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Localization and Cantor spectrum for quasiperiodic

discrete Schrodinger operators with asymmetric,
smooth, cosine-like sampling functions

Yakir Forman and Tom VandenBoom

Abstract

We prove Cantor spectrum and almost-sure Anderson localization for quasi-
periodic discrete Schrédinger operators H = eA + V with potential V' sampled
with Diophantine frequency « from an asymmetric, smooth, cosine-like function
v e C%(T,[~1,1]) for sufficiently small interaction ¢ < eq(v, ). We prove this
result via an inductive analysis on scales, whereby we show that locally the
Rellich functions of Dirichlet restrictions of H inherit the cosine-like structure
of v and are uniformly well-separated.
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1 Introduction and main results

Fix a bounded real sequence V = {V;};ez and ¢ > 0. We consider the discrete
Schrodinger operator H = H(V,e) whose pointwise action on sequences in CZ is
given by

(Hy)(n ) (A +V)9) (n) (1.1)
3

(¥(n+1) +¥(n—1)) + Vaip(n).

Restricted to ¢*(Z), H is a bounded self-adjoint linear operator. H is called An-
derson localized if it exhibits an ¢*(Z) basis of exponentially decaying eigenvectors.
The Anderson model, where V' is sampled random i.i.d. from a nontrivial probabil-
ity distribution, is almost surely Anderson localized; in this sense, localization is a
standard measure of “randomness” of the potential. That said, certain non-random
potentials, e.g. V,, = cos(f + na), are likewise almost-surely Anderson localized for
small £ and almost every a. Proofs of this fact have historically relied on either the
analyticity of cosine and subsequent uniform positivity of the Lyapunov exponent or
its inherent symmetry. We offer a new perturbative proof of almost-sure localization
and Cantor spectrum for potentials sampled from any C?-smooth Morse function with
two monotonicity intervals along a Diophantine rotation on the circle.

We consider “cosine-like” sampling functions from T = R/Z into [—1, 1] having
two non-degenerate critical points; that is, we consider functions f € C*(T,[-1,1])
having two monotonicity intervals and satisfying a Morse condition

do < |0pf| + |05 f| < D
We say « € [0, 1]\Q is (C, 7)-Diophantine when

Inar = < n e Z. (1.2)

[nf™

In this case we write « € DC¢,. It is well-known that Lebesgue almost every a
is Diophantine for some (C, 7). We consider potentials V' = V(6,) generated by
sampling a cosine-like v along an irrational rotation by « starting at 6,, i.e.

Vo(0x) = v(0s + na),
and denote by H(6,) = H(V(6.),¢).

Theorem (Main Theorem). Let v € C*(T,[—1,1]) be a function with two monotonic-
ity intervals satisfying a Morse condition

do < |0gv| + |05v] < D

and let o« € DC¢ .. Then there exists g = €o(v, ) such that, for e < e,

3



1. The spectrum ¥ = (v, «) of H(0,) is a Cantor set, and

2. For Haar almost every 0, € T, H(0,) is Anderson localized, i.e. has pure-point
spectrum with exponentially decaying eigenfunctions.

Our approach to the proof of the Main Theorem is an inductive analysis of scales.
Multiscale analysis techniques are a well-established approach to localization in arbi-
trary spatial dimensions, cf. [8, 10, 11} 12} 13, 14] 15], and are quite general in their
scope; for a recent survey of multiscale analysis techniques, see [21]. In one spatial
dimension, as in our model, one has access to additional tools (like the Lyapunov
exponent and transfer matrices) which can simplify the analysis. Indeed, uniform
positivity of the Lyapunov exponent often lends itself to almost-sure nonperturbative
localization results [T, B]. Such results were initially established by Jitomirskaya for
the Almost Mathieu operator [18], and this strategy has been well-applied in the ana-
lytic regime due to the Hermann “subharmonicity trick,” see e.g. [2,13, 4] [5, 25], as well
as in the random i.i.d. regime due to Fiirstenberg’s Theorem, see e.g. [6l [7, 9, 17, 19].

For smooth sampling functions, proving uniform positivity of the Lyapunov expo-
nent becomes a substantial challenge. In this case, only perturbative strategies have
thus far been successful. Frohlich-Spencer-Wittwer established a perturbative ap-
proach to proving almost-sure Anderson localization for symmetric cosine-like smooth
potentials v with sufficiently small interaction for almost every irrational « [14], with
additional work in this direction pioneered by Sinai [24]. Positive Lyapunov expo-
nents and Cantor spectrum were verified via perturbative methods in the general
asymmetric cosine-like case by Wang-Zhang [20], 27].

1.1 What this paper accomplishes

Our result will naturally be compared to the aforementioned works of Frohlich-
Spencer-Wittwer [14], Sinai [24], and Wang-Zhang [26, 27]. Our main accomplish-
ments relative to these prior works are, respectively:

1. Removing the crucial symmetry assumption on the sampling function v from [14]

in part by an inductive analysis of differences of inverse functions; cf. Section
4.

2. Establishing the existence of open spectral gaps via a novel Cauchy interlacing
argument (cf. Theorem B.2)) and a multiscale induction scheme which preserves
the size of these gaps (cf. Proposition [£.3)).

3. Eliminating double-resonances, i.e., those phases 6 for which the frequency «
is problematically recurrent relative to the sampling function v infinitely often

(cf. Lemma [6.7]).

Each of these steps requires new ideas not present in the above works; we describe the
difficulties which must be overcome, and our approaches to overcoming them, below.

4



1.1.1 Removing symmetry

In [14], the authors prove an analogue to the Main Theorem under the additional
assumption of even symmetry of the sampling function v defining the potential:
v(0) = v(—0). This assumption is crucial to their analysis because the symmetry
is inherited by the Rellich functions (i.e., parametrized eigenvalues) E* of any Dirich-
let restriction H® of H to an interval A < Z; specifically, if A = [c — L,c + L],
then

E*(0) = EM—0 — 2ca), OeT.
In particular, it follows that there is antisymmetry in the derivative:
OpEM ) = —(0,EM) (=60 — 2ca).

These symmetries come with two crucial benefits. First, Rellich curves of H* have
predetermined critical points when

126, + 2ca|r = 0.

These critical points are common to any Rellich curves of H*. This fact, alongside
opposite-signed second derivatives (cf. (IL9])), allows one to conclude a uniform local
eigenvalue separation from the classical pointwise eigenvalue separation for eigenval-
ues with eigenvectors localized on a common support (cf. Lemma [[.5]). The uniform
local separation of Rellich curves guarantees that different Rellich curves cannot res-
onate with one another, which in turn allows one to, e.g., apply calculus and the
Diophantine condition to single Rellich curves at every step of the induction.

The second important consequence of the symmetry of the Rellich functions is
that the difference of local inverse functions — which plays a crucial role in identifying
double resonances (cf. Figure [I) — is effectively independent of the scale and the
energy, cf. [I4, Lemma 5.7]. This means that, in the even setting, one can define
the bad sets of double resonant phases uniformly in the energy. In our construction,
the difference of local inverses of Rellich functions E;}r — E;l_ depends on the parent
Rellich function, and thus so too do our bad sets of phases. By carefully controlling the
number of double resonances and child Rellich functions coming from each parent (cf.
equation (6.1]) below), we can discretize this energy dependence and again construct a
uniform bad set of phases at each scale, whose limit superior we eventually eliminate
to prove Anderson localization.

1.1.2 Opening gaps

Sinai’s paper [24] is likewise foundational in establishing an approach to proving
perturbative localization results in the quasiperiodic setting; indeed, general aspects
of our argument, like the idea illustrated in Figure [3] below, echo some of the ideas



developed therein. However, Sinai’s paper suffers from fundamental flaws as written,
each of which our approach overcomes.

Sinai’s approach to studying quasiperiodic operators is a priori a natural one:
for fixed frequency « having best rational approximants as = ps/qs with gs; having
controlled growth rate g,41 < (s + 1)%q,, approximate the whole-line operator H
via the g,-periodic operators Hg(s)(ﬁ). In Sinai’s construction, the transition between
steps s and s + 1 involves approximating Hg(sﬂ)(ﬁ) with shifts Hg(s)(ﬁ + nasi1). By
the definition of the periodic approximants «,, one has

1 1
2
Gsds+1 (s +1)%¢

las — 41| =

and so the general error incurred in an inductive step s — s+ 1 is, at best, polynomial
in q;'. In contrast, in this inductive step there are double-resonant eigenfunctions
whose centers of localization are separated at distances ¢,. The separation between the
resultant Rellich functions is exponentially small in qs, comparable to 9. Thus, after
making an inductive step using periodic approximations, the uniform local separation
between Rellich curves — even coming from previous scales! —is completely destroyed,
taking along with it the ability to consider only self-resonances of a given Rellich curve.

Critiques aside, Sinai’s intuition regarding the importance of the gaps between
children of resonant Rellich curves is informative. Describing these gaps in our regime
is perhaps the most novel contribution in this work; we do so by proving the Rellich
functions at scale s + 1 are simultaneously interlaced by a pair of auxiliary curves
which are C? close to the parent curves from scale s, which must be monotone with
opposite-signed derivatives; cf. Lemma [3.8

1.1.3 Eliminating double resonances

Compared to the works of Frohlich-Spencer-Wittwer and Sinai, relatively recent
progress on understanding localization for smooth quasiperiodic discrete Schrodinger
operators was made by Wang and Zhang [26]. Therein, the authors show perturba-
tively that the Lyapunov exponent of the associated transfer matrices is arbitrarily
close to |loge|, and they likewise prove a Large Deviation Theorem. Their proof
again proceeds by studying an auxiliary transfer matrix which is in some sense an
asymptotic approximation to the Schrodinger transfer matrix as € decreases to zero.
In a follow-up paper [27], the authors use the characterization of spectral energies as
corresponding to non-uniform hyperbolicity of the associated transfer matrix to prove
Cantor spectrum in the model.

In the one-dimensional setting, uniformly positive Lyapunov exponents and a
Large Deviation Theorem are key ingredients to proving Anderson localization; how-
ever, alone they are insufficient to identify a full-measure set of phases for which
localization holds. This final ingredient for localization, often called “elimination of
double resonances,” requires a careful understanding of the sets of double resonant



phases at each inductive step. These bad sets of phases depend crucially on the
energies for which they are resonant.

In our construction, given a Morse, two-monotonicity interval Rellich curve E; at
scale s, we can identify the bad sets of phases for E; and control their sizes using
the Morse condition. One can control all of the bad sets simultaneously, then, by
controlling the number of Rellich children E,,; one constructs at each step. Here
again the Diophantine condition and the Morse, two-monotonicity interval structure
of each E; are crucial in order to separate the double-resonant energy regions, in turn
allowing us to define at most 1/p3_ ;| children of E,, each having bad sets of phases

of size at most pi/ > (cf. the proof of Lemma [6.7). Choosing our scales appropriately,
we will have summability of the cumulative size of all bad sets at all scales, and the
Borel-Cantelli lemma will apply. We sketch the first step of our inductive procedure
below.

1.2 Idea of the proof

For an interval A = [a,b] < Z, we denote by H”* the restriction of H to A with

Dirichlet boundary conditions, ¥(a — 1) = ¥ (b+ 1) = 0. Letting |A| := b—a + 1, one

can identify H” with the |A| x |A| matrix

v e -

e Va1 €

H" =

e V1 ¢
e W

Notice that the base dynamics of our model imply
H(0 + na) = H"(0)

for any n € Z, 0 € T; furthermore, by the regularity of our sampling function v, any
one-parameter family of Dirichlet restrictions H*(#) exhibits |A| Rellich functions
(i.e., parametrized eigenvalues E(6)) which are necessarily simple and C?.

Generalized eigenvalues of the whole-line operator H (i.e., energies E with solu-
tions ¢ to Hy = Ev growing at most polynomially) are limit points of the eigenvalues
of the finite-volume operators H* as A grows to Z: furthermore, they are spectrally
dense in the spectrum of H [22] 23]. By the Poisson formula

¥(n) = eRyp(n,a)(a—1) + eRyg(n,b)(b+1), nel, E¢sp(H0))

exponential off-diagonal decay of Green’s functions Ry, = (H*(0) — E)™' can be
favorably leveraged against the at-most polynomial growth of generalized eigenfunc-
tions ¥ on A. If we can inductively construct intervals of increasing length on which



we have Green’s function decay at (or near) generalized eigenvalues, we can thus
prove exponential decay of generalized eigenfunctions, hence Anderson localization.

The initial step in our induction involves constructing intervals Ay = Ay (0, Ey)
from the degenerate interval Ay = {0} in a way which is stable in 6, and E,. At
this zeroth scale, the eigenvalue of H"°(f,) is precisely the value of the sampling
function v(#,). The difficult aspect of the induction is identifying how the structural
assumptions on v are reflected by the Rellich functions of H*s at future scales s > 1.

In non-resonant situations where |V, — E| = p » ¢ is large for all m € A, the
Green’s function exhibits off-diagonal decay at a rate of £/p on A by a classical
Neumann series argument (cf. Lemma [5.1]). One thus focuses on those cases when
|V, — E| is small:

So(0u, B) = tm e Z - |Vin(8,) — Ey| < pb.

If an element m € &y is separated by some relatively large distance L from any other
element of Sy, we call it simple resonant (for v, p, and L). For simple resonant m,

one can build an interval Agl) = [m — L/2,m + L/2] so that any eigenvector of the

associated Dirichlet restriction HAY (0) with eigenvalue near F, will be localized near
m, again by the Poisson formula (LII). By classical perturbation theory (cf. Lemma

L2 and Proposition 2.1]), it follows that H A" has a single Rellich function E;(0)
near F, for 0 near 6,, and thus E; will be well-approximated in C? by the sampling
function Eq := v (cf. Proposition 2.2)).

The obstruction to localization, then, are double resonances, where (at least)
two resonant sites m; are within L of one another. These double resonances are
unavoidable; an illustration of such a resonance can be seen in Figure [

g ) na
~ \ [ E,(v)
— -
]O,n,— IO,n,-i-
v

Figure 1: Double resonance of the sampling function v: if 6y, € Iy, — is the value such that
V(00,n,—) = v(00,n,— + na) = E,(v), then 0 and n are in So(0p,n,—, Ern)-



In our setting, the Diophantine condition and the structure of v guarantee that
at most two resonant sites m; and ms can be nearby for appropriate choices of p
and L; furthermore, each of these nearby pairs (my, msy) must be well-separated from
one another. Indeed, let v : T — [—1,1] be our Morse sampling function with two
monotonicity intervals I, and denote by vy := v|r. the monotone restrictions of v.
By the Morse condition, one sees (cf. Lemma [£.2])

[0:(0) — v (0) 2 [0 — 0I5, 0,0 L. (1.3)

By the Morse condition and ([I.3]), double resonant sites on the orbit of 6, cannot
occur near critical points of v; we thus find a lower bound v = v(p, L) » p on |[V/|
for double resonant phases 6 € Iy, + = vi'(Jon). What’s more, given the two-
monotonicity structure of v, there can be at most 4L such double-resonant intervals
Inn+, |n| < L (cf. Figure[l). Thus, the region of double-resonant phases is of size
at most 4Lp/v. It also follows from the Diophantine condition (LZ) and the two-
monotonicity interval structure of v that the sequence V,, = v(f, + ma) can only
recur to a neighborhood of E for at most two nearby values of m:

—1/27

min __ {|m; —myl, [me —mas|} 2 p
ml,mz,m'g,ESo

Thus, if we choose L of order, e.g.,
LS~ pV2r

then resonant sites m € Sy which are not simple resonant appear in distinct pairs
(mq, me) with |m; —ma| < L such that each pair is separated from other pairs by at
least LS.

Given the separation of these pairs, one can build an interval A§2) = [my —
L?/2,my + L?/2] such that, by classical perturbation theory (cf. Lemma and

Proposition 311), H AP has two Rellich functions E;, > E; . near E, for  near 0,.
These new Rellich functions, however, must necessarily deviate significantly from the
parent function v near their the crossing point £, (v). One of the primary technical
thrusts of this paper is demonstrating that these new functions locally 1) retain the
crucial Morse and two-monotonicity structural properties of the function v, and 2)
separate with a stable, quantifiable gap between them:

Theorem (cf. Theorem B.2). In our setting, double resonances of a Rellich function
E, of H*: resolve as a pair of uniformly locally separated Morse Rellich functions

(2)
Esi1v >Es1,, of HAS2+1 with at most one critical point, cf. Figure[2.

The gap demonstrated in the above Theorem serves two purposes: First, it ensures
that any Rellich function E; can only resonate with itself at future scales, which
ultimately enables our induction. Second, the size of the gap is sufficiently large to



El,n,v (0) } In|
~ &

0,71,—

Figure 2: The resolution of a double resonance of Eg = v into a pair of uniformly locally well-

separated Rellich curves of a Dirichlet restriction H A of H. The interval A§2) depends on the
crossing value F, (v).

remain open through each step of the inductive procedure; the ubiquity of these gaps
yields Cantor spectrum.

From the initial scale function Ey = v, we thus construct a collection & of well-
separated Rellich functions of certain Dirichlet restrictions of H whose domains cover
the circle T with the same structural properties as Eg, cf. Figure 3l The inductive
argument proceeds on each such constructed function: by properly defining our pa-
rameters at scale s relative to our initial choice of ¢ =: §y, we can ensure that the

1
g
; \j El,n,v
N\
'? A\
M,V /\
J
N\

Figure 3: A cartoon output of the first inductive step: a collection &; of local Rellich functions of
various Dirichlet restrictions of H, whose domains (and their relevant translates, e.g. Iy, + na)
cover the circle T. The curves in black come from double resonances, and the curves in gray are
simple resonant. Note that different curves need not agree on the overlap of their domains.

10



&o E,

& B // m

1,30 . 1,n0,v 1,n0,A
// / \\ ANA
& EY) L ED . EY L B o

AT AT N

Figure 4: After completing the induction, we have a tree £ of Rellich functions E; : Iy — J,. Any
energy E, € R admits a path through this tree. The superscript (j), 7 € {1, 2}, of each child indicates
the resonance type relative to the parent.

size 0, of the resonant eigenvectors near the edges of Ay is much smaller than the
eigenvalue separation p,, allowing the procedure above to iterate; we choose these
parameters in such a way so as to ensure the bad sets of phases have summable mea-
sures (cf. Lemma[6.7]). The Borel-Cantelli lemma guarantees that the collection B of
0. € T which are double-resonant infinitely often has zero measure; our full-measure
set of localized phases is the complement © = T\ B.

