ :“ v´1

˘ pJ0,nq. What’s more, given the two-
monotonicity structure of v, there can be at most 4L such double-resonant intervals
I0,n,˘, |n| ď L (cf. Figure 1). Thus, the region of double-resonant phases is of size
at most 4Lρ{ν. It also follows from the Diophantine condition (1.2) and the two-
monotonicity interval structure of v that the sequence Vm “ vpθ˚ ` mαq can only
recur to a neighborhood of E for at most two nearby values of m:

min
m1,m2,m3PS0

t|m1 ´ m2|, |m2 ´ m3|u Á ρ´1{2τ

Thus, if we choose L of order, e.g.,

L6 „ ρ´1{2τ ,

then resonant sites m P S0 which are not simple resonant appear in distinct pairs
pm1, m2q with |m1 ´m2| ď L such that each pair is separated from other pairs by at
least L6.

Given the separation of these pairs, one can build an interval Λ
p2q
1 “ rm1 ´

L2{2, m1 ` L2{2s such that, by classical perturbation theory (cf. Lemma 1.2 and

Proposition 3.1), HΛ
p2q
1 has two Rellich functions E1,_ ą E1,^ near E˚ for θ near θ˚.

These new Rellich functions, however, must necessarily deviate significantly from the
parent function v near their the crossing point Enpvq. One of the primary technical
thrusts of this paper is demonstrating that these new functions locally 1) retain the
crucial Morse and two-monotonicity structural properties of the function v, and 2)
separate with a stable, quantifiable gap between them:

Theorem (cf. Theorem 3.2). In our setting, double resonances of a Rellich function
Es of HΛs resolve as a pair of uniformly locally separated Morse Rellich functions

Es`1,_ ą Es`1,^ of HΛ
p2q
s`1 with at most one critical point, cf. Figure 2.

The gap demonstrated in the above Theorem serves two purposes: First, it ensures
that any Rellich function E1 can only resonate with itself at future scales, which
ultimately enables our induction. Second, the size of the gap is sufficiently large to

9



„ ε|n|

E0pθ ` nαq

E1,n,_pθq

E0pθq
E1,n,^pθq

Enpvq

I0,n,´

Figure 2: The resolution of a double resonance of E0 “ v into a pair of uniformly locally well-

separated Rellich curves of a Dirichlet restriction HΛ
p2q
1 of H . The interval Λ

p2q
1

depends on the
crossing value Enpvq.

remain open through each step of the inductive procedure; the ubiquity of these gaps
yields Cantor spectrum.

From the initial scale function E0 “ v, we thus construct a collection E1 of well-
separated Rellich functions of certain Dirichlet restrictions of H whose domains cover
the circle T with the same structural properties as E0, cf. Figure 3. The inductive
argument proceeds on each such constructed function: by properly defining our pa-
rameters at scale s relative to our initial choice of ε “: δ0, we can ensure that the

J
1
,n
,_

I1,n,_

E1,n,_

Figure 3: A cartoon output of the first inductive step: a collection E1 of local Rellich functions of
various Dirichlet restrictions of H , whose domains (and their relevant translates, e.g. I1,n,_ ` nα)
cover the circle T. The curves in black come from double resonances, and the curves in gray are
simple resonant. Note that different curves need not agree on the overlap of their domains.

10



E0

E
p1q
1,i0

E
p1q
2,i1

... ...

... E
p2q
2,n1,_

... ...

E
p2q
2,n1,^

... ...

...

... E
p2q
1,n0,_

E
p1q
2,i1

1

... ...

...

E
p2q
1,n0,^

... ...

...

E0

E1

E2

E3

Figure 4: After completing the induction, we have a tree E of Rellich functions Es : Is Ñ Js. Any
energy E˚ P R admits a path through this tree. The superscript pjq, j P t1, 2u, of each child indicates
the resonance type relative to the parent.

size δs of the resonant eigenvectors near the edges of Λs is much smaller than the
eigenvalue separation ρs, allowing the procedure above to iterate; we choose these
parameters in such a way so as to ensure the bad sets of phases have summable mea-
sures (cf. Lemma 6.7). The Borel-Cantelli lemma guarantees that the collection B of
θ˚ P T which are double-resonant infinitely often has zero measure; our full-measure
set of localized phases is the complement Θ “ TzB.

The ultimate output of the induction is a tree of cosine-like Rellich curves, cf.
Figure 4. Each fixed energy E˚ P R admits a path of “E˚-relevant” Rellich functions
through this tree; this path either terminates at finite depth if E˚ is non-spectral
or proceeds without end. Given θ˚ P Θ, we consider the infinite path determined by
some generalized eigenvalue E˚ “ Epθ˚q of Hpθ˚q; by our construction of Θ, this path
eventually consists only of simple-resonant children. The resulting stability of the ap-
proximate eigenfunctions ψs will yield exponential localization of the corresponding
generalized eigenfunction, showing that the generalized eigenvalue is an honest eigen-
value with decaying eigenfunction. The spectral density of generalized eigenvalues
guaranteed by Schnol’s lemma completes the localization argument. Moreover, our
construction ensures that each node of the tree has some double-resonant descendant.
Since each double resonance opens a spectral gap which will remain open for all fu-
ture scales, this observation guarantees that spectral gaps open arbitrarily close to
any fixed energy E˚ P R; thus the spectrum is a Cantor set.

1.2.1 A brief roadmap of the paper

The article proceeds as follows: in the remainder of this section, we will establish some
basic notation and foundational lemmas for use throughout the paper; the proofs of
these lemmas can all be found in Appendix B. Sections 2, 3, and 4 provide the crucial
infrastructure for our induction. In Sections 2 and 3, we develop the spectral tools
to analyze descendants of a given Rellich curve in the simple- and double-resonant
settings, respectively, at every scale. The by-now classical but necessary details for
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proving Green’s function decay on nonresonant intervals are included in Appendix A.
Section 4 consists of technical machinery allowing us to classify energy regions Js,i
in the codomain of a cosine-like function Es as simple- or double-resonant. Section
5 applies the content of Sections 2, 3, and 4 in a multiscale induction scheme: given
a Rellich function Es, we use the restrictions of Es to the resonance regions Js,i to
construct Rellich children Es`1 according to the recipes in Sections 2 and 3. Section 6
characterizes the spectrum ofH in terms of the complete collection of Rellich functions
constructed in Section 5, proving Cantor spectrum via the permanent stability of the
gaps coming from double resonances; finally, we eliminate double resonances and
prove Anderson localization as outlined above.

1.3 Notation and preliminaries

In this subsection, we establish some notation and collect the foundational lemmas
which will serve as the starting point for our discussion; the proofs of each of these
lemmas can be found in Appendix B.

Throughout the paper we use I to denote intervals of phases θ, J to denote
intervals of energies E, Λ to denote intervals of integers, and we denote by Brpxq
the open ball of radius r centered at x. We reserve a handful of parameters for our
multiscale inductive procedure; these parameters are:

L: Lengths of spacial intervals Λ.

ρ: Resonance scale for phase and energy intervals I and J .

δ: The size of a localized eigenfunction at the edge of an interval Λ.

ν: Local lower bound on the magnitude of a first derivative of a Rellich function.

pℓ, γq: Green’s function decay parameters, see below.

Due to the nature of the induction, we will occasionally consider up to three scales
simultaneously, a “current” scale, a “next” scale, and a “previous” scale; we use hats p̈
or checks q̈above the corresponding parameters when we intend to suggest application
to the next or previous scales, respectively. With this convention, one should keep
in mind the following general scale principles, which we clarify more precisely as
necessary:

δ ! ρ ! qρ ! ν,

γ „ | log ε|,
L ! pℓ ! pL.

We now fix the notation for our objects of study. Let V P ℓ8pZ,Rq be a real-
valued potential. Restricted to ℓ2pZq, the linear operator HpV, εq is self-adjoint and
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bounded (with }H} ď }V }8 `2ε). For an interval Λ “ ra, bs Ă Z we denote by HΛ the
restriction of H to Λ with Dirichlet boundary conditions, ψpa ´ 1q “ ψpb ` 1q “ 0.
Letting |Λ| :“ b ´ a ` 1, one identifies HΛ with a |Λ| ˆ |Λ| matrix by making an
appropriate change of basis. With this identification, we will frequently treat vectors
qψ defined only on a subset qΛ Ă Λ as though they are vectors in C|Λ|; in this situation,
we abuse notation and conflate qψ with its extension to Λ given by qψpmq “ 0,m P ΛzqΛ.

Consider a partition of Λ given by P “ Yp
j“0Λj, Λj “ raj, bjs, where bj ` 1 “ aj`1

for all 0 ď j ď p´ 1 and a0 “ a, bp “ b. We define the partitioned operators HΛ
P and

ΓΛ
P by

HΛ
P :“

à
j

HΛj ,

ΓΛ
P :“ HΛ ´ HΛ

P .

We fix once and for all the trivial partition P0 with aj “ bj “ j, and note that in this
special case

HΛ
P0

“ V Λ,

ΓΛ
P0

“ ε∆Λ.

We denote by sppAq the spectrum of an operator A. For E R sppHΛq, we denote
by RΛpEq :“ pHΛ ´ Eq´1 the resolvent operator and by RΛ

Epm,nq :“ xδm, RΛpEqδny
the associated Green’s function. Given a partition P of Λ, we define RΛ

P analogously,
with HΛ

P replacing HΛ. We will make frequent use of the resolvent identity

RΛpEq ´ RΛ
PpEq “ ´RΛpEqΓΛ

P R
Λ
PpEq.

Let E R spHΛ; given ℓ P N, γ ą 0, we say that an interval Λ Ă Z satisfies the Green’s
function decay property for pℓ, γq if, for all m,n P Λ with |m ´ n| ě ℓ,

log |RΛpm,nq| ď ´γ|m ´ n|.

1.3.1 Perturbation theory for differentiable one-parameter self-adjoint

operator families

We now recall some important lemmas for use throughout the paper; the proofs of
these lemmas are appended.

We begin with a straightforward consequence of rank-nullity:

Lemma 1.1. Let χ and P each be orthogonal projections on a finite-dimensional
vector space. If

}pI ´ χqP } ă 1

then rankpχq ě rankpP q.

13



We apply this lemma in the context of spectral projections for real symmetric
matrices. For a symmetric matrix A having normalized eigenpairs pλj , ψjq, }ψj} “ 1,
and a Borel set J Ă R, we denote by χJpAq the spectral projection

χJpAq :“
ÿ

λjPJ

ψjψ
J
j

onto the direct sum of those eigenspaces of A with λj P J . We have the following
fundamental perturbative result relating eigenvectors of a symmetric matrix A having
quantitatively separated spectrum to approximations thereof:

Lemma 1.2. Let A be a real symmetric matrix, and let E˚ P R and δ ą 0. Suppose
there exists a nonzero orthogonal projection P such that

}pA´ E˚qP } ď δ.

Then χBδpE˚qpAq ‰ 0, and for any ρ ą δ, we have
››pI ´ χBρpE˚qpAqqP

›› ď δ{ρ. (1.4)

In particular, for any unit vector φ in the image of P , the spectral renormalization

ψ :“ χBρpE˚qpAqφ
}χBρpE˚qpAqφ}

is well-approximated by φ:

}φ´ ψ} ď
?
2δ{ρ. (1.5)

For a Borel set J Ă R, we denote the partial resolvent

RKpE;A, Jq :“
ÿ

λjRJ

χtλjupAq
λj ´ E

and sometimes abbreviate the special case

RKpλj;Aq :“
ÿ

λk‰λj

χtλkupAq
λk ´ λj

.

Note that, by definition,

RKpE;A, JqpA´ Eq “ I ´ χJpAq (1.6)

is the spectral projection off of the eigenspaces of A associated to λj P J . Furthermore,
one has that

}RKpλj;Aq} “ 1

distpλj, spAztλjuq .

The partial resolvents RK are of great importance in computing derivatives of
eigenvectors for smooth one-parameter families of symmetric matrices:
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Lemma 1.3 (Feynman formulae). Let Apθq denote a one-parameter family of sym-
metric real matrices, and suppose that A is C2 at θ˚, and that pE˚, ψ˚q is a simple
eigenpair of Apθ˚q. Then there is a family pE, ψqpθq of locally simple eigenpairs in a
neighborhood of θ˚, normalized so that }ψpθq} “ 1, which is twice differentiable at θ˚.
Furthermore, one has

BθEpθ˚q “ xψ,A1pθ˚qψy, (1.7)

Bθψpθ˚q “ ´RKpA,E˚qA1pθ˚qψ˚ (1.8)

and

B2
θEpθ˚q “ xψ,A2pθ˚qψy ` 2xBθψ,A

1pθ˚qψy. (1.9)

Finally, one has that

xBθψ, ψy “ 0. (1.10)

1.3.2 Spectral analysis of discrete Schrödinger operators

We recall some classical lemmas regarding eigenfunctions of discrete Schrödinger op-
erators. The first, which is sometimes referred to as the “Poisson formula,” relates
the value of an eigenfunction at a particular site n to Green’s functions of Dirichlet
restrictions of H :

Lemma 1.4 (Poisson Formula). Let ψ P CZ satisfy the formal Schrödinger difference
equation Hψ “ Eψ, and let Λ “ ra, bs Ă Z be an interval. Then

ψpnq “ εRΛ
θ,Epn, aqψpa´ 1q ` εRΛ

θ,Epn, bqψpb ` 1q, n P Λ (1.11)

provided E R sppHΛq.
The same relation holds if we replace H with H Λ̂ for some interval Λ̂ “ râ, b̂s Ľ

Λ and let ψ P C|Λ̂| satisfy H Λ̂ψ “ Eψ. In this case, we use the convention that
ψpâ´ 1q “ ψpb̂ ` 1q “ 0.

The final result that we recall is a classical eigenvalue separation lemma (cf. e.g.
[14, 20]), which quantifiably separates the eigenvalues of simultaneously localized
eigenvectors of a discrete Schrödinger operator:

Lemma 1.5. Let pψ1, pψ2 be distinct eigenfunctions for H
pΛ with corresponding eigen-

values pE1, pE2. Suppose there is an interval Λ Ă pΛ supporting half of the mass of both
pψ1 and pψ2, i.e., such that }pψj}2Λ ě 1

2
}pψj}2pΛ, j “ 1, 2. Then

| pE1 ´ pE2| ě ε

6|Λ|2
ˆ´mΛ

ε

¯2

` 2

˙´|Λ|

ą
´ε
3

¯3|Λ|
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where mΛ :“ maxkPΛ,j“1,2 |vpkq ´ pEj |2.
In particular, if 2ρ ă pε{3q3|Λ|, | pE1 ´E˚| ă ρ{2, and E˚ is well-separated from any

other eigenvalues of H
pΛ (i.e., }RKpE˚;H

pΛ, t pE1, pE2uq} ď 2
3
ρ´1), we have the partial

resolvent bound

}RKpE;H pΛ, t pE1uq} ď ρ´1, E P Bρ{2pE˚q. (1.12)
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2 Simple resonance

In this section, we study the situation of simple resonance, where an interval pΛ Ă Z

contains precisely one resonant “core” subinterval Λ Ă pΛ such that HΛpθ˚q has a
unique eigenvalue near a fixed E˚. Under smallness and stability assumptions on
the boundary values of the corresponding eigenvector, alongside off-diagonal Green’s
function decay on the maximal connected components of pΛzΛ (the “shoulders” of pΛ),
we prove that H

pΛ has a unique resonant eigenpair child which is well-approximated
by the parent eigenpair of HΛ.

Fix v P C2pT, r´1, 1sq with }Bθv}8 ` }B2
θv}8 ď D0, pθ˚, E˚q P T ˆ r´2, 2s, and

0 ă ε ă 1{7. Let pΛ Ă Z be an interval with subinterval “core” Λ of length L “ |Λ|.
We denote the left and right shoulders of pΛ by Λl{r, respectively, and denote the

corresponding partition of pΛ “ ΛlYΛYΛr by P. Fix constants ρ, δ, γ, ℓ ą 0 satisfying
the following relations:

δ ă ρ3{2 ă ρ{16, (2.1)

log 7 ă γ ď | log ε| (2.2)

Assumption 1. Suppose the following hold for |θ ´ θ˚| ă ρ{8D0:

1. (Simple resonance) The operator HΛpθq has a Rellich pair pE, ψqpθq such that
Epθ˚q “ E˚.

2. (Eigenvector decay) The unit eigenvector ψpθq of HΛpθq has P-boundary values
bounded by δ{ε; i.e. one has

}ΓpΛ
Pψ} ď 2δ. (2.3)

Furthermore, for any Rellich pair p pE, pψqpθq of H
pΛpθq with | pE ´ E˚| ă 3

2
ρ, the

unit eigenvector pψ also has P-boundary values no larger than δ{ε; i.e. one has

}ΓpΛ
P
pψ} ď 4δ. (2.4)

3. (Green’s function decay on the shoulders of Λ) For m,n P Λl{r with |m´n| ě ℓ,
one has

log |RΛl{r

θ,E pm,nq| ď ´γ|m´ n| (2.5)

for |E ´ E˚| ă 3
2
ρ.

4. (Eigenvalue separation) Epθq is the unique eigenvalue of H
pΛ
P pθq in B7ρ{4pE˚q

χtEpθqupH pΛ
P pθqq “ χB7ρ{4pE˚qpH pΛ

P pθqq. (2.6)

In particular, we have the partial resolvent bound

}RKpE;H pΛ
P pθq, tEpθquq} ď 4ρ´1, E P B3ρ{2pE˚q. (2.7)
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5. (Eigenvector stability) The unit eigenvector ψpθq of HΛpθq has stably small
P-boundary values:

}ΓpΛ
PpBθψq} ď 25D0δρ

´1. (2.8)

The remainder of this section proceeds under Assumption 1.

2.1 The resonant eigenpair of H
pΛ

Under Assumption 1, we first show the existence of a unique eigenpair of HΛ which is
localized near near Λ. Specifically, denoting the localization region Λloc and modified
shoulders pΛl{r by

Λloc :“ rinf Λ ´ ℓ, supΛ ` ℓs X pΛ,
pΛl{r :“ Λl{rzΛloc,

we have the following:

Proposition 2.1 (Simple resonant eigenpair). Under Assumption 1, we have:

1. Any unit eigenvector pψ of H
pΛ with corresponding eigenvalue pE with | pE´E˚| ă

3
2
ρ is Anderson localized on Λloc:

}pψ}Λloc
ě 2{3,

log | pψpjq| ď ´γ distpj,Λq, j P pΛl{r

2. There exists a Rellich pair ppE, pψq for H
pΛ with pE : Bρ{8D0pθ˚q Ñ Bρ{4pE˚q and

eigenvector pψ satisfying

|pE ´ E| ď 2δ, (2.9)

pψ “ ψ ` φ (2.10)

where }φ} ď 3δ{ρ.

3. Uniformly for θ with |θ ´ θ˚| ă ρ{8D0 and |E ´ E˚| ă 5
4
ρ, there are no other

Rellich functions of H
pΛ within ρ{4 of pE:
›››RK

´
E;H

pΛpθq, tpEpθqu
¯››› ď 4ρ´1. (2.11)

In particular, this applies to all |E ´ pEpθq| ď ρ.
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Proof. Suppose p pE, pψq is a Rellich pair for H
pΛ such that | pE ´ E˚| ă 3

2
ρ normalized

so that }pψ} “ 1. Then, denoting Λl “ ral, bls, we have for j P pΛl

log |pψpjq| “ log |εRΛl

θ, pEpbl, jqpψpbl ` 1q|
ď log |ε| ´ γ|j ´ bl|
ď ´γp|j ´ bl| ` 1q
“ ´γ distpj,Λq

by the Poisson formula (1.11) and (2.5). The case j P pΛr is entirely analogous.
Using this decay, we have that

}pψ}pΛl{r
ď

ÿ

jPpΛl{r

e´γ distpj,Λq

ď e´γ

1 ´ e´γ
ă 1

6
.

Consequently, we have that

} pψ}Λloc
ě 2{3

for any resonant eigenvector pψ.
Denoting by P “ χB3ρ{2pE˚qpH pΛq and by χ “ χB3ρ{2pE˚qpH pΛ

Pq, suppose ppE, pψq is a

resonant eigenpair of H
pΛ with |pE ´ E˚| ă 3ρ{2. Then we have

}pI ´ χqP } “ }RKpE;H pΛ
P ,EqpH pΛ

P ´ pEqP }
ď 4ρ´1}ΓpΛ

PP } ď 16δρ´1.

Lemma 1.1 and assumption (2.6) implyH
pΛ has at most one such resonant eigenvector.

The existence of a Rellich pair ppE, pψq with pE : Bρ{8D0
pθ˚q Ñ Bρ{4pE˚q and satis-

fying (2.9) follows from Lemma 1.2 after noting that

}pH pΛpθq ´ Epθqqχ} ď }ΓpΛ
Pψ} ď 2δ (2.12)

and, by (1.7),

|Epθq ´ E˚| ď D0|θ ´ θ˚| ă ρ{8.

Thus, pE is the unique eigenvalue of H
pΛ with |pE ´ E˚| ă 3ρ{2, and (2.11) holds.

Finally, since pψ is the unique unit vector (up to a sign) in the image of χBρpEqpH pΛq,
(1.5) implies (2.10).

19



2.2 Local Rellich function structure

In the simple resonant setting, the resonant Rellich pair ppE, pψq ofH pΛ is well-approximated
by the resonant Rellich pair pE, ψq of HΛ:

Proposition 2.2. Uniformly for θ P Bρ{8D0
pθ˚q, there is a constant C “ Cpvq de-

pending only on v so that

ˇ̌
ˇBk

θ ppE ´ Eq
ˇ̌
ˇ ď C

δ

ρk
, 0 ď k ď 2 (2.13)

and

}Bk
θ p pψ ´ ψq} ď C

δ

ρk`1
, 0 ď k ď 1. (2.14)

Proof. By the previous proposition, we have

|pE ´ E| ď 2δ,

}pψ ´ ψ} ď 3
δ

ρ
.

Thus, by the Feynman formula (1.7) and Cauchy-Schwarz,

ˇ̌
ˇBθppE ´ Eq

ˇ̌
ˇ “

ˇ̌
ˇx pψ, V 1 pψy ´ xψ, V 1ψy

ˇ̌
ˇ

ď 2}V 1}8}pψ ´ ψ}

ď 6D0

δ

ρ
.

By (1.8), (2.7), and (2.11), we immediately get

}Bθψ} ď 4D0

ρ
, }Bθ

pψ} ď 4D0

ρ
.

By differentiating the relation H
pΛ pψ “ pEpψ, we likewise find that

pH pΛ ´ pEqpBθp pψ ´ ψqq “ pBθ
pE ´ V 1qpψ ´ pBθE ´ V 1qψ ` pΓpΛ

P ` pE ´ pEqqBθψ

“ pBθ
pE ´ V 1qppψ ´ ψq ` pBθppE ´ Eqqψ ` pΓpΛ

P ` pE ´ pEqqBθψ

and so, by the triangle inequality, the assumption (2.8), and the above estimates,

}pH pΛ ´ pEqpBθppψ ´ ψqq} ď 6D0

δ

ρ
` 6D0

δ

ρ
` 25D0

δ

ρ
` 8D0

δ

ρ

ď 45D0

δ

ρ
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Denote by pχ the spectral projection onto pψ. Then, since R
pΛ
KppEqpH pΛ ´ pEq “ I ´ pχ,

we have

}Bθp pψ ´ ψq} ď }RpΛ
KppEq}}pH pΛ ´ pEqpBθp pψ ´ ψqq} ` |xBθppψ ´ ψq, pψy|

“ }RpΛ
KppEq}}pH pΛ ´ pEqpBθp pψ ´ ψqq} ` |x pψ ´ ψ, Bθψy|

ď 180D0

δ

ρ2
` 12D0

δ

ρ2

ď 200D0

δ

ρ2

where in the second line we have used that xBθψ, ψy “ 0 (and similarly for pψ).
Finally, by (1.8), (1.9), and Cauchy-Schwarz, we have

ˇ̌
ˇB2

θppE ´ Eq
ˇ̌
ˇ ď

ˇ̌
ˇxpψ, V 2 pψy ´ xψ, V 2ψy

ˇ̌
ˇ ` 2

ˇ̌
ˇxBθ

pψ, V 1 pψy ´ xBθψ, V
1ψy

ˇ̌
ˇ

ď 2}V 2}8}pψ ´ ψ} ` 2}V 1}8

´
}Bθppψ ´ ψq} ` }Bθ

pψ}}pψ ´ ψ}
¯

ď 6D0

δ

ρ
` 2D0

ˆ
200D0

δ

ρ2
` 12D0

δ

ρ2

˙

ď 500D2
0

δ

ρ2
.

Taking C “ Cpvq “ 500D2
0 proves the proposition.