The ultimate output of the induction is a tree of cosine-like Rellich curves, cf.
Figure M FEach fixed energy F, € R admits a path of “FE,-relevant” Rellich functions
through this tree; this path either terminates at finite depth if F, is non-spectral
or proceeds without end. Given 6, € ©, we consider the infinite path determined by
some generalized eigenvalue F, = E(6,) of H(0,); by our construction of ©, this path
eventually consists only of simple-resonant children. The resulting stability of the ap-
proximate eigenfunctions ¢, will yield exponential localization of the corresponding
generalized eigenfunction, showing that the generalized eigenvalue is an honest eigen-
value with decaying eigenfunction. The spectral density of generalized eigenvalues
guaranteed by Schnol’s lemma completes the localization argument. Moreover, our
construction ensures that each node of the tree has some double-resonant descendant.
Since each double resonance opens a spectral gap which will remain open for all fu-
ture scales, this observation guarantees that spectral gaps open arbitrarily close to
any fixed energy F, € R; thus the spectrum is a Cantor set.

1.2.1 A brief roadmap of the paper

The article proceeds as follows: in the remainder of this section, we will establish some
basic notation and foundational lemmas for use throughout the paper; the proofs of
these lemmas can all be found in Appendix B. Sections 2, 3, and 4 provide the crucial
infrastructure for our induction. In Sections 2 and 3, we develop the spectral tools
to analyze descendants of a given Rellich curve in the simple- and double-resonant
settings, respectively, at every scale. The by-now classical but necessary details for
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proving Green’s function decay on nonresonant intervals are included in Appendix A.
Section 4 consists of technical machinery allowing us to classify energy regions Jg;
in the codomain of a cosine-like function E, as simple- or double-resonant. Section
5 applies the content of Sections 2, 3, and 4 in a multiscale induction scheme: given
a Rellich function E;, we use the restrictions of E; to the resonance regions J;; to
construct Rellich children E,,; according to the recipes in Sections 2 and 3. Section 6
characterizes the spectrum of H in terms of the complete collection of Rellich functions
constructed in Section 5, proving Cantor spectrum via the permanent stability of the
gaps coming from double resonances; finally, we eliminate double resonances and
prove Anderson localization as outlined above.

1.3 Notation and preliminaries

In this subsection, we establish some notation and collect the foundational lemmas
which will serve as the starting point for our discussion; the proofs of each of these
lemmas can be found in Appendix B.

Throughout the paper we use I to denote intervals of phases 6, J to denote
intervals of energies F, A to denote intervals of integers, and we denote by B, ()
the open ball of radius r centered at x. We reserve a handful of parameters for our
multiscale inductive procedure; these parameters are:

L: Lengths of spacial intervals A.

p: Resonance scale for phase and energy intervals I and J.

0: The size of a localized eigenfunction at the edge of an interval A.

v: Local lower bound on the magnitude of a first derivative of a Rellich function.
(¢,7): Green’s function decay parameters, see below.

Due to the nature of the induction, we will occasionally consider up to three scales
simultaneously, a “current” scale, a “next” scale, and a “previous” scale; we use hats™
or checks ~ above the corresponding parameters when we intend to suggest application
to the next or previous scales, respectively. With this convention, one should keep
in mind the following general scale principles, which we clarify more precisely as
necessary:

VL pLpLu,
v~ |logel,
L«l«L.

We now fix the notation for our objects of study. Let V € ¢*(Z,R) be a real-
valued potential. Restricted to ¢?(Z), the linear operator H(V,¢) is self-adjoint and

12



bounded (with |H|| < |V, +2¢). For an interval A = [a,b] = Z we denote by H* the
restriction of H to A with Dirichlet boundary conditions, ¢(a — 1) = ¢(b+ 1) = 0.
Letting |[A| :== b — a + 1, one identifies H® with a |A| x |A| matrix by making an
appropriate change of ba81s With this identification, we will frequently treat vectors
w defined only on a subset Ac A as though they are vectors in (C‘AI in this situation,
we abuse notation and conflate ¢ with its extensmn to A given by 1/)( )=0,me A\A

Consider a partition of A given by P = UY_jA;, Aj = [a;, b;], where b; +1 = a;;,
forall 0 < j <p—1and ap = a,b, = b. We define the partitioned operators H5 and
' by

Hp =P HY,
J
Iy = H* — H5.

We fix once and for all the trivial partition Py with a; = b; = j, and note that in this
special case

Hp =V,
F%O = AN,

We denote by sp(A) the spectrum of an operator A. For E ¢ sp(H"), we denote
by RME) := (H» — E)~! the resolvent operator and by R&(m,n) := (6,,, RN E)d,)
the associated Green’s function. Given a partition P of A, we define R} analogously,
with HA replacing H*. We will make frequent use of the resolvent identity

RYE) - Rp(E) = —~RE)I'p Rp(E).

Let E ¢ sp H®; given £ € N, > 0, we say that an interval A c Z satisfies the Green’s
function decay property for (¢,7) if, for all m,n € A with |m —n| > ¢

log |R*(m,n)| < —y|m —n.

1.3.1 Perturbation theory for differentiable one-parameter self-adjoint
operator families

We now recall some important lemmas for use throughout the paper; the proofs of
these lemmas are appended.
We begin with a straightforward consequence of rank-nullity:

Lemma 1.1. Let x and P each be orthogonal projections on a finite-dimensional
vector space. If

(T =x)P| <1

then rank(y) = rank(P).

13



We apply this lemma in the context of spectral projections for real symmetric
matrices. For a symmetric matrix A having normalized eigenpairs (\;,v;), |¢;] = 1,
and a Borel set J < R, we denote by x;(A) the spectral projection

) = Z ]
Ajed

onto the direct sum of those eigenspaces of A with A\; € J. We have the following
fundamental perturbative result relating eigenvectors of a symmetric matrix A having
quantitatively separated spectrum to approximations thereof:

Lemma 1.2. Let A be a real symmetric matriz, and let F, € R and § > 0. Suppose
there exists a nonzero orthogonal projection P such that

(A= E)P|<é
Then Xg,(g,)(A) # 0, and for any p > 6, we have

|(7 = X5, (A) P < 0/p. (1.4)
In particular, for any unit vector ¢ in the image of P, the spectral renormalization
. XBP(E*)<A)¢
[XB, (54 (A) 0|
15 well-approximated by ¢:
|6 — ol < V25/p. (1.5)
For a Borel set J c R, we denote the partial resolvent
(A
RJ_(E,A, ']) = X)\{)\J}<E)
Ned I

and sometimes abbreviate the special case
Z >§\{>‘k}
AN, R
Note that, by definition,
Ri(E; A J)(A—E) =1—x,(A) (1.6)

is the spectral projection off of the eigenspaces of A associated to A; € J. Furthermore,
one has that

1
dist(A;, sp A\{A;})
The partial resolvents R, are of great importance in computing derivatives of
eigenvectors for smooth one-parameter families of symmetric matrices:

[ 2L (A5 Al =
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Lemma 1.3 (Feynman formulae). Let A(0) denote a one-parameter family of sym-
metric real matrices, and suppose that A is C* at 0, and that (Ey, ) is a simple
eigenpair of A(0y). Then there is a family (E,1)(0) of locally simple eigenpairs in a
neighborhood of 0., normalized so that |(0)| = 1, which is twice differentiable at 0.
Furthermore, one has

0o E(0:) = (b, A'(0.)), (1.7)
Opp(0x) = —RL(A, EL)A(0.) s (1.8)
and
GB(0) = (i, A"(0.)1) + 2(0t, A'(0:)1)). (1.9)
Finally, one has that
{Ogth, ) = 0. (1.10)

1.3.2 Spectral analysis of discrete Schrodinger operators

We recall some classical lemmas regarding eigenfunctions of discrete Schrodinger op-
erators. The first, which is sometimes referred to as the “Poisson formula,” relates
the value of an eigenfunction at a particular site n to Green’s functions of Dirichlet
restrictions of H:

Lemma 1.4 (Poisson Formula). Let 1) € CZ satisfy the formal Schridinger difference
equation Hy = Ev, and let A = [a,b] € Z be an interval. Then

Y(n) = 5R97E(n, a)Y(a—1)+ 5R97E(n, b)w(b+1), neA (1.11)

provided E ¢ sp(H™).

The same relation holds if we replace H with HA for some interval A = [a, i)] 2
A and let ¢ € CAl satisfy HA@D = FEvy. In this case, we use the convention that
Ya—1) =p(b+1) = 0.

The final result that we recall is a classical eigenvalue separation lemma (cf. e.g.
[14, 20]), which quantifiably separates the eigenvalues of simultaneously localized
eigenvectors of a discrete Schrédinger operator:

Lemma 1.5. Let 121, @z be distinct eigenfunctions for g with corresponding eigen-
values El, E2 Suppose there is an interval A < A supporting half of the mass of both
U1 and s, i.e., such that H%HA 2”%” ,J=1,2. Then

Y
L e [ man2 e\ 3l
B =By > —— (—) 2 (—)
By = B 6|A|2<5 +) ~\3

15



where my 1= maxgep j—12 [v(k) — Ej|2.

In particular, if 2p < (¢/3)38], |Ey — Ey| < p/2, and E, is well-separated from any
other eigenvalues of H* (i.e., HRL(E*;H/A\, {E1, B,})| < 2p'), we have the partial
resolvent bound

|RL(E; HN (B < p™', EeB,ps(E.). (1.12)
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2 Simple resonance

In this section, we study the situation of simple resonance, where an interval AcZ
contains precisely one resonant “core” subinterval A < A such that H*(6,) has a
unique eigenvalue near a fixed F,. Under smallness and stability assumptions on
the boundary values of the corresponding eigenvector, alongside off-diagonal Green’s
function decay on the maximal connected components of A\A (the “shoulders” of A),
we prove that H® has a unique resonant eigenpair child which is well-approximated
by the parent eigenpair of H*.

Fix v € C*(T,[-1,1]) with |Ogv| e + |3v]|ee < Do, (04, Ey) € T x [—2,2], and
0 <e<1/7. Let A = Z be an interval with subinterval “core” A of length L = [A|,
We denote the left and right shoulders of A by Ay, respectively, and denote the

corresponding partition of A=AUAUA, by P. Fix constants p, d, v, ¢ > 0 satisfying
the following relations:

§ < p*/2 < p/16, (2.1)
log7 < v < |loge|

Assumption 1. Suppose the following hold for |6 — 0,| < p/8Dy:

1. (Simple resonance) The operator H*(6) has a Rellich pair (E,)(f) such that
E(0,) = E,.

2. (Eigenvector decay) The unit eigenvector ¢(6) of H*(#) has P-boundary values
bounded by ¢ /¢; i.e. one has

T3y < 24. (2.3)

Furthermore, for any Rellich pair (E, 12)(9) of H/A\(H) with |E — E,| < 3p, the
unit eigenvector v also has P-boundary values no larger than d/e; i.e. one has

TR0 < 46. (2.4)

3. (Green’s function decay on the shoulders of A) For m,n € Ay, with |m—n| > ¢,
one has

Ay
log |R9f{3 (m,n)| < —y|m —n| (2.5)
for |E — E,| < 3p.

4. (Eigenvalue separation) E(6) is the unique eigenvalue of H%;\(H) in Br,.(Ey)

Xe©)} (Hp(0)) = X5, . (5:) (Hp(0)). (2.6)
In particular, we have the partial resolvent bound
|RL(E; Hp(0),{E(0)})| < 4p™", E € Bsyp(Es). (2.7)
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5. (Eigenvector stability) The unit eigenvector 1 (#) of H"(f) has stably small
P-boundary values:

T3 (00| < 25D00p™" (2.8)

The remainder of this section proceeds under Assumption [Il

2.1 The resonant eigenpair of H A

Under Assumption [T, we first show the existence of a unique eigenpair of H* which is
localized near near A. Specifically, denoting the localization region Aj,. and modified
shoulders Ay, by

Ajoe :=[inf A — £, sup A + ] n /A\,
//il/r = Al/r\A10C7
we have the following:

Proposition 2.1 (Simple resonant eigenpair). Under Assumption [d, we have:

1. Any unit eigenvector n of o with corresponding eigenvalue E with |E —E. <
%p 18 Anderson localized on Ao :

|‘¢HA100 > 2/3’
log [v(j)] < —vydist(j,A), j€ Ay,

2. There exz'stsAa Rellich pair (E,QZ) for oA with E - B,jspo(ox) — Bpa(Eyx) and
eigenvector 1 satisfying
IE — E| < 20, (2.9)
b=+ (2.10)
where ||¢]| < 35/p.

3. Uniformly for 6 with |0 — 0] < p/8Dy and |E — E,| < 5p, there are no other
Rellich functions of H within p/4 of E:

HRL (& 150), (B(0)}) H <dp. (2.11)

In particular, this applies to all |E — ﬁ(9)| < p.
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Proof. Suppose (E, 15) is a Rellich pair for HA such that E— E,| < 2p normalized
so that WH = 1. Then, denoting A; = [ay, b;], we have for j € A,

log [1)(j)| = log |=Ry (br, ) (b1 + 1)

< log e[ —v]j — by
<=l — bl +1)
= _fydlSt(]a A)

by the Poisson formula (IIT) and (Z5). The case j € A, is entirely analogous.
Using this decay, we have that

[9l5,, < D) eV oY
JEAy,
< ¢’ < l
l—e 6

Consequently, we have that
HwHAloc > 2/3

for any resonant eigenvector 15 N ~ R
Denoting by P = XB30/2(E*)(H ) and by X = XB,,,(E) (HA), suppose (E,v) is a
resonant eigenpair of H® with |E E.| < 3p/2. Then we have

|( = x)P| = |R.(E: Hp, E)(Hp — E)P|

4p7HTAP| < 16657

Lemmal[L.Tland assumption (2.6]) imply H A has at most one such resonant eigenvector.
The existence of a Rellich pair (E,v) with E : B,sp,(0«) — B,u(E,) and satis-
fying (2.9) follows from Lemma [[.2] after noting that

[(H*6) — E@0)x] < [Tp0] < 26 (2.12)
and, by (L1),
IE(0) — E.| < Dol — 6,] < p/8.

Thus, E is the unique eigenvalue of HY with |E E,| < 3p/2, and (211) holds.
Finally, since w is the unique unit vector (up to a sign) in the image of x g, &) (H A),

(L3) implies 2.10). 0O
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2.2 Local Rellich function structure

In the simple resonant setting, the resonant Rellich pair (E, @Z) of I is well-approximated
by the resonant Rellich pair (E, ) of H*:

Proposition 2.2. Uniformly for 6 € B,sp,(0), there is a constant C = C(v) de-
pending only on v so that

’6§(E—E)‘ <opik, 0<k<?2 (2.13)
and

e (7 0

|05 (¢ — ) <CW, 0<k<l. (2.14)

Proof. By the previous proposition, we have
E—E|[ <25
~ )
[t — ol < 3=

Thus, by the Feynman formula (7)) and Cauchy-Schwarz,

2B —E)| = [(§, V') — @, V')
<2V |lldb - ¢
< 6D,
p
By (L8), (27), and (2ZI1)), we immediately get

4D0

4D
o] < —=, e < —.

By differentiating the relation H 7‘12 = ]?312, we likewise find that

(H — E)(@5(d — 0)) = (OB — V') — (3E — V') + (Th + (E - E))op
= (OE — V") — ¥) + (06(E — E))¢ + (P% + (E - E))op

and so, by the triangle inequality, the assumption (2.8]), and the above estimates,
i oA ~ ) ) ) )
|(H* = E)(0s(¢ — )| < 6D0; + 6D0; + 25D0; + 8D0;

)
< 45D,—
p
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Denote by ¥ the spectral projection onto 1. Then, since Rﬁ(]@))(H/AX — E) =1-X,
we have

009 = )1 < [REBI U = B)(@o(d = )] + [0t = ), D)
= [ RYE)[|(H" ~ B) @l )] + K& — v, 29
< 180D0% + 12D0%

p p
< 2001)032
P

where in the second line we have used that {dyp1),1) = 0 (and similarly for @Z)
Finally, by (L)), (I.9), and Cauchy-Schwarz, we have

BE-B)| < [ V") — 0, V)| + 2[00, V') — @, V')
< 2V ol =l + 21V (106 = )] + 0635116 — 1)
<60, + 2D, (2OOD0% + 12D0%)
p p p

5
2
< 50005 .

Taking C' = C'(v) = 500D2 proves the proposition. O
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3 Double resonance

In this section, we study the more complicated situation of double resonance, where
an interval A  Z contains precisely two resonating subintervals Ay < A such that
H+(0,) each has a unique eigenvalue E; near a fixed E,,; in our setting, these eigen-
values will have relatively large, opposite signed derivatives: +0dpE+ > v > 0. Under
smallness and stability assumptions on the boundary values of the corresponding
eigenvector, alongside off-diagonal Green’s function decay on the maximal connected
components of A\(A U A, ), we prove that H A has precisely two well-separated res-
onant Rellich children (cf. Figure [2).

Fix v € C*(T,[—1,1]) with [|0gv]e + [03v] 0 < Do, (Bsxs Fux) € T x [—2,2], and
0 <e < 1/7. Let A < Z be an interval containing two subintervals A_, A, with
dist(A_, A,) > max, {|A4|} and denote the corresponding partition A =: Ay U A_ U
A. U Ay U A, by P; despite the notation, we do not insist A_ be left of A,. Let
A=A_UA.UA,, L=]A| and fix constants p,d,~, ¢, v > 0 satisfying the following
relations:

2

3 PV
d<p’)2 < 51000, < 1/16, (3.1)
log7 < v < |logel, (3.2)
%2 3 ~
A (3.3)

192D3 ~ 48D}
Assumption 2. Suppose the following hold for |0 — .. < p/8Dy:

1. (Double resonance) Each operator H** (,,) has a unique eigenpair (E4, 14 ) (04+)
such that E; (0,y) = E_(04s) = Eys.

2. (Eigenvector decay) The unit eigenvector 1. (6) of H"+(#) has P-boundary
values no larger than d/e; i.e. one has

Furthermore, for any resonant eigenpair (E : @Z) of HA with |E — E,| < 25, the
unit eigenvector 1 also has P-boundary values no larger than J/¢; i.e., one has

T3] < (3.5)

3. (Green’s function decay off A_ U A ) For m,n € Ay with [m —n| = £ one has
Atjesr

log | Ry g (m, )| < —ylm —n| (3.6)

for |E — Ey.| < 2p

2
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4. (Eigenvalue separation) E () are the only eigenvalues of Hé(@) in Brpa(Eax):

X{E_ (0)}o (B 00} (HP(0) = XBryya(Baw) (Hp (0)). (3.7)

In particular, we have
|RL(E: Hp(0) {E-(0)} W {E+(O)})]| < 457", B € Byga(E). (3.8)

5. (Eigenvector stability) The unit eigenvectors 1. (0) of H*+ () have stably small
P-boundary values:

|05 (Gov+) || < 25Dodp " (3.9)
6. (Transversality of Rellich functions) The eigenpairs E4 have large, opposite-
signed derivatives:

+0yE4 (0) > v. (3.10)

The remainder of this section proceeds under Assumption 2

3.1 The resonant eigenpairs of H A

Denote by
Apoe := [inf Ay — £, sup Ay + €] M A,
Apr = Ay \ Ao

A~ ~

Under Assumption 2] the operator H A has precisely two resonant eigenpairs (E,, 1, ),
e c {v, A}, and 9, are simultaneously localized on Aj,.:

Proposition 3.1 (Double resonant eigenpairs). Under Assumption[2 above, we have:

1. Any unit eigenvector QZ of oA with corresponding eigenvalue E with |E—E**| <
%ﬁ 18 Anderson localized on Ao :

[9] 80 = 2/3,
10g|¢<]) s -7 dlSt(jv A)v j € Al/r-

2. There exist two Rellich pairs (E., @Z.), ec{v, A} for HA with E, - Bjjspo (0ss) —
Byja(Eyy). We normalize so that E,, > E,. The eigenvectors satisfy

~

Yy = Ay + By + ¢, (3.11)

¢/\ = Ber - Aiﬂ, + ¢/\ (312)
where A(0) and B(0) satisfy A?> + B?> =1 and ||¢.| < 246p~ 1.
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3. Uniformly for 6 with |6 — 6, < p/8Dy and |E — E,.| < 2p, there are no other
Rellich functions within p/4 of E:

|Ru(E; HYNO), (B (0)}  {BA(0)})] < 457" (3.13)

Proof. The decay of any resonant eigenvector follows from the Green’s function decay
(B8) and the Poisson formula (LII]) identically to the single resonant case, so here
we refer the reader to the proof of Proposition 2.1l

Using this decay, we have that

[Dl5,, < D5 e N
JEA+
< ¢’ < l
l—e 6

Consequently, we have that
HwHAloc > 2/3

for any resonant unit eigenvector @Z R
We fix 6 € Bj/sp, (0+«) and will suppress its notation. Denoting by P = X Busja (B (HY)

and by X = XByy(Esx) (Hp) suppose (E, 1/1) is a resonant eigenpair of H™ with
|E — F.i| < 3p/2. Then we have

|(I =x)P| = |R.(E; Hp, Bs(Eys))(Hp — E)P|
4p7 TP < 1667
Lemma [[LT] and the assumption (B.7)) imply H A has at most two resonant eigenpairs
(B, ) satisfying | E— Fy.| < 35/2. If such an eigenpair exists, since ||(H5—F) P| < 46,

and {¢,,1_} forms an orthonormal basis for the image of x p,(F), Lemma [[.2 implies

¢ must be of the form B11).
To see the existence of two eigenpairs (E.,1.) with E, : Bysp,(0xx) — Bja(Eax),
e € {v, A}, first note that,

[(HY = By )es | < [The| < 26 < 7/8

and, by (D),
|E+ — Ev| < Dol0 — .| < p/8,

so at least one such eigenpair (e.g., (Ev , @Ev)) must exist by Lemma [[.2l Let A and B
be defined as in ([3.I1]), and denote by 1, := Ay, + By_ and by ¥, := By, — Ay_.
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Denote by P¢ := —@D @DT and by X%, := I— w Pl By B.11)), we have [ P{—x¢ || <
485p~1; thus, letting H, := PSHAPC and H, := XVHAXW we have

\%

[(Hy = Ew)or| < |(Ho = HOwA] + [(Hy = Buo)on]

<2 HM|PS = xS+ xS (HY = Ea)os |
< 1926571 + |A|(|E- — Ey| + 20) + |B[(|Ey — Eu| + 20)
<

1926771 +/2(p/8 + 26)

< p/4
where in the penultimate line we have used that |A| + |B| < < V2. Thus, H, (and
consequently H A) must have an eigenpair (E,, ¢, ) where ¢, satisfies (312). 0O

3.2 Local Rellich function structure

Keeping in mind the eigenvalue separation Lemma [ we fix a separation constant
5 < (g/3)3Meel (3.14)
We also define the crossed parent curves
E, =max{E.,E_}, E, :=min{E, E_}.

In this subsection, we will prove a precise formulation of the heuristic demon-
strated in Figure 2l In order to do so, we will introduce two new parameters: an
intermediate parameter n < p, representing the distance from 6,, where E, begins
to deviate from E,, and a second resonance parameter p « n with respect to which,
away from B, (0. ), the parent curves E, are simple-resonant.

Theorem 3.2. Under the assumptions above, the two Rellich pairs (E.,’QZJ\.), S
{v, A}, for H* from Proposition[31 satisfy the following:

1. The Rellich functions E. are Morse with precisely one critical point in Byspy (0 ),
with Morse constants

d=v/12,
D = 2Do(1 + Dy5 ™)

2. The Rellich functions E. are uniformly separated on Bjsp, (0 )

- ~ vo
inf E,60)— sup E.(0)>-—
Bjspg (0x%) ( ) Bysp, (0xx) ( ) 2Dg + v

3. Fixn < 15021[;3 and p < %1/77. There is a constant C' = C(v) depending only on v

so that, for 0 € Bysp,(0sx)\By(0ss),

(B, B

5
<O 0<hs<2, (3.15)
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3.2.1 Lower bounds on the second derivative

By Proposition[3.1], there exist two Rellich pairs ( o e ) for H A with B, : Byjspo (0ss) —
Bj/a(Eyy). We will prove lower bounds on the second derivative near 6,.:

Proposition 3.3. Let n < 100D3.
on v such that, for 0 € B, (0..),

There exists a constant C' = C(v) depending only

U5/2%

)agﬁv(e)‘ <v/12 — FB,(0) > =L,
1/5/25
)aeE ‘ v/12 — ~GE,(0) > L.

We prove this Proposition via a series of lemmas. Suppose that |0pE, (04 )] =
|0gE_(04+)| (the argument is similar for the opposite case), and define 1 < r < Dy/v
such that

|09 E 4 (6:)| = 7|06 (0.

Lemma 3.4. Uniformly for 6 € B, (0.),

105 (B4 + rE_) (0)] < ngﬁiV

Proof. By equations (L9) and (B.8]), we have the uniform bound
G3B.] < Dy + 2D} R (BL)] < Dy + 2035

The claimed bound follows by integrating; specifically, since dpE, and dgE_ have
opposite signs, we have

OB (0us) + 105 E_(0,) = 0,

and so

0

10g (B, +7E_) (0)| = 0g(Ey +rE_)dt

9**

0 0
<J \0§E+}|dt|+rf 2B |||
0**

k3k

< (14+7) (Do +2D3p Yn

<sp3L 0
pv

We now prove Proposition [3.3] for f}v, noting that the case EA is entirely analo-
gous. To begin, we use Proposition 3.1] to relate dyE,, to the Rellich functions from
the previous scale:
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Lemma 3.5. With the notation from Proposition [31] and r as above, if |89Ev| <
v/12, then

A% > i, B? > 1.
127 4

Proof. We simply apply the Feynman formula (7)) and make the substitutions (3.11I)
and (B.12), using the fact that 1)1 are disjointly supported. Specifically,

QWE, = (0, V')
= A2y V') + B Vo) + 26, V') — (b, Vi)
= A20E, + B2%E_ + 206, V') — (6, Vo)
= (B* —rAY)0E_ +¢,

where the error term & has

) n 1
< D = ng— -
€] <96 0% + 8 0% < 337

by Cauchy-Schwarz, Proposition B equations (B.1) and (B.3), and the previous
lemma. R
By assumption, we have |0pE_| > v; thus, if |0)E, | < v/12, we have

= > 1B =A%y — ],

and so

g 1
B?—rA? < — 4+ 2 <2,
| r |<12+V<6

It follows that
(1+7r)A%? =1—(B*—rA?) = 5/6;
the inequalities on A% and B? follow. O
We now proceed to prove Proposition 3.3l

Proof of Proposition[3.3 Let 6 € B, (0,s). By expanding the Feynman-type formula

(L9), we have
A n, V', )2

A Vv

— 2RMNE,; HN6), (B} U (B )V, V).
(3.16)

agﬁv = <{/}\v7 V”&;v> -
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The first term is bounded by Dy. Furthermore, since |EV(9) — E..| < p/4, the third
term is bounded by 8 D2p~! by Proposition 3.1l We will show that the second term
is large.

By Proposition B.1] and the previous lemma,

G VD = (AB (0 Vi) = o VIO) + 0 VDD + D VD) = (90 V1))
> (AB)’ <aa<E+ ~E.))* - 288D50/p

5 g
> & — (1 +7)** —288D35/p

5 1
-9 D2 2
481/ 88D;d/p = 16 ,

where the last inequality follows from (B.1]).
It remains to show that the denominator E, — E,, is small. By Proposition 3]

AIE —By| < By =By | (10 B0l + Kibs 6)1)

< |y (HY —E )| + [Ey — E|[Ghr, 0]

4}
< 40<.
p

Similarly, | B||E, — E,| < 400/5. Since

v
min{|A[,[B[} =
\f
it follows that
E, —E.|<[E, —E.|+ B, —E,| <802y /=
pN v
Combining the above estimates, we get
2 VD 1 P
E, —E,| 640\/ o 0
and so
R 5/2
3B, >

with C = C(v) = (800y/Dy)~", e.g.. The bound for 02E, is similar. By (33),
the middle term in (3.I6) dominates; the sign of J3E, then must match the sign of
E, — E,, which is positive for 0E,,. O
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3.2.2 Uniform local separation of Rellich functions

By Proposition B.1] @Zv and @ZA are simultaneously localized on the interval Aj,., so
Lemma guarantees Rellich function separation

E,(0)-E,.(0)>5 (3.17)
for each 6 € Bjsp,. In fact, the Rellich functions are uniformly separated:

Proposition 3.6. The two resonant Rellich functions E. : Byjspo (0xx) = Bpja(Eus),
e c {v, A} of H* are uniformly separated for all § € Byjsp,(0s); specifically,
Vo

inf EVQ —  sup EAH > —
Bj/spg (0sx) ( ) Bj/spg (Ox) ( ) 2D0 + v

The proof of this proposition involves a novel argument utilizing the Cauchy In-
terlacing Theorem:

Theorem 3.7 (Cauchy Interlacing Theorem). Let A be an n x n Hermitian matriz,
let m < n, and let P be an m x n matrix such that PP* = I,,,«,,. Let B = PAP*
be a compression of A, and denote the (ordered) eigenvalues of A (respectively B) by
a; < <--<ay, (resp., i < Pa <+ < ). Then

o < Bk < Qktn—m-

The interlacing theorem is proven via a standard Min-Max argument, cf. Ap-
pendix B. We will use the interlacing theorem to compare H* to a pair of auxiliary
operators, which we now define. Let Py := @Di@DJ_Tr, let Q+ := I — P4, and consider
the auxiliary operators

Hy =Q+H"Qs + ELPy.

Lemma 3.8. The compressions QiH?‘Qi have unique eigenvalues A+ = Bygp,(0xx) —
Byja(Eyy) near Ey. These eigenvalues interlace E,, o € {v, A}:

E,(0) < A:(0) <E,(0)

and are uniformly C-close to previous-scale eigenvalues; that is, there exists a con-
stant C' = C(v) depending only on v so that

J

2k
p

In particular, A+ are monotone having different signed derivatives, and

0k(A\y —EL)| < C k=0,1.

iag)\i = l//2

uniformly in Byjsp, (Osx)-
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Figure 5: A cartoon illustration of the interlacing argument in Lemmal[3.8 the dashed lines represent
the current scale Rellich functions E4, the full lines are the next scale eigenvalues E,, o € {v, A},
and the dotted lines are the monotone interlacing curves A+ well-approximating E4. The differences
between Ay and E are exaggerated for emphasis.

Proof. Since Q4+ and Py are orthogonal projections and (H A E )P, =T éPi, we
have

HN — o, = Q.H P, + P,H Q. + P.(H - E,)P,
— Qi(HN —Ey)Py + Po(HN ~E.)Qy + Po(H — Ey) Py
— Q.TAP, + P.TAQ, + P.TAP,
= ngi +PiF§Qi

By (8.4]), we have HF%PJ_FH < 20, and so
|HY — H | < 46.

It follows from the Min-Max principle that any eigenvalue of H A must be within 46
of an eigenvalue of H, and conversely. In particular, H; each have at least two
eigenvalues in B%ﬁ+45(E**) and at most two eigenvalues in B%ﬁf4é(E**). One of those

eigenvalues must be E. by definition; the other is an eigenvalue of Q)+ H /A\Qi.
Denote by A: the unique eigenvalue of Q4+ H*Q. in B%5+45(E**). By Cauchy

Interlacing, the eigenvalues of Q4+ H KQi interlace those of H AK Since Q+H /A\Qi has
precisely one eigenvalue in By 45(Ess), it must lie between E,, and E,; that is,

E,(0) < A:(0) <E,(9).
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We will show now that \; is C'-close to Ex. By ([3.4), we have

[QHQx — B )] = [Qu(H — By
= |Q+Tpv=] < 26.

Let 1 denote the unit eigenvector of H. corresponding to Ax. Since Az is the unique
eigenvalue of Q4+ H*Q4 in B%5_45(E**) - 335_45(E;), it follows from Lemmal[l.2that
we have

IAr —Ez| <260
and (up to a choice of sign for )

24/26 4

% S
P —40 P

>

los — =] <
By the Feynman formula (IL7)), we have

oAz = {p5, aH(QiH?\Qi)(PTr>
= (p7, Qs V' Qi) — 2p5, PLH Q107
Since Q11+ = Y+, we have

(o5, Q+V'Qip5) — 06Ex| = (o5, Q+V' Qi) — (b5, Q:V'Q11b5)|
= [{pz — 05, Q+V'Qrp5) + (¥5, Q+V' Q4 (95 — ¥3))|
< 2[V'|llex — v+

<8Dy2.
p

It remains to show that |[{¢=, PjLH/A\QigoJ—FH is small. By (L) we have
— P, = RY*(E4)V'Py + PLV'R}* (Ey)

On the one hand, we have

|PLHAQ 4| = | Pe(H" — E4)Qep4|
= HPi(HA —E7)Q+(pr —¥5) + PirF%?/b?H
1)
<21l
b

and so

|<7, RﬁiV,PiHAQiS%N = |<V/Rﬁi90$a PLHQ1ip3)]
< VIR || P H Qx5
1)

< 96D)=.
pZ
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On the other hand, since Py = 0, we have

pz, PyV'RY HAQip2)| = [{p5 — 5, PyV/RY HAQiip1)]

N
< oz — ozl IVIIR N H Q%]

)
< 48Dg—
p

Bringing it all together, it follows that
)
|09>\J—r — 09E$| < 400D0p6,

the other claims follow. O

Proof of Proposition[3.0. By the previous lemma, we have separated the Rellich func-
tions E, and E, by two transverse curves. We use the quantitative transversality to
now derive the size of the gap. R

Let 6, denote the minimizing/maximizing values of § for E,, ¢ € {v, A}, and let

h =10, —0,|. By (8117), we have
E,(0.)—E.(0,)=>E,(0,)—E,.(0,)— |E.(6,)—E.(0,)| =& — Doh,

which is an effective bound for small h. On the other hand, we have by transversality
of the bounding curves Ay

B.(0.) B, (0.) > 110, —0.]= 2

which is an effective bound for large h. Taking a convex combination of the two
bounds yields

E,0,)—-E,.(0,)=> — Dyh —
(0.) (0) 2D0+I/(U 0)+2D0+V2
Vo
= )
2D0 + v
which was the claim. O

3.2.3 Simple resonance of f)v and EA away from 0,,

In this section, we will show the following:

Lemma 3.9. Let 0, € Bjysp,(0sx)\By(0sx), and suppose E, = E,(0,). Then HA
satisfies Assumption [ for (0., Ey) with A = A4, p,0 as above, and Green’s function
decay parameters { = 16]loge||log p| and 5§ = v — 6|loge|| log p|/¢ as in Lemma[A 2
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In particular, for @ € {v, A}, there exists a constant C' = C(v) depending only on
v such that we have

~ )
5B —E,)|<C—, 0

p

N
=l
N
N

and

|R(E; HNO), (Ba(0)})] < 4p7"

A~

uniformly for 0 € Bysp,(0wx)\By(0xx) and E € B,(E.(0)).

Proof. Ttems 1, 2, and 5 are immediate by the definition of A = A4 and E, = EL(0,).

Suppose that A = A_ < A, (the other cases are completely analogous), and
consider now the interval A, := A, U A, U A,. To verify items 3 and 4, we need
to verify that A, has the Green’s function decay property, and that H*" has no
eigenvalues in Br,/s(Ey) = Br,u(E_(0)).

To see the eigenvalue separation, notice that, by Assumption 2 H Ar satisfies
Assumption [ with j replacing p. Thus, H”" has a unique eigenvalue E (0) :
Bﬁ/SDO (9*) — Bgﬁ/Q(E**) such that

[E.(0) - E4(0)] < 20.

The necessary separation follows from the transversality of E; and the definition of
p; indeed, since n > 9p/8v, for |§ — 0, < p/8Dy we have

|Ex = By (0)] = [B_(6x) — B+ (0.)] — Dol0s — 0] — [E(0) — E4.(0)]
> 2un — p/8 — 2§ > 2p.

It remains to verify Item 3 for 4 and ¢. The Green’s function R has (4,7)
decay (and thus (¢,7) decay) by assumption. On the other hand, for |[E — E,| < %p,

the bound we just established implies HRQ,’EH < 2p~'; thus, the interval A, satisfies
Assumption [5, and so R also has (£,%) decay by Lemma O

3.2.4 Proof of Theorem
Proof of Theorem[3.2. First, by (L) and (L.9]), we have
|06E.| + |02E.| < Do + Do + 2D2| R} (E.)).
By Proposition 3.1l and Lemma [ for all § € Bj/sp,(0«), we have
|RY ()| <57
The Morse upper bound D for E. follows immediately.
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The Morse lower bound d for E, for § Bj/3o (05x)\ By (04) follows from Lemma
and the transversality assumption on dyE.; specifically,

109E| = |0gE.| — |09(Bs — EJ)| = v — C65 ' = 1/12
For 6 € B, (6.), the Morse lower bound follows from Proposition B.3] and the fact
that
= 5/2
pv
C
o

> v/12.