21



3 Double resonance

In this section, we study the more complicated situation of double resonance, where
an interval pΛ Ă Z contains precisely two resonating subintervals Λ˘ Ă pΛ such that
HΛ˘pθ˚q each has a unique eigenvalue E˘ near a fixed E˚˚; in our setting, these eigen-
values will have relatively large, opposite signed derivatives: ˘BθE˘ ě ν ą 0. Under
smallness and stability assumptions on the boundary values of the corresponding
eigenvector, alongside off-diagonal Green’s function decay on the maximal connected
components of pΛzpΛ´ Y Λ`q, we prove that H

pΛ has precisely two well-separated res-
onant Rellich children (cf. Figure 2).

Fix v P C2pT, r´1, 1sq with }Bθv}8 ` }B2
θv}8 ď D0, pθ˚˚, E˚˚q P T ˆ r´2, 2s, and

0 ă ε ă 1{7. Let pΛ Ă Z be an interval containing two subintervals Λ´,Λ` with

distpΛ´,Λ`q ě max˘t|Λ˘|u and denote the corresponding partition pΛ “: Λl Y Λ´ Y
Λc Y Λ` Y Λr by P; despite the notation, we do not insist Λ´ be left of Λ`. Let
Λ “ Λ´ Y Λc Y Λ`, L “ |Λ|, and fix constants qρ, δ, γ, ℓ, ν ą 0 satisfying the following
relations:

δ ă qρ3{2 ă qρ2ν
2400D0

ă 1{16, (3.1)

log 7 ď γ ď | log ε|, (3.2)

8δ ď qρ2ν3
192D3

0

ď qρ
48D2

0

. (3.3)

Assumption 2. Suppose the following hold for |θ ´ θ˚˚| ă qρ{8D0:

1. (Double resonance) Each operatorHΛ˘pθ˚˚q has a unique eigenpair pE˘, ψ˘qpθ˚˚q
such that E`pθ˚˚q “ E´pθ˚˚q “ E˚˚.

2. (Eigenvector decay) The unit eigenvector ψ˘pθq of HΛ˘pθq has P-boundary
values no larger than δ{ε; i.e. one has

}ΓpΛ
Pψ˘} ď 2δ, j “ 1, 2. (3.4)

Furthermore, for any resonant eigenpair p pE, pψq of H pΛ with | pE ´E˚˚| ă 3
2
qρ, the

unit eigenvector pψ also has P-boundary values no larger than δ{ε; i.e., one has

}ΓpΛ
P
pψ} ď 4δ. (3.5)

3. (Green’s function decay off Λ´ YΛ`) For m,n P Λl{c{r with |m´n| ě ℓ one has

log |RΛl{c{r

θ,E pm,nq| ď ´γ|m ´ n| (3.6)

for |E ´ E˚˚| ă 3
2
qρ.
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4. (Eigenvalue separation) E˘pθq are the only eigenvalues of H
pΛ
P pθq in B7qρ{4pE˚˚q:

χtE´pθquYtE`pθqupH pΛ
P pθqq “ χB7qρ{4pE˚˚qpH pΛ

P pθqq. (3.7)

In particular, we have

}RKpE;H pΛ
Ppθq, tE´pθqu Y tE`pθquq} ď 4qρ´1, E P B3qρ{2pE˚˚q. (3.8)

5. (Eigenvector stability) The unit eigenvectors ψ˘pθq of HΛ˘pθq have stably small
P-boundary values:

}ΓpΛ
PpBθψ˘q} ď 25D0δqρ´1. (3.9)

6. (Transversality of Rellich functions) The eigenpairs E˘ have large, opposite-
signed derivatives:

˘BθE˘pθq ě ν. (3.10)

The remainder of this section proceeds under Assumption 2.

3.1 The resonant eigenpairs of H
pΛ

Denote by

Λloc :“ rinf Λ˘ ´ ℓ, supΛ˘ ` ℓs X pΛ,
pΛl{r :“ Λl{rzΛloc.

Under Assumption 2, the operator H
pΛ has precisely two resonant eigenpairs ppE‚, pψ‚q,

‚ P t_,^u, and pψ‚ are simultaneously localized on Λloc:

Proposition 3.1 (Double resonant eigenpairs). Under Assumption 2 above, we have:

1. Any unit eigenvector pψ of H
pΛ with corresponding eigenvalue pE with | pE´E˚˚| ă

3
2
qρ is Anderson localized on Λloc:

}pψ}Λloc
ě 2{3,

log | pψpjq| ď ´γ distpj,Λq, j P pΛl{r.

2. There exist two Rellich pairs ppE‚, pψ‚q, ‚ P t_,^u for H pΛ with pE‚ : Bqρ{8D0
pθ˚˚q Ñ

Bqρ{4pE˚˚q. We normalize so that pE_ ą pE^. The eigenvectors satisfy

pψ_ “ Aψ` ` Bψ´ ` φ_ (3.11)

pψ^ “ Bψ` ´ Aψ´ ` φ^ (3.12)

where Apθq and Bpθq satisfy A2 ` B2 “ 1 and }φ‚} ď 24δqρ´1.
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3. Uniformly for θ with |θ ´ θ˚˚| ă qρ{8D0 and |E ´E˚˚| ă 5
4
qρ, there are no other

Rellich functions within qρ{4 of E:

}RKpE;H pΛpθq, tpE_pθqu Y tpE^pθquq} ď 4qρ´1. (3.13)

Proof. The decay of any resonant eigenvector follows from the Green’s function decay
(3.6) and the Poisson formula (1.11) identically to the single resonant case, so here
we refer the reader to the proof of Proposition 2.1.

Using this decay, we have that

}pψ}pΛl{r
ď

ÿ

jPΛ˘

e´γ distpj,Λq

ď e´γ

1 ´ e´γ
ă 1

6
.

Consequently, we have that

} pψ}Λloc
ě 2{3

for any resonant unit eigenvector pψ.
We fix θ P Bqρ{8D0

pθ˚˚q and will suppress its notation. Denoting by P “ χB3qρ{2pE˚˚qpH pΛq
and by χ “ χB3qρ{2pE˚˚qpH pΛ

P q, suppose p pE, pψq is a resonant eigenpair of H
pΛ with

| pE ´ E˚˚| ă 3qρ{2. Then we have

}pI ´ χqP } “ }RKp pE;H pΛ
P , BqρpE˚˚qqpH pΛ

P ´ pEqP }
ď 4qρ´1}ΓpΛ

PP } ď 16δqρ´1.

Lemma 1.1 and the assumption (3.7) imply H
pΛ has at most two resonant eigenpairs

p pE, pψq satisfying | pE´E˚˚| ă 3qρ{2. If such an eigenpair exists, since }pH pΛ
P´ pEqP } ď 4δ,

and tψ`, ψ´u forms an orthonormal basis for the image of χBqρp pEq, Lemma 1.2 implies
pψ must be of the form (3.11).

To see the existence of two eigenpairs ppE‚, pψ‚q with E‚ : Bqρ{8D0
pθ˚˚q Ñ Bqρ{4pE˚˚q,

‚ P t_,^u, first note that,

}pH pΛ ´ E˘qψ˘} ď }ΓΛ
Pψ˘} ď 2δ ă qρ{8

and, by (1.7),

|E˘ ´ E˚˚| ď D0|θ ´ θ˚˚| ă qρ{8,

so at least one such eigenpair (e.g., ppE_, pψ_q) must exist by Lemma 1.2. Let A and B
be defined as in (3.11), and denote by ψ_ :“ Aψ` `Bψ´ and by ψ^ :“ Bψ` ´Aψ´.
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Denote by P c
_ :“ I´ pψ_

pψJ
_ and by χc

_ :“ I´ψ_ψ
J
_. By (3.11), we have }P c

_´χc
_} ď

48δqρ´1; thus, letting pH^ :“ P c
_H

pΛP c
_ and H^ :“ χc

_H
pΛχc

_, we have

}p pH^ ´ E˚˚qψ^} ď }p pH^ ´ H^qψ^} ` }pH^ ´ E˚˚qψ^}
ď 2}H pΛ}}P c

_ ´ χc
_} ` }χc

_pH pΛ ´ E˚˚qψ^}
ď 192δqρ´1 ` |A|p|E´ ´ E˚˚| ` 2δq ` |B|p|E` ´ E˚˚| ` 2δq
ď 192δqρ´1 `

?
2pqρ{8 ` 2δq

ă qρ{4

where in the penultimate line we have used that |A| ` |B| ď
?
2. Thus, pH^ (and

consequently H
pΛ) must have an eigenpair ppE^, pψ^q where pψ^ satisfies (3.12).

3.2 Local Rellich function structure

Keeping in mind the eigenvalue separation Lemma 1.5, we fix a separation constant

pσ ď pε{3q3|Λloc|
. (3.14)

We also define the crossed parent curves

E_ :“ maxtE`,E´u, E^ :“ mintE`,E´u.
In this subsection, we will prove a precise formulation of the heuristic demon-

strated in Figure 2. In order to do so, we will introduce two new parameters: an
intermediate parameter η ! qρ, representing the distance from θ˚˚ where pE‚ begins
to deviate from E‚, and a second resonance parameter ρ ! η with respect to which,
away from Bηpθ˚˚q, the parent curves E‚ are simple-resonant.

Theorem 3.2. Under the assumptions above, the two Rellich pairs ppE‚, pψ‚q, ‚ P
t_,^u, for H pΛ from Proposition 3.1 satisfy the following:

1. The Rellich functions pE‚ are Morse with precisely one critical point in Bqρ{8D0
pθ˚˚q,

with Morse constants

d “ ν{12,
D “ 2D0p1 ` D0pσ´1q

2. The Rellich functions pE‚ are uniformly separated on Bqρ{8D0
pθ˚˚q:

inf
Bqρ{8D0

pθ˚˚q

pE_pθq ´ sup
Bqρ{8D0

pθ˚˚q

pE^pθq ě νpσ
2D0 ` ν

3. Fix η ă ν2qρ
100D3

0

and ρ ă 8
9
νη. There is a constant C “ Cpvq depending only on v

so that, for θ P Bqρ{8D0
pθ˚˚qzBηpθ˚˚q,
ˇ̌
ˇBk

θ ppE‚ ´ E‚q
ˇ̌
ˇ ď C

δ

ρk
, 0 ď k ď 2. (3.15)
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3.2.1 Lower bounds on the second derivative

By Proposition 3.1, there exist two Rellich pairs ppE‚, pψ‚q forH pΛ with pE‚ : Bqρ{8D0
pθ˚˚q Ñ

Bqρ{4pE˚˚q. We will prove lower bounds on the second derivative near θ˚˚:

Proposition 3.3. Let η ă ν2qρ
100D3

0

. There exists a constant C “ Cpvq depending only

on v such that, for θ P Bηpθ˚˚q,
ˇ̌
ˇBθ

pE_pθq
ˇ̌
ˇ ď ν{12 ùñ B2

θ
pE_pθq ě C

ν5{2qρ
δ

,

ˇ̌
ˇBθ

pE^pθq
ˇ̌
ˇ ď ν{12 ùñ ´B2

θ
pE^pθq ě C

ν5{2qρ
δ

.

We prove this Proposition via a series of lemmas. Suppose that |BθE`pθ˚˚q| ě
|BθE´pθ˚˚q| (the argument is similar for the opposite case), and define 1 ď r ď D0{ν
such that

|BθE`pθ˚˚q| “ r|BθE´pθ˚˚q|.

Lemma 3.4. Uniformly for θ P Bηpθ˚˚q,

|Bθ pE` ` rE´q pθq| ď 8D3
0

η

qρν

Proof. By equations (1.9) and (3.8), we have the uniform bound

ˇ̌
B2
θE˘

ˇ̌
ď D0 ` 2D2

0}RΛ˘

K pE˘q} ď D0 ` 2D2
0qρ´1.

The claimed bound follows by integrating; specifically, since BθE` and BθE´ have
opposite signs, we have

BθE`pθ˚˚q ` rBθE´pθ˚˚q “ 0,

and so

|Bθ pE` ` rE´q pθq| “
ˇ̌
ˇ̌
ż θ

θ˚˚

B2
θpE` ` rE´qdt

ˇ̌
ˇ̌

ď
ż θ

θ˚˚

ˇ̌
B2
θE`

ˇ̌
|dt| ` r

ż θ

θ˚˚

ˇ̌
B2
θE´

ˇ̌
|dt|

ď p1 ` rqpD0 ` 2D2
0qρ´1qη

ď 8D3
0

η

qρν

We now prove Proposition 3.3 for pE_, noting that the case pE^ is entirely analo-
gous. To begin, we use Proposition 3.1 to relate Bθ

pE_ to the Rellich functions from
the previous scale:
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Lemma 3.5. With the notation from Proposition 3.1 and r as above, if |Bθ
pE_| ď

ν{12, then

A2 ě 5

12r
, B2 ě 1

4
.

Proof. We simply apply the Feynman formula (1.7) and make the substitutions (3.11)
and (3.12), using the fact that ψ˘ are disjointly supported. Specifically,

Bθ
pE_ “ xpψ_, V

1 pψ_y
“ A2xψ`, V

1ψ`y ` B2xψ´, V
1ψ´y ` 2xφ_, V

1 pψ_y ´ xφ_, V
1φ_y

“ A2BθE` ` B2BθE´ ` 2xφ_, V
1 pψ_y ´ xφ_, V

1φ_y
“ pB2 ´ rA2qBθE´ ` ξ,

where the error term ξ has

|ξ| ď 96D0

δ

qρ ` 8D3
0

η

qρν ă 1

12
ν

by Cauchy-Schwarz, Proposition 3.1, equations (3.1) and (3.3), and the previous
lemma.

By assumption, we have |BθE´| ě ν; thus, if |Bθ
pE_| ď ν{12, we have

ν

12
ą |B2 ´ rA2|ν ´ |ξ|,

and so

|B2 ´ rA2| ă 1

12
` |ξ|

ν
ă 1

6
.

It follows that

p1 ` rqA2 “ 1 ´ pB2 ´ rA2q ě 5{6;

the inequalities on A2 and B2 follow.

We now proceed to prove Proposition 3.3.

Proof of Proposition 3.3. Let θ P Bηpθ˚˚q. By expanding the Feynman-type formula
(1.9), we have

B2
θ
pE_ “ xpψ_, V

2 pψ_y ´ 2xpψ^, V
1 pψ_y2

pE^ ´ pE_

´ 2xRΛ
KppE_;H

pΛpθq, tpE_u Y tpE^uqV 1 pψ_, V
1 pψ_y.

(3.16)
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The first term is bounded by D0. Furthermore, since |pE_pθq ´ E˚˚| ă qρ{4, the third
term is bounded by 8D2

0qρ´1 by Proposition 3.1. We will show that the second term
is large.

By Proposition 3.1 and the previous lemma,

xpψ^, V
1 pψ_y2 “

´
AB pxψ`, V

1ψ`y ´ xψ´, V
1ψ´yq ` xφ^, V

1 pψ_y ` xpψ^, V
1φ_y ´ xφ^, V

1φ_y
¯2

ě pABq2 pBθpE` ´ E´qq2 ´ 288D2
0δ{qρ

ě 5

48r
p1 ` rq2ν2 ´ 288D2

0δ{qρ

ě 5

48
ν2 ´ 288D2

0δ{qρ ě 1

16
ν2,

where the last inequality follows from (3.1).

It remains to show that the denominator pE^ ´ pE_ is small. By Proposition 3.1,

|A||E` ´ pE_| ď |E` ´ pE_|
´

|xψ`, pψ_y| ` |xψ`, φ_y|
¯

ď |xψ`, pHΛ` ´ pE_q pψ_y| ` |E` ´ pE_||xψ`, φ_y|

ď 40
δ

qρ.

Similarly, |B||E` ´ pE^| ď 40δ{qρ. Since

mint|A|, |B|u ě 1

2
?
r

ě
c

ν

D0

,

it follows that

|pE_ ´ pE^| ď |pE^ ´ E`| ` |E` ´ pE_| ď 80
δ

qρ

c
D0

ν
.

Combining the above estimates, we get

2xpψ^, V
1 pψ_y2

|pE^ ´ pE_|
ě 1

640
?
D0

qρν5{2

δ
,

and so

|B2
θ
pE_| ě C

qρν5{2

δ

with C “ Cpvq “ p800
?
D0q´1, e.g.. The bound for B2

θ
pE^ is similar. By (3.3),

the middle term in (3.16) dominates; the sign of B2
θ
pE_ then must match the sign of

pE_ ´ pE^, which is positive for B2
θ
pE_.
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3.2.2 Uniform local separation of Rellich functions

By Proposition 3.1, pψ_ and pψ^ are simultaneously localized on the interval Λloc, so
Lemma 1.5 guarantees Rellich function separation

pE_pθq ´ pE^pθq ě pσ (3.17)

for each θ P Bqρ{8D0
. In fact, the Rellich functions are uniformly separated:

Proposition 3.6. The two resonant Rellich functions pE‚ : Bqρ{8D0
pθ˚˚q Ñ Bqρ{4pE˚˚q,

‚ P t_,^u of H
pΛ are uniformly separated for all θ P Bqρ{8D0

pθ˚˚q; specifically,

inf
Bqρ{8D0

pθ˚˚q

pE_pθq ´ sup
Bqρ{8D0

pθ˚˚q

pE^pθq ě νpσ
2D0 ` ν

The proof of this proposition involves a novel argument utilizing the Cauchy In-
terlacing Theorem:

Theorem 3.7 (Cauchy Interlacing Theorem). Let A be an nˆ n Hermitian matrix,
let m ď n, and let P be an m ˆ n matrix such that PP ˚ “ Imˆm. Let B “ PAP ˚

be a compression of A, and denote the (ordered) eigenvalues of A (respectively B) by
α1 ď α2 ď ¨ ¨ ¨ ď αn (resp., β1 ď β2 ď ¨ ¨ ¨ ď βm). Then

αk ď βk ď αk`n´m.

The interlacing theorem is proven via a standard Min-Max argument, cf. Ap-
pendix B. We will use the interlacing theorem to compare H

pΛ to a pair of auxiliary
operators, which we now define. Let P˘ :“ ψ˘ψ

J
˘, let Q˘ :“ I ´ P˘, and consider

the auxiliary operators

H˘ “ Q˘H
pΛQ˘ ` E˘P˘.

Lemma 3.8. The compressionsQ˘H
pΛQ˘ have unique eigenvalues λ¯ : Bqρ{8D0

pθ˚˚q Ñ
Bqρ{4pE˚˚q near E˚˚. These eigenvalues interlace pE‚, ‚ P t_,^u:

pE^pθq ď λ¯pθq ď pE_pθq

and are uniformly C1-close to previous-scale eigenvalues; that is, there exists a con-
stant C “ Cpvq depending only on v so that

|Bk
θ pλ˘ ´ E˘q| ď C

δ

qρ2k , k “ 0, 1.

In particular, λ˘ are monotone having different signed derivatives, and

˘Bθλ˘ ě ν{2

uniformly in Bqρ{8D0
pθ˚˚q.

29



λ´
E´E` λ`

pE_

pE^

Figure 5: A cartoon illustration of the interlacing argument in Lemma 3.8; the dashed lines represent
the current scale Rellich functions E˘, the full lines are the next scale eigenvalues pE‚, ‚ P t_,^u,
and the dotted lines are the monotone interlacing curves λ˘ well-approximating E˘. The differences
between λ˘ and E˘ are exaggerated for emphasis.

Proof. Since Q˘ and P˘ are orthogonal projections and pH pΛ ´ E˘qP˘ “ Γ
pΛ
PP˘, we

have

H
pΛ ´ H˘ “ Q˘H

pΛP˘ ` P˘H
pΛQ˘ ` P˘pH pΛ ´ E˘qP˘

“ Q˘pH pΛ ´ E˘qP˘ ` P˘pH pΛ ´ E˘qQ˘ ` P˘pH pΛ ´ E˘qP˘

“ Q˘Γ
pΛ
PP˘ ` P˘Γ

pΛ
PQ˘ ` P˘Γ

pΛ
PP˘

“ Γ
pΛ
PP˘ ` P˘Γ

pΛ
PQ˘

By (3.4), we have }ΓpΛ
PP˘} ď 2δ, and so

}H pΛ ´ H˘} ď 4δ.

It follows from the Min-Max principle that any eigenvalue of H
pΛ must be within 4δ

of an eigenvalue of H˘, and conversely. In particular, H˘ each have at least two
eigenvalues in B 1

4
qρ`4δpE˚˚q and at most two eigenvalues in B 3

2
qρ´4δpE˚˚q. One of those

eigenvalues must be E˘ by definition; the other is an eigenvalue of Q˘H
pΛQ˘.

Denote by λ¯ the unique eigenvalue of Q˘H
pΛQ˘ in B 1

4
qρ`4δpE˚˚q. By Cauchy

Interlacing, the eigenvalues of Q˘H
pΛQ˘ interlace those of H

pΛ. Since Q˘H
pΛQ˘ has

precisely one eigenvalue in B 1

4
qρ`4δpE˚˚q, it must lie between pE_ and pE^; that is,

pE^pθq ď λ¯pθq ď pE_pθq.
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We will show now that λ¯ is C1-close to E¯. By (3.4), we have

}pQ˘H
pΛQ˘ ´ E¯qψ¯} “ }Q˘pH pΛ ´ E¯qψ¯}

“ }Q˘Γ
pΛ
Pψ¯} ď 2δ.

Let ϕ¯ denote the unit eigenvector of H˘ corresponding to λ¯. Since λ¯ is the unique

eigenvalue of Q˘H
pΛQ˘ in B 3

2
qρ´4δpE˚˚q Ą B 5

4
qρ´4δpE¯q, it follows from Lemma 1.2 that

we have

|λ¯ ´ E¯| ď 2δ

and (up to a choice of sign for ϕ˘)

}ϕ¯ ´ ψ¯} ď 2
?
2δ

5
4
qρ´ 4δ

ď 4δ

qρ .

By the Feynman formula (1.7), we have

Bθλ¯ “ xϕ¯, BθpQ˘H
pΛQ˘qϕ¯y

“ xϕ¯, Q˘V
1Q˘ϕ¯y ´ 2xϕ¯, P

1
˘H

pΛQ˘ϕ¯y.
Since Q˘ψ¯ “ ψ¯, we have

|xϕ¯, Q˘V
1Q˘ϕ¯y ´ BθE¯| “ |xϕ¯, Q˘V

1Q˘ϕ¯y ´ xψ¯, Q˘V
1Q˘ψ¯y|

“ |xϕ¯ ´ ψ¯, Q˘V
1Q˘ϕ¯y ` xψ¯, Q˘V

1Q˘pϕ¯ ´ ψ¯qy|
ď 2}V 1}}ϕ¯ ´ ψ¯}

ď 8D0

δ

qρ.

It remains to show that |xϕ¯, P
1
˘H

pΛQ˘ϕ¯y| is small. By (1.8) we have

´P 1
˘ “ R

Λ˘

K pE˘qV 1P˘ ` P˘V
1R

Λ˘

K pE˘q
On the one hand, we have

}P˘H
pΛQ˘ϕ¯} “ }P˘pH pΛ ´ E¯qQ˘ϕ¯}

“ }P˘pH pΛ ´ E¯qQ˘pϕ¯ ´ ψ¯q ` P˘Γ
pΛ
Pψ¯}

ď 24
δ

qρ,

and so

|xϕ¯, R
Λ˘

K V 1P˘H
pΛQ˘ϕ¯y| “ |xV 1R

Λ˘

K ϕ¯, P˘H
pΛQ˘ϕ¯y|

ď }V 1}}RΛ˘

K }}P˘H
pΛQ˘ϕ¯}

ď 96D0

δ

qρ2 .
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On the other hand, since P˘ψ¯ “ 0, we have

|xϕ¯, P˘V
1R

Λ˘

K H
pΛQ˘ϕ¯y| “ |xϕ¯ ´ ψ¯, P˘V

1R
Λ˘

K H
pΛQ˘ϕ¯y|

ď }ϕ¯ ´ ψ¯}}V 1}}RΛ˘

K }}H pΛQ˘ϕ¯}

ď 48D0

δ

qρ2

Bringing it all together, it follows that

|Bθλ¯ ´ BθE¯| ď 400D0

δ

qρ2 ;

the other claims follow.

Proof of Proposition 3.6. By the previous lemma, we have separated the Rellich func-
tions pE_ and pE^ by two transverse curves. We use the quantitative transversality to
now derive the size of the gap.