That E, can each have at most one critical point in B, (04 follows again from
Proposition [3.3, Lemma [3.9, and continuity of the second derivative. In particular,
by Lemma 3.9 E, can only have critical points in B, (..), and by Proposition [3.3]
the concavity of E. at any such critical point is uniquely determined.

Items 2 and 3 were shown in Proposition and Lemma [3.9] respectively. O

3.2.5 Approximation of EV and EA by previous scale

To conclude this section, we note that the Rellich functions EV,EA are uniformly
close (on order §) to the previous-scale functions E, , E; this implies upper bounds
on the size of the vertical gap between the two Rellich functions and on the horizontal
deviation of the Rellich functions’ critical points from the center of resonsance 0...
Since § » 0, these estimates are not fine enough to contribute meaningfully to the
lower bounds on the second derivative and the size of the gap. Moreover, these results
are not necessary to prove our Main Theorem; indeed, larger gaps only help local-
ization and Cantor spectrum, as we outlined in the introduction. Nevertheless, we
include these results to provide a more complete picture of the local Rellich function
structure.

Proposition 3.10. For all § € By/sp,(0«x), we have
IE.(0) — E.(0)] <45, ec{v, Al (3.18)

Proof. Fix 0 € Byjsp,(0s). Letting Py = 1.1, we have [(H*—EL)Py| = [IAP:| <
26 by (B.4). Thus, by Lemma [[.2, H* must have an eigenvalue in Bys(E, ) and in
Boys(E,). If these two intervals are disjoint, ([BI8) most hold.

Otherwise, let P = P, + P_, and consider that

(=57

E, -E,
2
E, -E,

< 46 e
+ 2

<[r3P) +
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Thus, by Lemmas [ and [L2, #* must have two eigenvalues in the interval [E, —

40,E,, + 44]. Since H A ~must have an eigenvalue in Bys(E,), the greater of the two
eigenvalues must be in Bys(E,); similarly, the lesser of the two eigenvalues must be
in Bys(E,). Thus (3I8) holds. O

Corollary 3.11. We have the following upper bound on the size of the gap between
E, and E,:

inf E,(0)— sup E,(6) <86
Bj/spg (053%) Bjspg (0x%)

Proof. We observe that

inf E,(0)— sup E, () <E,(6)—E.(6.)

Bjspg (Osx) Bjispg (0x%)
< (By (04s) — Bux) + (B — E(04s))
< 40 + 46 = 86,
where the last inequality follows from Proposition [3.10l O

Corollary 3.12. Let 6. be a critical point of f]v or EA. Then |0, — 0| < 85/v.

Proof. Suppose 0. is the critical point where EV attains its minimum. If |0, — 0,.| =
80 /v, then we would have, by Proposition .10,

E,(0.) = E,(6,) — 4
> E, (0is) + [0 — Osi] — 40
> E, (0u) + 40
>E, (6:s),

contradicting the fact that f)v attains its minimum at 6.. R
The proof procedes analogously if 6. is the critical point where E, attains its
maximum. ]
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4 Resonance via inverse functions

The present section describes carefully the double-resonant situation diagrammed in
Figure [Il and contains the final pieces of machinery required to handle our multiscale
inductive procedure. The ultimate goal of this discussion is the construction of a
covering of the codomain of our cosine-like function on whose components we can
control recurrence; cf. Propositions and [4.10] below.

It is here that the “cosine-like” properties of our potential and its descendants
are explicitly utilized. Specifically, for a cosine-like function f : I — J, the two-
monotonicity interval structure allows us to describe double resonances as zeroes of
a uniquely defined difference of inverse functions, and the Morse condition will yield
upper bounds on the size of images of these inverse functions. Combined with the
Diophantine assumption on the frequency «, we can then quantifiably separate the
double resonances in terms of the Diophantine and Morse parameters. The proce-
dure requires somewhat careful assumptions; we demonstrate the robustness of these
assumptions under C? perturbations at the end of the section.

Let I+ < T be two closed intervals with disjoint interiors, let I := I v I,, and
consider a C? function

f:[_)‘L .fi ::f|1ia iaefi>o
Assumption 3. Suppose the following hold:

1. The function f is Morse on I:

d<|0gf|+10;f| <D

2. Each function fy maps onto J:
felly) =J

3. There is a constant 0 < v < d/2 such that |Jyf| = v on the boundary points of
I.

With these assumptions, we can define a function Ty : J — (I, — I_) by
Ty(E) = f{(E) — fZH(E).
We also fix a constant Dy such that

sup |0pf(0)| < Dy < D.
oel
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4.1 Preimages and crossing points

We begin with a few lemmas about fi and T}:

Lemma 4.1. The derivative Opf+ is monotone on each connected component of

Iy capp i={0€ Iy [0 fr(0)] < d/2}.

In particular, any critical point of f+ must lie at the boundary of I+; and each con-
nected component of I -, must contain a critical point.

Proof. That 0y f+ is monotone on each such connected component follows immediately
from the Morse condition, since |03f| > d/2 and 03 f is continuous. Since £0pf+
is strictly monotone and nonnegative, zeros must lie on the boundary of I.. By
monotonicity of dgfy, any connected component of I, ., must contain a boundary
point of Ii; since that point cannot be a boundary point of I, it must belong to
I, n1_,i.e., it must be a critical point. O

Lemma 4.2. For any 0 and 0, in I,

d 5
|f+(0) — f+(0.)| = E|9_9*| -

In particular, for any subinterval Jy < J,

Ji _ 12
Bl <12l <20

Proof. Suppose without loss of generality that 6, < 6. Then

ugm—ﬁwm=f @0 (1)),

[9* 79]

Consider the set

Iy cqpp =10 € It : [Op f1(0)| < d/2}.

As in the previous lemma, dy f+ is monotone on each connected component of this set;
furthermore, there are at most two connected components of [6,0] N I 42, and,
by monotonicity of dgf on Iy .42, these components must lie at the edges of [0, 6].
Thus, we may write

[9*70] = [9*791) v [91792] u (0279]7
where [0,,0] N Iy g0 = [04,61) U (02,0], and |Jgf+| is increasing on [6,,6,) and

decreasing on (65, 6].
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Since |0y f+| is increasing on [0, 0;), we have

00 O)] > 100fo(0) = 082000 = | 1031 (5) s
[0s,t)
d
>3 [t — 04|, te[06).
Similarly, since |0pf+| is decreasing on (6q, 6],

d
0o f+(1)] = B it —0], te(6,0].

Combining these observations and using that |0; — 02| < 1, we get

d d
|f£(0) — f£(0:)] = 1 (105 — 611> + 162 — 0]) + §|91 — 0y
d
= Z (|9* — 91|2 + |91 — 92|2 + |92 — 9|2)
d 2

where the last step is a standard inequality following from Cauchy-Schwarz.
Since fi'(Jo) are intervals, the upper bound on | f;'(Jy)| is immediate. The lower
bound follows from the observation that

|m=f e (D]]de] < Dol (Jo)l. O
fgl(JO)

We now turn our attention to the difference of inverse functions 7.

Lemma 4.3. We have uniform bounds on |0gf+| when |Ty|r is large; specifically, if
E, = fi(ei) € J, then

Tv
ITr(E)lr = — = 1S+ (0:)] > v
Proof. Suppose |0pf_(0_)| < v (the case |dpf+(0+)] < v is analogous). By Lemma
4] there is a critical point 6, of f such that for all § € [6_,0.] (we assume 6, > 0_;

the reverse case is exactly analogous), |0pf_(0)] < v. Since |05f_| = d/2 on this
interval, by the Mean Value Theorem,

d
v>|0gf-(0) — 0| = §|9_ —Oel,
and so |6_ — 0.| < 2v/d; similarly,

B, — f(0.)] < v]0_ —0.] < 2.



Let Jy :=[f(6.), E«]; by Lemma [4.2]
_ 12 5%/
2 < 2 < 2
7_1/

<2—V+5—V— H
d d d’

and so
ITr(E)x < [f2H(Jo)| + | £ (o)

Lemma 4.4. For alln and irrational o, there exists at most one value £, = E(n, «, f)
such that

T(E,) —no mod 1 =0.

Proof. First, note the function T} is strictly increasing on the interior of .J, since, for
any E, = f4(0+) such that 0y f4(0+) # 0, we have

A B 1 B 1
PTi B = 500 T Gr ()
1 1
RS IRRETACS]
.2
Dy

by the inverse function theorem. By Lemma .1} 0y f+ is nonzero on the interior of
I+, and monotonicity follows on the interior of the interval J.

Since « is irrational, na mod 1 is distinct for all n. Uniqueness of E, follows
immediately from strict monotonicity of 7. O

For « irrational and [ € N, define
N(a,f):={neZ:na mod1eTJ)}.
Lemma 4.5. There exists 0 € I_ such that 0 + na € I, if and only if n € N(a, f).

Proof. One direction is immediate: indeed, if n € N(q, f), then there exists F =
E, € J such that T;(E,) —na mod 1 = 0; the relevant § value is f='(E,).

Suppose that § € I_ and 6 + na € I.. By monotonicity of Ty, T¢(J) = [inf I, —
supI_,sup I, —inf I_]. Since

inf/, —sup/_ < (0 +na mod 1) —0 <supl, —inf [,

we get nav mod 1 € Ty(J). O
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4.2 Double resonance

Let a € DCg¢,; and L) € N be fixed satisfying
C Tv
- @ 2 -
2(LMW)y™ — d’
and denote by
NILY a, f) :=={neN(a, f): 0<|n| < LW}

We can separate the distinct points E,, n € N developed in Lemma (4] via the
Diophantine condition:

Lemma 4.6. Forn # m e N (LW, «a, f) such that E,, and E,, are in the interior of
J, we have

Cv
2(LM)7

|En - Em| =

Proof. Letting |T¢(E,)|r = C/(LW)™ and 64+ denote the unique points in I, such
that f4(04+) = E,, we have by Lemma that

109 f+(0+)] = v.

Provided E, is in the interior of J, it follows that

[\]

_ . . 2
100 f+(04)  |dof-(0-)] v

By monotonicity of T and the definition of | - |, the set

Ty (Ey)

C

Jo(LW, a, f) := {E N TH(E)|r = STy o}

is a connected subinterval of J. By definition and the Diophantine condition, for
neN(LY, a, f) we have

C

C
T¢(E,)|T = = = .
H f( )HT H?’LCYH']T |n|7- (L(l))T

Thus, for any n,m € N (LY, a, f), the interval (E,, E,,) must lie inside of .J; (and,
by openness of (E,, E,,), the interior of J). The result follows from the mean value
theorem applied to T'; specifically,

2
oy < |(n = m)alr < |T3(En) = Tr(En)| < - |En — Bnl. O
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We can also separate these points from any critical values of f, if one exists:

Lemma 4.7. Forne N (LW, a, f) and E. a critical value of f, we have

C?d
E,—FE|> ———.
| | 48<L(1))2T

Proof. Let 01 again denote the unique points in I; such that fi(04+) = E,,. Assume
E. < E, (the reverse case is analogous), and let J. = [E,, F,]. By Lemma [A.2]

d, .
|En - Ec| = |JC| = ﬁ|fil(<]c>|2‘

Since f='(J.) u fi'(J.) = [0-,0.], we have |f=*(J)| + |f*(J.)| = |nallr; thus
|f:'(J.)| = |nalr/2 for some choice of sign. Then

We fix now a length scale L® » LM and notions of resonance

& p < p < min i ¢ 2 Cv Cv
pepsep D2\ 24(LM)7 ) " 12(LM)™" 3(L@)

In order to handle technicalities that arise near the boundaries of the functions we
consider, we fix notation for “modified codomains” J(f) of functions f satisfying
Assumption [l Specifically, we denote

P if f attains its minimum at a critical point

—5p otherwise

P if f attains its maximum at a critical point
//Lr(f) = 9~ .

—gp otherwise

and define N
J(f) == [inf J = (f),sup J + i (f)]- (4.1)

Define j( f) similarly, with 2 replacing g, and denote
J={EeR:B,(E)cI(f)ycI(f)nJ

and J = J(f) n J.
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Figure 6: An illustration of two different functions f satisfying Assumption [3lalongside their modified
codomains J(f); note how the definition of J depends on the presence of critical extrema. The

intervals J(f) are visually analogous.

For n e N(LW, a, f), define the double-resonant interval
T = IR (p, LY, @, f) i= By(En),

and recall the special interval

C
R0, 1) = { BBl > o = 0

Lemma 4.8. For allne N(LW, a, f), JP® < Jo(LW, o, f).

Proof. This is a corollary of monotonicity of fy and Lemma (.2} specifically, if E, €
JPR then |E, — E,| < 3, and

17 (Es) = Tp(En) |l < [ (B, Ba))| + [f21 (B, En))| < 12\@ < Q(L%)T-

In particular,

C
|Te(E)llr = [Tr(En)lr — |75 (Ex) — Ty (En)|r = (L)

which was the claim. O

We define the complementary region

TSR = T\ | Bsosp(En).

neNs 1

We now divide it into simple-resonant intervals of comparable size to the double-
resonant intervals:

Proposition 4.9. J can be covered by closed intervals J-(j), j € {1,2}, such that

(2
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1. Jr(gz) - §ﬁ<En)f where ne N(L(l)7 Oé, f)

2. p<|J9 < 2p.

co

JiﬂJi/ ?5@ — |J,ﬂJZ/| =3p
4. For any E € Ji(j), B,(E) < J(f).
5

. The total number of such intervals Ji(j) does not exceed 5[|J|p~].

Denoting the corresponding preimages

1= 9, 1 =12 o),

7 7 ,

)

each function f| . : JS2N Ji(j) satisfies Assumption [3 with Morse constants d, D

and boundary derivative constant

V:=min< v 3—d_
= ’8D0p )

Proof. If [E,,+ p—3p, E,— p+3p] is a connected component of J°%, then, by Lemma
[4.0], it has length at least

|En — En| — 25+ 6p = Cv/2((LY)7) = 2p + 6p
=

i

Similarly, if a connected component of J9® contains a critical point of f, it has length
at least

C*d/48((LW)*T) = p+3p = p

by Lemma [l We can cover each connected component of at least this size (by the
above remarks, this includes all connected components except possibly those at the
boundaries of J°F where f does not attain a critical point) by at most 4[|E,, — E,,.| /p|
closed intervals of size between p and 2p overlapping with only their nearest neighbors
by exactly 3p. We thus construct a collection of at most 4[|.J|/p] closed intervals Ji(l).
Together with the collection of intervals

{(J@ = JPR - pe N(LW, a, f) st. JPR < T},

we have a total of at most 5[|J|/p] intervals Ji(j ) (7 € {1,2}) satisfying the conditions
laid out in the proposition. Moreover, these intervals cover J, with the possible
exception of intervals of length at most 2p at the boundaries of J where f does not

attain a critical point; since 2p < % p — p, they thus cover J.
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It is clear that restrictions of f to Il-(j ) satisfy Assumption 3} all that remains is
to compute the new boundary derivative constant. By Lemma AT], if |0pf(0s)] < v
for some 0, € I, 0, belongs to a connected component I, -, I containing a critical
point 6. and on which [Jpf| < v. If 0, is a boundary point of some Il-(j), then, by
construction,

|f(0x) — f(0c)] = p—3p
> 35
/4p7
and by Lemma (4.2,
3

Since |0pf| <v < d/2 on I, |03 f] > ds/2 on this component; thus,

0
20 (6,)] > f 321 (6)|d6

3d
8D0

We denote the two preimages of each crossing point FE, by
Ons = [2(Ba), neN(ILW.a,f).
Proposition 4.10. We have the following:

1. (Simple resonance): If 05 € IV, then, for any 0 # |n| < LY such that 0, €
I — na, we have

£ (0:) = [ (0« + na)| > 3p,
and for all § € B,sp,(0+) NI n (I —na),

|£(0) — f(0 +na)| > 2p.

2. (Double resonance): If 0, = 0, € ]r(f)) for ng € N(LW a, f), then for any
In| < L®, n ¢ {0,n0} such that 0, € I —no, we have

£ (0x) = f(0x + na)| > 3p;
and for all § € By/sp,(0+) NI n (I —na),

1f(0) = f(0 + na)| > 2p
and

min{—é’gf(é’), (%f(é’ + n()Oé)} =V
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Proof. We begin with the simple-resonant case, i.e. 0, € Ii(l). Suppose 6, € I_ (the
case 0, € I, is completely analogous). If 6, + na e I_, 0 # |n| < LY, we can apply
Lemma [£.2] to get that

d d C 2
_ a 2 @ (_C ~
|f(6:) — f(bs +na)| = 12HnaHT > B ((L(l))T> > 3p > 3p.

We thus suppose that 6, 4+ na € I ; by Lemma 5, n e N (LW, a, f).
Assume 0, <6, _. Then 6, +na <6, = 0, _ +na, and, by the monotonicity of
fon Iy, f(0s+ na) < E,. Thus,

£ (0x) = f(0x + na)| = f(0:) — f(0x + nc¥)
> f(0,) — E, > p—3p> 3p.

If 0, > 6, _, then similarly f(0, + na) = E,, and

£(0) = f(0s +na)| = f(0. + na) — f(6)
> E, — £(6,) > 3p.

The claim for 6 € B,sp,(0x) NI n (I — na) follows from the Mean Value Theorem
and the uniform bound |dy f| < Dy. This concludes the simple resonant case.

We now consider the case 6, = 0,, . Suppose n with 0 # |n| < L?
0. + nae I_ and |f(0, + na) — f(0x)] < 3p. Then by Lemma 8|

satisfies

Cv
oy

3p 2 |f(6x) = f(0x + na)| = vnalr =

a contradiction. Thus, for any 0 # |n| < L® such that 6, + na e I_, |f(0s + na) —

f(0:)] > 3p.
If instead 0, +na € I, |n] < L® and n # ng, and suppose |f (0, +na) — f(6,)] <
3p. Then 6, + npa € I, and

Cv

352 1£(0) = (00 + n)| = |(0a + n0e) = (0n + )| > vlnals > 7o

a contradiction as above. Again, the claim for § € B;/sp, (0«) NI (I —na) follows from
the Mean Value Theorem and the uniform bound |dsf| < Dy. The lower bound for
the derivatives follows from Lemmas B3 and L8, and that Bjsp, () nI < IDY . O

4.3 Domain adjustment

We now show that a function g well-approximating a function f satisfying Assumption
can have its domain slightly modified to satisfy Assumption Bl
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Let I+ < T be two closed intervals with disjoint interiors, let I := [ Four {, and
consider a piecewise C! function

f:I_)Ja fi‘::f|]i

such that each function fy maps onto J.
Let § > 0 satisfy 166 < |J] and 22 < |I;|. Our first lemma handles the interval
adjustment in the absence of critical points for f:

Lemma 4.11. Suppose +0gfy+ = v > 0 uniformly on I, and suppose g € C*(I,R)
satisfies the following stability conditions:

1. The function g is Morse on I
d < |dpg| + |059] < D
with I := {0 € I : £0pg9 = 0} two closed intervals with disjoint interiors.

2. There is a constant 0 < U < d/2 such that |0pg| = U on the boundary points of
I.

3. If 0 € I is such that g(0) ¢ g(I?) n g(I9), or if 0 is a boundary point of I, then

£(6) —9(0)] < 20.

Then there exists a subset 19 = I9 U fi c I, fi being closed intervals with disjoint
interiors, such that

320
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on which g satisfies Assumption 3.

Proof. Let J¢ := min{sup g(1;"),sup g(I, )} and J} := max{inf (1)), inf g(1,)}.

We first show that J? > J?. Note that max{g(sup I), g(inf I?)} = supg; like-
wise, min{g(inf {), g(sup I?)} = infg. Define g+ := g[;s; note that we have either
97 (J9) = supI{ or g='(J;) = infI?. Either infIY = supI{ is a critical point
of g, in which case J¢ = supg, or both inf Y and supI{ are (distinct) bound-
ary points of I, in which case f(infI?) = f(supI{) € {inf J,supJ}, and thus
|f(inf I7) — J9|, | f(inf I?) —sup g| < 26. Thus in either case we have |J? —sup g| < 46,
and it follows that

|J¢ —sup J| < 64. (4.2)

By analogous reasoning,
|J7 —inf J| < 60. (4.3)

Since, by assumption, |J| > 120, we must have J¢ > J7.
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We define J9 := [J7,J9] and I := gz(J9) (so 19 = g~'(J9)). Since we have
shown J? > J7, I ¢ are nonempty intervals, and g+ maps I { onto J9. We now measure
the set I \f 9 by considering the sets L_r\f 4. We first note that by applying the Mean
Value Theorem to f on I%, we conclude that I{ n I, # &. Thus each of the sets
I:\I{ consists of at most two intervals [inf I, inf ¢ 1) and (sup 19, sup I +]. Consider
first [inf 7_,inf I).Such an interval belongs to _\I? if and only if inf [? € I_. If
JY is not a critical point of g, we have |f(inf I9) — J9| = |(f — g) o g=*(J9)| < 26;

combining this with @2) gives | f(inf I?) — sup J| < 8. Thus
|[inf I_,inf I?)| = |inf I? — inf I_|
= |f_1( (inf 12)) — £~ (sup J))|
Gt 1)~ sup g < 2.

Analogously, |(sup I¢, sup I,]| < & if J9 is not a critical point of g, and | (sup I supI_]| <
8 |[inf I,,inf I9)] < 2 if J7 is not a critical point of g.

If g contains no critical points, we conclude that [I\I{] < 1 and [I\]Y] <
IAVAESVAVAIES

If g attains its minimum, but not its maximum, at a critical point, then I9 =
[inf I, sup I7], and likewise I = [inf I_,sup I ]; thus,

|I\I?| < |[inf I_,inf I9)] + |(sup IZ,sup I, ]|
160
< -
14

by the above computation. The argument is analogous if ¢ attains its maximum, but
not its minimum, at a critical point. If g attains both its maximum and its minimum
at critical points, then trivially 9 = I.

It remains to verify a lower bound for |0ypg| on the boundary points of I9. We
first note that we can apply Lemma [Tl to the unrestricted function g on I, since
the condition that g+ map onto the same image is not used in Lemma [£1l Thus, if
|0sg| < ¥ on a boundary point of I (which is also a boundary point of 1), it must
belong to a connected component of I containing a critical point of g (which is a
boundary point of I{), and |03g| > d/2 throughout that component. By construction,
the critical point belongs to I, and is thus the other boundary point of that interval;
thus |02g| = d/2 on the entirety of 1. Then, on the boundary point of 19,

d, - d 166
ongl > 51281 > 5 (11 - ).

so we conclude |0pg| > min {7, ¢ (|I| — 1)} on the boundary of I, O

If f:1 — J satisfies Assumption Bland ¢ : I — R is C? close to f, we likewise
can find these adjusted intervals:
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Lemma 4.12. Suppose g € C*(I,R) is C* close to f, i.e.

5
|05(f —g)] < Cﬁ, 0<k<2

Then there exists a subset 19 = I U I < I, T] being closed intervals with disjoint
interiors, such that

|[\jg| < 25
v

and on which g satisfies Assumption 3.

Proof. By the well-approximation of g to f, we immediately get that g is Morse on
I, eg.

~ o 0 o 9 ~
d=d—C(—+—2) <|agg|+|0§g|<D+C<—+—2> =D.
pop p P

Furthermore, on the boundary points of I, one has

|@99|>V—Cé>u—20(é+%) =V
p p P

and 7 < d~/2 By the Morse condition on ¢ and the assumption on f, we can decom-
pose [ = I U I{ into intervals such that

We denote by g+ = ¢| r7- By Lemma 4.1l critical points of g4+ must lie on the
boundary of I{ and each connected component of I £ -, must contain a critical point,
and, conversely, any critical point of g must lie in a connected component of I i <
If g has no critical point in I, then neither can f, and we are in the situation
outlined in Lemma [LTT] (with v replaced by v/4, e.g.). If g has a critical point 6.,
then by the Morse condition it is an extremum of g. Suppose the critical point is a

minimum; then, defining J9 as in the proof of Lemma E.TI] we have
g (J9) = 1% = [0c,0.],
g~ H(J9) =: I

By monotonicity of g, it must be that fi = I{ for at least one of + or —; suppose
19 = I¢. Since sup f; = sup f_ and ||f — g| < C§, we get that |supg, —supg_| =
9(0,) - J7| < C6. ~

To measure |I_\I?|, it suffices to compute |§_ — 6_|, where 65 = inf I{. We have

l9(6-) = g(8-)] = [g(6-) — F(6+)] < C6 + | f(6-) — f(8:)| = C&;
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furthermore, #_ and 6_ live on the same monotonicity interval of g, and so

~ 12C6
- —6_| < C .
d
Since our onl~y critical point is a minimum, it must be that 6_ = inf I, and thus for
any 0 € [0_,0_], we have
co
lg'(0)] = 1f(0)] - >
>I/—<@—|—D 12?5>>D. O
p d

We conclude by estimating the difference of inverses of close functions satisfying
Assumption [3]

Lemma 4.13. Let f be a function satisfying Assumption[d with boundary derivative
constant v and containing no critical point. Let g be another function satisfing As-
sumption [3 with dom g4 < dom fi and ||f — gllc < 26. Then for E, € im f nimg,
Tp(Ex) — Ty(Eo)| < 5

Proof. Since f contains no critical point, by Lemma AT, |0y f+(0)| = v for all € I,
and thus |0pf; (E)| = v~! for all E € J. Then

1o (By) — 92 (Bw)| = |fet o gogi (Ey) — fit o fogi'(By)l
< V71|9 og;(E*) —f og;(E*ﬂ
<200 L.

Thus,

T (Ey) — T,(E)| < |f2H(E) — g7 (Ba)| + [ f2H (B — g2 M (By)| < 46v™. O
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5 Multiscale spectral analysis

We wish to understand how the Rellich functions of H* inherit the cosine-like proper-
ties from the sampling function v. Given (0, E,) € T x R, we claim that, by properly
choosing our notions of resonance, we can inductively construct increasing intervals
Ag = Ay(04, Ey) in the integer lattice, centered at 0, such that any E,-resonant Rel-
lich functions of H*(f,) are locally cosine-like with eigenfunctions localized near 0.
Furthermore, these intervals will be stable in the parameters 6, and E,.

In broad strokes, the induction will proceed as follows: we suppose that we in-
ductively have been given a cosine-like Rellich function E; : I, — J, and that certain
“nonresonant” intervals for E; exhibit off-diagonal Green’s function decay for ener-
gies B, near the codomain of E,. Under these assumptions, we apply Section 4 to
E; to classify energy regions JU=+) < 3 s as being simple- or double-resonant (indi-
cated by js11 € {1,2}) and prevent recurrence to those energy regions for long times.
The resonant sites for E; will be so well-separated that we can find an even integer
L, for each energy region well-separated from resonances of all the ancestors of Ej.
Thus, the intervals Ag ;1 of length L, 1 will have long shoulder intervals with Green’s
function decay by our inductive assumption.

Having found the integers L., we can then apply Sections 2 and 3 to construct
Rellich children E,,; which are likewise cosine-like. Finally, for energies which are
not resonant with any child E,,; for long intervals A, we can use these constructed
intervals to build coverings of A like those described in Appendix A, proving the
inductive nonresonance hypothesis. Here we crucially use the uniform local separation
between double-resonant Rellich children established in Proposition B.6} since the
separation is much larger than the scale-s + 1 resonance parameter, energies near the
codomain of one of a pair of double-resonant Rellich functions do not allow resonance
with the other.

The perturbative upper bound £¢(v, &) on the interaction ¢ will be polynomially
small, depending on v and «, in the initial length scale L; the size of L effectively
will be dictated by avoiding substantial cumulative loss in the Green’s function decay
parameters 7, cf. Lemma below.

Loer ~ MY, Loy ~ M&

Figure 7: The inductive expansion of our Rellich tree at a particular node Ej.
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5.1 Preparing the induction
5.1.1 The initial scale

Suppose Eg := v, v : T — [—1,1], is cosine-like in the sense of the main theorem,
with Morse constants

do < [0gv(0)] + |05v(0)] < Dy, 6O €T,

and that a € DC¢ ; is Diophantine. Letting L be a large even integer, we consider

the initial length scales
[ 1 [ [ 2 [
g ) : ) g ) : 27

and initialize the following parameters:

Cado . do 1 — dO 2
4Ly P 2apz (s T 1s000027 Y

vy =

_ 1
pong, 501=€<€03=PE4)7 771270=Z|10g5|, (=0l =1

With these parameters, we recall a classical Neumann series argument ensuring off-
diagonal Green’s function decay on nonresonant intervals:

Lemma 5.1. Let A < Z and suppose |v(0, + ma) — Ex| = po for m e A. Then for
m,n €N, |0—0, <po/8Dy, and |E — E,| < po/2,

jm—nl|
8 (8¢

RY .(m,n <—<—) )

R plm,m)] < (=

In particular, for o = 1|loge| and |m —n| =1,
log |Ry (m, n)| < —yolm — nl, (5.1)
i.e. the Green’s function decay property for (Lo, vo) holds.
Proof. For me A, |0 — 0,| < po/8Dy, and |E — E,| < po/2, one has
[v(8 + ma) — E| = [v(0x + ma) — E,| — |E — Ey| — Do|0 — 0] > po/4.

Thus [v(6 + ma) — E| = py/4 > 4e for all m € A, and ||(V(0) — E) " 'eAlea < 1/2;
hence, by the Neumann series, one has for m,n € A

| Ry i2(m, m)| = [, (H™(0) = E)7'0,)]

k
42,6
Po k> |men| Po

8 (85) fm=n|
< — (= )
Po \ Po
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Provided |m — n| > 1, we have

8 88 ‘min‘ 2lm—nl|—1 m—n

This lemma, combined with our assumptions on v, will be the foundation of our
induction.

5.1.2 Inductive definitions

Fix a scale s > 0. If s > 1, we suppose that, for 0 < k£ < s — 1, we have collections

&)= | €9®), jef{12},

E€8k71
E=E"uEY

of Rellich functions Ey, : Iy — J}, of certain Dirichlet restrictions H**, Ay, = [—Ly/2, Ly/2],
where L, = Li(Ey) are even integers on scale k

1 : ,
MY < Lo< MY, Breg),

where we define the length scales
MY = (L"), k=1, je{1,2)

We take as convention that MO(I) = M0(2) = 1. For each E; € &, k > 1, we define the
corresponding parameters:

dy = %54, Dy, = 2Do(1 + 22), (Morse)
Vg = Up_1/2, Uy 1= %ﬁk (Derivative control)
Pk = éLi/g, Pk = 1506(1)7]8[)30%—17 oy, = eT2My” (Resonance)
b = elw/8 (Eigenfunction interaction)
U, = L2/6, e =701 — 6437 %’;/8)') (Green’s function decay)

We likewise define J(Ej,) and J(E;) as in equation EI) with p = px and J = pr_1,

of. Figure B As matters of convention, we define J(E_;) = J(E_;) = R and & =
E(E_) = {v}.

We have the following relations among these parameters:
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Lemma 5.2. Let E; € & with L and constants defined as above. For L sufficiently
large (depending only on C,, T, dy, and Dy), we have the following for all k = 0:

1. v > %70 > log 7.

2. 10MP < MY, 24177, < 8LY%, < Ly, Uiy » 16| loge||log pral.

+17
Ca Tvi  3dy = 9%k . = ViPk—1
3. 2617, = G5 8D Pk < Vk, and 2 <Pk < 10008 -
3 2 52
4. O < pie/2 < pp_qvy”
5. If jx = 2, then 2p), < 5227k

2D0+l/k,1 :

Proof. We proceed with each item in turn:

1. For 1 <4 < k, we have by definition that

l ’l 8 _ i— i—
| Og(gp/ )| < LZ 1/6|10g€| S ’TL_%4 1logL g TL_%(4 1)

Since this sequence is subgeometric, we may find L sufficiently large such that

k
| log(pi/8)] _ 1
64 ———— < =
D
independently of k. By possibly making L larger, one can insist that

1 1
—v0 = < logle| ~ Tlog|L| > log 7.
2 8
2. This is immediate from the fact that, for & > 1,

M > LMY

alongside the observation that |loge| is comparable to log L.

3. One can check by definitions that, for L sufficiently large (depending on 7, dj,
and Dy), one has for k = 0 that:

5/4 k
z/k/ <dpi1 << —

2
9/4 _
Pt < Pk < P

9/4 — 2
Pr—1 < Vi+1, Vg < Pr_1

6
Pk K Pr—1-

The inequalities follow for sufficiently large L.
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4. Given the above inequalities, one has

2 5/2 2 45/8 2 6 3 3
PtV » Preo1Pr2 » Pi1Pr—2 » Pi-1 > Pr/2,

and Lj, > 2412,

5. Since jp = 2, we have L > (M®/2)%/3 > %(M,gl))‘l/?’ > 144M provided L
is sufficiently large, and thus log pr « 2logoi. The inequality follows because
logvp—1 » log pp_1 » log og. ]

It will be convenient to fix language describing “nonresonant” regions at each
scale. Fix (0,, E,) € T x R and a Rellich function E; € &. We say that a set S c Z
is k-nonresonant (relative to (6, Ex) and Ey) if

0. + ma ¢ I, or |[Eg(0. +ma)—E =p, VmeS.

Note that, with this language, Lemma [5.1] shows that O-nonresonant intervals have
(4o, v0) Green’s function decay.

To show Green’s function decay at future scales k > 1, we must avoid resonant
sites for all ancestors of E;; we codify this condition as k-regularity. Namely, we say
that a point m € Z is k-left-reqular if, for each ancestor E; (0 < i < k — 1) of Ey,
[m, m+ %L,-H] is i-nonresonant. Analogously, we say that m is k-right-regular if, for
each ancestor E; (0 <i <k —1) of Eg, [m — %LHl, m] is i-nonresonant, and we say
that m is k-regular if it is both k-left-regular and k-right-regular.

Finally, we define the slight enlargement of the set of k-resonant points by

2
S0y, Ey) = {m €Z:0,+macl, |Eg(f,+ma)— E,| < 2—ipk} )

5.2 The inductive proposition

Subject to these definitions, we suppose that the following inductive proposition holds
for0<k<s—1:

Proposition 5.3 (Induction, scale k). Suppose the hypotheses below hold:

H 5.3.1 (Cosine-like Rellich functions, scale k). Each E; € & satisfies Assumption
Bl with parameters v = v, d = d,, and D = Dy,

H 5.3.2 (Resonant orbits, scale k). If k > 1, let E;, € EV-(E,_y), Ey, : I — Jy,
denote
1
N = ./\/'(8Ml£+)1, a, Eyp),

and let 6, € T. We can characterize aspects of the resonant orbits depending on the
resonance type jg:
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1 g =1:
We have
min{|n| : n e Ny} > 8M" > L.

Furthermore, suppose either F, € j(Ek) or the closest point in J; to F, is a
critical value of Ej. Then, for any m € Sg(0s, Ey),

BPk71/24D0 (9* + ma) c I.

2. jr =2 (and thus By, = Ez(f,gzk,l,-):

We have
Ny = .
Furthermore, suppose E, € [me(E,(C 1)y SUD J(Ek ey )]- Then, for any

m € Sg(0, Ey), for some p € {m,m —ng_1},
Bpk,1/24D0 (9* + pa) < Ik,nk,l,v Y Ik,nk,l,/\-

If 0, + pa € 12 \Ik nk , then |Ek nk LA

if 0, +pozEI,mk 1V\Iknk , then |E

(0« + pa) — Ey| < 2pg_1; similarly,
(9* +pa) — E*| < %pk_l.

knk
knk

H 5.3.3 (Nonresonance, scale k). Let E;_; € Ek,l, let 6, € T, and suppose FE, €
J(Ex_1) is such that

~

o If E;_; does not attain its maximum at a critical point, then £y < sup Ugeg(m, ) J(E).

~

o If E;_; does not attain its minimum at a critical point, then E, > inf | Jgeem, ) J(E).

Let Ey, € E(E4_1) be a Rellich curve minimizing dist(E,, J(E)) among E € £(E;_1).
Suppose A = [a,b] < Z is k-nonresonant and that a and b are k-left- and k-right-
regular, respectively. Then for |E — E,| < pi/2 and 0 € B,, /sp,(0x),

log |Ry p(m,n)| < =yelm —nl|, |m —n| =>4,
and

| Ryl < 405,

Furthermore, if A is k-nonresonant with |/~\| > 2L + 3M,§1), then there exists a
k-nonresonant subinterval A = [a,b] = A with |A| > |A] — (2L + 3M1§1)) such that a
and b are k-left- and k-right-regular, respectively.