Let θ‚ denote the minimizing/maximizing values of θ for pE‚, ‚ P t_,^u, and let
h “ |θ_ ´ θ^|. By (3.17), we have

pE_pθ_q ´ pE^pθ^q ě pE_pθ_q ´ pE^pθ_q ´ |pE^pθ_q ´ pE^pθ^q| ě pσ ´ D0h,

which is an effective bound for small h. On the other hand, we have by transversality
of the bounding curves λ˘

pE_pθ_q ´ pE^pθ^q ě ν

2
|θ_ ´ θ^| “ νh

2
,

which is an effective bound for large h. Taking a convex combination of the two
bounds yields

pE_pθ_q ´ pE^pθ^q ě ν

2D0 ` ν
ppσ ´ D0hq ` 2D0

2D0 ` ν

νh

2

ě νpσ
2D0 ` ν

,

which was the claim.

3.2.3 Simple resonance of pE_ and pE^ away from θ˚˚

In this section, we will show the following:

Lemma 3.9. Let θ˚ P Bqρ{8D0
pθ˚˚qzBηpθ˚˚q, and suppose E˚ “ E˘pθ˚q. Then H

pΛ

satisfies Assumption 1 for pθ˚, E˚q with Λ “ Λ˘, ρ, δ as above, and Green’s function

decay parameters rℓ ě 16| log ε|| log ρ| and rγ “ γ ´ 6| log ε|| log ρ|{rℓ as in Lemma A.2.
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In particular, for ‚ P t_,^u, there exists a constant C “ Cpvq depending only on
v such that we have

ˇ̌
ˇBk

θ ppE‚ ´ E‚q
ˇ̌
ˇ ď C

δ

ρk
, 0 ď k ď 2,

and

}RKpE;H pΛpθq, tpE‚pθquq} ď 4ρ´1

uniformly for θ P Bqρ{8D0
pθ˚˚qzBηpθ˚˚q and E P BρppE‚pθqq.

Proof. Items 1, 2, and 5 are immediate by the definition of Λ “ Λ˘ and E˚ “ E˘pθ˚q.
Suppose that Λ “ Λ´ ă Λ` (the other cases are completely analogous), and

consider now the interval Λr :“ Λc Y Λ` Y Λr. To verify items 3 and 4, we need
to verify that Λr has the Green’s function decay property, and that HΛr has no
eigenvalues in B7ρ{4pE˚q “ B7ρ{4pE´pθ˚qq.

To see the eigenvalue separation, notice that, by Assumption 2, HΛr satisfies
Assumption 1 with qρ replacing ρ. Thus, HΛr has a unique eigenvalue E`pθq :
Bqρ{8D0

pθ˚q Ñ B3qρ{2pE˚˚q such that

|E`pθq ´ E`pθq| ď 2δ.

The necessary separation follows from the transversality of E˘ and the definition of
ρ; indeed, since η ą 9ρ{8ν, for |θ ´ θ˚| ă ρ{8D0 we have

|E˚ ´ E`pθq| ě |E´pθ˚q ´ E`pθ˚q| ´ D0|θ˚ ´ θ| ´ |E`pθq ´ E`pθq|
ě 2νη ´ ρ{8 ´ 2δ ą 2ρ.

It remains to verify Item 3 for rγ and rℓ. The Green’s function RΛl has pℓ, γq
decay (and thus prℓ, rγq decay) by assumption. On the other hand, for |E ´ E˚| ă 3

2
ρ,

the bound we just established implies }RΛr

θ,E} ď 2ρ´1; thus, the interval Λr satisfies

Assumption 5, and so RΛr also has prℓ, rγq decay by Lemma A.2.

3.2.4 Proof of Theorem 3.2

Proof of Theorem 3.2. First, by (1.7) and (1.9), we have

|Bθ
pE‚| ` |B2

θ
pE‚| ď D0 ` D0 ` 2D2

0}RΛ
KppE‚q}.

By Proposition 3.1 and Lemma 1.5, for all θ P Bqρ{8D0
pθ˚˚q, we have

}RΛ
KppE‚q} ď pσ´1.

The Morse upper bound D for pE‚ follows immediately.
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The Morse lower bound d for pE‚ for θ P Bqρ{8D0
pθ˚˚qzBηpθ˚˚q follows from Lemma

3.9 and the transversality assumption on BθE˘; specifically,

|Bθ
pE‚| ě |BθE‚| ´ |BθppE‚ ´ E‚q| ě ν ´ Cδqρ´1 ě ν{12

For θ P Bηpθ˚˚q, the Morse lower bound follows from Proposition 3.3 and the fact
that

C
qρν5{2

δ
ě ν{12.

That pE‚ can each have at most one critical point in Bqρ{8D0
pθ˚˚q follows again from

Proposition 3.3, Lemma 3.9, and continuity of the second derivative. In particular,
by Lemma 3.9, pE‚ can only have critical points in Bηpθ˚˚q, and by Proposition 3.3,

the concavity of pE‚ at any such critical point is uniquely determined.
Items 2 and 3 were shown in Proposition 3.6 and Lemma 3.9, respectively.

3.2.5 Approximation of pE_ and pE^ by previous scale

To conclude this section, we note that the Rellich functions pE_, pE^ are uniformly
close (on order δ) to the previous-scale functions E_,E^; this implies upper bounds
on the size of the vertical gap between the two Rellich functions and on the horizontal
deviation of the Rellich functions’ critical points from the center of resonsance θ˚˚.
Since δ " pσ, these estimates are not fine enough to contribute meaningfully to the
lower bounds on the second derivative and the size of the gap. Moreover, these results
are not necessary to prove our Main Theorem; indeed, larger gaps only help local-
ization and Cantor spectrum, as we outlined in the introduction. Nevertheless, we
include these results to provide a more complete picture of the local Rellich function
structure.

Proposition 3.10. For all θ P Bqρ{8D0
pθ˚˚q, we have

|pE‚pθq ´ E‚pθq| ď 4δ, ‚ P t_,^u. (3.18)

Proof. Fix θ P Bqρ{8D0
pθ˚˚q. Letting P˘ “ ψ˘ψ

J
˘, we have }pH pΛ´E˘qP˘} “ }ΓpΛ

PP˘} ď
2δ by (3.4). Thus, by Lemma 1.2, H

pΛ must have an eigenvalue in B2δpE_q and in
B2δpE^q. If these two intervals are disjoint, (3.18) most hold.

Otherwise, let P “ P` ` P´, and consider that

››››
ˆ
H

pΛ ´ E_ ` E^

2

˙
P

›››› ď }ΓpΛ
PP } ` E_ ´ E^

2

ď 4δ ` E_ ´ E^

2
.
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Thus, by Lemmas 1.1 and 1.2, H
pΛ must have two eigenvalues in the interval rE^ ´

4δ,E_ ` 4δs. Since H
pΛ must have an eigenvalue in B2δpE_q, the greater of the two

eigenvalues must be in B4δpE_q; similarly, the lesser of the two eigenvalues must be
in B4δpE^q. Thus (3.18) holds.

Corollary 3.11. We have the following upper bound on the size of the gap between
pE_ and pE^:

inf
Bqρ{8D0

pθ˚˚q

pE_pθq ´ sup
Bqρ{8D0

pθ˚˚q

pE^pθq ď 8δ.

Proof. We observe that

inf
Bqρ{8D0

pθ˚˚q

pE_pθq ´ sup
Bqρ{8D0

pθ˚˚q

pE^pθq ď pE_pθ˚˚q ´ pE^pθ˚˚q

ď ppE_pθ˚˚q ´ E˚˚q ` pE˚˚ ´ pE^pθ˚˚qq
ď 4δ ` 4δ “ 8δ,

where the last inequality follows from Proposition 3.10.

Corollary 3.12. Let θc be a critical point of pE_ or pE^. Then |θc ´ θ˚˚| ă 8δ{ν.

Proof. Suppose θc is the critical point where pE_ attains its minimum. If |θc ´ θ˚˚| ě
8δ{ν, then we would have, by Proposition 3.10,

pE_pθcq ě E_pθcq ´ 4δ

ě E_pθ˚˚q ` ν|θc ´ θ˚˚| ´ 4δ

ě E_pθ˚˚q ` 4δ

ě pE_pθ˚˚q,

contradicting the fact that pE_ attains its minimum at θc.
The proof procedes analogously if θc is the critical point where pE^ attains its

maximum.
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4 Resonance via inverse functions

The present section describes carefully the double-resonant situation diagrammed in
Figure 1 and contains the final pieces of machinery required to handle our multiscale
inductive procedure. The ultimate goal of this discussion is the construction of a
covering of the codomain of our cosine-like function on whose components we can
control recurrence; cf. Propositions 4.9 and 4.10 below.

It is here that the “cosine-like” properties of our potential and its descendants
are explicitly utilized. Specifically, for a cosine-like function f : I Ñ J , the two-
monotonicity interval structure allows us to describe double resonances as zeroes of
a uniquely defined difference of inverse functions, and the Morse condition will yield
upper bounds on the size of images of these inverse functions. Combined with the
Diophantine assumption on the frequency α, we can then quantifiably separate the
double resonances in terms of the Diophantine and Morse parameters. The proce-
dure requires somewhat careful assumptions; we demonstrate the robustness of these
assumptions under C2 perturbations at the end of the section.

Let I˘ Ă T be two closed intervals with disjoint interiors, let I :“ I´ Y I`, and
consider a C2 function

f : I Ñ J, f˘ :“ f |I˘ , ˘Bθf˘ ě 0.

Assumption 3. Suppose the following hold:

1. The function f is Morse on I:

d ď |Bθf | ` |B2
θf | ď D

2. Each function f˘ maps onto J :

f˘pI˘q “ J

3. There is a constant 0 ă ν ă d{2 such that |Bθf | ě ν on the boundary points of
I.

With these assumptions, we can define a function Tf : J Ñ pI` ´ I´q by

Tf pEq :“ f´1
` pEq ´ f´1

´ pEq.

We also fix a constant D0 such that

sup
θPI

|Bθfpθq| ď D0 ď D.
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4.1 Preimages and crossing points

We begin with a few lemmas about f˘ and Tf :

Lemma 4.1. The derivative Bθf˘ is monotone on each connected component of

I˘,ăd{2 :“ tθ P I˘ : |Bθf˘pθq| ă d{2u .

In particular, any critical point of f˘ must lie at the boundary of I˘; and each con-
nected component of I˘,ăν must contain a critical point.

Proof. That Bθf˘ is monotone on each such connected component follows immediately
from the Morse condition, since |B2

θf | ě d{2 and B2
θf is continuous. Since ˘Bθf˘

is strictly monotone and nonnegative, zeros must lie on the boundary of I˘. By
monotonicity of Bθf˘, any connected component of I˘,ăν must contain a boundary
point of I˘; since that point cannot be a boundary point of I, it must belong to
I` X I´, i.e., it must be a critical point.

Lemma 4.2. For any θ and θ˚ in I˘,

|f˘pθq ´ f˘pθ˚q| ě d

12
|θ ´ θ˚|2.

In particular, for any subinterval J0 Ă J ,

|J0|
D0

ď |f´1
˘ pJ0q| ď

c
12

d
|J0|

Proof. Suppose without loss of generality that θ˚ ď θ. Then

|f˘pθq ´ f˘pθ˚q| “
ż

rθ˚,θs

|Bθf˘ptq||dt|.

Consider the set

I˘,ăd{2 :“ tθ P I˘ : |Bθf˘pθq| ă d{2u.

As in the previous lemma, Bθf˘ is monotone on each connected component of this set;
furthermore, there are at most two connected components of rθ˚, θs X I˘,ăd{2, and,
by monotonicity of Bθf on I˘,ăd{2, these components must lie at the edges of rθ˚, θs.
Thus, we may write

rθ˚, θs “ rθ˚, θ1q Y rθ1, θ2s Y pθ2, θs,

where rθ˚, θs X I˘,ăd{2 “ rθ˚, θ1q Y pθ2, θs, and |Bθf˘| is increasing on rθ˚, θ1q and
decreasing on pθ2, θs.

37



Since |Bθf˘| is increasing on rθ˚, θ1q, we have

|Bθf˘ptq| ě |Bθf˘ptq ´ Bθf˘pθ˚q| “
ż

rθ˚,tq

|B2
θf˘psq||ds|

ě d

2
|t´ θ˚| , t P rθ˚, θ1q.

Similarly, since |Bθf˘| is decreasing on pθ2, θs,

|Bθf˘ptq| ě d

2
|t ´ θ| , t P pθ2, θs.

Combining these observations and using that |θ1 ´ θ2| ă 1, we get

|f˘pθq ´ f˘pθ˚q| ě d

4

`
|θ˚ ´ θ1|2 ` |θ2 ´ θ|2

˘
` d

2
|θ1 ´ θ2|

ě d

4

`
|θ˚ ´ θ1|2 ` |θ1 ´ θ2|2 ` |θ2 ´ θ|2

˘

ě d

12
|θ˚ ´ θ|2,

where the last step is a standard inequality following from Cauchy-Schwarz.
Since f´1

˘ pJ0q are intervals, the upper bound on |f´1
˘ pJ0q| is immediate. The lower

bound follows from the observation that

|J0| “
ż

f´1

˘ pJ0q

|Bθf˘ptq||dt| ď D0|f´1
˘ pJ0q|.

We now turn our attention to the difference of inverse functions Tf .

Lemma 4.3. We have uniform bounds on |Bθf˘| when }Tf}T is large; specifically, if
E˚ “ f˘pθ˘q P J , then

}TfpE˚q}T ě 7ν

d
ùñ |Bθf˘pθ˘q| ě ν

Proof. Suppose |Bθf´pθ´q| ă ν (the case |Bθf`pθ`q| ă ν is analogous). By Lemma
4.1, there is a critical point θc of f such that for all θ P rθ´, θcs (we assume θc ą θ´;
the reverse case is exactly analogous), |Bθf´pθq| ă ν. Since |B2

θf´| ě d{2 on this
interval, by the Mean Value Theorem,

ν ą |Bθf´pθq ´ 0| ě d

2
|θ´ ´ θc|,

and so |θ´ ´ θc| ă 2ν{d; similarly,

|E˚ ´ fpθcq| ă ν|θ´ ´ θc| ă 2ν2

d
.
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Let J0 :“ rfpθcq, E˚s; by Lemma 4.2,

|f´1
` pJ0q| ď

c
12

d
|J0| ă 5ν

d
,

and so

}TfpE˚q}T ď |f´1
´ pJ0q| ` |f´1

` pJ0q| ă 2ν

d
` 5ν

d
“ 7ν

d
.

Lemma 4.4. For all n and irrational α, there exists at most one value En “ Epn, α, fq
such that

TfpEnq ´ nα mod 1 “ 0.

Proof. First, note the function Tf is strictly increasing on the interior of J , since, for
any E˚ “ f˘pθ˘q such that Bθf˘pθ˘q ‰ 0, we have

BETf pE˚q “ 1

Bθf`pθ`q ´ 1

Bθf´pθ´q

“ 1

|Bθf`pθ`q| ` 1

|Bθf`pθ´q|

ě 2

D0

by the inverse function theorem. By Lemma 4.1, Bθf˘ is nonzero on the interior of
I˘, and monotonicity follows on the interior of the interval J .

Since α is irrational, nα mod 1 is distinct for all n. Uniqueness of En follows
immediately from strict monotonicity of Tf .

For α irrational and l P N, define

N pα, fq :“ tn P Z : nα mod 1 P TfpJqu.

Lemma 4.5. There exists θ P I´ such that θ ` nα P I` if and only if n P N pα, fq.

Proof. One direction is immediate: indeed, if n P N pα, fq, then there exists E “
En P J such that Tf pEnq ´ nα mod 1 “ 0; the relevant θ value is f´1

´ pEnq.
Suppose that θ P I´ and θ ` nα P I`. By monotonicity of Tf , TfpJq “ rinf I` ´

sup I´, sup I` ´ inf I´s. Since

inf I` ´ sup I´ ă pθ ` nα mod 1q ´ θ ă sup I` ´ inf I´,

we get nα mod 1 P Tf pJq.
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4.2 Double resonance

Let α P DCC,τ and Lp1q P N be fixed satisfying

C

2pLp1qqτ ě 7ν

d
,

and denote by

N pLp1q, α, fq :“ tn P N pα, fq : 0 ă |n| ď Lp1qu

We can separate the distinct points En, n P N developed in Lemma 4.4 via the
Diophantine condition:

Lemma 4.6. For n ‰ m P N pLp1q, α, fq such that En and Em are in the interior of
J , we have

|En ´ Em| ě Cν

2pLp1qqτ

Proof. Letting }Tf pE˚q}T ě C{pLp1qqτ and θ˘ denote the unique points in I˘ such
that f˘pθ˘q “ E˚, we have by Lemma 4.3 that

|Bθf˘pθ˘q| ě ν.

Provided E˚ is in the interior of J , it follows that

BETfpE˚q “ 1

|Bθf`pθ`q| ` 1

|Bθf´pθ´q| ď 2

ν
.

By monotonicity of Tf and the definition of } ¨ }T, the set

J0pLp1q, α, fq :“
"
E : }TfpEq}T ě C

2pLp1qqτ ą 0

*

is a connected subinterval of J . By definition and the Diophantine condition, for
n P N pLp1q, α, fq we have

}TfpEnq}T “ }nα}T ě C

|n|τ ě C

pLp1qqτ .

Thus, for any n,m P N pLp1q, α, fq, the interval pEn, Emq must lie inside of J0 (and,
by openness of pEn, Emq, the interior of J). The result follows from the mean value
theorem applied to Tf ; specifically,

C

pLp1qqτ ď }pn´ mqα}T ď |Tf pEnq ´ TfpEmq| ď 2

ν
|En ´ Em|.
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We can also separate these points from any critical values of f , if one exists:

Lemma 4.7. For n P N pLp1q, α, fq and Ec a critical value of f , we have

|En ´ Ec| ě C2d

48pLp1qq2τ .

Proof. Let θ˘ again denote the unique points in I˘ such that f˘pθ˘q “ En. Assume
Ec ă En (the reverse case is analogous), and let Jc “ rEc, Ens. By Lemma 4.2,

|En ´ Ec| “ |Jc| ě d

12
|f´1

˘ pJcq|2.

Since f´1
´ pJcq Y f´1

` pJcq “ rθ´, θ`s, we have |f´1
´ pJcq| ` |f´1

` pJcq| “ }nα}T; thus
|f´1

˘ pJcq| ě }nα}T{2 for some choice of sign. Then

|En ´ Ec| ě d

48
}nα}2T

ě C2d

24pLp1qq2τ .

We fix now a length scale Lp2q " Lp1q and notions of resonance

ρ ! ρ̄ ! qρ ă min

#
d

D2

ˆ
C

24pLp1qqτ
˙2

,
Cν

12pLp1qqτ ,
Cν

3pLp2qqτ

+

In order to handle technicalities that arise near the boundaries of the functions we
consider, we fix notation for “modified codomains” rJpfq of functions f satisfying
Assumption 3. Specifically, we denote

µlpfq “
#
ρ if f attains its minimum at a critical point

´9
8
qρ otherwise

µrpfq “
#
ρ if f attains its maximum at a critical point

´9
8
qρ otherwise

and define
rJpfq :“ rinf J ´ µlpfq, sup J ` µrpfqs. (4.1)

Define
rrJpfq similarly, with 5

4
replacing 9

8
, and denote

rJ :“ tE P R : BρpEq Ă rJpfqu Ă rJpfq X J

and
rrJ “ rrJpfq X J .
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I´ I`

f

J

rJpfq

„ qρ

„ ρ

I´ I`

JrJpfq

„ qρ

„ qρ

f´ f`

Figure 6: An illustration of two different functions f satisfying Assumption 3 alongside their modified
codomains rJpfq; note how the definition of rJ depends on the presence of critical extrema. The

intervals
rrJpfq are visually analogous.

For n P N pLp1q, α, fq, define the double-resonant interval

JDR
n :“ JDR

n pρ̄, Lp1q, α, fq :“ Bρ̄pEnq,

and recall the special interval

J0pLp1q, α, fq “
"
E : }Tf pEq}T ě C

2pLp1qqτ ą 0

*
.

Lemma 4.8. For all n P N pLp1q, α, fq, JDR
n Ă J0pLp1q, α, fq.

Proof. This is a corollary of monotonicity of f˘ and Lemma 4.2; specifically, if E˚ P
JDR
n , then |E˚ ´ En| ď 3qρ, and

}TfpE˚q ´ TfpEnq}T ď |f´1
` ppE˚, Enqq| ` |f´1

´ ppE˚, Enqq| ď 12

c
qρ
d

ď C

2pLp1qqτ .

In particular,

}TfpE˚q}T ě }TfpEnq}T ´ }TfpE˚q ´ TfpEnq}T ě C

2pLp1qqτ ,

which was the claim.

We define the complementary region

JSR :“ rJz
ď

nPNs`1

Bρ̄´3ρpEnq.

We now divide it into simple-resonant intervals of comparable size to the double-
resonant intervals:

Proposition 4.9.
rrJ can be covered by closed intervals J

pjq
i , j P t1, 2u, such that
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1. J
p2q
n “ Bρ̄pEnq, where n P N pLp1q, α, fq.

2. ρ̄ ď |J pjq
i | ď 2ρ̄.

3. Ji X Ji1 ‰ H ùñ |Ji X Ji1 | “ 3ρ.

4. For any E P J pjq
i , BρpEq Ă rJpfq.

5. The total number of such intervals J
pjq
i does not exceed 5r|J |ρ̄´1s.

Denoting the corresponding preimages

I
pjq
i,˘ :“ f´1

˘ pJ pjq
i q, I

pjq
i :“ I

pjq
i,´ Y I

pjq
i,`,

each function f |
I

pjq
i

: I
pjq
i Ñ J

pjq
i satisfies Assumption 3 with Morse constants d,D

and boundary derivative constant

rν :“ min

"
ν,

3d

8D0

ρ̄

*
.

Proof. If rEm` ρ̄´3ρ, En´ ρ̄`3ρs is a connected component of JSR, then, by Lemma
4.6, it has length at least

|En ´ Em| ´ 2ρ̄` 6ρ ě Cν{2ppLp1qqτ q ´ 2ρ̄` 6ρ

ě ρ̄.

Similarly, if a connected component of JSR contains a critical point of f , it has length
at least

C2d{48ppLp1qq2τ q ´ ρ̄ ` 3ρ ě ρ̄

by Lemma 4.7. We can cover each connected component of at least this size (by the
above remarks, this includes all connected components except possibly those at the
boundaries of JSR where f does not attain a critical point) by at most 4r|En ´Em|{ρ̄s
closed intervals of size between ρ̄ and 2ρ̄ overlapping with only their nearest neighbors
by exactly 3ρ. We thus construct a collection of at most 4r|J |{ρ̄s closed intervals J

p1q
i .

Together with the collection of intervals

tJ p2q
n :“ JDR

n : n P N pLp1q, α, fq s.t. JDR
n Ă rJu,

we have a total of at most 5r|J |{ρ̄s intervals J
pjq
i (j P t1, 2u) satisfying the conditions

laid out in the proposition. Moreover, these intervals cover rJ , with the possible
exception of intervals of length at most 2ρ̄ at the boundaries of rJ where f does not

attain a critical point; since 2ρ̄ ă 1
8
qρ´ ρ, they thus cover

rrJ .
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It is clear that restrictions of f to I
pjq
i satisfy Assumption 3; all that remains is

to compute the new boundary derivative constant. By Lemma 4.1, if |Bθfpθ˚q| ă ν

for some θ˚ P I, θ˚ belongs to a connected component I˘,ăν Ă I containing a critical

point θc and on which |Bθf | ă ν. If θ˚ is a boundary point of some I
pjq
i , then, by

construction,

|fpθ˚q ´ fpθcq| ě ρ̄´ 3ρ

ě 3

4
ρ̄;

and by Lemma 4.2,

|θ˚ ´ θc| ě 3

4D0

ρ̄.

Since |Bθf | ă ν ă d{2 on I˘,ν , |B2
θf | ą ds{2 on this component; thus,

|Bθfpθ˚q| ě
ż θ˚

θc

|B2
θfpθq|dθ

ě 3d

8D0

ρ̄.

We denote the two preimages of each crossing point En by

θn,˘ :“ f´1
˘ pEnq, n P N pLp1q, α, fq.

Proposition 4.10. We have the following:

1. (Simple resonance): If θ˚ P I
p1q
i , then, for any 0 ‰ |n| ď Lp1q such that θ˚ P

I ´ nα, we have

|fpθ˚q ´ fpθ˚ ` nαq| ą 3ρ,

and for all θ P Bρ{8D0
pθ˚q X I X pI ´ nαq,

|fpθq ´ fpθ ` nαq| ą 2ρ.