Subject to the above hypotheses, we have the followzng Let Ey € & with Ey, :
I, — Ji. There exists a collection Iy 1 (Eg) = IISH U IIEH of intervals Iy, and

corresponding even integers Lii1 so that, denoting Agy1 = [—Li+1/2, Liy1/2], the
following hold:
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(Simple resonance): If Iy, € I,gi)l, Oy € Iyy1, and E, = Ei(0,), then HM+1(0,,)
satisfies Assumption [ with
A =Apyr, A=Ay,
P = Pk, 5:5167 Y = Yk gzgk

(Double resonance): If Ij.,1 € I,ﬁ)l, there exists a unique n with Ly < |n| <

8]\4&)1 and a unique point O, = Ogpn_ € Ipy1 such that Eu = Eg(0.) =
Ey (04 +na). Furthermore, HM+1(0,,) satisfies Assumption[dwith the following
assignments:

A=Apsr, Al = Ay, Ay = Ay +n,

. 2
p:_pk—laézéka7:7]6’6:61677/:]/]6-

3
Moreover, we can choose the additional parameters introduced in Section [3 as
follows:
~ 9Pk
0 =0k+1, 1= 75 P~ Pk
4I/k

In particular, there exists a family £(BEy) = EMN(E) u EP(EL) of Rellich children

Eii1 @ L1 — Jiegq such that each Eiq is a Rellich function of HM+1 satisfying

Assumption 3, such that Hypotheses[5.3.1, [5.3.3, and[52.3.3 hold at scale k + 1.
Additionally, we have the following:

1. The even integers Li.1 can be chosen such that +Ly,1/2 and +(Ly1/2+1) are
k-reqular for any 0, € L4y for any E, € B, (Ex(6y)), and such that Ly.1/2 + 1
(respectively, —(Lgi1/2+41) ) is k+1-left-reqular (respectively, k+1-right-reqular)
for any E, € B, (Ey41(6))

2. The intervals 1.1 and their relevant translates cover 1y, in the sense that if
0 €l and 0 ¢ Iy for all Exq € E(Eg), then there exists a unique n with
sMY < |n| < 8MY, and a Rellich curve Exyy = Egi1p. € ED(EL) such that
0 €l + na.

8. If By = E,, ., (E11) for ngi1 € Niy, then B, (E,) < j(Ek) Furthermore, we

have

kE+1

Pr/2 < |Jppa| < 2P

Subject to these hypotheses at scale s — 1, we verify that the statement holds at
scale s with appropriately defined constants:
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Theorem 5 4. There exists eg = £o(a, v) such that, for e < ey, Proposition[5.3 holds
for all k >

For the remainder of this section, we suppose that the proposition holds for 0 <
k < s — 1, that Hypotheses £.3.1] 5.3.2] and [5.3.3 hold for 0 < k < s, and prove the
proposition for £ = s. We note that, in light of Lemma (.1}, the proof below also
verifies the initial case s = 0.

5.3 The family of descendants of E;

If s =0, let E, = v; otherwise, let E, € £U)(E,_,), E, : I, — J,, j, € {1,2}, be a
Rellich function of H*s, A, = [~L,/2, L,/2] constructed as in Proposition 5.3 at scale
s — 1. In the case j; = 2 (and thus E4 = Eg%sfh.), we denote

. (2
Is7n8717u T Is Ms—1,A v Is Ms—1,V°

5.3.1 Construction of the next length scale

By our inductive hypotheses, E; satisfies Assumption B with Morse constants dg, D,
and boundary derivative lower bound v,. By Lemma[5.2] Section @ applies to E, with
these values, and, recalling that

d

Ps = 15000D% Ps—1>

we have the following:
Lemma 5.5. E(Es) N Js can be covered by closed intervals JSZ , 7 €{1,2}, such that
1. J§2,2 = B,,(Ey,), where 0, = 0, _ is the unique point in I such that
E,, :=E;0,) = Es(0, + nsa)
for any ng € N := J\/'(SJ\JS(B17 a,Eq) (cf. Section 4).
2. p < |7 < 2p,
3. Jsindsy # B = |Jsin Jsi| = 3ps

4. For any E € JS(JZ, B,,(E) c J(E,). Furthermore, if j = 2 and E, = E,_, then
B

(E.) = J(Ey ).

Ps—1

5. The total number of such intervals Js(jz) does not exceed 5[|J | p;t].
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These intervals are defined such that, on the corresponding preimages

19, = (€)Y, 19 :=19_0u1Y),

EX}
one has either

imple resonance el then for any n with 0 # |n such that
(Simpl ): If 0, hen for any h0# |n| < 8MY, such th

0, +na el

SZ?

|Es(0,) — Es(0, + na)| > 3ps.

(Double resonance): If 0, = O, — € ](2) , then for 6 € B, sp,(0x) and any
n with n ¢ {0,ns},|n| <8 M(+1 such that 9 + na € 1,

|Es(0) — Eg(0 + na)| > 2ps-1
and

min{—0yE4(0), 0gE,(0 + nsa)} = vs.

Finally, recalling that
3ds _

8D,

Vs = < Vs,

each function B ,g) : ]s(,ji) — JS(JZ) satisfies Assumption [3 with Morse constants ds, D

and boundary deriwative constant v,.

Proof. This follows immediately from Propositions and 10, except the second
half of item 4, which follows from the inductive proposition. O

Fix an interval JS(JZ) (7 € {1,2}), and note that I8 o +| ps—1/24Dy by Lemma [1.2]
the definition of pg, and item 2 of Lemma [ Consider all ‘ancestors’ E.: I, — J &
(0 <k <s—1) of E;. For each such k, we define two sets Sy 4 as follows:

Sex = ) Sk(6,EL(0)).

9e[§32 +

The integers in Sy + are well-separated uniformly in 6 at each scale 0 <k <s—1in
the following sense:

Lemma 5.6. Let 0 < k < s —1, and suppose m € Sy, 4.
1. If jgo1 = 1, then for any n # m with |n — m| < SM&)N n ¢Syt

2. If jkv1 = 2 (and thus Eyq = Egiq,, o for some ME) < |ng| < 8Mk11) then

for some p € {m,m — ny} and for any n & {p,p + ng} with |n — p| < 8M,§+)1,

n ¢ Sk,i'
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687”37_ 057ns7+

Figure 8: A cartoon illustration of the covering constructed in Lemma

Proof. Since m € Sy, 4, there is some 0, € [s(Jz)i such that m € Sg(0s, Es(0,)); note
that Js(fi) c J(Eg) € J(Ey), so E, = E,(0,) satisfies the assumptions of the inductive
hypothesis [5.3.2l As noted above, we also have that |[s(]2)i| < ps—1/24Dqg < pi/24Dy.
We have two cases:
L Jry1 = 1:
Take p = m. By the length bound on [/ S(JZ)J_F, we have

IS(?Z{i +pa < Bpk/24D0(9* + pOé) (- Is'

2. Jrkr1 = 2: By Hypothesis (.3.21 and the length bound on IS(?ZJ_F, for some p €
{m, m — ng,1}, we have

IS(JZ)JL +pa < By, joap, (0« + pa) © Lis1,o © By, spy (Ort1,np1,—)-

In both cases, by Lemma [5.5] for any 6 € Is(]z)i and n # p with |n — p| < 8Mé{f1“)
such that 6 + na € I, we have

|E(0 + na) — Eg(0)] =|Ex(6 + na) — Ex(0 + pa)| — |Ex(0 + pa) — Eg (04 + pa)|
— |Er(0x + pa) — Eg(0:)] — |Es(0.) — Eq(0)]
1 25 1 25

o Ps—1 =

> — — sl — — Pl — .
3Pk 5Pl ~ 5P T 5 1P
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and so n ¢ S 1, as claimed. O

This separation will, in turn, allow us to construct even integers L,,; so that
+Lg1/2 are s-regular:

Lemma 5.7. There is an even integer Ly, with Ms(i)l/Q < Ly < Ms(i)l so that,

for all 0, € IS(JZ)i for all E, € B, (E (0:)), £Ls+1/2 and +(Lsy1/2 + 1) are s-regular
relative to (0, Ey).

Proof. Letas :== M, 8(1)1 /2. We define a nonincreasing sequence of integers as, as_1, . . ., Go
as follows. For each 1 < k < s, we have by the previous lemma that

4
# {a € [ar, — 8Ly, ai] : dist(a, Sk—1,+) < ng} < ng,

where we have crucially used here that 5M ,52_)1 < M, ,gl) /2. The same counting argument
holds replacing [ay — 8Ly, ax| by [—ax, —ax +8Ly]; since 4(9/5) < 8, we can find some
ax_1 € [ax, — 8Ly, ax] such that

4
diSt(iCLk_l, Sk—Li) = ng

for all four choices of signs.
We define L, = 2ay. By construction, we have

Ms(i)l 2 Loy 2 Ms(i)l —2 Z 8Ly = Ms(i)1/2>
k=1

and
4 =3
dist(+-Lat1/2, Sp1.2) = £ Li =8 ; Li> Tl +1
for all 1 < k < s and all four choices of signs. O

5.3.2 Decay of resonant eigenpairs

For the fixed interval J S(]Z) we denote by

Ay = [_Ls+1/27Ls+1/2]

and recall that
l, =LY% = 16L%3|loge|* = 16]loge||log ps|.

From our inductive assumptions, we immediately find Green’s function decay away
from {0} (and the double-resonant site {n,}, if it exists):

Lemma 5.8. Fix 0, € I, and find A; 1 as above. Then we have the following:
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1 If 0. e 1), then for |E —Ey(6,)] < 2ps and 8 € B, jsp, (6.,
log [Ry5" ™ (m,n)| < —vslm —nl,  |m —n| > ¢

and

[Bot ™| < 407"

Furthermore, there are intervals A; O [—%LS, —%LS] and A\, o [éLS, gLS] such

that fOT |E - Es(e*)| < %ps and 0 € Bp571/8D0(9*>;
Ay
log |R9,lé (ma n)| < _78—1|m - 7’L|, |m - n| = gs—1~

2. If 0, = O, —, then for |[E —Ey(0,)| < 3ps_1 and 0 € B, sp,(0x),

log |Ry3 MM (m, )| < —y,ifm —n|,  |m—n| =6,
and
By et < aply

Furthermore, letting ¢; = min{0,ns} and ¢, = max{0,ns}, there are intervals
Ao [a— gLs, c — %Ls], Ao g+ %LS, Cr— éLS], and A, o [c, + %LS, cr+ %LS]
such that, for |E —Ey(6y)| < 2ps_1 and 0 € B, j3p,(6s),

A c/r
log [R5 (m, )| < —ysilm —nl, |m—n| > 1.

In either case, the intervals Ay Ay also satisfy the Green’s function decay property
for (Us—1,7s-1), as do the intervals (As + ns) N Ay

Proof. Noting the s-regularity relative to (6., E) for any E, € B, (E(0.)), these
statements are precisely the nonresonance hypothesis [£.3.3 applied to various inter-
vals. In particular, the maximal connected components of As,1\Ay are inductively s-
nonresonant with s-directionally regular endpoints. Similarly, the maximal connected
components of Agi1\(As U Ay + ny) are s — l-nonresonant, as are the maximal com-
ponents of [~ Ly, Ly|\A,_; (in case E, € EV(E,_,)) or [~ Ly, L]\(As—1 U Ay_1 +1n4_1)
(in case E, € E@(E,_))).

The existence of the subintervals A;./. follows from the nonresonance hypothesis
after noting that

1
. — (M- M® — 1> 5L,

16
for the left and right intervals, and

- —20+MP) =L, —201+ M%) > 5L,
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for the center interval in the double-resonant case.

Finally, the decay estimates on the intervals A, n A, likewise follow from the
inductive nonresonance hypothesis and the s — 1-directional regularity of L,/2. The
decay estimates on (Ag + ng) N Ay follow from the corresponding regularities of
ns + Lg/2, which follow from the observation that H*: (0, + n,a) = H**"(6,).

O

Noting that

gLS > LS =ty » l,_y,

we apply the above decay to conclude stable eigenvector decay for resonant eigenvec-
tors of H™s+1:

Lemma 5.9. Suppose 0, € I, and let E, = Ey(0,).

1. If 0, € Is(}zi, let p = ps and let P be the partition of Agy1 into Ag and its
complement.

2. If 0, = Oy, —, let p = ps_1 and let P be the partition of Agiq into Ay U Ay + nyg
and its complement.

Then, for 6 € B,jsp,(0s), for any eigenpair (E, ) of H*+1(0) with |E — E,| < %p,
the unit eigenvector 1 has P-boundary values no larger than 0s/e:

|05 | < 44,

Furthermore, the resonant unit eigenvector v of H corresponding to E, (as well
as the associated unit eigenvector of H**" in case 2) has stably-small P-boundary
values:

[Tt | < 26,

5,
[T+ (g0 )| < 24Dy

Proof. The estimate on HF%S“wH follows in all cases from Lemma 5.8 and the Poisson

formula (LT1]); for example, in the case 6, € Is(l), denoting A; = [a;, b;], one has
9(=Lo/2)] < & (|RYs(—Lo/2,a0)| + [ RYp(~Lo/2, 1))
< 266_37571115/8 < 58'

The other cases follow analogously.
The estimate on I’ %S“@DSH is made similarly, instead applying the decay on the
intervals Ag N Ayesr.
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Let y, denote the linear projection onto the coordinates in the interval A,, and
Xs denote the linear projection onto the interval

{m :|m| < Lg/4} < As.
Let Iy := F;\;‘“xs, and note that

Fs(69w8> = F%S+1 (a€¢s> .

Recall that
59% = _RJ_(HAsa Es)V/%;

we break our estimate of |I's(0p?)s)| into pieces corresponding to X, and its relative
complement (x5 — Xs)-

By again applying the Poisson formula on the intervals A, n A/ from Lemma
6.8, we have

[0 =XVlP < D) Dils(m)?
Ls/4<|m|<Ls/2
< 8D} Z glem P11
j>Ls/8
< (3Dgds)*.

Now let P be the partition of Ay into Ay n (A; U Ao U A,) and its complement, and
recall that E, = E,(6,). Letting R, = R, (H" E,), R = R¥(E,), and P, = .05/,
we expand

ToRiX, = ToR(I - P, — X R)X,

by the resolvent identity. Since the intervals in Azn(A;UA.UA,.) are s—1-nonresonant,
we get

max{| R |, [T R} < 2ee7 10/

By expanding P; = XsPs + (xs — Xs)Ps, we likewise estimate

ITRPX: | < ITBX| | PXsll + [T BRI Ocs = Xo) Pl[[Xs

< 286_7571115/4 —|— & . 366_7871LS/8
Ps—1
Os

<6 )
Ps—1

It remains to estimate || R, ||, but this follows inductively. Specifically, by Hypothesis
5332 if 0, = 6, _, it must be that j, = 1 and so |R,| < 4p;}, by @II). If
0, € IV, we have the estimate |R.| < 4p;', either by (ZII) if j, = 1, or by (3I3)

63



and Proposition if j, = 2, since the separation guaranteed by Proposition is
bigger than 2p,. In either case, |R, | < 4p~' by our definition of p. Thus, we compute

ITs(Qotps)|| = |ITs R Vs
< TR L[[(xs = Xs)V s || + T RXs [V
< TSRl (xs — Xs) Vs | + Do (HFsﬁ%sH + [T RPX| + HFSEF%S
< 8ep 3Dyl + Dy (205 + 655p, 11 + 85,p7 ")
)

< 24Dy,
p

R

as claimed. The estimate for the unit eigenvector of H*s*"s follows analogously using
the intervals (Ag + ns) N Ay instead of the intervals Ay N Ay O

5.3.3 Constructing the descendants E,

With these estimates, we are ready to invoke the content of Sections 2 and 3:
Lemma 5.10. We have the following:

1. (Simple resonance): If 0, € 1Y and E, = E,(0,), then H*s+1(0,) satisfies
Assumption [ with the following assignments:

A=A, A=A,
p=ps, 0 =205, 7V ="s, L =1

2. (Double resonance): If Oy = O, — and E,,. = Ey(0,), then Hs+1(0,,) satisfies
Assumption [J with the following assignments:

K = As+1> A= As> A-i- = As + N,

2
52§P37175=5s77=%,£=£s,VZVs-

Proof. We verify the relevant assumptions in each case:

1. The values §, p, and v satisfy (2.1) and ([Z2) by definition. Taking 1 = 1,
item 1 of Assumption [I] is immediate by definition of F,. Items 2 and 5 follow
immediately from Lemma[5.9, and item 3 follows immediately from Lemmal[5.8
Finally, item 4 follows from the inductive bound |R} 5| < 4p;* (following
from either Proposition 21 or Bl depending on the value of j5) and the bound

| Ry < 4p;! from Lemma 58,
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2. Again, 9, p, and v satisfy (B.1)), (3.2)), and (3.3 by definition. As in case 1,
item 1 of Assumption [21is immediate by definition of F,,, items 2 and 5 follow
immediately from Lemma[5.9, and item 3 follows immediately from Lemmal[5.8
Since n, € Ny # &, we must have j, = 1, and so inductively HRj\_gEH <4dpl <
4p~t for |E — Eyi| < ps—1 = 2p (and similarly for HRﬁsjgs |) by Proposition 2.11
Item 4 follows from this observation and the bound | R, Aaga\(Aasn) | <4pt) <
4p~! from Lemma [5.8 Finally, item 6 follows from Lemma 6.5l O

As a consequence of the above, for each phase interval I, € Z, we have found an
interval Agy1 = As11([s) such that any resonant Rellich function is Morse with at
most one critical point and whose eigenvector is localized. Specifically, if I, = [ 5(12) we
have found a unique Rellich function

g .0 0

s+1,4 ° T8, s+1,%

of HM+1 where we define J 11, to be the image of [ under ES {14 Similarly, for

each 1 8(7,%_, n € N, we have found two Rellich functlons

E® @ O

s+1lmn,e * “sn,— s+1,n ®c {\/’ /\}

of HA+1, where we define J st1n t0 be the smallest interval containing the images of
1 under both Rellich functions. We note that, since ¢ < 3 and £, L, < Ms(il,

we 7may choose 6 = 0,41 in Theorem B2 as this choice satisfies (BEE) To finish
constructing the children of E,, we must modify the domains of these new Rellich
functions so as to again satisfy Assumption [3.