2. (Double resonance): If θ˚ “ θn0,´ P I
p2q
n0

for n0 P N pLp1q, α, fq, then for any
|n| ď Lp2q, n R t0, n0u such that θ˚ P I ´ nα, we have

|fpθ˚q ´ fpθ˚ ` nαq| ą 3qρ;

and for all θ P Bqρ{8D0
pθ˚q X I X pI ´ nαq,

|fpθq ´ fpθ ` nαq| ą 2qρ

and

mint´Bθfpθq, Bθfpθ ` n0αqu ě ν.
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Proof. We begin with the simple-resonant case, i.e. θ˚ P Ip1q
i . Suppose θ˚ P I´ (the

case θ˚ P I` is completely analogous). If θ˚ ` nα P I´, 0 ‰ |n| ď Lp1q, we can apply
Lemma 4.2 to get that

|fpθ˚q ´ fpθ˚ ` nαq| ě d

12
}nα}2T ě d

12

ˆ
C

pLp1qqτ
˙2

ą 3qρ ą 3ρ.

We thus suppose that θ˚ ` nα P I`; by Lemma 4.5, n P N pLp1q, α, fq.
Assume θ˚ ď θn,´. Then θ˚ `nα ď θn,` “ θn,´ `nα, and, by the monotonicity of

f on I˘, fpθ˚ ` nαq ď En. Thus,

|fpθ˚q ´ fpθ˚ ` nαq| “ fpθ˚q ´ fpθ˚ ` nαq
ě fpθ˚q ´ En ą ρ̄´ 3ρ ą 3ρ.

If θ˚ ě θn,´, then similarly fpθ˚ ` nαq ě En, and

|fpθ˚q ´ fpθ˚ ` nαq| “ fpθ˚ ` nαq ´ fpθ˚q
ě En ´ fpθ˚q ą 3ρ.

The claim for θ P Bρ{8D0
pθ˚q X I X pI ´ nαq follows from the Mean Value Theorem

and the uniform bound |Bθf | ď D0. This concludes the simple resonant case.
We now consider the case θ˚ “ θn0,´. Suppose n with 0 ‰ |n| ď Lp2q satisfies

θ˚ ` nα P I´ and |fpθ˚ ` nαq ´ fpθ˚q| ď 3qρ. Then by Lemma 4.8,

3qρ ě |fpθ˚q ´ fpθ˚ ` nαq| ě ν}nα}T ě Cν

pLp2qqτ ,

a contradiction. Thus, for any 0 ‰ |n| ď Lp2q such that θ˚ ` nα P I´, |fpθ˚ ` nαq ´
fpθ˚q| ą 3qρ.

If instead θ˚ `nα P I`, |n| ď Lp2q and n ‰ n0, and suppose |fpθ˚ `nαq ´fpθ˚q| ď
3qρ. Then θ˚ ` n0α P I` and

3qρ ě |fpθ˚q ´ fpθ˚ ` nαq| “ |fpθ˚ ` n0αq ´ fpθ˚ ` nαq| ě ν}nα}T ě Cν

pLp2qqτ ,

a contradiction as above. Again, the claim for θ P Bqρ{8D0
pθ˚qXIXpI´nαq follows from

the Mean Value Theorem and the uniform bound |Bθf | ď D0. The lower bound for
the derivatives follows from Lemmas 4.3 and 4.8, and that Bqρ{8D0

pθ˚q X I Ă IDR
n0,´

.

4.3 Domain adjustment

We now show that a function g well-approximating a function f satisfying Assumption
3 can have its domain slightly modified to satisfy Assumption 3.
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Let I˘ Ă T be two closed intervals with disjoint interiors, let I :“ I
f
´ Y I

f
`, and

consider a piecewise C1 function

f : I Ñ J, f˘ :“ f |
I
f
˘

such that each function f˘ maps onto J .
Let δ ą 0 satisfy 16δ ă |J | and 16δ

ν
ă |I˘|. Our first lemma handles the interval

adjustment in the absence of critical points for f :

Lemma 4.11. Suppose ˘Bθf˘ ě ν ą 0 uniformly on I˘, and suppose g P C2pI,Rq
satisfies the following stability conditions:

1. The function g is Morse on I

d ď |Bθg| ` |B2
θg| ď D

with Ig˘ :“ tθ P I : ˘Bθg ě 0u two closed intervals with disjoint interiors.

2. There is a constant 0 ă ν̃ ă d{2 such that |Bθg| ě ν̃ on the boundary points of
I.

3. If θ P I is such that gpθq R gpIg´q X gpIg`q, or if θ is a boundary point of I, then

|fpθq ´ gpθq| ď 2δ.

Then there exists a subset Ĩg “ Ĩ
g
´ Y Ĩ

g
` Ă I, Ĩg˘ being closed intervals with disjoint

interiors, such that

|IzĨg| ď 32δ

ν

on which g satisfies Assumption 3.

Proof. Let Jg
r :“ mintsup gpI`

g q, sup gpI´
g qu and Jg

l :“ maxtinf gpI`
g q, inf gpI´

g qu.
We first show that Jg

r ą J
g
l . Note that maxtgpsup Ig`q, gpinf Ig´qu “ sup g; like-

wise, mintgpinf Ig`q, gpsup Ig´qu “ inf g. Define g˘ :“ g|Ig˘; note that we have either

g´1
` pJg

r q “ sup Ig` or g´1
´ pJr

g q “ inf Ig´. Either inf Ig´ “ sup Ig` is a critical point
of g, in which case Jg

r “ sup g, or both inf Ig´ and sup Ig` are (distinct) bound-
ary points of I, in which case fpinf Ig´q “ fpsup Ig`q P tinf J, sup Ju, and thus
|fpinf Ig´q´Jg

r |, |fpinf Ig´q´sup g| ď 2δ. Thus in either case we have |Jg
r ´sup g| ď 4δ,

and it follows that
|Jg

r ´ sup J | ď 6δ. (4.2)

By analogous reasoning,
|Jg

l ´ inf J | ď 6δ. (4.3)

Since, by assumption, |J | ą 12δ, we must have Jg
r ą J

g
l .
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We define Jg :“ rJg
l , J

g
r s and Ĩ

g
˘ :“ g´1

˘ pJgq (so Ĩg “ g´1pJgq). Since we have
shown Jg

r ą J
g
l , Ĩ

g
˘ are nonempty intervals, and g˘ maps Ĩg˘ onto Jg. We now measure

the set IzĨg by considering the sets I˘zĨg˘. We first note that by applying the Mean
Value Theorem to f on Ĩ

g
˘, we conclude that Ĩg˘ X I˘ ‰ H. Thus each of the sets

I˘zĨg˘ consists of at most two intervals rinf I˘, inf Ĩ
g
˘q and psup Ĩg˘, sup I˘s. Consider

first rinf I´, inf Ĩ
g
´q.Such an interval belongs to I´zĨg´ if and only if inf Ĩg´ P I´. If

Jg
r is not a critical point of g, we have |fpinf Ĩg´q ´ Jg

r | “ |pf ´ gq ˝ g´1
´ pJg

r q| ď 2δ;
combining this with (4.2) gives |fpinf Ĩg´q ´ sup J | ď 8δ. Thus

|rinf I´, inf Ĩ
g
´q| “ | inf Ĩg´ ´ inf I´|

“ |f´1
´ pfpinf Ĩg´qq ´ f´1

´ psup Jq|

ď 1

ν
|fpinf Ĩg´q ´ sup J | ď 8δ

ν
.

Analogously, |psup Ĩg`, sup I`s| ď 8δ
ν
if Jg

r is not a critical point of g, and |psup Ĩg´, sup I´s| ď
8δ
ν
, |rinf I`, inf Ĩ

g
`q| ď 8δ

ν
if Jg

l is not a critical point of g.

If g contains no critical points, we conclude that |I˘zĨg˘| ď 16δ
ν
, and |IzĨg| ď

|I´zĨg´| ` |I`zĨg`| ď 32δ
ν
.

If g attains its minimum, but not its maximum, at a critical point, then Ĩg “
rinf Ĩg´, sup Ĩg`s, and likewise I “ rinf I´, sup I`s; thus,

|IzĨg| ď |rinf I´, inf Ĩ
g
´q| ` |psup Ĩg`, sup I`s|

ď 16δ

ν

by the above computation. The argument is analogous if g attains its maximum, but
not its minimum, at a critical point. If g attains both its maximum and its minimum
at critical points, then trivially Ĩg “ I.

It remains to verify a lower bound for |Bθg| on the boundary points of Ĩg. We
first note that we can apply Lemma 4.1 to the unrestricted function g on I, since
the condition that g˘ map onto the same image is not used in Lemma 4.1. Thus, if
|Bθg| ă ν̃ on a boundary point of Ĩg (which is also a boundary point of Ĩg˘q, it must
belong to a connected component of Ig˘ containing a critical point of g (which is a
boundary point of Ig˘), and |B2

θg| ě d{2 throughout that component. By construction,
the critical point belongs to Ĩg˘, and is thus the other boundary point of that interval;
thus |B2

θg| ě d{2 on the entirety of Ĩg˘. Then, on the boundary point of Ĩg,

|Bθg| ě d

2
|Ĩg˘| ě d

2

ˆ
|I˘| ´ 16δ

ν

˙
,

so we conclude |Bθg| ě min
 
ν̃, d

2

`
|I˘| ´ 16δ

ν

˘(
on the boundary of Ĩg.

If f : I Ñ J satisfies Assumption 3 and g : I Ñ R is C2 close to f , we likewise
can find these adjusted intervals:
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Lemma 4.12. Suppose g P C2pI,Rq is C2 close to f , i.e.

}Bk
θ pf ´ gq} ď C

δ

ρk
, 0 ď k ď 2.

Then there exists a subset Ĩg “ Ĩ
g
´ Y Ĩ

g
` Ă I, Ĩg˘ being closed intervals with disjoint

interiors, such that

|IzĨg| ď 32δ

ν

and on which g satisfies Assumption 3.

Proof. By the well-approximation of g to f , we immediately get that g is Morse on
I, e.g.

d̃ “ d ´ C

ˆ
δ

ρ
` δ

ρ2

˙
ă |Bθg| ` |B2

θg| ď D ` C

ˆ
δ

ρ
` δ

ρ2

˙
“ D̃.

Furthermore, on the boundary points of I, one has

|Bθg| ě ν ´ C
δ

ρ
ą ν ´ 2C

ˆ
δ

ρ
` δ

ρ2

˙
“: ν̃

and ν̃ ă d̃{2. By the Morse condition on g and the assumption on f , we can decom-
pose I “ I

g
´ Y I

g
` into intervals such that

˘Bθg|Ig˘ ě 0.

We denote by g˘ :“ g|Ig˘. By Lemma 4.1, critical points of g˘ must lie on the

boundary of Ig˘ and each connected component of Ig˘,ăν̃ must contain a critical point,
and, conversely, any critical point of g must lie in a connected component of Ig˘,ăν̃ .

If g has no critical point in I, then neither can f , and we are in the situation
outlined in Lemma 4.11 (with ν replaced by ν{4, e.g.). If g has a critical point θc,
then by the Morse condition it is an extremum of g. Suppose the critical point is a
minimum; then, defining Jg as in the proof of Lemma 4.11, we have

g´1
` pJgq “: Ĩg` “ rθc, θ̃`s,
g´1

´ pJgq “: Ĩg´ “ rθ̃´, θcs.

By monotonicity of g˘, it must be that Ĩg˘ “ I
g
˘ for at least one of ` or ´; suppose

Ĩ
g
` “ I

g
`. Since sup f` “ sup f´ and }f ´ g} ď Cδ, we get that | sup g` ´ sup g´| “

|gpθ̃`q ´ Jg
r | ď Cδ.

To measure |I´zĨg´|, it suffices to compute |θ̃´ ´ θ´|, where θ˘ “ inf Ig˘. We have

|gpθ´q ´ gpθ̃´q| “ |gpθ´q ´ fpθ`q| ď Cδ ` |fpθ´q ´ fpθ`q| “ Cδ;
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furthermore, θ´ and θ̃´ live on the same monotonicity interval of g, and so

|θ´ ´ θ̃´| ď
c

12Cδ

d̃
.

Since our only critical point is a minimum, it must be that θ´ “ inf If´, and thus for

any θ P rθ´, θ̃´s, we have

|g1pθq| ě |f 1pθq| ´ Cδ

ρ

ě ν ´
˜
Cδ

ρ
` D

c
12Cδ

d̃

¸
ě ν̃.

We conclude by estimating the difference of inverses of close functions satisfying
Assumption 3.

Lemma 4.13. Let f be a function satisfying Assumption 3 with boundary derivative
constant ν and containing no critical point. Let g be another function satisfing As-
sumption 3 with dom g˘ Ă dom f˘ and }f ´ g}8 ď 2δ. Then for E˚ P im f X im g,
|Tf pE˚q ´ TgpE˚q| ď 4δ

ν
.

Proof. Since f contains no critical point, by Lemma 4.1, |Bθf˘pθq| ě ν for all θ P I,
and thus |Bθf

´1
˘ pEq| ě ν´1 for all E P J . Then

|f´1
˘ pE˚q ´ g´1

˘ pE˚q| “ |f´1
˘ ˝ g ˝ g´1

˘ pE˚q ´ f´1
˘ ˝ f ˝ g´1

˘ pE˚q|
ď ν´1|g ˝ g´1

˘ pE˚q ´ f ˝ g´1
˘ pE˚q|

ď 2δν´1.

Thus,

|Tf pE˚q ´ TgpE˚q| ď |f´1
` pE˚q ´ g´1

` pE˚q| ` |f´1
´ pE˚q ´ g´1

´ pE˚q| ď 4δν´1.
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5 Multiscale spectral analysis

We wish to understand how the Rellich functions of HΛ inherit the cosine-like proper-
ties from the sampling function v. Given pθ˚, E˚q P TˆR, we claim that, by properly
choosing our notions of resonance, we can inductively construct increasing intervals
Λs “ Λspθ˚, E˚q in the integer lattice, centered at 0, such that any E˚-resonant Rel-
lich functions of HΛpθ˚q are locally cosine-like with eigenfunctions localized near 0.
Furthermore, these intervals will be stable in the parameters θ˚ and E˚.

In broad strokes, the induction will proceed as follows: we suppose that we in-
ductively have been given a cosine-like Rellich function Es : Is Ñ Js and that certain
“nonresonant” intervals for Es exhibit off-diagonal Green’s function decay for ener-
gies E˚ near the codomain of Es. Under these assumptions, we apply Section 4 to
Es to classify energy regions J

pjs`1q
s Ă Js as being simple- or double-resonant (indi-

cated by js`1 P t1, 2u) and prevent recurrence to those energy regions for long times.
The resonant sites for Es will be so well-separated that we can find an even integer
Ls`1 for each energy region well-separated from resonances of all the ancestors of Es.
Thus, the intervals Λs`1 of length Ls`1 will have long shoulder intervals with Green’s
function decay by our inductive assumption.

Having found the integers Ls`1, we can then apply Sections 2 and 3 to construct
Rellich children Es`1 which are likewise cosine-like. Finally, for energies which are
not resonant with any child Es`1 for long intervals Λ, we can use these constructed
intervals to build coverings of Λ like those described in Appendix A, proving the
inductive nonresonance hypothesis. Here we crucially use the uniform local separation
between double-resonant Rellich children established in Proposition 3.6; since the
separation is much larger than the scale-s` 1 resonance parameter, energies near the
codomain of one of a pair of double-resonant Rellich functions do not allow resonance
with the other.

The perturbative upper bound ε0pv, αq on the interaction ε will be polynomially
small, depending on v and α, in the initial length scale L; the size of L effectively
will be dictated by avoiding substantial cumulative loss in the Green’s function decay
parameters γk, cf. Lemma 5.2 below.

Es

Ep1qpEsq Ep2qpEsq

E
p1q
s`1,i

E
p2q
s`1,ns,_

E
p2q
s`1,ns,^

ns P Ns

¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨¨ ¨ ¨

Ls`1 „ M
p1q
s`1

Ls`1 „ M
p2q
s`1

Figure 7: The inductive expansion of our Rellich tree at a particular node Es.
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5.1 Preparing the induction

5.1.1 The initial scale

Suppose E0 :“ v, v : T Ñ r´1, 1s, is cosine-like in the sense of the main theorem,
with Morse constants

d0 ď |Bθvpθq| ` |B2
θvpθq| ď D0, θ P T,

and that α P DCC,τ is Diophantine. Letting L be a large even integer, we consider
the initial length scales

L
p1q
1 :“ L, L

p2q
1 :“ L2,

and initialize the following parameters:

ν0 “ Cαd0

14p8Lqτ , ρ´1 “ d0

24D2
0

1

p8Lq2τ , ρ̄0 “ d0

15000D2
0

ρ2´1,

ρ0 “ ρ̄30, δ0 :“ ε ă ε0 :“ ρ40, γ´1 “ γ0 “ 1

4
| log ε|, ℓ´1 “ ℓ0 “ 1.

With these parameters, we recall a classical Neumann series argument ensuring off-
diagonal Green’s function decay on nonresonant intervals:

Lemma 5.1. Let Λ Ă Z and suppose |vpθ˚ ` mαq ´ E˚| ě ρ0 for m P Λ. Then for
m,n P Λ, |θ ´ θ˚| ă ρ0{8D0, and |E ´ E˚| ă ρ0{2,

|RΛ
θ,Epm,nq| ď 8

ρ0

ˆ
8ε

ρ0

˙|m´n|

.

In particular, for γ0 “ 1
4
| log ε| and |m ´ n| ě 1,

log |RΛ
θ,Epm,nq| ď ´γ0|m ´ n|, (5.1)

i.e. the Green’s function decay property for pℓ0, γ0q holds.

Proof. For m P Λ, |θ ´ θ˚| ă ρ0{8D0, and |E ´ E˚| ă ρ0{2, one has

|vpθ ` mαq ´ E| ě |vpθ˚ ` mαq ´ E˚| ´ |E ´ E˚| ´ D0|θ ´ θ˚| ą ρ0{4.

Thus |vpθ ` mαq ´ E| ě ρ0{4 ą 4ε for all m P Λ, and }pV pθq ´ Eq´1ε∆}CΛ ă 1{2;
hence, by the Neumann series, one has for m,n P Λ

|RΛ
θ,Epm,nq| “ |xδm, pHΛpθq ´ Eq´1δny|

ď 4

ρ0

ÿ

kě|m´n|

ˆ
8ε

ρ0

˙k

ď 8

ρ0

ˆ
8ε

ρ0

˙|m´n|

.
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Provided |m ´ n| ě 1, we have

|RΛ
θ,Epm,nq| ď 8

ρ0

ˆ
8ε

ρ0

˙|m´n|

ď ρ
2|m´n|´1
0 ď ρ

|m´n|
0 .

This lemma, combined with our assumptions on v, will be the foundation of our
induction.

5.1.2 Inductive definitions

Fix a scale s ě 0. If s ě 1, we suppose that, for 0 ď k ď s ´ 1, we have collections

E
pjq
k “

ď

EPEk´1

E pjqpEq, j P t1, 2u,

Ek “ E
p1q
k Y E

p2q
k

of Rellich functions Ek : Ik Ñ Jk of certain Dirichlet restrictionsHΛk , Λk “ r´Lk{2, Lk{2s,
where Lk “ LkpEkq are even integers on scale k

1

2
M

pjq
k ď Lk ď M

pjq
k , Ek P E

pjq
k ,

where we define the length scales

M
pjq
k :“ pL4k´1qj , k ě 1, j P t1, 2u.

We take as convention that M
p1q
0 “ M

p2q
0 “ 1. For each Ek P Ek, k ě 1, we define the

corresponding parameters:

dk “ νk´1

12
, Dk “ 2D0p1 ` D0

σk
q, (Morse)

νk “ ν̄k´1{2, ν̄k :“ 3dk
8D0

ρ̄k (Derivative control)

ρk “ εL
2{3
k , ρ̄k “ dk

15000D2
0

ρ2k´1, σk “ ε72M
p1q
k (Resonance)

δk “ εLk{8 (Eigenfunction interaction)

ℓk “ L
5{6
k , γk “ γ0p1 ´ 64

řk
i“1

| logpρi{8q|
ℓi

q (Green’s function decay)

We likewise define rJpEkq and
rrJpEkq as in equation (4.1) with ρ “ ρk and qρ “ ρk´1,

cf. Figure 6. As matters of convention, we define rJpE´1q “ rrJpE´1q “ R and E0 “
EpE´1q :“ tvu.

We have the following relations among these parameters:
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Lemma 5.2. Let Ek P Ek with Lk and constants defined as above. For L sufficiently
large (depending only on Cα, τ , d0, and D0), we have the following for all k ě 0:

1. γk ě 1
2
γ0 ě log 7.

2. 10M
p2q
k ă M

p1q
k`1, 24L

2{3
k`1 ă 8L

5{6
k`1 ă Lk`1, ℓk`1 " 16| log ε|| log ρk`1|.

3. Cα

2p8M
p1q
k`1

q
ě 7νk

dk
, 3dk

8D0
ρ̄k ă νk, and

9ρk
8νk

! ρ̄k ! ν2kρk´1

100D3
0

.

4. δk ă ρ3k{2 ! ρ2k´1ν
5{2
k .

5. If jk “ 2, then 2ρk ă νk´1σk

2D0`νk´1

.

Proof. We proceed with each item in turn:

1. For 1 ď i ď k, we have by definition that

| logpρi{8q|
ℓi

ď L
´1{6
i | log ε| À τL´ 1

6
4i´1

logL À τL´ 1

7
p4i´1q

Since this sequence is subgeometric, we may find L sufficiently large such that

64
kÿ

i“1

| logpρi{8q|
ℓi

ď 1

2

independently of k. By possibly making L larger, one can insist that

1

2
γ0 “ 1

8
log |ε| „ τ log |L| ą log 7.

2. This is immediate from the fact that, for k ě 1,

M
p1q
k`1 ě LM

p2q
k ,

alongside the observation that | log ε| is comparable to logL.

3. One can check by definitions that, for L sufficiently large (depending on τ , d0,
and D0), one has for k ě 0 that:

ν
5{4
k ă dk`1 ă νk ă dk

2

ρ
9{4
k´1 ă ρ̄k ă ρ2k´1

ρ
9{4
k´1 ă νk`1, ν̄k ă ρ2k´1

ρk ! ρ6k´1.

The inequalities follow for sufficiently large L.
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4. Given the above inequalities, one has

ρ2k´1ν
5{2
k " ρ2k´1ρ

45{8
k´2 " ρ2k´1ρ

6
k´2 " ρ3k´1 " ρ3k{2,

and Lk ą 24L
2{3
k .

5. Since jk “ 2, we have L
2{3
k ě pM p2q

k {2q2{3 ě 1
2
pM p1q

k q4{3 " 144M
p1q
k provided L

is sufficiently large, and thus log ρk ! 2 log σk. The inequality follows because
log νk´1 " log ρk´1 " log σk.

It will be convenient to fix language describing “nonresonant” regions at each
scale. Fix pθ˚, E˚q P T ˆ R and a Rellich function Ek P Ek. We say that a set S Ă Z

is k-nonresonant (relative to pθ˚, E˚q and Ek) if

θ˚ ` mα R Ik or |Ekpθ˚ ` mαq ´ E˚| ě ρk @m P S.

Note that, with this language, Lemma 5.1 shows that 0-nonresonant intervals have
pℓ0, γ0q Green’s function decay.

To show Green’s function decay at future scales k ě 1, we must avoid resonant
sites for all ancestors of Ek; we codify this condition as k-regularity. Namely, we say
that a point m P Z is k-left-regular if, for each ancestor Ei (0 ď i ď k ´ 1) of Ek,
rm,m` 3

4
Li`1s is i-nonresonant. Analogously, we say that m is k-right-regular if, for

each ancestor Ei (0 ď i ď k ´ 1) of Ek, rm´ 3
4
Li`1, ms is i-nonresonant, and we say

that m is k-regular if it is both k-left-regular and k-right-regular.
Finally, we define the slight enlargement of the set of k-resonant points by

Skpθ˚, E˚q :“
"
m P Z : θ˚ ` mα P Ik, |Ekpθ˚ ` mαq ´ E˚| ď 25

24
ρk

*
.

5.2 The inductive proposition

Subject to these definitions, we suppose that the following inductive proposition holds
for 0 ď k ď s ´ 1:

Proposition 5.3 (Induction, scale k). Suppose the hypotheses below hold:

H 5.3.1 (Cosine-like Rellich functions, scale k). Each Ek P Ek satisfies Assumption
3 with parameters ν “ νk, d “ dk, and D “ Dk.

H 5.3.2 (Resonant orbits, scale k). If k ě 1, let Ek P E pjkqpEk´1q, Ek : Ik Ñ Jk,
denote

Nk :“ N p8M p1q
k`1, α,Ekq,

and let θ˚ P T. We can characterize aspects of the resonant orbits depending on the
resonance type jk:
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1. jk “ 1:

We have
mint|n| : n P Nku ą 8M

p1q
k ą Lk.

Furthermore, suppose either E˚ P rJpEkq or the closest point in Jk to E˚ is a
critical value of Ek. Then, for any m P Skpθ˚, E˚q,

Bρk´1{24D0
pθ˚ ` mαq Ă Ik.

2. jk “ 2 (and thus Ek “ E
p2q
k,nk´1,‚

):

We have
Nk “ H.

Furthermore, suppose E˚ P rinf rJpEp2q
k,nk´1,^

q, sup rJpEp2q
k,nk´1,_

qs. Then, for any

m P Skpθ˚, E˚q, for some p P tm,m´ nk´1u,

Bρk´1{24D0
pθ˚ ` pαq Ă Ik,nk´1,_ Y Ik,nk´1,^.

If θ˚ ` pα P I
p2q
k,nk´1,^

zIp2q
k,nk´1,_

, then |Ep2q
k,nk´1,^

pθ˚ ` pαq ´E˚| ă 9
8
ρk´1; similarly,

if θ˚ ` pα P I
p2q
k,nk´1,_

zIp2q
k,nk´1,^

, then |Ep2q
k,nk´1,_

pθ˚ ` pαq ´ E˚| ă 9
8
ρk´1.

H 5.3.3 (Nonresonance, scale k). Let Ek´1 P Ek´1, let θ˚ P T, and suppose E˚ P
rJpEk´1q is such that

• If Ek´1 does not attain its maximum at a critical point, then E˚ ď sup
Ť

EPEpEk´1q
rJpEq.

• If Ek´1 does not attain its minimum at a critical point, then E˚ ě inf
Ť

EPEpEk´1q
rJpEq.

Let Ek P EpEk´1q be a Rellich curve minimizing distpE˚, rJpEqq among E P EpEk´1q.
Suppose Λ “ ra, bs Ă Z is k-nonresonant and that a and b are k-left- and k-right-
regular, respectively. Then for |E ´ E˚| ă ρk{2 and θ P Bρk{8D0

pθ˚q,

log |RΛ
θ,Epm,nq| ď ´γk|m´ n|, |m ´ n| ě ℓk,

and

}RΛ
θ,E} ď 4ρ´1

k .

Furthermore, if rΛ is k-nonresonant with |rΛ| ě 2Lk ` 3M
p1q
k , then there exists a

k-nonresonant subinterval Λ “ ra, bs Ă rΛ with |Λ| ě |rΛ| ´ p2Lk ` 3M
p1q
k q such that a

and b are k-left- and k-right-regular, respectively.

Subject to the above hypotheses, we have the following: Let Ek P Ek with Ek :
Ik Ñ Jk. There exists a collection Ik`1pEkq “ I

p1q
k`1 Y I

p2q
k`1 of intervals Ik`1 and

corresponding even integers Lk`1 so that, denoting Λk`1 “ r´Lk`1{2, Lk`1{2s, the
following hold:
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(Simple resonance): If Ik`1 P I
p1q
k`1, θ˚ P Ik`1, and E˚ “ Ekpθ˚q, then HΛk`1pθ˚q

satisfies Assumption 1 with

pΛ “ Λk`1, Λ “ Λk,

ρ “ ρk, δ “ δk, γ “ γk, ℓ “ ℓk.

(Double resonance): If Ik`1 P I
p2q
k`1, there exists a unique n with Lk ă |n| ď

8M
p1q
k`1 and a unique point θ˚˚ “ θk,n,´ P Ik`1 such that E˚˚ “ Ekpθ˚˚q “

Ekpθ˚˚`nαq. Furthermore, HΛk`1pθ˚˚q satisfies Assumption 2 with the following
assignments:

pΛ “ Λk`1, Λ´ “ Λk, Λ` “ Λk ` n,

qρ “ 2

3
ρk´1, δ “ δk, γ “ γk, ℓ “ ℓk, ν “ νk.

Moreover, we can choose the additional parameters introduced in Section 3 as
follows:

pσ “ σk`1, η “ 5ρk
4νk

, ρ “ ρk.

In particular, there exists a family EpEkq “ E p1qpEkq Y E p2qpEkq of Rellich children
Ek`1 : Ik`1 Ñ Jk`1 such that each Ek`1 is a Rellich function of HΛk`1 satisfying
Assumption 3, such that Hypotheses 5.3.1, 5.3.2, and 5.3.3 hold at scale k ` 1.

Additionally, we have the following:

1. The even integers Lk`1 can be chosen such that ˘Lk`1{2 and ˘pLk`1{2`1q are
k-regular for any θ˚ P Ik`1 for any E˚ P BρkpEkpθ˚qq, and such that Lk`1{2 ` 1
(respectively, ´pLk`1{2`1q) is k`1-left-regular (respectively, k`1-right-regular)
for any E˚ P BρkpEk`1pθ˚qq

2. The intervals Ik`1 and their relevant translates cover Ik, in the sense that if
θ P Ik and θ R Ik`1 for all Ek`1 P EpEkq, then there exists a unique n with

8M
p1q
k ă |n| ď 8M

p1q
k`1 and a Rellich curve Ek`1 “ Ek`1,n,‚ P E p2qpEkq such that

θ P Ik`1 ` nα.

3. If E˚ “ Enk`1
pEk`1q for nk`1 P Nk`1, then BρkpE˚q Ă rJpEkq. Furthermore, we

have

ρ̄k{2 ď |Jk`1| ď 2ρ̄k.

Subject to these hypotheses at scale s ´ 1, we verify that the statement holds at
scale s with appropriately defined constants:
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Theorem 5.4. There exists ε0 “ ε0pα, vq such that, for ε ď ε0, Proposition 5.3 holds
for all k ě 0.

For the remainder of this section, we suppose that the proposition holds for 0 ď
k ď s ´ 1, that Hypotheses 5.3.1, 5.3.2, and 5.3.3 hold for 0 ď k ď s, and prove the
proposition for k “ s. We note that, in light of Lemma 5.1, the proof below also
verifies the initial case s “ 0.

5.3 The family of descendants of Es

If s “ 0, let Es “ v; otherwise, let Es P E pjsqpEs´1q, Es : Is Ñ Js, js P t1, 2u, be a
Rellich function of HΛs, Λs “ r´Ls{2, Ls{2s constructed as in Proposition 5.3 at scale

s ´ 1. In the case js “ 2 (and thus Es “ E
p2q
s,ns´1,‚), we denote

Is,ns´1,Y :“ Ip2q
s,ns´1,^ Y Ip2q

s,ns´1,_.

5.3.1 Construction of the next length scale

By our inductive hypotheses, Es satisfies Assumption 3, with Morse constants ds, Ds

and boundary derivative lower bound νs. By Lemma 5.2, Section 4 applies to Es with
these values, and, recalling that

ρ̄s “ ds

15000D2
0

ρ2s´1,

we have the following:

Lemma 5.5.
rrJpEsq X Js can be covered by closed intervals J

pjq
s,i , j P t1, 2u, such that

1. J
p2q
s,ns “ B ρ̄spEnsq, where θ˚ “ θs,ns,´ is the unique point in Is such that

Ens :“ Espθ˚q “ Espθ˚ ` nsαq

for any ns P Ns :“ N p8M p1q
s`1, α,Esq (cf. Section 4).

2. ρ̄s ď |J pjq
s,i | ď 2ρ̄s

3. Js,i X Js,i1 ‰ H ùñ |Js,i X Js,i1| “ 3ρs

4. For any E P J pjq
s,i , BρspEq Ă rJpEsq. Furthermore, if j “ 2 and E˚ “ Ens, then

Bρs´1
pE˚q Ă rJpEs´1q.

5. The total number of such intervals J
pjq
s,i does not exceed 5r|Js|ρ̄´1

s s.
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These intervals are defined such that, on the corresponding preimages

I
pjq
s,i,˘ :“ pEsq´1

˘ pJ pjq
s,i q, I

pjq
s,i :“ I

pjq
s,i,´ Y I

pjq
s,i,`,

one has either

(Simple resonance): If θ˚ P Ip1q
s,i , then for any n with 0 ‰ |n| ď 8M

p1q
s`1 such that

θ˚ ` nα P Is,

|Espθ˚q ´ Espθ˚ ` nαq| ą 3ρs.

(Double resonance): If θ˚ “ θs,ns,´ P Ip2q
s,ns,´, then for θ P Bρs´1{8D0

pθ˚q and any

n with n R t0, nsu, |n| ď 8M
p2q
s`1 such that θ ` nα P Is,

|Espθq ´ Espθ ` nαq| ą 2ρs´1

and

mint´BθEspθq, BθEspθ ` nsαqu ě νs.

Finally, recalling that

ν̄s “ 3ds
8D0

ρ̄s ă νs,

each function Es|Ipjq
s,i

: I
pjq
s,i Ñ J

pjq
s,i satisfies Assumption 3 with Morse constants ds, Ds

and boundary derivative constant ν̄s.

Proof. This follows immediately from Propositions 4.9 and 4.10, except the second
half of item 4, which follows from the inductive proposition.

Fix an interval J
pjq
s,i (j P t1, 2u), and note that |Ipjq

s,i,˘| ď ρs´1{24D0 by Lemma 4.2,
the definition of ρ̄s, and item 2 of Lemma 5.5. Consider all ‘ancestors’ Ek : Ik Ñ Jk

(0 ď k ď s ´ 1) of Es. For each such k, we define two sets Sk,˘ as follows:

Sk,˘ :“
ď

θPI
pjq
s,i,˘

Skpθ,Espθqq.

The integers in Sk,˘ are well-separated uniformly in θ at each scale 0 ď k ď s ´ 1 in
the following sense:

Lemma 5.6. Let 0 ď k ď s ´ 1, and suppose m P Sk,˘.

1. If jk`1 “ 1, then for any n ‰ m with |n´ m| ď 8M
p1q
k`1, n R Sk,˘.

2. If jk`1 “ 2 (and thus Ek`1 “ Ek`1,nk,‚ for some M
p2q
k ă |nk| ď 8M

p1q
k`1), then

for some p P tm,m ´ nku and for any n R tp, p ` nku with |n ´ p| ď 8M
p2q
k`1,

n R Sk,˘.
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Js

EnspEsq

Es

J
p2q
s,ns

rJpEsq X Js

ρs
nsα

θs,ns,´ θs,ns,`

Is,ns,`Is,ns,´

J
p1q
s,i

3ρs

Figure 8: A cartoon illustration of the covering constructed in Lemma 5.5.

Proof. Since m P Sk,˘, there is some θ˚ P I
pjq
s,i,˘ such that m P Skpθ˚,Espθ˚qq; note

that J
pjq
s,i Ă rJpEsq Ă rJpEkq, so E˚ “ Espθ˚q satisfies the assumptions of the inductive

hypothesis 5.3.2. As noted above, we also have that |Ipjq
s,i,˘| ď ρs´1{24D0 ď ρk{24D0.

We have two cases:

1. jk`1 “ 1:

Take p “ m. By the length bound on I
pjq
s,i,˘, we have

I
pjq
s,i,˘ ` pα Ă Bρk{24D0

pθ˚ ` pαq Ă Is.

2. jk`1 “ 2: By Hypothesis 5.3.2 and the length bound on I
pjq
s,i,˘, for some p P

tm,m ´ nk`1u, we have

I
pjq
s,i,˘ ` pα Ă Bρk{24D0

pθ˚ ` pαq Ă Ik`1,Y Ă Bρk{8D0
pθk`1,nk`1,´q.

In both cases, by Lemma 5.5, for any θ P I
pjq
s,i,˘ and n ‰ p with |n ´ p| ď 8M

pjk`1q
k`1

such that θ ` nα P Ik, we have

|Ekpθ ` nαq ´ Espθq| ě|Ekpθ ` nαq ´ Ekpθ ` pαq| ´ |Ekpθ ` pαq ´ Ekpθ˚ ` pαq|
´ |Ekpθ˚ ` pαq ´ Espθ˚q| ´ |Espθ˚q ´ Espθq|

ě 3ρk ´ 1

24
ρs´1 ´ 25

24
ρk ´ 1

24
ρs´1 ě 25

24
ρk,
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and so n R Sk,˘, as claimed.

This separation will, in turn, allow us to construct even integers Ls`1 so that
˘Ls`1{2 are s-regular:

Lemma 5.7. There is an even integer Ls`1 with M
pjq
s`1{2 ď Ls`1 ď M

pjq
s`1 so that,

for all θ˚ P Ipjq
s,i,˘ for all E˚ P BρspEspθ˚qq, ˘Ls`1{2 and ˘pLs`1{2 ` 1q are s-regular

relative to pθ˚, E˚q.

Proof. Let as :“ M
pjq
s`1{2. We define a nonincreasing sequence of integers as, as´1, . . . , a0

as follows. For each 1 ď k ď s, we have by the previous lemma that

#

"
a P rak ´ 8Lk, aks : distpa,Sk´1,˘q ă 4

5
Lk

*
ă 9

5
Lk,

where we have crucially used here that 5M
p2q
k´1 ă M

p1q
k {2. The same counting argument

holds replacing rak ´8Lk, aks by r´ak,´ak `8Lks; since 4p9{5q ă 8, we can find some
ak´1 P rak ´ 8Lk, aks such that

distp˘ak´1,Sk´1,˘q ě 4

5
Lk

for all four choices of signs.
We define Ls`1 “ 2a0. By construction, we have

M
pjq
s`1 ě Ls`1 ě M

pjq
s`1 ´ 2

sÿ

k“1

8Lk ě M
pjq
s`1{2,

and

distp˘Ls`1{2,Sk´1,˘q ě 4

5
Lk ´ 8

k´1ÿ

i“1

Li ą 3

4
Lk ` 1

for all 1 ď k ď s and all four choices of signs.

5.3.2 Decay of resonant eigenpairs

For the fixed interval J
pjq
s,i we denote by

Λs`1 :“ r´Ls`1{2, Ls`1{2s

and recall that
ℓs “ L5{6

s ě 16L2{3
s | log ε|2 “ 16| log ε|| log ρs|.

From our inductive assumptions, we immediately find Green’s function decay away
from t0u (and the double-resonant site tnsu, if it exists):

Lemma 5.8. Fix θ˚ P Is and find Λs`1 as above. Then we have the following:
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1. If θ˚ P Ip1q
s,i,˘, then for |E ´ Espθ˚q| ă 3

2
ρs and θ P Bρs{8D0

pθ˚q,

log |RΛs`1zΛs

θ,E pm,nq| ď ´γs|m´ n|, |m ´ n| ě ℓs

and
}RΛs`1zΛs

θ,E } ď 4ρ´1
s .

Furthermore, there are intervals Λl Ą r´7
8
Ls,´1

8
Lss and Λr Ą r1

8
Ls,

7
8
Lss such

that for |E ´ Espθ˚q| ă 3
2
ρs and θ P Bρs´1{8D0

pθ˚q,

log |RΛl{r

θ,E pm,nq| ď ´γs´1|m´ n|, |m´ n| ě ℓs´1.

2. If θ˚ “ θs,ns,´, then for |E ´ Espθ˚q| ă 3
2
ρs´1 and θ P Bρs´1{8D0

pθ˚q,

log |RΛs`1zpΛsYΛs`nsq
θ,E pm,nq| ď ´γs´1|m ´ n|, |m ´ n| ě ℓs´1

and
}RΛs`1zpΛsYΛs`nsq

θ,E } ď 4ρ´1
s´1.

Furthermore, letting cl “ mint0, nsu and cr “ maxt0, nsu, there are intervals
Λl Ą rcl ´ 7

8
Ls, cl ´ 1

8
Lss, Λc Ą rcl ` 1

8
Ls, cr ´ 1

8
Lss, and Λr Ą rcr ` 1

8
Ls, cr ` 7

8
Lss

such that, for |E ´ Espθ˚q| ă 3
2
ρs´1 and θ P Bρs´1{8D0

pθ˚q,

log |RΛl{c{r

θ,E pm,nq| ď ´γs´1|m ´ n|, |m ´ n| ě ℓs´1.

In either case, the intervals Λs XΛl{c{r also satisfy the Green’s function decay property
for pℓs´1, γs´1q, as do the intervals pΛs ` nsq X Λl{c{r.

Proof. Noting the s-regularity relative to pθ˚, E˚q for any E˚ P BρspEspθ˚qq, these
statements are precisely the nonresonance hypothesis 5.3.3 applied to various inter-
vals. In particular, the maximal connected components of Λs`1zΛs are inductively s-
nonresonant with s-directionally regular endpoints. Similarly, the maximal connected
components of Λs`1zpΛs Y Λs ` nsq are s ´ 1-nonresonant, as are the maximal com-
ponents of r´Ls, LsszΛs´1 (in case Es P E p1qpEs´1q) or r´Ls, LsszpΛs´1 YΛs´1 `ns´1q
(in case Es P E p2qpEs´1q).

The existence of the subintervals Λl{c{r follows from the nonresonance hypothesis
after noting that

1

8
Ls ´ M

p2q
s´1 ´ 1 ě 1

16
pM p2q

s´1q2 ´ M
p2q
s´1 ´ 1 " 5Ls´1

for the left and right intervals, and

cr ´ cl ´ 2p1 ` M
p2q
s´1q ě Ls ´ 2p1 ` M

p2q
s´1q " 5Ls´1
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for the center interval in the double-resonant case.
Finally, the decay estimates on the intervals Λs X Λl{c{r likewise follow from the

inductive nonresonance hypothesis and the s ´ 1-directional regularity of Ls{2. The
decay estimates on pΛs ` nsq X Λl{c{r follow from the corresponding regularities of
ns ˘ Ls{2, which follow from the observation that HΛspθ˚ ` nsαq “ HΛs`nspθ˚q.

Noting that
3

8
Ls ą L5{6

s “ ℓs " ℓs´1,

we apply the above decay to conclude stable eigenvector decay for resonant eigenvec-
tors of HΛs`1:

Lemma 5.9. Suppose θ˚ P Is, and let E˚ “ Espθ˚q.

1. If θ˚ P I
p1q
s,i,˘, let ρ “ ρs and let P be the partition of Λs`1 into Λs and its

complement.

2. If θ˚ “ θs,ns,´, let ρ “ ρs´1 and let P be the partition of Λs`1 into Λs Y Λs ` ns

and its complement.

Then, for θ P Bρ{8D0
pθ˚q, for any eigenpair pE, ψq of HΛs`1pθq with |E ´ E˚| ă 3

2
ρ,

the unit eigenvector ψ has P-boundary values no larger than δs{ε:

}ΓΛs`1

P ψ} ď 4δs.

Furthermore, the resonant unit eigenvector ψs of HΛs corresponding to Es (as well
as the associated unit eigenvector of HΛs`ns in case 2) has stably-small P-boundary
values:

}ΓΛs`1

P ψs} ď 2δs

}ΓΛs`1

P pBθψsq} ď 24D0

δs

ρ

Proof. The estimate on }ΓΛs`1

P ψ} follows in all cases from Lemma 5.8 and the Poisson

formula (1.11); for example, in the case θ˚ P Ip1q
s , denoting Λl “ ral, bls, one has

|ψp´Ls{2q| ď ε
´

|RΛl

θ,Ep´Ls{2, alq| ` |RΛl

θ,Ep´Ls{2, blq|
¯

ď 2εe´3γs´1Ls{8 ď δs.

The other cases follow analogously.
The estimate on }ΓΛs`1

P ψs} is made similarly, instead applying the decay on the
intervals Λs X Λl{c{r.
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Let χs denote the linear projection onto the coordinates in the interval Λs, and
rχs denote the linear projection onto the interval

tm : |m| ď Ls{4u Ă Λs.

Let Γs :“ Γ
Λs`1

P χs, and note that

ΓspBθψsq “ Γ
Λs`1

P pBθψsq.

Recall that
Bθψs “ ´RKpHΛs,EsqV 1ψs;

we break our estimate of }ΓspBθψsq} into pieces corresponding to rχs and its relative
complement pχs ´ rχsq.

By again applying the Poisson formula on the intervals Λs X Λl{c{r from Lemma
5.8, we have

}pχs ´ rχsqV 1ψs}2 ď
ÿ

Ls{4ď|m|ďLs{2

D2
0|ψspmq|2

ď 8D2
0

ÿ

jąLs{8

ε2e´2γs´1j

ď p3D0δsq2.

Now let qP be the partition of Λs into Λs X pΛl Y Λc Y Λrq and its complement, and

recall that E˚ “ Espθ˚q. Letting RK “ RKpHΛs,Esq, qR “ RΛs

qP pE˚q, and Ps “ ψsψ
J
s ,

we expand
ΓsRKrχs “ Γs

qRpI ´ Ps ´ ΓΛs

qP RKqrχs

by the resolvent identity. Since the intervals in ΛsXpΛlYΛcYΛrq are s´1-nonresonant,
we get

maxt}Γs
qRrχs}, }Γs

qRΓΛs

qP }u ď 2εe´γs´1Ls{4.

By expanding Ps “ rχsPs ` pχs ´ rχsqPs, we likewise estimate

}Γs
qRPsrχs} ď }Γs

qRrχs}}Psrχs} ` }Γs
qR}}pχs ´ rχsqPs}}rχs}

ď 2εe´γs´1Ls{4 ` 8ε

ρs´1

¨ 3εe´γs´1Ls{8

ď 6
δs

ρs´1

.

It remains to estimate }RK}, but this follows inductively. Specifically, by Hypothesis
5.3.2, if θ˚ “ θs,ns,´, it must be that js “ 1 and so }RK} ď 4ρ´1

s´1 by (2.11). If

θ˚ P Ip1q
s , we have the estimate }RK} ď 4ρ´1

s , either by (2.11) if js “ 1, or by (3.13)
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and Proposition 3.6 if js “ 2, since the separation guaranteed by Proposition 3.6 is
bigger than 2ρs. In either case, }RK} ď 4ρ´1 by our definition of ρ. Thus, we compute

}ΓspBθψsq} “ }ΓsRKV
1ψs}

ď }ΓsRK}}pχs ´ rχsqV 1ψs} ` }ΓsRKrχs}}V 1ψs}
ď }ΓsRK}}pχs ´ rχsqV 1ψs} ` D0

´
}Γs

qRrχs} ` }Γs
qRPsrχs} ` }Γs

qRΓΛs

qP }}RK}}rχs}
¯

ď 8ερ´1 ¨ 3D0δs ` D0

`
2δs ` 6δsρ

´1
s´1 ` 8δsρ

´1
˘

ď 24D0

δs

ρ
,

as claimed. The estimate for the unit eigenvector of HΛs`ns follows analogously using
the intervals pΛs ` nsq X Λl{c{r instead of the intervals Λs X Λl{c{r.

5.3.3 Constructing the descendants Es`1

With these estimates, we are ready to invoke the content of Sections 2 and 3:

Lemma 5.10. We have the following:

1. (Simple resonance): If θ˚ P I
p1q
s and E˚ “ Espθ˚q, then HΛs`1pθ˚q satisfies

Assumption 1 with the following assignments:

pΛ “ Λs`1, Λ “ Λs,

ρ “ ρs, δ “ δs, γ “ γs, ℓ “ ℓs.

2. (Double resonance): If θ˚˚ “ θs,ns,´ and E˚˚ “ Espθ˚q, then HΛs`1pθ˚˚q satisfies
Assumption 2 with the following assignments:

pΛ “ Λs`1, Λ´ “ Λs, Λ` “ Λs ` ns,

qρ “ 2

3
ρs´1, δ “ δs, γ “ γs, ℓ “ ℓs, ν “ νs.

Proof. We verify the relevant assumptions in each case:

1. The values δ, ρ, and γ satisfy (2.1) and (2.2) by definition. Taking ψ “ ψs,
item 1 of Assumption 1 is immediate by definition of E˚. Items 2 and 5 follow
immediately from Lemma 5.9, and item 3 follows immediately from Lemma 5.8.
Finally, item 4 follows from the inductive bound }RΛs

K,θ,E} ď 4ρ´1
s (following

from either Proposition 2.1 or 3.1, depending on the value of js) and the bound

}RΛs`1zΛs

θ,E } ď 4ρ´1
s from Lemma 5.8.
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2. Again, δ, qρ, and γ satisfy (3.1), (3.2), and (3.3) by definition. As in case 1,
item 1 of Assumption 2 is immediate by definition of E˚˚, items 2 and 5 follow
immediately from Lemma 5.9, and item 3 follows immediately from Lemma 5.8.
Since ns P Ns ‰ H, we must have js “ 1, and so inductively }RΛs

K,θ,E} ď 4ρ´1
s´1 ă

4qρ´1 for |E ´E˚˚| ď ρs´1 “ 3
2
qρ (and similarly for }RΛs`ns

K,θ,E }) by Proposition 2.1.

Item 4 follows from this observation and the bound }RΛs`1zpΛsYΛs`nq
θ,E } ď 4ρ´1

s´1 ă
4qρ´1 from Lemma 5.8. Finally, item 6 follows from Lemma 5.5.