In the simple-resonant case, by Lemma[5.5 and Proposition 2.2 the function Eg le :

satisfies the assumptions of Lemma [4.12 relative to the function E w1th 0 =9, and

p = ps; thus, we may find an interval Ierl ; C ]( and its image Jerl ;= Eglfl Z(ISB1 ;)

with

g | o 3205 Ps
|Is,z \Is+1,z| = 178 < 24D0

We abuse notation and henceforth denote by E&lz the restriction of the Rellich
function of HA:+1 to the interval IS {1

The double-resonant case requires a bit more care. If I, = Is nas s € Ny, we
recall the regions

Note that one has
Bﬁs (esyns,i) - Ié%’zs + = BPS (es,ns,i)

0
IS

since v, < [9Es| < Dy on I, 4.
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Denote by
E® (0) := max{E,_(0),E, (0 +nsa)}, fe f(?)w := [inf 1% sup 1® L —nsal,

E®  (0) := min{E,_(0),E, (0 + nsa)}, 0elI?  :=[infI?) , —n.a,supls _].

We denote also

@ =12 A2

$,Ns,MN 8,Ms,— S,Ms,+

—nga) c I?

sm.es ®FE {v,n}.
Since 0, + = s, - + nso, we have that

B (es,ns,7> I

D $;Ms, N

o

By construction, . )
ES. & D =ps ee{v,a},

and thus, by Lemma [£.2]

{0 € I3

Mg, Ms,®

(B, (0) = B0 +pa)}| > £ ec{v.a} pe{0n)

0
The functions Ef,{s, satisfy Assumption 3; by Lemma and Theorem [B.2] the
Rellich functions Eglms,- satisfy the assumptions of Lemma [LT]] relative to the
functions EEEQL. with 6 = Cd,; thus, we may find an interval ISZMS’. c §2,2. and its

image ng’n&, .= E? (1(2) ) with

s+1ns,e\“s+1,ns,e
~ 32C9 P
1 \1? < e
| s,ns,o\ s+1,ng,e ﬁs 24D0
In particular, we note that |I§2+)1,nm| > E—SO — o > Z%z, where Igmsm = ISZL%V N
Ifﬁl,nw, so we may choose n = Zﬁz and p = ps in Theorem B.2] with B, (0;,,—) <
Ifﬁl,nm. We abuse notation and henceforth denote by Eg2+)17ns,, the restriction of the

corresponding Rellich function of H*s+! to the interval Igi-)lmsw’ ec{v, A}
Denote the collection of all descendants of E, constructed above by E(Es;).

Lemma 5.11. Let E, 1 € E(E;) be constructed as above.

1. Egq: I — Jgyq satisfies Assumption [3 with Morse constants

ds+1 = Vs/127
Dyy1 = 2Dy(1 + Dyoy )

and boundary deriwvative constant

min d5+1 I;s Ds
Veyl = MIN{ —————, — » = —
: 14EM,) 2 2
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2. Joi1 UI(Esp) < J(Ey)

3. If Eg does not attain its mazimum at a critical point, then

supJ(E,) <sup | ] J(E).

Stmilarly, if By does not attain its minimum at a critical point, then

inf 3 > inf U

EcE(Es)

4. If By does not attain its supremum sup Je,1 at a critical point and sup J4, 1 #
SUPgreg(r,) SUP J', then there is some Ef; € £(Eqy1) such that

BU% (sup Jgq1) © J/s+1
The same statement holds with inf in place of sup.

Proof. Ttem 1 follows immediately from Lemmal[5.10; from the same result, we likewise
have

|supJ+12 —supJ(] l, |1nf +12 ians(,jZ-)| < Cds « ps/2

for j € {1,2} and all i for which these intervals are defined. The process of “trimming”
the function by Lemma [£1T] or .12 does not change the supremum or infimum; thus,
we still have

| sup Js+lz —sup J, | |11r1fJer1Z inf JS(}Z-)| < Cos < ps/2,

|SUPJ5+1,nS,v — sup J(2 i |1anS+1n . —inf J8(2,35| < Cos < ps/2.

In particular, since each E; +)1n , attains its infimum at a critical point, and each

ESZ1 n. attains it supremum at a critical point, this estimate applies at every non-
critical value extremum of any Egq € E(Ey).
The next three items follow. Specifically, by construction,

Supi(Es> o SupJ +1,4 Z Ps;

and by definition, N
SupJ(Es+1> — Sup Js+1 < Ps+1-

These estimates, combined with the analogous estimates with inf and with the esti-
mates established above, give item 2. For item 3, we use the fact that by construction,

sup J(E,) — supsup J) < 2, + pa < pa-1/24,

i7j
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and the fact that, by definition, for each E € £(E;), E: I — J, we have

o 5
supJ —sup J(E) < 1P < ps—1/24.

Since, by definition, sup J(E,) — supJ(E,) = p,_1/8, and the analogous estimates
with inf hold, item 3 follows from the above estimates. Item 4 follows from the
above estimates and the fact that, by construction, each pair of adjacent intervals
Js(fi) overlap by 3p. O

Finally, we verify the directional regularity of our new endpoints:

Lemma 5.12. For all 0, € 1,1 for all E, € B, (Es41(04)), Ls11/2 + 1 is s + 1-left-
regular and —(Ls11/2 4+ 1) is s + 1-right-regular relative to (0., Ey).

Proof. We will show the point Lg,1/2 + 1 is s + 1-left-regular; the other case is
analogous. Since Ls.1/2 + 1 is s-regular by Lemma [5.7 it suffices to check that
[Ls41/2+1,5L441/4 + 1] is s-nonresonant.

In the case js411 = 2, we have 0, € IS’QMW an interval of length at most ps_1/12Dy;

thus dist(0,,Is ) < ps—1/12Dy, and dist(6, + nsa,Is 1) < ps—1/12Dy. Then, by
the Diophantine condition, dist(6, + ma,Is) > ps_1/12Dq for all m € [Ly11/2 +
1,5L441/4 + 1], which implies that interval is s-nonresonant.

Consider instead the case js,1 = 1. We have

|Esi1(05) — Es(0,)] < Cos < ps/2,
and for any m € [Ls1/2 + 1,5L4,1/4 + 1],

0 < |m| < (5Lgp1/4+1) < 8MY,;
by Lemma [5.5] it follows that, for any such m, if 0, + ma € I,

|Es (0, +ma) — Ey| = |Eg(

Es(

) = Es(0 + ma)| — | B — Eq(6,)]

> |Es (6.
> |Ey(6,) — Es(0, + ma)| — 2ps > ps. O

5.4 Resonant orbits

We note that double resonance of any descendant E,,; can happen only at lengths
greater than L, :

Lemma 5.13. If j,,1 =1, then
min{|n| :n e Nya} > 8MY, > L,y
If js41 = 2, then MH = .
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Proof. In the case j,,1 = 2, the interval I, is a single interval of length at most
ps—1/24Dq, and N1 = & by the Diophantine condition.

Consider instead the case j,.1 = 1, and suppose for the sake of contradiction that
there exists n € Ny with |n| < 8MS(J1F)1. Then by definition there exists 05,1, €
I;i1— such that 0541, + no eIy and B 1(0s110,—) = Egy1(0s110,— + na).

Define the function g(0) = E4(0) — E4(0 + na). Since js.1 = 1, we have that
19(0s541.n,—)| < 2C05; furthermore, we have

05
|0gg(0)] = 2 <I/S - C’—) > v
Ps
for e I s(i)mﬁ by Lemma Thus, there exists some point 6, , _ with
4] 3
Osp_ — 010 | <202 <« —py4
(s, | Vs 4D0p
such that |g(fs, )| = 0; since |n| < SMSF)l, n € N,. But Bsjs,_,jup,(0s—1,0,—) N
Is(l,)m-’, = & for any i and any n € N; thus, j,.1 = 2, a contradiction. O

This allows us to verify a remaining item of the inductive proposition:
Lemma 5.14. If B, = B, (Es1) for ngi1 € Niy1, then B, (E,) < j(Es)
Proof. Let ngyq € Nyy and E, = E,,... We have two cases:

o If E,., does not attain its minimum at a critical point, since E, € J (Esi1),
Ey —ps€ Jo1 < J(Ey), by Lemma 5111

e If E,, attains its minimum at a critical point, note that as NV, is nonempty,
js41 = 1 by Lemma [5.13 Thus, by Lemma [5.10, E,,; is C?-close to E,, so E;
also attains its minimum at a critical point, with |infJ, —inf J,, 1| < 2J,. By
Lemma (4.7, E, —inf J,, 1 » 20,; thus

Ey —ps = inf Joiq + 205 — ps
> infJ; — ps
— inf J(E,).
In either case, F, — p, = infj(Es); analogously, F, + ps < sup j(Es) O

We likewise demonstrate that s-resonant points m correspond to points 6, + ma
in the domain of the relevant Rellich function (part of Hypothesis [5.3.2):

Lemma 5.15. Let 0, € T and Egyqy € E(Es), and suppose that E, satisfies the
following:

69



1. If jo41 =1, either E, € j(Es+1), or the closest point in J,1 to Fy is a critical
value of Eg 1.

2. Ifjsi1 =2 (and so Eg 1 = Egln o), then E, € [me(Ean ), sup J(Esﬂns, )]
Let m € 84(04, E). Then:

2. If joy1 = 2 (and so Egy 1 = ESZ1 noo )y then for somep € {m, m—ng}, B, j4p,(0x+
pa) < Igﬁl ne.w- Furthermore, if 0, + pa € L1, o \Lsi1n,,n, then

9
|Es+l Ms,® (9* —l—pa) - E*| < gps

Proof. The proof proceeds by case analysis:
L. .js+1 =1:

(a) Isi1 is a union of two disjoint intervals: In this case, E4, 1 has no critical
points, so Fy € J(Egyq) = [inf Jo4q + %ps, supJep1 — %ps]. Thus,

1

_ps]7

1
Tals Js -
parSUpJait = 5

E (0, + ma) € [inf Jgq + 12

and so

1

. 1
E, (B ps_ (0, +ma)) c [infJsp1 + ﬂps,supJHl — ﬂps].

On the other hand, one has

. 1 1
Es,-_i-(Is+1,i) - [Hlf J5+1 + _4psa sup Js+1 - ﬂps]

2

since jsy1 = 1, and in particular

_ . 1 1
Is+1 - Es ! ([Hlf Js+1 + ﬂpsa sup J5+1 - ﬂps]) > B

o5 (0. + ma).

(b) Isy1 is a single interval: In this case, Es;; has a unique critical point
in I;,;. Suppose that this critical point is a minimum (the other case is
analogous). Since j,11 = 1, E likewise achieves its minimum at a critical
point, and by definition of J(E,, ;) and our assumption on E, we have

9
E, <supJgiq — 3Ps
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As above, we find

. 1
B, (B,gs, (0 + ma)) < [inf 3, 5up T s — o2p].
On the other hand, one has that
. 1
E37i<IS+1,i) = [ll’lf Jsu sup Js+1 - ﬁps]
since jsy1 = 1, and in particular
I E!( [infJ J 1 B 9
s+1 = Big [ln s;SUPdJdgi1 — ﬂps] - 2&8)0( « T ma).
2. Jsr1 =2 and Egq = Egl,ns,-: By assumption, we have

B, e[infJED, . ),supJES, ., )],

s+1,ns,v

from which it follows that

1
—Ps]

. 1
E, (325_50(9* + ma)) O [infJsi1 0 + —ps,supJsi1y — 51

24

in analog to the above. We have two subcases:

(a) 0, + ma eI, _: Let I = [infI 1, suplsiin] © Isprn,.o. Since jsi1 = 2,
we have

1
_p8]7

1
Es’,(]) D [inJerL/\ + —Ps, SUP Js+1,v - 24

24
from which it follows that

1 1
I > E;i ([ianSJrLA + 51 Ps 5P Jst1,v — ﬂps]) > B_es (04 + ma).

Ps
24D,
Furthermore, for 6 € (Isy1n, v \Is41m..4) N I, we have by Lemma that

B, (0) = El(0)] < €3, < py/12,

and similarly for v and A swapped. The lemma thus holds in this case

taking p = m.
(b) 0. + ma eI, : Let I = [infIq ., suplsiq ] € Lsyqm,,. Since joiq = 2,
we have
E; (I +nsa) o [infJ + ! J ! ]
o — _
s,+ nso m s+1,A 24Ps>sup s+1,v 24ps )

71



from which it follows that

1 1
I+7’L50é - E;.lg. ([inf']s+l,/\ + —4p5,sup Js+1,v - _4ps]) -

5 5 Bsz}o (B.+ma),

ie. for p=m — ng,
Livingo 212 B ps (6’ + pa).
Furthermore, for 6 € (Isy1m, v \Is41m...) N I, we have by Lemma that
|Es+1n L(0) —Eg (0 + nga)| < Cds < ps/12,

and similarly for v and A swapped. The lemma thus holds in this case
taking p = m — n. O

5.5 Nonresonance

We now prove that the nonresonance hypothesis [5.3.3 holds at scale s + 1. We begin
by establishing Green’s function decay for s + 1-nonresonant intervals provided their
left and right endpoints are (s + 1)-left- and (s + 1)-right-regular, respectively.

Lemma 5.16. Let 0, € T and E, € J(E,) be such that

~

o IfE, does not attain its mazimum at a critical point, then E, < sup | Jgee (E.) J(E).

~

o IfE; does not attain its minimum at a critical point, then Ey = inf | Jgee g,y J(E).

Let By,q € E(E,) be a Rellich curve minimizing dist(Ey, J(E)) among all E € £(E,),
and let A = [a,b] < Z be an (s+1)-nonresonant interval with a being (s+1)-left-reqular
and b being (s + 1)-right-reqular. Then for E € B, ., »(Ey) and 0 € B,_,  5p,(0x),

1Og|Ré\,E(m> n)| < _'}/s+1|m_n|a |m_n| = €s+1>

and
HRe gl <4p.}y

Proof. Recall the set S;(6s, Ex) (deﬁned relative to the parent curve E;), and define
SA =8, n A If SA is empty, then A is s-nonresonant and the lemma follows from

the inductive hypothesis. We thus assume Sﬁ is nonempty.
In order to apply Lemmas [A.3] and [A.1l we wish to find a finite family {A,.; +
} 4 of translates of Ay, such that each m € SA is near the center of A, ; + p for

s+1+pH

some p € S and | R, poty forallpe S We do so by case analysis:
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L. js—l—l =1L
For any m € SSA 0. +ma € I,1 by Lemmal5.I5, and since |Eg(0, +ma) — E,| <
25p,/24 and A is (s + 1)-nonresonant, we have

9
éps > |Es+1(‘9* + ma) - E*| = Ps+1-

By the eigenvalue separation estimates in Section [2] coming from Lemma (.10,
it follows that |A — E,| = psy1 for any elgenvalue A of HAs+1+m(9.), and so

HRG:E:mH psiq- In this case, we define SS Y

2. js+1 =2
Let ES+1 - Egi)ln v

b.I5l 0. + pa € Is+1n o
assumption on the endpoints of A, we must have that p € A. We have subcases:

(the A case is analogous), and fix m € Sg\. By Lemma

for some p = p,, € {m,m — ng}. By the regularity

(a) O, + pa € Ifﬁl,nw: We have |Ezi (0. + pa) — E| = psi1. To separate
E, from Egl non (Os + pa), we crucially use the uniform separation be-

tween the images of E"” and Eﬁzl no.n Suaranteed by Proposition 3.6l

s+1n v

This separation is greater than 2p,, 1, which implies that J (E 2 ) and

s+1ns,v

J (Eg?l,nsm) are disjoint; since, by assumption,

dist( B, J (Eys1)) < dist(Ey, JED, ),

we have
E, >supJ(BY, . ) =supd, + poia,

and so
2
B (04 + pa) — Bu| = paga.

It remains to separate E, from other eigenvalues of H*s+1*7_ Because

2 25 1
dist (B, By, 0 U (L2, 1+ 100))) < 3100 < 1500

and by construction

1
|E ( s+1 Mg,N (Igzl Ms,N + TLSCY))| « Zps—b

it follows that
1 1 /2
E*_Esesn\— olPs—1 = 5\ SFs— .
B = BB )| < s = 5 591

Thus we may apply the estimate on HRL(E s HA w11 (B O{Eea }) [
coming from Section Bl and Lemma [5.I0. It follows that | R, ”ﬁpH < P
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(b) O, +pa eI, . V\I£?17HS7A (The case with v and A swapped is analogous. ):
Lemma[5.T5 and the eigenvalue separation estimate from Lemma 3.9 ensure
A — Ei| = psi1 for any eigenvalue \ # Egﬁl o OF HA+1%2(0,) . As in the
Isi1n,,n case,

|Eg2le Mg, A (9* + pOé) E | ps+1
It follows that |Ry* 2" < pil.

We denote by gf: the set of all integers p coming from m € S;A\ as above.

For each interval Ag 1 +p, p€e S , it follows immediately from HRg*S*El:p | <

for E € ngs+1/4(E*) and 0 € Bps+1/8D0(9 ), that

ps+1 that

+
IRy < 8pity.

By the s + l-regularity of the endpoints of A = [a,b], for any m € 8?, we have
min{|m — al, |m — b} = 3Ls11/4;

since [p—m| < sV o1 < Lgi1/4, we have that Ay +pc Aforallpe S Moreover

by Lemma [5.5] the intervals {As,1 + p} _Gh Are non-overlapping. Enumerating SS =

{pl}‘ AE in increasing order, we denote by A; := [p;, p; + n,] (with the convention that
ns = 0 if jo.1 = 1) and define the intervals A,J/T to be the maximal intervals to the

left /right of A, i.e.

/A\J“ = [max /A\Jifl + 1, IIlil’l Xz — 1] = [Zii’l,g“],

K Qi r, gi,r] .

We note that /NXM = KHLZ, but we fix this notation to emphasize the relationship of

[max A; + 1, min Ay — 1] =: [a;,

these intervals to A;. N
Again by Lemma [5.5] each interval A,/ is s-nonresonant and has length at least

L,y » 2L, + 3M8(1), and thus each such interval satisfies the inductive hypothesis
£33 In particular, there exist intervals A, = [ai iy, biiyr] © Aiyy satisfying the
Green’s function decay property for (¢, ;) with

~ ¥ 1
wmasc{[@1/r — @iyl Bir = biapl} < 2Le +3MY « S M.