As a consequence of the above, for each phase interval Is P I, we have found an
interval Λs`1 “ Λs`1pIsq such that any resonant Rellich function is Morse with at

most one critical point and whose eigenvector is localized. Specifically, if Is “ I
p1q
s,i we

have found a unique Rellich function

E
p1q
s`1,i : I

p1q
s,i Ñ J

p1q
s`1,i

of HΛs`1, where we define J
p1q
s`1,i to be the image of I

p1q
s,i under E

p1q
s`1,i. Similarly, for

each I
p2q
s,n,´, n P Ns, we have found two Rellich functions

E
p2q
s`1,n,‚ : I

p2q
s,n,´ Ñ J

p2q
s`1,n, ‚ P t_,^u

of HΛs`1, where we define J
p2q
s`1,n to be the smallest interval containing the images of

I
p2q
s,n,´ under both Rellich functions. We note that, since ε ă 1

3
and ℓs, Ls ă M

p2q
s`1,

we may choose pσ “ σs`1 in Theorem 3.2, as this choice satisfies (3.14). To finish
constructing the children of Es, we must modify the domains of these new Rellich
functions so as to again satisfy Assumption 3.

In the simple-resonant case, by Lemma 5.5 and Proposition 2.2, the function E
p1q
s`1,i

satisfies the assumptions of Lemma 4.12 relative to the function E
p1q
s,i with δ “ δs and

ρ “ ρs; thus, we may find an interval I
p1q
s`1,i Ă I

p1q
s,i and its image J

p1q
s`1,i :“ E

p1q
s`1,ipI

p1q
s`1,iq

with

|Ip1q
s,i zIp1q

s`1,i| ď 32δs
ν̄s

! ρs

24D0

.

We abuse notation and henceforth denote by E
p1q
s`1,i the restriction of the Rellich

function of HΛs`1 to the interval I
p1q
s`1,i.

The double-resonant case requires a bit more care. If Is “ I
p2q
s,ns,´, ns P Ns, we

recall the regions
J p2q
s,ns

:“ Bρ̄spEnsq, I
p2q
s,ns,˘ :“ E´1

s,˘pJ p2q
s,ns

q.
Note that one has

B ρ̄s
D0

pθs,ns,˘q Ă I
p2q
s,ns,˘ Ă B ρ̄s

νs

pθs,ns,˘q

since νs ď |BθEs| ď D0 on I
p2q
s,ns,˘.
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Denote by

Ẽp2q
s,ns,_pθq :“ maxtEs,´pθq,Es,`pθ ` nsαqu, θ P Ĩp2q

s,ns,_ :“ rinf Ip2q
s,ns,´, sup I

p2q
s,ns,` ´ nsαs,

Ẽp2q
s,ns,^pθq :“ mintEs,´pθq,Es,`pθ ` nsαqu, θ P Ĩp2q

s,ns,^ :“ rinf Ip2q
s,ns,` ´ nsα, sup I

p2q
s,ns,´s.

We denote also

Ip2q
s,ns,X :“ I

p2q
s,ns,´ X pIp2q

s,ns,` ´ nsαq Ă Ĩp2q
s,ns,‚, ‚ P t_,^u.

Since θs,ns,` “ θs,ns,´ ` nsα, we have that

B ρ̄s
D0

pθs,ns,´q Ă Ip2q
s,ns,X.

By construction,
|Ẽp2q

s,ns,‚pĨp2q
s,ns,‚q| “ ρ̄s, ‚ P t_,^u,

and thus, by Lemma 4.2,

|tθ P Ĩp2q
s,ns,‚ : Ẽp2q

s,ns,‚pθq “ Espθ ` pαqu| ě ρ̄s

D0

, ‚ P t_,^u, p P t0, nsu.

The functions Ẽ
p2q
s,ns,‚ satisfy Assumption 3; by Lemma 5.5 and Theorem 3.2, the

Rellich functions E
p2q
s`1,ns,‚ satisfy the assumptions of Lemma 4.11 relative to the

functions Ẽ
p2q
s,ns,‚ with δ “ Cδs; thus, we may find an interval I

p2q
s`1,ns,‚ Ă Ĩ

p2q
s,ns,‚ and its

image J
p2q
s`1,ns,‚ :“ E

p2q
s`1,ns,‚pIp2q

s`1,ns,‚q with

|Ĩp2q
s,ns,‚zIp2q

s`1,ns,‚| ď 32Cδs
ν̄s

! ρs

24D0

.

In particular, we note that |Ip2q
s`1,ns,X| ě ρs

D0
´ ρs

24D0
" 5ρs

4νs
, where I

p2q
s`1,ns,X :“ I

p2q
s`1,ns,_ X

I
p2q
s`1,ns,^, so we may choose η “ 5ρs

4νs
and ρ “ ρs in Theorem 3.2, with Bηpθs,ns,´q Ă

I
p2q
s`1,ns,X. We abuse notation and henceforth denote by E

p2q
s`1,ns,‚ the restriction of the

corresponding Rellich function of HΛs`1 to the interval I
p2q
s`1,ns,‚, ‚ P t_,^u.

Denote the collection of all descendants of Es constructed above by EpEsq.
Lemma 5.11. Let Es`1 P EpEsq be constructed as above.

1. Es`1 : Is`1 Ñ Js`1 satisfies Assumption 3 with Morse constants

ds`1 “ νs{12,
Ds`1 “ 2D0p1 ` D0σ

´1
s`1q

and boundary derivative constant

νs`1 “ min

#
ds`1

14p8M p1q
s`2qτ

,
ν̄s

2

+
“ ν̄s

2

66



2. Js`1 Y rJpEs`1q Ă rJpEsq

3. If Es does not attain its maximum at a critical point, then

sup
rrJpEsq ď sup

ď

EPEpEsq

rrJpEq.

Similarly, if Es does not attain its minimum at a critical point, then

inf
rrJpEsq ě inf

ď

EPEpEsq

rrJpEq.

4. If Es`1 does not attain its supremum supJs`1 at a critical point and sup Js`1 ‰
supE1PEpEsq supJ

1, then there is some E1
s`1 P EpEs`1q such that

B 11ρs
4

psup Js`1q Ă J1
s`1.

The same statement holds with inf in place of sup.

Proof. Item 1 follows immediately from Lemma 5.10; from the same result, we likewise
have

| sup J pjq
s`1,i ´ sup J

pjq
s,i |, | inf J pjq

s`1,i ´ inf J
pjq
s,i | ď Cδs ! ρs{2

for j P t1, 2u and all i for which these intervals are defined. The process of “trimming”
the function by Lemma 4.11 or 4.12 does not change the supremum or infimum; thus,
we still have

| sup Jp1q
s`1,i ´ sup J

p1q
s,i |, | inf Jp1q

s`1,i ´ inf J
p1q
s,i | ď Cδs ! ρs{2,

| sup Jp2q
s`1,ns,_ ´ sup J p2q

s,ns
|, | inf Jp2q

s`1,ns,^ ´ inf J p2q
s,ns

| ď Cδs ! ρs{2.

In particular, since each E
p2q
s`1,n,_ attains its infimum at a critical point, and each

E
p2q
s`1,n,^ attains it supremum at a critical point, this estimate applies at every non-

critical value extremum of any Es`1 P EpEsq.
The next three items follow. Specifically, by construction,

sup rJpEsq ´ sup J
pjq
s`1,i ě ρs;

and by definition,
sup rJpEs`1q ´ supJs`1 ď ρs`1.

These estimates, combined with the analogous estimates with inf and with the esti-
mates established above, give item 2. For item 3, we use the fact that by construction,

sup rJpEsq ´ sup
i,j

sup J
pjq
s,i ď 2ρ̄s ` ρs ! ρs´1{24,
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and the fact that, by definition, for each E P EpEsq, E : I Ñ J, we have

supJ ´ sup
rrJpEq ď 5

4
ρs ! ρs´1{24.

Since, by definition, sup rJpEsq ´ sup
rrJpEsq “ ρs´1{8, and the analogous estimates

with inf hold, item 3 follows from the above estimates. Item 4 follows from the
above estimates and the fact that, by construction, each pair of adjacent intervals
J

pjq
s,i overlap by 3ρs.

Finally, we verify the directional regularity of our new endpoints:

Lemma 5.12. For all θ˚ P Is`1 for all E˚ P BρspEs`1pθ˚qq, Ls`1{2 ` 1 is s ` 1-left-
regular and ´pLs`1{2 ` 1q is s ` 1-right-regular relative to pθ˚, E˚q.

Proof. We will show the point Ls`1{2 ` 1 is s ` 1-left-regular; the other case is
analogous. Since Ls`1{2 ` 1 is s-regular by Lemma 5.7, it suffices to check that
rLs`1{2 ` 1, 5Ls`1{4 ` 1s is s-nonresonant.

In the case js`1 “ 2, we have θ˚ P I
p2q
s`1,ns,Y, an interval of length at most ρs´1{12D0;

thus distpθ˚, Is,´q ď ρs´1{12D0, and distpθ˚ ` nsα, Is,`q ď ρs´1{12D0. Then, by
the Diophantine condition, distpθ˚ ` mα, Isq ą ρs´1{12D0 for all m P rLs`1{2 `
1, 5Ls`1{4 ` 1s, which implies that interval is s-nonresonant.

Consider instead the case js`1 “ 1. We have

|Es`1pθ˚q ´ Espθ˚q| ď Cδs ! ρs{2,

and for any m P rLs`1{2 ` 1, 5Ls`1{4 ` 1s,

0 ă |m| ď p5Ls`1{4 ` 1q ă 8M
p1q
s`1;

by Lemma 5.5, it follows that, for any such m, if θ˚ ` mα P Is,

|Espθ˚ ` mαq ´ E˚| ě |Espθ˚q ´ Espθ˚ ` mαq| ´ |E˚ ´ Espθ˚q|
ě |Espθ˚q ´ Espθ˚ ` mαq| ´ 2ρs ą ρs.

5.4 Resonant orbits

We note that double resonance of any descendant Es`1 can happen only at lengths
greater than Ls`1:

Lemma 5.13. If js`1 “ 1, then

mint|n| : n P Ns`1u ą 8M
p1q
s`1 ě Ls`1.

If js`1 “ 2, then Ns`1 “ H.
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Proof. In the case js`1 “ 2, the interval Is`1 is a single interval of length at most
ρs´1{24D0, and Ns`1 “ H by the Diophantine condition.

Consider instead the case js`1 “ 1, and suppose for the sake of contradiction that

there exists n P Ns`1 with |n| ď 8M
p1q
s`1. Then by definition there exists θs`1,n,´ P

Is`1,´ such that θs`1,n,´ ` nα P Is`1,` and Es`1pθs`1,n,´q “ Es`1pθs`1,n,´ ` nαq.
Define the function gpθq “ Espθq ´ Espθ ` nαq. Since js`1 “ 1, we have that

|gpθs`1,n,´q| ď 2Cδs; furthermore, we have

|Bθgpθq| ě 2

ˆ
νs ´ C

δs

ρs

˙
ě νs

for θ P Ip2q
s`1,n,´ by Lemma 5.5. Thus, there exists some point θs,n,´ with

|θs,n,´ ´ θs`1,n,´| ă 2C
δs

νs
! 3

4D0

ρ̄s

such that |gpθs,n,´q| “ 0; since |n| ď 8M
p1q
s`1, n P Ns. But B3ρ̄s´1{4D0

pθs´1,n,´q X
I

p1q
s´1,i,´ “ H for any i and any n P Ns; thus, js`1 “ 2, a contradiction.

This allows us to verify a remaining item of the inductive proposition:

Lemma 5.14. If E˚ “ Ens`1
pEs`1q for ns`1 P Ns`1, then BρspE˚q Ă rJpEsq.

Proof. Let ns`1 P Ns`1 and E˚ “ Ens`1
. We have two cases:

• If Es`1 does not attain its minimum at a critical point, since E˚ P rJpEs`1q,
E˚ ´ ρs P Js`1 Ă rJpEsq, by Lemma 5.11.

• If Es`1 attains its minimum at a critical point, note that as Ns`1 is nonempty,
js`1 “ 1 by Lemma 5.13. Thus, by Lemma 5.10, Es`1 is C2-close to Es, so Es

also attains its minimum at a critical point, with | inf Js ´ inf Js`1| ď 2δs. By
Lemma 4.7, E˚ ´ inf Js`1 " 2δs; thus

E˚ ´ ρs ě inf Js`1 ` 2δs ´ ρs

ě inf Js ´ ρs

“ inf rJpEsq.

In either case, E˚ ´ ρs ě inf rJpEsq; analogously, E˚ ` ρs ď sup rJpEsq.

We likewise demonstrate that s-resonant points m correspond to points θ˚ ` mα

in the domain of the relevant Rellich function (part of Hypothesis 5.3.2):

Lemma 5.15. Let θ˚ P T and Es`1 P EpEsq, and suppose that E˚ satisfies the
following:
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1. If js`1 “ 1, either E˚ P rJpEs`1q, or the closest point in Js`1 to E˚ is a critical
value of Es`1.

2. If js`1 “ 2 (and so Es`1 “ E
p2q
s`1,ns,‚), then E˚ P rinf rJpEp2q

s`1,ns,^q, sup rJpEp2q
s`1,ns,_qs

Let m P Sspθ˚, E˚q. Then:

1. If js`1 “ 1, then Bρs{24D0
pθ˚ ` mαq Ă Is`1.

2. If js`1 “ 2 (and so Es`1 “ E
p2q
s`1,ns,‚), then for some p P tm,m´nsu, Bρs{24D0

pθ˚`
pαq Ă I

p2q
s`1,ns,Y. Furthermore, if θ˚ ` pα P Is`1,ns,‚zIs`1,ns,X, then

|Ep2q
s`1,ns,‚pθ˚ ` pαq ´ E˚| ă 9

8
ρs.

Proof. The proof proceeds by case analysis:

1. js`1 “ 1:

(a) Is`1 is a union of two disjoint intervals: In this case, Es`1 has no critical

points, so E˚ P rJpEs`1q “ rinf Js`1 ` 9
8
ρs, supJs`1 ´ 9

8
ρss. Thus,

Espθ˚ ` mαq P rinf Js`1 ` 1

12
ρs, supJs`1 ´ 1

12
ρss,

and so

Es

´
B ρs

24D0

pθ˚ ` mαq
¯

Ă rinf Js`1 ` 1

24
ρs, supJs`1 ´ 1

24
ρss.

On the other hand, one has

Es,˘pIs`1,˘q Ą rinf Js`1 ` 1

24
ρs, supJs`1 ´ 1

24
ρss

since js`1 “ 1, and in particular

Is`1 Ą E´1
s

ˆ
rinf Js`1 ` 1

24
ρs, sup Js`1 ´ 1

24
ρss

˙
Ą B ρs

24D0

pθ˚ ` mαq.

(b) Is`1 is a single interval: In this case, Es`1 has a unique critical point
in Is`1. Suppose that this critical point is a minimum (the other case is
analogous). Since js`1 “ 1, Es likewise achieves its minimum at a critical

point, and by definition of rJpEs`1q and our assumption on E˚ we have

E˚ ď sup Js`1 ´ 9

8
ρs.
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As above, we find

Es

´
B ρs

24D0

pθ˚ ` mαq
¯

Ă rinf Js, supJs`1 ´ 1

24
ρss.

On the other hand, one has that

Es,˘pIs`1,˘q Ą rinf Js, supJs`1 ´ 1

24
ρss

since js`1 “ 1, and in particular

Is`1 Ą E´1
s

ˆ
rinf Js, supJs`1 ´ 1

24
ρss

˙
Ą B ρs

24D0

pθ˚ ` mαq.

2. js`1 “ 2 and Es`1 “ E
p2q
s`1,ns,‚: By assumption, we have

E˚ P rinf rJpEp2q
s`1,ns,^q, sup rJpEp2q

s`1,ns,_qs,

from which it follows that

Es

´
B ρs

24D0

pθ˚ ` mαq
¯

Ą rinf Js`1,^ ` 1

24
ρs, supJs`1,_ ´ 1

24
ρss

in analog to the above. We have two subcases:

(a) θ˚ ` mα P Is,´: Let I “ rinf Is`1,_, sup Is`1,^s Ă Is`1,ns,Y. Since js`1 “ 2,
we have

Es,´pIq Ą rinf Js`1,^ ` 1

24
ρs, supJs`1,_ ´ 1

24
ρss,

from which it follows that

I Ą E´1
s,´

ˆ
rinf Js`1,^ ` 1

24
ρs, supJs`1,_ ´ 1

24
ρss

˙
Ą B ρs

24D0

pθ˚ ` mαq.

Furthermore, for θ P pIs`1,ns,_zIs`1,ns,^q X I, we have by Lemma 3.9 that

|Ep2q
s`1,ns,_pθq ´ Espθq| ă Cδs ! ρs{12,

and similarly for _ and ^ swapped. The lemma thus holds in this case
taking p “ m.

(b) θ˚ ` mα P Is,`: Let I “ rinf Is`1,^, sup Is`1,_s Ă Is`1,ns,Y. Since js`1 “ 2,
we have

Es,`pI ` nsαq Ą rinf Js`1,^ ` 1

24
ρs, supJs`1,_ ´ 1

24
ρss,
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from which it follows that

I`nsα Ą E´1
s,`

ˆ
rinf Js`1,^ ` 1

24
ρs, supJs`1,_ ´ 1

24
ρss

˙
Ą B ρs

24D0

pθ˚`mαq,

i.e. for p “ m´ ns,

Is`1,ns,Y Ą I Ą B ρs
24D0

pθ˚ ` pαq.

Furthermore, for θ P pIs`1,ns,_zIs`1,ns,^q X I, we have by Lemma 3.9 that

|Ep2q
s`1,ns,_pθq ´ Espθ ` nsαq| ă Cδs ! ρs{12,

and similarly for _ and ^ swapped. The lemma thus holds in this case
taking p “ m ´ ns.

5.5 Nonresonance

We now prove that the nonresonance hypothesis 5.3.3 holds at scale s` 1. We begin
by establishing Green’s function decay for s` 1-nonresonant intervals provided their
left and right endpoints are ps ` 1q-left- and ps ` 1q-right-regular, respectively.

Lemma 5.16. Let θ˚ P T and E˚ P rJpEsq be such that

• If Es does not attain its maximum at a critical point, then E˚ ď sup
Ť

EPEpEsq
rJpEq.

• If Es does not attain its minimum at a critical point, then E˚ ě inf
Ť

EPEpEsq
rJpEq.

Let Es`1 P EpEsq be a Rellich curve minimizing distpE˚, rJpEqq among all E P EpEsq,
and let pΛ “ ra, bs Ă Z be an ps`1q-nonresonant interval with a being ps`1q-left-regular
and b being ps ` 1q-right-regular. Then for E P Bρs`1{2pE˚q and θ P Bρs`1{8D0

pθ˚q,

log |RpΛ
θ,Epm,nq| ď ´γs`1|m´ n|, |m ´ n| ě ℓs`1,

and
}RpΛ

θ,E} ď 4ρ´1
s`1.

Proof. Recall the set Sspθ˚, E˚q (defined relative to the parent curve Es), and define

S
pΛ
s :“ Ss X pΛ. If S

pΛ
s is empty, then pΛ is s-nonresonant and the lemma follows from

the inductive hypothesis. We thus assume S
pΛ
s is nonempty.

In order to apply Lemmas A.3 and A.1, we wish to find a finite family tΛs`1 `
pu

pPS
pΛ
s

of translates of Λs`1 such that each m P S
pΛ
s is near the center of Λs`1 ` p for

some p P S
pΛ
s and }RΛs`1`p

θ˚,E˚
} ď ρ´1

s`1 for all p P S
pΛ
s . We do so by case analysis:
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1. js`1 “ 1:

For any m P S
pΛ
s , θ˚ `mα P Is`1 by Lemma 5.15, and since |Espθ˚ `mαq´E˚| ă

25ρs{24 and pΛ is ps ` 1q-nonresonant, we have

9

8
ρs ą |Es`1pθ˚ ` mαq ´ E˚| ě ρs`1.

By the eigenvalue separation estimates in Section 2 coming from Lemma 5.10,
it follows that |λ ´ E˚| ě ρs`1 for any eigenvalue λ of HΛs`1`mpθ˚q, and so

}RΛs`1`m

θ˚,E˚
} ď ρ´1

s`1. In this case, we define S
pΛ
s “ S

pΛ
s .

2. js`1 “ 2:

Let Es`1 “ E
p2q
s`1,ns,_ (the ^ case is analogous), and fix m P S

pΛ
s . By Lemma

5.15, θ˚ ` pα P I
p2q
s`1,ns,Y for some p “ pm P tm,m ´ nsu. By the regularity

assumption on the endpoints of pΛ, we must have that p P pΛ. We have subcases:

(a) θ˚ ` pα P I
p2q
s`1,ns,X: We have |Es`1pθ˚ ` pαq ´ E˚| ě ρs`1. To separate

E˚ from E
p2q
s`1,ns,^pθ˚ ` pαq, we crucially use the uniform separation be-

tween the images of E
p2q
s`1,ns,_ and E

p2q
s`1,ns,^ guaranteed by Proposition 3.6.

This separation is greater than 2ρs`1, which implies that rJpEp2q
s`1,ns,_q and

rJpEp2q
s`1,ns,^q are disjoint; since, by assumption,

distpE˚, rJpEs`1qq ď distpE˚, rJpEp2q
s`1,ns,^qq,

we have
E˚ ě sup rJpEp2q

s`1,ns,^q “ sup J^ ` ρs`1,

and so
|Ep2q

s`1,ns,^pθ˚ ` pαq ´ E˚| ě ρs`1.

It remains to separate E˚ from other eigenvalues of HΛs`1`p. Because

dist
´
E˚,EspIp2q

s`1,ns,X Y pIp2q
s`1,ns,X ` nsαqq

¯
ă 25

24
ρs ! 1

12
ρs

and by construction

|EspIp2q
s`1,ns,X Y pIp2q

s`1,ns,X ` nsαqq| ! 1

4
ρs´1,

it follows that

|E˚ ´ Espθs,ns,´q| ă 1

3
ρs´1 “ 1

2

ˆ
2

3
ρs´1

˙
.

Thus we may apply the estimate on }RKpE˚;H
Λs`1`p, tEs`1,_uYtEs`1,^uq}

coming from Section 3 and Lemma 5.10. It follows that }RΛs`1`p

θ˚,E˚
} ď ρ´1

s`1.
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(b) θ˚ `pα P I
p2q
s`1,ns,_zIp2q

s`1,ns,^ (The case with _ and ^ swapped is analogous.):
Lemma 5.15 and the eigenvalue separation estimate from Lemma 3.9 ensure
|λ´E˚| ě ρs`1 for any eigenvalue λ ‰ E

p2q
s`1,ns,^ of HΛs`1`ppθ˚q. As in the

Is`1,ns,X case,

|Ep2q
s`1,ns,^pθ˚ ` pαq ´ E˚| ě ρs`1.

It follows that }RΛs`1`p

θ˚,E˚
} ď ρ´1

s`1.

We denote by S
pΛ
s the set of all integers p coming from m P S

pΛ
s as above.

For each interval Λs`1 `p, p P S
pΛ
s , it follows immediately from }RΛs`1`p

θ˚,E˚
} ď ρ´1

s`1 that,
for E P B3ρs`1{4pE˚q and θ P Bρs`1{8D0

pθ˚q, that

}RΛs`1`p

θ,E } ď 8ρ´1
s`1.

By the s ` 1-regularity of the endpoints of pΛ “ ra, bs, for any m P S
pΛ
s , we have

mint|m ´ a|, |m ´ b|u ě 3Ls`1{4;

since |p´m| ď 8M
p1q
s`1 ! Ls`1{4, we have that Λs`1 ` p Ă Λ for all p P S

pΛ
s . Moreover,

by Lemma 5.5, the intervals tΛs`1 ` pu
pPS

pΛ
s

are non-overlapping. Enumerating S
pΛ
s “

tpiu|S
pΛ
s |

i“1 in increasing order, we denote by rΛi :“ rpi, pi `nss (with the convention that

ns “ 0 if js`1 “ 1) and define the intervals rΛi,l{r to be the maximal intervals to the

left/right of rΛi, i.e.

rΛi,l “ rmax rΛi´1 ` 1,min rΛi ´ 1s “: rrai,l,rbi,ls,
rΛi,r “ rmax rΛi ` 1,min rΛi`1 ´ 1s “: rrai,r,rbi,rs.

We note that rΛi,r “ rΛi`1,l, but we fix this notation to emphasize the relationship of

these intervals to rΛi.
Again by Lemma 5.5, each interval rΛi,l{r is s-nonresonant and has length at least

Ls`1 " 2Ls ` 3M
p1q
s , and thus each such interval satisfies the inductive hypothesis

5.3.3. In particular, there exist intervals Λi,l{r “ rai,l{r, bi,l{rs Ă rΛi,l{r satisfying the
Green’s function decay property for pℓs, γsq with

maxt|rai,l{r ´ ai,l{r|, |rbi,l{r ´ bi,l{r|u ď 2Ls ` 3M p1q
s ! 1

2
M

p1q
s`1.

Moreover, by the regularity of the endpoints of pΛ, we can choose

a1,l “ ra1,l “ a, b
|S

pΛ
s |,r

“ rb
|S

pΛ
s |,r

“ b.
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Define Λi “ rbi,l `1, ai,r ´1s. We have Λi Ă Λs`1 `pi Ă pΛ and }RΛs`1`pi} ď 8ρ´1
s`1,

so we may apply Lemma A.3 to conclude that pΛ, partitioned by the Λi and Λi,l{r

subintervals, satisfies Assumption 4 with pℓ, γq “ pℓs, γsq and pℓ “ ℓs`1. By Lemma

A.1, pΛ satisfies the Green’s function decay property for pℓs`1, γs`1q where γs`1 “
γs ´ 16| log ε logpρs`1{8q|{ℓs`1.

Since we have shown the Green’s function decay property for |E ´ E˚| ă 3
4
ρs`1,

it follows that the resolvent is well-defined for |E ´ E˚| ă 3
4
ρs`1, i.e., E R spH

pΛpθq.
Thus, for |E ´ E˚| ď ρs`1{2, }RpΛ

θ,E} ď 4ρ´1
s`1.

Finally, the following lemma shows that if the endpoints of pΛ are not regular,
we can adjust them (provided pΛ is sufficiently long) to find a subinterval which does
satisfy the conditions of Lemma 5.16.

Lemma 5.17. Let θ˚, E˚,Es`1 P E pjs`1qpEsq satisfy the relations stated in Lemma

5.16, and let pΛ “ ra, bs with |pΛ| ě 2Ls`1 ` 3M
p1q
s`1. Then there exists a subinterval

Λ̃ “ rã, b̃s Ă Λ with |Λ̃| ě |pΛ| ´ p2Ls`1 ` 3M
p1q
s`1q such that ã is s ` 1-left-regular and

b̃ is s ` 1-right-regular.

Proof. In the following, if js`1 “ 1, we adopt the convention that ns “ 0.

Let ma minimize |m´ a| among m P S
pΛ
s . If θ˚ ` maα P Is and |ma ´ a| ă Ls, we

replace a with as´1 “ maxtma`1, ma`n0`1u; similarly, if θ˚ `maα P Is`1`nsα and
|ma ´a| ă Ls`1, replace a with as “ maxtma `1, ma ´ns `1u. Otherwise as “ a. We
perform analogous adjustments to b. We repeat this process for each s ´ 1 ě i ě 1,
with i replacing s, and set ã “ a0 and b̃ “ b0. By the inductive proposition, these
endpoints satisfy the necessary regularity conditions.

5.6 Proof of Proposition 5.3 and Theorem 5.4

Proof. The lemmas above complete the proof of inductive Proposition 5.3 at scale s.
The integers Ls`1 satisfy the Proposition by Lemmas 5.7 and 5.12. Any function in
Es`1 P EpEsq is a Rellich function of some HΛs`1 satisfying Assumption 3 by Lemma
5.11; such a function satisfies inductive hypothesis 5.3.1 by Lemma 5.10, hypothesis
5.3.2 by Lemmas 5.13 and 5.15, and hypothesis 5.3.3 by Lemmas 5.16 and 5.17. For
any Es`1 P EpEsq, Js`1 Y rJpEs`1q Ă rJpEsq by Lemma 5.11; and if E˚ “ Ens`1

pEs`1q
for ns`1 P Ns`1, then BρspE˚q Ă rJpEsq by Lemma 5.14. Item 4 follows from Lemma
5.5.

Since our choice of ε ă ε0 “ ρ40 was arbitrary provided L was sufficiently long as
in Lemma 5.2, Theorem 5.4 holds.
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6 Localization and Cantor spectrum

With the induction argument of Section 5 complete, we have now constructed a tree
of Rellich functions Es, cf. Figure 4, with each child classified as being either simple-
or double-resonant relative to its parent. In this section we relate this tree to spectral
information about the limiting operator H . In particular, we will show the following:

1. The spectral points ofH are precisely the limit points of the modified codomains
rrJpEkq along any infinite path tEku8

k“0 in our Rellich tree.

2. Every Rellich function E has some double-resonant descendant; by the uniform
local separation estimate from Proposition 3.6, the gap that this double reso-
nance opens is large enough to remain open for all future scales, guaranteeing
Cantor spectrum.

3. The set B of bad phases θ˚ which encounter a scale-k double resonance on an
orbit of approximate size M

p2q
k`1 for infinitely many scales k has zero measure.

The full-measure complement Θ of this bad set will have the property that, for
θ P Θ, any generalized eigenvalue Epθq of Hpθq corresponds to a path tEpjkq

k u8
k“0

which eventually consists only of simple resonances, i.e. there exists some K
such that jk “ 1 for all k ě K. In fact, we will show that this path can be
chosen so that the corresponding center of localization mk eventually remains
fixed; this will yield exponential localization of the corresponding generalized
eigenfunction, hence Anderson localization.

To this end, it will be useful to introduce some notation to refer to different parts
of our Rellich tree. Recall that EpEq denotes the collection of all immediate children of
the Rellich curve E, and that Es denotes the collection of all scale-s Rellich functions,
i.e. the sth “generation” of the tree. For a Rellich function E P Ek, k ď s, we denote
by EspEq the collection of all the scale-s descendants of E; i.e., for a scale-k Rellich
function Ek, EkpEkq “ tEku, and for all s ě k, if E1 P EspEkq and E2 P EpE1q, then
E2 P Es`1pEkq. With this notation we have Ek “ EkpE0q; we denote by E :“ Ť

kě0 Ek

the entire Rellich tree.

6.1 Characterization of the spectrum

In this first subsection, we use paths through the tree of Rellich curves to characterize
the spectrum of H .

First, note that there can be at most one energy common to the modified codomains
rJpEkq of all Rellich functions in an infinite path:

Lemma 6.1. Let tEku8
k“0 be a sequence of Rellich functions such that Ek`1 P EpEkq

for all k ě 0. Then lim infkÑ8 |rJpEkq| “ lim infkÑ8 |rrJpEkq| “ 0. In particular,
Ş8

k“0

rrJpEkq contains at most a single point.
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Proof. By construction, |rJpEkq|, |rrJpEkq| ď 4ρ̄k´1 Ñ 0.

Thus, each infinite path characterizes a single point; we will show these are spectral
points. Define the sets

Σ :“
#
E P R : E “

8č

k“0

rrJpEkq, Ek`1 P EpEkq @k ě 0

+

and

G :“ pRzrrJpE0qq Y
ď

EPE

¨
˝rrJpEqz

ď

E1PEpEq

rrJpE1q

˛
‚.

We will show that Σ characterizes the spectrum of Hpθq, while G characterizes the
spectral gaps. We first show that points in Σ are indeed spectral:

Lemma 6.2.

Σ Ă spHpθq.
Proof. Let E P Σ. Then for each k ě 0, we can find a pθk, Ekq P T ˆ R, with
|E ´ Ek| ď ρk, and Ek P E such that HΛkψk “ Ekpθkqψk “ Ekψk. By irrationality
of α, we can find some mk P Z such that }pθ ` mkαq ´ θk}T ă ρk{D0. Let P be
the partition of Z into Λk and its complement, and let ψmk

k denote ψk shifted by mk.
Then

}pHpθq ´ Eqψmk

k } “ }pHpθ ` mkαq ´ Eqψk}
ď }Hpθ ` mkαq ´ Hpθkq} ` }pHpθkq ´ Ekqψk} ` |Ek ´ E|
ď }V pθ ` mkαq ´ V pθkq} ` }ΓPψk} ` |Ek ´ E|
ă 3ρk

Thus tψmk

k u8
k“0 forms a Weyl sequence for E, and E P spHpθq.

We now establish an important technical lemma demonstrating that energies out-
side of the modified codomains of all children of a Rellich curve are uniformly non-
resonant on sufficiently long intervals Λ:

Lemma 6.3. Let E˚ P rrJpEkqzŤ
EPEpEkq

rrJpEq. Then for any θ˚ P T, there are arbi-

trarily long intervals Λ̃ with the pℓk`1, γk`1q Green’s function decay property.

Proof. It suffices to show that the hypotheses of Lemma 5.17 are met by E˚, any
θ˚ P T, and any sufficiently long interval Λ Ă Z.

Suppose Ek does not attain its maximum at a critical point. We have E˚ P
rrJpEkq Ă rJpEkq, and, by item 2 of Lemma 5.11,

E˚ ď sup
rrJpEkq ď sup

ď

EPEpEkq

rrJpEq ď sup
ď

EPEpEkq

rJpEq
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Similarly E˚ ě inf
Ť

EPEpEkq
rJpEq if Ek does not attain its minimum at a critical point.

Now suppose that E˚ P rJpEqzrrJpEq for some E P EpEkq. By definition of rJ and
rrJ, this means that E˚ is near a non-critical-point extremum of E, and by item 3 of

Lemma 5.11, it follows that E˚ P rrJpE1q for some other E1 P EpEkq, a contradiction.

Thus we have E˚ R rJpEq for any E P EpEsq.
Now let E P EpEkq minimize distpE˚, rJpEqq among all E P EpEkq, let I be its

domain, and let J be its image. By the above comments, this distance is nonzero;
thus, Ec :“ argminEPJ |E˚ ´E| is an extremum of E. But by item 3 of Lemma 5.11,
if this extremum were not a critical point, there would be some E1 P EpEkq with

distpE˚, rJpE1qq ă distpE˚, rJpEqq, which is not the case; thus, Ec is a critical point of

E. Furthermore, since E˚ R rJpEq, distpE˚,Jq ą ρk`1. It follows that for any m P Z,
either |Epθ˚ `mαq ´E˚| ą ρk`1, or θ˚ `mα R I. Thus, all the hypotheses of Lemma
5.17 are met.

As a consequence of this result, we can separate the energies in G from generalized
eigenvalues of H :

Lemma 6.4. If E˚ P G, then there is some ρ ą 0 such that for |E ´ E˚| ă ρ, E
is not a generalized eigenvalue of Hpθq corresponding to a generalized eigenvector ψ
growing at most quadratically (|ψpjq| ă Cpj2 ` 1q).

Proof. By Lemma 6.3, there is some scale k ě 0 for which we have pℓk, γkq Green’s
function decay on arbitrary long intervals; i.e., for |E ´ E˚| ă ρk{2,

log |RΛ̃
E,θpm,nq| ď ´γk|m´ n|, |m ´ n| ě ℓk,

for arbitrarily long intervals Λ̃. Denote Λ̃ “ rã, b̃s.
Assume E is generalized eigenvalue of Hpθq corresponding to a generalized eigen-

vector ψ growing at most quadratically (|ψpjq| ă Cpj2 ` 1q). Fix j P Z, and choose
Λ̃ Q j large enough so mint|ã ´ j|, |̃b ´ j|u ě |Λ̃|{3 ě ℓk. By the Poisson formula
(1.11),

|ψpjq| ď e´γk|Λ̃|{3
´

|ψpã ´ 1q| ` |ψpb̃` 1q|
¯

ď 2Ce´γk|Λ̃|{3pp|j| ` |Λ̃|q2 ` 1q

As |Λ̃| Ñ 8, the right-hand side approaches 0, so we must have |ψpjq| “ 0. Since this
is true for arbitrary j, ψ must be identically zero, i.e., E must not be a generalized
eigenvalue.

Combining the above results with the sets’ definitions, we arrive at the character-
ization of spHpθq:
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Lemma 6.5.

spHpθq “ RzG “ Σ.

Proof. By Lemma 6.2, Σ Ă spHpθq; and since generalized eigenvalues are dense in
spHpθq by Schnol’s Lemma, Lemma 6.4 implies that spHpθq Ă RzG. It remains to

show that RzG Ă Σ. Let E P RzG. The definition of G ensures that E P rrJpE0q, and
if E P rrJpEkq, then E P rrJpEk`1q for some Ek`1 P EpEkq. But this means precisely
that E P Σ; thus RzG Ă Σ.

6.2 Cantor spectrum

Having characterized the spectrum, we now demonstrate that Σ is a Cantor set, i.e.
it is a (closed) nowhere-dense set without isolated points. To do so, we demonstrate
that the spectral gaps G always meet our modified codomains:

Lemma 6.6. For any E P E , rJpEq X G is nonempty.

Proof. We proceed by contradiction: suppose there is some Ek P Ek such that rJpEkqX
G “ ∅.

We first note that Ek cannot contain a critical point. Suppose it attained its
minimum at a critical point; then we would have

inf
rrJpEkq “ inf imEk ´ ρk

ă inf
EPEpEkq

inf imE ´ ρk`1

“ inf
EPEpEkq

inf
rrJpEq.

Then
rrJpEkqzŤ

EPEpEkq
rrJpEq Ă rJpEkq X G is nonempty, contradicting our initial as-

sumption. Analogously, if Ek attains its maximum at a critical point, we reach the
same contradiction. Thus, Ek does not contain a critical point.

Let n P N pα,Ekq such that En P rrJpEkq and distpEn, BrrJpEkqq ě ρk´1{12; by
irrationality of α, such an n exists. We will show that for some Ek`1 P EpEkq,
n P N pα,Ek`1q and EnpEk`1q P rrJpEk`1q with distpEnpEk`1q, BrrJpEk`1qq ě ρk{12.
First note that if En P J

p2q
k,n0

for some n0 P Nk`1, then, by construction, there are

a pair of double-resonant Rellich functions EpEkq Q Ek`1,‚ : I
p2q
k`1,n,‚ Ñ J

p2q
k`1,n,‚ p‚ P

t_,^uq with J
p2q
k`1,n,‚ Ă rrJpEkq; since the uniform local separation between double-

resonant Rellich pairs guaranteed by Proposition 3.6 is larger than 2ρk`1, there is

some E P psup Jp2q
k`1,n,^ ` ρk`1, inf J

p2q
k`1,n,_ ´ ρk`1q, which must then satisfy

E P rrJpEkqz
ď

EPEpEkq

rrJpEq Ă rJpEkq X G,
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contradicting our assumption. Thus En is contained in the images of only simple-
resonant functions Ek`1 P EpEkq. By Lemma 5.11 item 4, we can find some such

function with Bρk{8pEnq Ă rrJpEkq. Let E˘ “ En ˘ ρk{24. Then, since BETEk
ě 2{D0

by the inverse function theorem,

TEk`1
pE`q ě TEk

pE`q ´ 4δs
νs

ě TEk
pEnq ` ρk

12D0

´ 4δs
νs

ě TEk
pEnq

where the first line follows from Lemma 4.13. Similarly,

TEk`1
pE´q ď TEk

pEnq.

By continuity of TEk`1
, there is some E˚ P rE´, E`s with TEk`1

pE˚q “ TEk
pEnq;

by definition, this means n P N pα,Ek`1q with EnpEk`1q “ E˚. By construction,

E˚ P rrJpEk`1q with distpE˚, BrrJpEk`1qq ě ρk`1{12.
But rJpEk`1q Ă rJpEkq by Lemma 5.11, so we can repeat the above procedure to find

Ek`2 P EpEk`1q with n P N pα,Ek`2q satisfying the above conditions. As we continue

to repeat this procedure, we will eventually reach some scale s with |n| ď 8M
p1q
s`1; since

n P N pα,Esq, we will have n P Ns, and we will construct a double-resonant interval

J
p2q
s,n with EnpEsq P J p2q

s,n . As we have shown above, this leads to a contradiction with
our original assumption.

Proof of Cantor spectrum. It suffices to show that for each E P spHpθq, there are
points arbitrarily close to E which are not in spHpθq. Fix E P spHpθq. By Lemmas

6.1 and 6.5, we can find some E P E with rJpEq Ą rrJpEq Q E and |rJpEq| arbitrarily
small. By Lemma 6.6,

rrJpEq Q E 1 for some E 1 P G; by Lemma 6.5, E 1 R spHpθq.

6.3 Localization

We first construct the full-measure set on which localization occurs. Using the defi-
nitions preceding Lemma 4.8, we define the double-resonant regions

JDR
n pρk, 12M p2q

k`1, α,Eq :“ Bρk
pEnpEqq, n P N p12M p2q

k`1, α,Eq

of each function E P Ek, and we define

JDR “
ď

nPN p12M
p2q
k`1

,α,Eq

JDR
n .

80



We now define and measure the sets

Bk :“
ď

EPEk

ď

|n|ď12M
p2q
k`1

`
E´1pJDRq ` nα

˘

on which two resonances at scale k occur at nearby shifts, and define

B :“
8č

n“0

8ď

k“n

Bk.

Lemma 6.7. |B| “ 0.

Proof. By construction, for any E P Ek, |EpEq| ď 10rρ̄´1
k s ! ρ´3

k´1. Thus, for k ě 1,

|Ek| ď |E0|
k´1ź

i“0

ρ´3
i´1 ď ρ´4

k´2. (6.1)

Fix E P Ek. By definition, each |JDR
n | “ 2ρk; by Lemma 4.2, |E´1pJDR

n q| ď
2
b

12
dk
ρk ! ρ

1{2
k´1. Then |E´1pJDRq| “

ˇ̌
ˇ
ř

nPN p12M
p2q
k`1

,α,Eq
E´1pJDR

n q
ˇ̌
ˇ ď 25M

p2q
k`1ρ

1{2
k´1,

and
ˇ̌
ˇ
Ť

|n|ď12M
p2q
k`1

`
E´1pJDRq ` nα

˘ˇ̌
ˇ ď 625pM p2q

k`1q2ρ
1{2
k´1.

Combining this with the above estimate (6.1), we have |Bk| ď 625pM p2q
k`1q2ρ´4

k´2ρ
1{2
k´1,

and
ř8

k“1 |Bk| ď 625
ř8

k“0pM
p2q
k`1q2ρ´4

k´2ρ
1{2
k´1 ă 8. Thus, by the Borel-Cantelli Lemma,

|B| “ 0.

Thus Θ :“ TzB is a set of full measure. For the remainder of this section, we fix
θ P Θ.

To show that Hpθq is Anderson localized, it suffices by Schnol’s lemma [22] to
show that every generalized eigenvector ψ of Hpθq that grows at most quadratically
(|ψpjq| ă Cpj2 ` 1q) in fact decays exponentially. For the remainder of this section,
we fix a generalized eigenvalue Epθq and corresponding generalized eigenvector ψ. By
Lemma 6.5, we can also fix a sequence tEku8

k“0, with Ek`1 P EpEkq for all k ě 0, such

that E P Ş8
k“0

rrJpEkq.
To locate the center of localization for ψ, we first employ an argument similar to

Lemma 6.4:

Lemma 6.8. There is a K P N such that for all k ě K, there is an mk P Z satisfying
|mk| ď 3M

p2q
k such that θ ` mkα P Ik and |E ´ Ekpθ ` mkαq| ă ρk.

Proof. If not, there is an increasing integer sequence tkiu8
i“0 such that r´3M

p2q
ki
, 3M

p2q
ki

s
satisfies the hypotheses of Lemma 5.17 at scale ki. Thus, for each i, there is an interval
Λi :“ rai, bis Ą r´2

3
M

p2q
ki
, 2
3
M

p2q
ki

s which satisfies the Green’s function decay property
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for pℓki, γkiq. For any |n| ď 1
3
M

p2q
ki

, |n ´ ai|, |n ´ bi| ě 1
3
M

p2q
ki

ě ℓki; thus the Poisson
formula (1.11) gives

|ψpnq| ď e
´γkiM

p2q
ki

{3 p|ψpai ´ 1q| ` |ψpbi ` 1q|q

ď 2Ce
´γ0M

p2q
ki

{24pp3M p2q
ki

` 1q2 ` 1q

Fixing n P Z, we have |n| ď 1
3
M

p2q
ki

as i Ñ 8, and the right-hand side of the above
inequality approaches 0. Thus we must have |ψpnq| “ 0. But ψ cannot be identically
zero.

The next lemma confirms that mk is unique at scale 12M
p2q
k`1, and is in fact (even-

tually) independent of k, for θ P Θ.

Lemma 6.9. There is a K P N and m8 P Z, with |m8| ď 3M
p2q
K , such that for all

k ě K,
θ ` m8α P Ik, and |E ´ Ekpθ ` m8αq| ă ρk, (6.2)

and rm8 ´ 12M
p2q
k`1, m8 ´ 1s Y rm8 ` 1, m8 ` 12M

p2q
k`1s is k-nonresonant (relative to

pθ, Eq and Ek).

Proof. By Lemma 6.8, for sufficiently large k, we can choose |mk| ď 3M
p2q
k satisfying

(6.2) (with mk replacing m8). If θ P Θ, then Ekpθ`mαq R JDR for all |m| ď 12M
p2q
k`1,

and thus θ ` mkα is in the simple resonance case of Proposition 4.10 (with 12M
p2q
k`1

in the role of Lp1q), for sufficiently large k; thus, for 0 ă |m ´ mk| ď 12M
p2q
k`1, if

θ ` mα P Ik, then

|E ´ Epθ ` mαq| ě |Epθ `mkαq ´ Epθ `mαq| ´ |E ´ Epθ `mkαq| ą 2ρk ´ ρk “ ρk;

i.e., rmk ´ 12M
p2q
k`1, mk ´ 1s Y rmk ` 1, mk ` 12M

p2q
k`1s is k-nonresonant.

It remains only to show that mk must be independent of k. Suppose mk`1 ‰ mk.

Note that |mk`1| ď 3M
p2q
k`1, so |mk`1 ´ mk| ď 12M

p2q
k`1. Since

θ ` mk`1α P Ik`1 Ă Ik

and rmk ´ 12M
p2q
k`1, mk ´ 1s Y rmk ` 1, mk ` 12M

p2q
k`1s is k-nonresonant, we have |E ´

Ekpθ ` mk`1αq| ą ρk. Furthermore, since

θ ` mk`1α R JDRpρk, 12M p2q
k`1, α,Ekq Ą JDRpρk, 8M p1q

k`1, α,Ekq,

we must have Ek`1 P E p1qpEkq; thus, by Proposition 2.2,

|Ek`1pθ ` mk`1αq ´ Ekpθ ` mk`1αq| ď 2δk ! ρk{2

82



. Thus,

|E ´ Ek`1pθ ` mk`1αq| ě |E ´ Ekpθ ` mk`1αq| ´ |Ek`1pθ ` mk`1αq ´ Ekpθ ` mk`1αq|
ą ρk ´ ρk{2 " ρk`1.

In particular, this means tmk`1u is k ` 1-nonresonant, which contradicts the con-
struction of mk`1; we must therefore have mk`1 “ mk, and consequently mk is in fact
independent of k, and we may set m8 “ mk for all sufficiently large k.

Proof of Anderson localization. As noted above, we need only show that ψ decays
exponentially. Let K and m8 be the integers defined in Lemma 6.9. For |n´m8| ą
8M

p2q
K`1, let k ě K`1 be such that 8M

p2q
k ă |n´m8| ď 8M

p2q
k`1. Consider the interval

Λ “
„
n´

R |n ´ m8|
2

V
, n`

R |n ´ m8|
2

V
.

All m P Λ satisfy 0 ă |m ´ m8| ď 12M
p2q
k`1. Thus, by Lemma 6.9, Λ satisfies the

hypotheses of Lemma 5.17 at scale k; therefore, there is some subinterval

Λ̃ :“ rã, b̃s Ą
„
n´

R |n ´ m8|
2

V
` 3M

p2q
k , n`

R |n´ m8|
2

V
´ 3M

p2q
k



Ą
„
n´

R |n ´ m8|
9

V
, n`

R |n ´ m8|
9

V

which satisfies the Green’s function decay property for pℓk, γkq. Note that
Q

|n´m8|
9

U
ą

8
9
M

p2q
k ě ℓk; thus, by the Poisson formula (1.11),

|ψpnq| ď e´| log ε||n´m8|{9
´

|ψpã´ 1q| ` |ψpb̃ ` 1q|
¯
.

We have

maxt|ã ´ 1|, |̃b` 1|u ď |n| `
R |n ´ m8|

2

V
` 1

ď |n´ m8| ` |n´ m8|
2

` 2 ` 3M
p2q
K

ď 3

2
|n ´ m8| ` M

p2q
k

ă 2|n´ m8|.

Therefore,

|ψpnq| ď 4Ce´| log ε||n´m8|{9p|n´ m8|2 ` 1q,

which decays exponentially away from m8.
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A Bootstrapped Green’s function decay

In this appendix, we will show that, if one can partition an interval pΛ into subintervals
alternating between long intervals with Green’s function decay and short intervals
with resolvent bounds, one can iterate the resolvent identity to bootstrap the decay
to all of pΛ. Results of this variety are well-established in the literature (cf. e.g. [13]);
we include the details relative to our specific application for the reader’s convenience.

Let v P C2pT, r´1, 1sq with }Bθv}8 ` }B2
θv}8 ď D0, pθ˚, E˚q P T ˆ R, 0 ă ε ă 1{7,

and 0 ă pρ ă 1{2. Additionally, let ℓ P N, 1 ă γ ď | log ε|, and

M :“ maxtℓ, | log pρ|u.

Consider an integer pℓ P N with pℓ ą 16| log ε|M , and define

pγ “ γ ´ 16| log ε|M{pℓ.

Assumption 4. Suppose that pΛ Ă Z admits a partition P satisfying:

1. Every other interval of P satisfies the Green’s function decay property for pℓ, γq.
We denote the intervening intervals by Λi and use the notation Λi,l{r to refer to
the interval (on which the Green’s function decay property for pℓ, γq is satisfied)
immediately to the left/right of Λi.

Note that, with this convention, one will have, e.g., Λi,r “ Λi`1,l.

2. For each Λi “ rai, bis, the interval pΛi :“ Λi,l Y Λi Y Λi,r satisfies

}PiR
pΛiΓP} ď 2pρ´1, (A.1)

where Pi denotes the projection onto coordinates rai´ℓ, bi`ℓsXpΛi. Furthermore,

R
pΛi is well-defined.

3. |Λi,l{r| ą 2pℓ.

4. |Λi| ď M .

We illustrate one segment of Assumption 4 in Figure 9. Under these assumptions,
we get ppℓ, pγq decay on pΛ:

Lemma A.1. Suppose pΛ satisfies Assumption 4. Then pΛ satisfies the Green’s func-
tion decay property for ppℓ, pγq.

Before proving Lemma A.1, we will first handle the special case where there is
precisely one interval Λi:

Assumption 5. Suppose that pΛ is partitioned by P into Λl Y Λ Y Λr, such that
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Λi,l Λi,r

ℓ

pℓ, γq decay pℓ, γq decay

Λi

decoupled resolvent bound

ℓ

Figure 9: An illustration of one segment pΛi of the partition P from Assumption 4; note that the
naming convention for the decay intervals is non-unique, i.e. Λi,r “ Λi`1,l.

1. Λl{r satisfies the Green’s function decay property for pℓ, γq.

2. R
pΛ is well-defined, and, denoting Λ “ ra, bs,

}PRpΛΓP} ď 2pρ´1, (A.2)

where P denotes the projection onto coordinates ra´ ℓ, b ` ℓs X pΛ.

3. |Λ| ď M .

Letting
rγ :“ γ ´ 6| log ε|M{pℓ,

in this case we get slightly improved decay on pΛ:

Lemma A.2. Suppose pΛ satisfies Assumption 5. Then pΛ satisfies the Green’s func-
tion decay property for ppℓ, rγq.

Proof. Suppose m,n P pΛ and |m ´ n| ě pℓ ě 3M ě 2ℓ ` |Λ|. Then at most one of
m,n satisfies distp¨,Λq ď ℓ. In the case neither m nor n is within ℓ of Λ, we use the
resolvent expansion

R
pΛ “ R

pΛ
P ´ R

pΛ
PΓPR

pΛ “ R
pΛ
P ´ R

pΛ
PΓPR

pΛ
P ` R

pΛ
PΓPR

pΛΓPR
pΛ
P .

Since m,n do not belong to adjacent intervals in P, the middle term of R
pΛpm,nq in

this expansion vanishes. By Green’s function decay on Λl{r and (A.2),

log |RpΛpm,nq| ď log
`
e´γ|m´n| ` 2εpρ´1e´γp|m´n|´|Λ|´1q

˘

ď log
`
3pρ´1e´γp|m´n|´|Λ|´2ℓ´1q

˘

“ ´
ˆ
γ ´ log 3 ` | log pρ| ` γ|Λ| ` 2γℓ ` γ

|m´ n|

˙
|m ´ n|

ď ´
ˆ
γ ´ 6| log ε|M

ℓ

˙
|m´ n|.
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On the other hand, if distpn,Λq ď ℓ, we have |m´ n| ď distpm,Λq ` |Λ| ` 2ℓ. We
use the resolvent expansion

R
pΛ “ R

pΛ
P ´ R

pΛ
PΓPR

pΛ.

By Green’s function decay on Λl{r and (A.2),

log |RpΛpm,nq| ď log
`
e´γ|m´n| ` 2pρ´1e´γpdistpm,Λq´1q

˘
ď log

`
3pρ´1e´γp|m´n|´|Λ|´2ℓ´1q

˘
,

and the proof concludes as in the first case.

The following lemma is useful to ensure that the decoupled resolvent bounds (A.1)
or (A.2) are satisfied:

Lemma A.3. Suppose pℓ P N is an integer with

pℓ ě max

"
ℓ,

| log pρ| ` 1

γ

*
.

Suppose that pΛ is partitioned by P into Λl Y Λ Y Λr, such that

1. Λl{r satisfies the Green’s function decay property for pℓ, γq.

2. There exists an interval pΛ Ą rΛ “ rra,rbs Ą Λ “ ra, bs such that

mint|ra ´ a|, |rb ´ b|u ě ℓ,

}RrΛ} ď pρ´1.

Then R
pΛ is well-defined, (A.2) is satisfied, and pΛ satisfies Assumption 5.

Proof. Denote by rP the partition of pΛ into rΛ and its complement pΛzrΛ, and denote

as shorthand rR “ R
pΛ
rP and rΓ “ ΓΛ

rP .

We expand the resolvent R
pΛ by alternating the resolvent formulas

R
pΛ “ rR ´ rRrΓRpΛ,

R
pΛ “ R

pΛ
P ´ R

pΛ
PΓPR

pΛ,

to get the expansion

R
pΛ “ rR ´ rRrΓRpΛ

P ` rRrΓRpΛ
PΓP

rR ´ . . . . (A.3)

Note that P rR “ PR
rΛ, where P is defined as in (A.2); similarly, because the boundary

points of P are in rΛ, ΓP
rR “ ΓPR

rΛ. Thus multiplying on the left by P gives

PR
pΛ “ PR

rΛ ´ PR
rΛrΓRpΛ

P ` PR
rΛrΓRpΛ

PΓPR
rΛ ´ . . . .
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By the Green’s function decay on Λl{r Ą rΛzΛ,

}rΓRpΛ
PΓP} ď }rΓRΛlΓP} ` }rΓRΛrΓP} ď expp´γℓq, (A.4)

and so we get that

}PRpΛΓP} “
›››››P

ÿ

kě0

pRrΛrΓRpΛ
PΓPqkpRrΛ ´ R

rΛrΓRpΛ
PqΓP

›››››

ď
ÿ

kě0

ˆ
e´γℓ

pρ

˙k
2ε` e´γℓ

pρ
ď 2pρ´1.

Using the same method to estimate the expansion (A.3) gives an upper bound on

}RpΛ}, which ensures R
pΛ is well-defined.

Proof of Lemma A.1. Each interval pΛi “ Λi,l YΛi YΛi,r satisfies the Green’s function

decay property for ppℓ, rγq by Lemma A.2. Define the partitions P1 :“ Ť
i odd

pΛi YŤ
i even Λi and P0 :“ Ť

i even
pΛi Y Ť

i odd Λi. For ease of notation, we define Pi “ P0

whenever i is an even integer, and Pi “ P1 whenever i is an odd integer.
We first show that R

pΛ is well-defined. Partition pΛ “ Λ̌0YΛ̌1 such that
Ť

i even Λi Ă
Λ̌0 and

Ť
i odd Λi Ă Λ̌1, and let Q0, Q1 be projections onto the coordinates Λ̌0, Λ̌1

respectively. Then, by Assumption 4, we have upper bound estimates on }Q0R
pΛ
P0

}
and }Q1R

pΛ
P1

}, and we have }ΓP0
R

pΛ
P0
ΓP1

}, }ΓP1
R

pΛ
P1
ΓP0

} ! 1. Thus, we can write

R
pΛ “ Q0R

pΛ ` Q1R
pΛ and expand each term using an infinite resolvent expansion

alternating between P0 and P1, the first term starting with P0 and the second term
starting with P1. This will give an upper bound on }RpΛ}, ensuring it is well-defined.

Suppose m,n P pΛ and |m ´ n| ě pℓ. Because the pΛi cover pΛ with overlaps of size

at least 2pℓ, there must some pΛi Q m such that m is separated from its boundary by
at least pℓ. Without loss of generality, let this be pΛ0.

Suppose first that distpn,Λiq ą ℓ for all Λi. We expand the resolvent first from
the left using P0, then from the right using the partition P defined in Assumption 4,
and then from the left alternating between P1 and P0:

R
pΛ “ R

pΛ
P0

´ R
pΛ
P0
ΓP0

R
pΛ
P ` R

pΛ
P0
ΓP0

R
pΛ
P1
ΓPR

pΛ
P ´ R

pΛ
P0
ΓP0

R
pΛ
P1
ΓP1

R
pΛ
P0
ΓPR

pΛ
P ` . . . . (A.5)

We now expand R
pΛpm,nq using (A.5). Since |m ´ n| ě pℓ, the first term is bounded

by e´rγ|m´n| by Lemma A.2. The second term gives a sum of terms of the form
εR

pΛ
P0

pm, p ˘ 1qRpΛ
Ppp, nq where p P Λi for some i; then R

pΛ
Ppp, nq “ 0 because n does

not belong to any Λi. Subsequent terms are of the form

p´1qk`1εk`1R
pΛ
P0

pp0, q0qRpΛ
P1

pp1, q1q ¨ ¨ ¨RpΛ
Pk

ppk, qkqRpΛ
Pppk`1, nq (A.6)
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for k ě 1, where p0 “ m, and for 0 ď i ă k, qi is a boundary point of the interval
in Pi containing pi, and pi`1 “ qi ˘ 1; pk`1 is a boundary point of the interval in P

containing n, and qk “ pk`1 ˘ 1.
The structure of the intervals, our assumption on m, and Lemma A.2 guarantee

that log |RpΛ
Pi

ppi, qiq| ď ´rγ|pi´qi| for all 0 ď i ă k. Similarly, Assumption 4 guarantees

log |RpΛ
Pppk`1, nq| ď ´γ|pk`1 ´ n|. To estimate |RpΛ

Pk
ppk, qkq|, we note that qk must be

near some Λj (i.e., either qk P Λj or distpqk,Λjq ď ℓ), and we make the following
considerations:

• If k shares the same parity as j, then in order for R
pΛ
Pk

ppk, qkq to be nonzero, we
must have pk P Λj P Pk. Then (A.2) applies, and |pk ´ qk| ď 2ℓ` | log pρ| ď 3M ,

giving |RpΛ
Pk

ppk, qkq| “ |RpΛj ppk, qkq| ď 2ε´1pρ´1 ď 2ε´1pρ´1e3Mrγe´rγ|pk´qk|.

• If k and j have opposite parities, then |pk ´ qk| ě 2pℓ´ ℓ ě 5M ě pℓ. Thus either
R

pΛ
Pk

ppk, qkq “ 0, or Lemma A.2 applies, giving log |RpΛ
Pk

ppk, qkq| ď ´rγ|pk ´ qk|.

Finally, since |m´n| ď |pk`1´n|`řk

i“0 |pi´qi|`k`1, and εk`1 ď e´rγpk`1q, each term
of the form (A.6) is bounded by 2ε´1pρ´1e3Mrγe´rγ|m´n|. By the same considerations,

but using the fact that |pi ´ qi| ě pℓ for all 0 ď i ă k, each term of the form (A.6) is

bounded by 2ε´1pρ´1e3Mrγe´krγpℓ. We consider the first term R
pΛ
P0

pm,nq from (A.5) to
be the sole term of the expansion with k “ 0, and note that the same bounds apply.

In the case that n P Λj or distpn,Λjq ď ℓ, we follow the same procedure but do
not use P, i.e., we use the expansion

R
pΛ “ R

pΛ
P0

´RpΛ
P0
ΓP0

R
pΛ
P1

`RpΛ
P0
ΓP0

R
pΛ
P1
ΓP1

R
pΛ
P0

´RpΛ
P0
ΓP0

R
pΛ
P1
ΓP1

R
pΛ
P0
ΓP0

R
pΛ
P1

`. . . . (A.7)

to obtain terms of the form

p´1qkεkRpΛ
P0

pp0, q0qRpΛ
P1

pp1, q1q ¨ ¨ ¨RpΛ
Pk

ppk, qkq (A.8)

where p0 “ m, qk “ n, and for 0 ď i ă k, qi is a boundary point of the interval in
Pi containing pi, and pi`1 “ qi ˘ 1. By considerations analogous to those in the first

case, we obtain the same bounds 2ε´1pρ´1e3Mrγe´rγ|m´n| and 2ε´1pρ´1e3Mrγe´krγpℓ for each
term of the form (A.8).

Since each pi gives two choices for qi, there are at most 2k`1 nonzero terms of the
form (A.6) or (A.8) for each nonzero value of k. Let k0 “ r |m´n|

pℓ s. For the at most

2k0`1 terms with k ă k0, we use the bound 2pρ´1e3Mrγe´rγ|m´n|, while we use the bound
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2pρ´1e3Mrγe´krγpℓ for k ě k0, giving

|RpΛpm,nq| ď 2ε´1pρ´1e3Mrγ

˜
2k0`1e´rγ|m´n| `

8ÿ

k“k0

2k`1e´krγpℓ

¸

ď 4ε´1pρ´1e3Mrγ
´
2k0e´rγ|m´n| ` 2k0`1e´rγk0pℓ

¯

ď 4ε´1pρ´1e3Mrγ2k0`2e´rγ|m´n|

ď 2|m´n|{pℓ`5ε´1pρ´1e3Mrγe´rγ|m´n|.

It follows that

log |RpΛpm,nq| ď ´
ˆ
rγ ´ log 2

pℓ
´ 5 log 2 ` | log ε| ` | log pρ| ` 3Mrγ

|m ´ n|

˙
|m ´ n|

ď ´
ˆ
rγ ´ 10| log ε|M

pℓ

˙
|m ´ n|

ď ´pγ|m ´ n|.
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B Proofs of preliminaries

Below we collect proofs of the foundational results from the introduction.

B.1 Perturbation theory lemmas

Proof of Lemma 1.1. We proceed by contraposition. Suppose rankpχq ă rankpP q.
Then dimpkerpχqq ` dimpimpP qq ą dimpV q by rank-nullity. Consequently, kerpχq X
impP q contains a unit vector Pv. But then

}pI ´ χqPv} “ }Pv} “ 1,

so }pI ´ χqP } ě 1.

Proof of Lemma 1.2. There must be an eigenvalue in BδpE˚q, since

δ2 ě }pA´ E˚qφ}2 “ }pA´ E˚qχRpAqφ}2 ě inf
λjP spA

|λj ´ E˚|2.

By assumption we have

δ2 ě }pA´ E˚qφ}2 ě }pI ´ χBρpE˚qpAqqpA´ E˚qφ}2
ě ρ2}pI ´ χBρpE˚qpAqqφ}2

which is (1.4). To see (1.5), notice that, since

››pI ´ χBρpE˚qpAqqφ
››2 “ 1 ´ }χBρpE˚qpAqφ}2 ď pδ{ρq2,

it follows from χBρpE˚qpAq2 “ χBρpE˚qpAq that

}φ ´ ψ}2 “ 2p1 ´ }χBρpE˚qpAqφ}q
ď 2p1 ´ }χBρpE˚qpAqφ}2q
ď 2pδ{ρq2,

which was the claim.

Proof of Lemma 1.3. The family of eigenpairs pE, ψqpθq in question are the implicit
function defined by the vanishing of

F pE, φ, θq :“
„

pApθq ´ Eqφ
xφ, φy ´ 1


.

Indeed, since E˚ is simple, one has that

pDpE,φqF qpE˚, ψ˚, θ˚q “
„
Apθ˚q ´ E˚ ´ψ˚

2ψJ
˚ 0


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is non-singular: denoting P “ ψ˚ψ
J
˚ ‘ 1 and Q “ I ´ P , one computes via the Schur

complement that

detppDpE,φqF qpE˚, ψ˚, θ˚qq “ det

ˆ„
0 ´1
2 0

˙
det pQpApθ˚q ´ E˚qQq

“ 2
ź

λj‰E˚

pλj ´ E˚q ‰ 0.

Thus the implicit function pE, ψqpθq is defined in a neighborhood of θ˚ and twice-
differentiable at θ˚.

We differentiate the eigenvalue relation pA´ Eqψ “ 0 at θ˚ to get that

pA1 ´ BθEqψ “ ´pA´ EqBθψ. (B.1)

Equation (1.7) follows by taking inner products of the relation (B.1) with ψ; (1.8)
follows from the uniqueness of the implicit function since (1.8) satisfies (B.1); and
(1.9) follows by differentiating (1.7). Finally, (1.10) is immediate from (1.8).

Finally, we have the simple proof of the Poisson formula:

Proof of Lemma 1.4. This follows by applying the resolvent RΛpEq to the observation

pHΛ ´ Eqψ “ εψpa´ 1qδa ` εψpb` 1qδb.

B.2 Cauchy Interlacing Theorem

The Cauchy Interlacing Theorem 3.7 follows from the Min-Max Principle:

Proof of Theorem 3.7. If wj is an eigenvector for B with eigenvalue βj and Wm
j :“

spantwj, . . . , wmu, then one has that P ˚W k
1 is a k-dimensional subspace of Rn and

βk “ max
yPW k

1

xBy, yy
}y}2 “ max

yPW k
1

xPAP ˚y, yy
}y}2 “ max

yPW k
1

xApP ˚yq, P ˚yy
}P ˚y}2

ě min
U

"
max

x

"xAx, xy
}x}2 : x P Uzt0u

*
: dimpUq “ k

*
“ αk.

On the other hand, one has that P ˚Wm
k is anm´k`1 “ n´pn´m`kq`1-dimensional

subspace, and one likewise has that

βk “ min
yPWm

k

xApP ˚yq, P ˚yy
}P ˚y}2

ď max
U

"
min
x

"xAx, xy
}x}2 : x P Uzt0u

*
: dimpUq “ m ´ k ` 1

*
“ αn´m`k.
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B.3 Eigenvalue separation lemma

This lemma is classical (cf. [14, 20]), but we include a proof for the sake of complete-
ness. Consider the transfer matrix

ApV,Eq “
„
V0´E

´ε
´1

1 0



with associated Schrödinger cocycle

Mra,bspV,Eq :“
aź

k“b

ApSkV,Eq

where pSkV qm “ Vm`k, the product concatenates on the right, and b ě a.
By definition, one has that ψ “ ψpnq solves the formal Schrödinger difference

equation if and only if

Mra,bspV,Eq
„

ψpaq
ψpa´ 1q


“
„

ψpbq
ψpb ´ 1q



for all n P Z. We also have the fundamental cocycle identity

Mra,bspV,Eq “ Mrc`1,bspV,EqMra,cspV,Eq, a ď c ă b. (B.2)

The proof of Lemma 1.5 comes from the simplicity of the eigenvalues of H
pΛ and

the orthogonality of the corresponding eigenvectors; namely, forcing a sufficient pro-
portion of the masses of two distinct eigenvectors into the same window pushes the
corresponding eigenvalues apart. We make this quantitative below:

Proof of Lemma 1.5. If | pE2 ´ pE1| ě ε
´`

mΛ

ε

˘2 ` 2
¯

{|Λ|2, the claim follows immedi-

ately; suppose for the remainder of the proof that

| pE2 ´ pE1| ă ε

ˆ´mΛ

ε

¯2

` 2

˙
{|Λ|2.

Denote ra, bs :“ pΛ, rc, ds :“ Λ, and ~ψk :“ r pψkpcq, pψkpc´1qsJ. Since the eigenvectors
pψk are real, we may suppose they are normalized at the left endpoint c of Λ such that

}~ψk}2 “ 1, k “ 1, 2,

and

x~ψ1, ~ψ2y ě 0.
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In particular, we note for later use that } pψk}2 ě }~ψk}2 ě 1. With this normalization,

if θ P p0, π{2s denotes the acute angle between ~ψ1 and ~ψ2, one has

1 ´ x~ψ1, ~ψ2y “ 1 ´ cos θ ď 1 ´ cos2 θ

ď sin2 θ ď sin θ

“ | pψ1pcq pψ2pc´ 1q ´ pψ1pc´ 1qpψ2pcq| “: |W ppψ1, pψ2qpcq|

and consequently

1

2
}~ψ1 ´ ~ψ2}2 ď |W p pψ1, pψ2qpcq|.

By Green’s identity, one has

pE2 ´ pE1

ε

bÿ

j“c

pψ1pjq pψ2pjq “ 1

ε

bÿ

j“c

pψ1pjqpH pΛ pψ2qpjq ´ pH pΛ pψ1qpjqpψ2pjq

“ W ppψ1, pψ2qpcq ´ W ppψ1, pψ2qpb` 1q.

Since pψk are eigenfunctions for H ra,bs, they satisfy the Dirichlet boundary condition
at b; in particular, W ppψ1, pψ2qpb` 1q “ 0, and we see

|W ppψ1, pψ2qpcq| “
ˇ̌
ˇ̌
ˇ
pE2 ´ pE1

ε

bÿ

j“c

pψ1pjqpψ2pjq
ˇ̌
ˇ̌
ˇ ď | pE2 ´ pE1|}pψ1}}pψ2}

by the Cauchy-Schwarz inequality. Combining these observations, we see that

1?
2

}~ψ1 ´ ~ψ2} ď
˜

| pE2 ´ pE1|
ε

} pψ1}}pψ2}
¸1{2

. (B.3)

We will apply observation (B.3) with a telescoping estimate on transfer matrices

to get an upper estimate on }pψ1 ´ pψ2q}2Λ in terms of | pE2 ´ pE1|. Specifically, we have

}Mrc,dspV, pE1q ´ Mrc,dspV, pE2q} ď
ÿ

jPΛ

| pE2 ´ pE1|
ε

}Mrc,j´1spV, pE1q}}Mrj`1,dspV, pE2q}

ď | pE2 ´ pE1|
ε

|Λ|
ˆ´mΛ

ε

¯2

` 2

˙p|Λ|´1q{2

,
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and consequently

}pψ1 ´ pψ2}Λ ď
ÿ

jPΛ

|pψ1pjq ´ pψ2pjq|

ď
ÿ

jPΛ

}Mrc,jspV, pE1q~ψ1 ´ Mrc,jspV, pE2q~ψ2}

ď
ÿ

jPΛ

}Mrc,jspV, pE1q ´ Mrc,jspV, pE2q} ` }Mrc, jspV, pE2qp~ψ1 ´ ~ψ2q}

ď | pE2 ´ pE1|
ε

|Λ|2
ˆ´mΛ

ε

¯2

` 2

˙p|Λ|´1q{2

` |Λ|
ˆ´mΛ

ε

¯2

` 2

˙|Λ|{2
˜
2| pE2 ´ pE1|

ε
}pψ1}}pψ2}

¸1{2

.

Since | pE2 ´ pE1| ă ε
´`

mΛ

ε

˘2 ` 2
¯

{|Λ|2 by our very first assumption, it follows that

}pψ1 ´ pψ2}Λ ď
˜

| pE2 ´ pE1|
ε

¸1{2

|Λ|
ˆ´mΛ

ε

¯2

` 2

˙|Λ|{2 ´
1 `

?
2p}pψ1}}pψ2}q1{2

¯

and thus

}pψ1 ´ pψ2}2Λ ď | pE2 ´ pE1|
ε

|Λ|2
ˆ´mΛ

ε

¯2

` 2

˙|Λ| ´
1 `

?
2p}pψ1}}pψ2}q1{2

¯2

ă 6
| pE2 ´ pE1|

ε
|Λ|2

ˆ´mΛ

ε

¯2

` 2

˙|Λ|

} pψ1}}pψ2},

where in the last line we used that 1 ď p} pψ1}}pψ2}q1{2 and p1 `
?
2q2 ă 6.

On the other hand, since pψ1 and pψ2 are eigenfunctions for different eigenvalues,
they are orthogonal, and we have

} pψ1 ´ pψ2}2Λ “ }pψ1 ´ pψ2}2 ´ } pψ1 ´ pψ2}2pΛzΛ

ě
´

} pψ1}2 ` }pψ2}2
¯

´ 1

2

´
}pψ1}2 ` }pψ2}2

¯

ě 1

2

´
}pψ1}2 ` } pψ2}2

¯

ě }pψ1}}pψ2}

where the first line above uses orthogonality of vectors with disjoint supports, the
second uses orthogonality of distinct eigenvectors and the localization assumption
}pψk}2Λ ě }pψk}2{2, and the fourth line uses the inequality of arithmetic and geometric
means.

Combining the upper and lower bounds on } pψ1 ´ pψ2}2Λ above yields the claim.
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