Moreover, by the regularity of the endpoints of /A\, we can choose

a;; = a1 = a, bi =b_i =0
S



Define A; = [b;;+1,a;, —1]. Wehave A; € Ag41+p; © A and | RAs+1+Pi| < 8p L,
so we may apply Lemma [A.3] to conclude that /A\, partitioned by the A; and A; ),
subintervals, satisfies Assumption [ with (¢,v) = ({s,7s) and 7= ls11. By Lemma
ATl A satisfies the Green’s function decay property for ({si1,7s+1) where y441 =
Vs — 16[log e log(ps+1/8)/ls+1-

Since we have shown the Green’s function decay property for |F — E,| < % Ps+1;
it follows that the resolvent is well-defined for |E — E,| < 2p,.q, i.e., E ¢ sp H*(6).
Thus, for |E — By| < pe1/2, |RY sl < 4psl. O

Finally, the following lemma shows that if the endpoints of A are not regular,
we can adjust them (provided A is sufficiently long) to find a subinterval which does
satisfy the conditions of Lemma [5.10l

Lemma 5.17. Let 0., E,,E ., € EUs+)(E,) satisfy the relations stated in Lemma
G168, and let A = [a,b] with |/A\| > 2L, + 3M§i)1. Then there exists a subinterval
A = [@,b] © A with |A] = |A| — (2L + SMS(Pl) such that @ is s + 1-left-reqular and
b is s + 1-right-reqular-.

Proof. In the following, if js11 = 1, we adopt the convention that ns = 0.

Let m, minimize |m — a| among m € S*. If 6, + mya € I, and |m, — a| < L, we
replace a with as_1 = max{m,+ 1, m,+ng+ 1}; similarly, if 6, + m,«a € I;1 +nsa and
|mg —a| < Lgyq, replace a with ag = max{m, +1, m, —ns+1}. Otherwise a, = a. We
perform analogous adjustments to b. We repeat this process for each s —1 >4 > 1,
with ¢ replacing s, and set a = ag and b = by. By the inductive proposition, these
endpoints satisfy the necessary regularity conditions. O

5.6 Proof of Proposition and Theorem 5.4

Proof. The lemmas above complete the proof of inductive Proposition at scale s.
The integers L, satisfy the Proposition by Lemmas 5.7 and [5.12. Any function in
E,;1 € £(E,) is a Rellich function of some H”:+! satisfying Assumption ] by Lemma
[E.ITE such a function satisfies inductive hypothesis [5.3.1] by Lemma [5.10, hypothesis
by Lemmas and [0.T5, and hypothesis by Lemmas and .17l For
any E;1 € E(Ey), Jo41 U J(Egyq) < J(E;) by Lemma 51T and if E, = E,,_,, (Es41)
for ng1 € Nyj1, then B, (Ey) j(Es) by Lemma (.14l Item 4 follows from Lemma
b5l

Since our choice of € < gy = pj was arbitrary provided L was sufficiently long as
in Lemma [5.2], Theorem [5.4] holds. O
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6 Localization and Cantor spectrum

With the induction argument of Section [l complete, we have now constructed a tree
of Rellich functions E,, cf. Figure dl with each child classified as being either simple-
or double-resonant relative to its parent. In this section we relate this tree to spectral
information about the limiting operator H. In particular, we will show the following;:

1. The spectral points of H are precisely the limit points of the modified codomains

~

J(Ej) along any infinite path {E;}{, in our Rellich tree.

2. Every Rellich function E has some double-resonant descendant; by the uniform
local separation estimate from Proposition [3.6] the gap that this double reso-
nance opens is large enough to remain open for all future scales, guaranteeing
Cantor spectrum.

3. The set B of bad phases 6, which encounter a scale-k double resonance on an
orbit of approximate size M, ,ﬁ)l for infinitely many scales k£ has zero measure.
The full-measure complement © of this bad set will have the property that, for
6 € ©, any generalized eigenvalue E(f) of H () corresponds to a path {E,(f’“)},‘f:o
which eventually consists only of simple resonances, i.e. there exists some K
such that j, = 1 for all £ > K. In fact, we will show that this path can be
chosen so that the corresponding center of localization my eventually remains
fixed; this will yield exponential localization of the corresponding generalized
eigenfunction, hence Anderson localization.

To this end, it will be useful to introduce some notation to refer to different parts
of our Rellich tree. Recall that £(E) denotes the collection of all immediate children of
the Rellich curve E, and that £ denotes the collection of all scale-s Rellich functions,
i.e. the s “generation” of the tree. For a Rellich function E € &, k < s, we denote
by & (E) the collection of all the scale-s descendants of E; i.e., for a scale-k Rellich
function Ey, & (E) = {Ex}, and for all s > k, if E' € £&(E;) and E” € £(E'), then
E” € £1(Ey). With this notation we have & = E(Eq); we denote by &£ := (J,, &
the entire Rellich tree.

6.1 Characterization of the spectrum

In this first subsection, we use paths through the tree of Rellich curves to characterize
the spectrum of H.
First, note that there can be at most one energy common to the modified codomains

~

J(Eg) of all Rellich functions in an infinite path:

Lemma 6.1. Let {E;})_, be a sequence of Rellich functions such that Ejyq € E(Ey)
for all k = 0. Then liminf,_q [J(Ey)| = liminf,_o |J(E)| = 0. In particular,

MNieo j(Ek) contains at most a single point.
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Proof. By construction, |J(Ey)], |J(Ex)| < 47—, — 0. O

Thus, each infinite path characterizes a single point; we will show these are spectral
points. Define the sets

Y= {EGR B = ﬂj(Ek>7 Ek+1 Eg(Ek)Vk = 0}

and

6= ®IE) o] [Im)\ {J T®)

Ee& E'cE(E)

We will show that ¥ characterizes the spectrum of H(6), while G characterizes the
spectral gaps. We first show that points in ¥ are indeed spectral:

Lemma 6.2.
Y csp H(0).

Proof. Let E € ¥. Then for each £k > 0, we can find a (6, Ex) € T x R, with
|E — Ek| < Pk and Ek € &£ such that HAk’ng = Ek(é’k)@bk = Ek‘¢k‘ By irrationality
of o, we can find some my € Z such that |[(0 + mra) — Ok|r < px/Do. Let P be

the partition of Z into A, and its complement, and let ¢, denote 9, shifted by my.
Then

[(H(0) — E)op* | = [(H(0 + mpa) — E)y|
< [H(0 +mya) — H(O)| + [(H(0k) — Ex) il + By, — E|
< V(0 + mya) = V()| + [Tpthll + [Ex — E|
< 3pk

Thus {¢,"*}7, forms a Weyl sequence for E, and E € sp H(6). O

We now establish an important technical lemma demonstrating that energies out-
side of the modified codomains of all children of a Rellich curve are uniformly non-
resonant on sufficiently long intervals A:

~

Lemma 6.3. Let B, € J(E;)\ Ugee®,) J(E). Then for any 6, € T, there are arbi-

trarily long intervals A with the (€41, ves1) Green’s function decay property.

Proof. 1t suffices to show that the hypotheses of Lemma 517 are met by E,, any
0, € T, and any sufficiently long interval A < Z.
Suppose E; does not attain its maximum at a critical point. We have F, €

J(E.)  J(E;), and, by item 2 of Lemma [5:[:[],

E, < j (Eg) < sup U < sup U
EcE(Ey) EcE(Ey)

7



Similarly F, > inf UEe(‘Z(Ek) J (E) if E does not attain its minimum at a critical point.

Now suppose that F, € j(E)\j(E) for some E € £(E;). By definition of J and
j, this means that E, is near a non-critical-point extremum of E, and by item 3 of

Lemma [5.17), it follows that E, € J(E') for some other E' € £(E;), a contradiction.
Thus we have E, ¢ J(E) for any E € £(E,).

Now let E € £(E),) minimize dist(E,, J(E)) among all E € £(Ey), let I be its
domain, and let J be its image. By the above comments, this distance is nonzero;
thus, F. := argmingey |F, — E| is an extremum of E. But by item 3 of Lemma [5.11]
if this extremum were not a critical point, there would be some E' € £(E;) with
dist(E,, J(E')) < dist(E,, J(E)), which is not the case; thus, E, is a critical point of
E. Furthermore, since F, ¢ 3(E), dist(Fy,J) > prr1. It follows that for any m € Z,
either |E(0, + ma) — Ey| > pgo1, or 0, + ma ¢ 1. Thus, all the hypotheses of Lemma
617 are met. O

As a consequence of this result, we can separate the energies in G from generalized
eigenvalues of H:

Lemma 6.4. If E, € G, then there is some p > 0 such that for |E — E,| < p, E
is not a generalized eigenvalue of H(0) corresponding to a generalized eigenvector 1
growing at most quadratically (1v(j)| < C(3% + 1)).

Proof. By Lemma [63] there is some scale k > 0 for which we have (¢, ;) Green’s
function decay on arbitrary long intervals; i.e., for |E — E| < pr/2,

log | R g(m, )| < —ylm —nl, |m—n| = b,

for arbitrarily long intervals A. Denote A = [a, b].

Assume FE is generalized eigenvalue of H () corresponding to a generalized eigen-
vector 1 growing at most quadratically (|¢(j)] < C(j% + 1)). Fix j € Z, and choose
A 3 j large enough so min{|a@ — j|,|b — j|} = |A|/3 = €. By the Poisson formula

(L1,

()] < e (ju@a - 1)) + b+ 1))
< 20 NP ((|j] + [A])* + 1)

As |A| — o, the right-hand side approaches 0, so we must have [)(j)| = 0. Since this
is true for arbitrary j, v must be identically zero, i.e., £ must not be a generalized
eigenvalue. O

Combining the above results with the sets’ definitions, we arrive at the character-
ization of sp H(6):
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Lemma 6.5.
spH(A) = R\G = .

Proof. By Lemma [6.2] ¥ < sp H(f); and since generalized eigenvalues are dense in
sp H(6) by Schnol’s Lemma, Lemma [6.4] implies that sp H(6) < R\G. It remains to

show that R\G < ¥. Let E € R\G. The definition of @ ensures that £ € J(E), and

if E € J(Ey), then E € J(Ey1) for some Ezyq € E(E;). But this means precisely
that E € ¥; thus R\G < . O

6.2 Cantor spectrum

Having characterized the spectrum, we now demonstrate that ¥ is a Cantor set, i.e.
it is a (closed) nowhere-dense set without isolated points. To do so, we demonstrate
that the spectral gaps G always meet our modified codomains:

Lemma 6.6. For any E € &, j(E) N G is nonempty.

Proof. We proceed by contradiction: suppose there is some E;. € & such that J (Ex)n
G=a.

We first note that E; cannot contain a critical point. Suppose it attained its
minimum at a critical point; then we would have

inf J(Ej,) = inf imE;, — py

< inf infimE —
meg(my)

= inf infJ(E).
EES(Ek)

~

Then J(Ej)\ Uges®,) J(E) ¢ J(Ey) n G is nonempty, contradicting our initial as-
sumption. Analogously, if E; attains its maximum at a critical point, we reach the
same contradiction. Thus, Ej does not contain a critical point.

Let n € N(a,E;) such that E, € J(Ek) and dist(E,, 0J(Ey)) = pr_1/12; by
irrationality of «, such an n ex1sts We will show that for some E;1 € E(Ey),
n € N(a,Epy1) and E, (Ek+1) € J(EkH) with dist(E (Ek+1),é’J(Ek+1)) > pi/12.
First note that if F, € J,m0 for some ng € N,41, then, by construction, there are
a pair of double-resonant Rellich functions £(Ej;) 3 Ejxy1. ¢ 1% J?

k+1n,e - k+1,n,e (. €
{v,A}) with J2

hilme © J(Ey); since the uniform local separation between double-
resonant Rellich pairs guaranteed by Proposition is larger than 2pg,q, there is
some E € (sup J,(fll%A + pry1,inf J,(izl,nN — pr+1), which must then satisfy

~

BelE) | JE) cIE)nC,

Eeé’(Ek)
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contradicting our assumption. Thus F,, is contained in the images of only simple-
resonant functions Ex,; € £(E;). By Lemma [5.11] item 4, we can find some such

function with B, /s(E,) < j(Ek) Let Ey = E,, + pi/24. Then, since 0gTx, = 2/Dy
by the inverse function theorem,

404
Vs

Pk 455

12D0 Vg

TEk+1 (E-i-) = TEk(E+> -

= TEk (En) +

= TEk(En)
where the first line follows from Lemma [4.13. Similarly,
TEk+1 (E—> < TEk(En)

By continuity of T, ,,, there is some E, € [E_, E,] with Tg,,,(E:) = Tg, (En);
by defmition, this means n € N(a,Ey, 1) with E,(Ey,1) = E,. By construction,
E, € J(Eyy1) with dist(Ey, 03 (Ers1)) = prar/12.

But j(EkH) c j(Ek) by Lemmal[5.17] so we can repeat the above procedure to find
Ei.2 € E(Exy 1) with n € N(«, E o) satisfying the above conditions. As we continue
to repeat this procedure, we will eventually reach some scale s with |n| < 8M, s(i)l; since
n € N(a, Ey), we will have n € Ny, and we will construct a double-resonant interval

Jéz,z with E,(E;) € Js(%z As we have shown above, this leads to a contradiction with
our original assumption. O

Proof of Cantor spectrum. It suffices to show that for each E € sp H(), there are
points arbitrarily close to £ which are not in sp H(6). Fix E € sp H(6). By Lemmas

~

and 6.5, we can find some E € € with J(E) > J(E) 5 E and |J(E)| arbitrarily

small. By Lemma [6.6, J(E) 3 £’ for some E’ € G; by Lemma[6.3, E' ¢ sp H(f). O

6.3 Localization

We first construct the full-measure set on which localization occurs. Using the defi-
nitions preceding Lemma [4.8 we define the double-resonant regions

TV (P 12M 7)), 0, E) := By, (En(E)), neN(12M?), o, E)
of each function E € &, and we define

JPR = U JPR

neN(12MS2)| o,E)
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We now define and measure the sets

= U U (E"1(JP") + na)

Bk |nj<12m?)|

on which two resonances at scale k occur at nearby shifts, and define

- U

n=0k=n
Lemma 6.7. |B| =0.

Proof. By construction, for any E € &, |E(E)| < 10[p; '] < p.?,. Thus, for k > 1

&l < 18l | [ < ot (6.1)

Fix E € &. By definition, each |JP%| = 2p,; by Lemma 2 |[E~'(JPR)| <

_ 1/2 _ _ 1/2
2 Cll—ipk & Pk/q- Then |[E-1(JPE)| = )Zne_/\/ 12M®), a,E)E I(JT?R)‘ < 25M]§+)1pk/ 1

_ 2) \o 1/2
and ‘Uanl?M,ii)l (E HIPR) + na)‘ 625<M1§+1)2 k/ 1
1/2

Combining this with the above estimate (6.1]), we have |Bj| < 625(Mk+1)2p;42pk 1

and Y, |Br| < 62537 ( kﬁl)zp,;‘lzpi/zl < 0. Thus, by the Borel-Cantelli Lemma,
Bl =0. O

Thus © := T\B is a set of full measure. For the remainder of this section, we fix
0e0O.

To show that H(f) is Anderson localized, it suffices by Schnol’s lemma [22] to
show that every generalized eigenvector ¢ of H(f) that grows at most quadratically
(Jv(5)] < C(42 + 1)) in fact decays exponentially. For the remainder of this section,
we fix a generalized eigenvalue F() and corresponding generalized eigenvector ¢. By
Lemma [6.5] we can also fix a sequence {E}7_,, with E;q € E(Ey) for all k > 0, such

mmEeﬂko(w
To locate the center of localization for v, we first employ an argument similar to

Lemma 6.4

Lemma 6.8. There is a K € N such that for all k = K, there is an my, € Z satisfying
Imy| < 3M( such that 0 + mya € Iy, and |E — Egx(0 + mpa)| < pg.

Proof. If not, there is an increasing integer sequence {k;}2, such that [-3M/, ,g), 3M ,S)]
satisfies the hypotheses of LemmalG.I7 at scale k;. Thus, for each 4, there is an interval

A; = [a;, b o [— 2M Igz)’ gM (2) | which satisfies the Green’s function decay property
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for (ly,,v,). For any |n| < %M,g), In — a;l,|n —b;| = %M,S) > (,; thus the Poisson

formula (LI1]) gives

- (2)
[w(n)] < e Mk ([ (a; — D] + [w(b; + 1))
< 206 M (B3MP 4+ 1) + 1)

Fixing n € Z, we have |n| < %M]g) as i — o0, and the right-hand side of the above
inequality approaches 0. Thus we must have [¢)(n)| = 0. But ¢ cannot be identically
ZE€ro. 0

2)

1, and is in fact (even-

The next lemma confirms that my is unique at scale 12M ,i
tually) independent of &, for 6 € ©.

Lemma 6.9. There is a K € N and my € Z, with |my| < SMI(?), such that for all
k=K,
0+ mypa €ly, and |E — Eg(0 + mea)| < py, (6.2)

and [mq — 12M]§i)1,moo — 1 U me +1,me + 12M1§i)1

(0, FE) and Ey,).

| is k-nonresonant (relative to

Proof. By Lemma [6.8] for sufficiently large k, we can choose |my| < 3M,§2) satisfying
([6.2) (with my replacing my,). If 6 € ©, then Ex(6 +ma) ¢ JPT for all |m| < 12M,§i)1,
and thus 6 + mya is in the simple resonance case of Proposition .10 (with 12M1§i)1

in the role of LM), for sufficiently large k; thus, for 0 < |[m — my| < 12M1§i)1> if
0 + ma € I, then

|E—E(6 +ma)| = |E(0+mpa) —E@ +ma)| — |E—E(@ +mga)| > 25 — pr = pk;

ie., [my — 12M,§i)1, my — 1] U [my + 1, my, + 12M1§21] is k-nonresonant.
It remains only to show that m; must be independent of k. Suppose my 1 # my.
Note that |my.1| < 3M,§i)1, SO My — my| < 12M,§i)1. Since
0+ Mmr1Q € Ik+1 e Ik
and [my — 12M,gi)1, my — 1) U [my + 1, my + 12M,§i)l] is k-nonresonant, we have |E —
E;(0 + myy1a)| > pg. Furthermore, since

0+ mpra ¢ JPR(B, 1200, 0, Br) © TP (5, 8ML), 0, By,
we must have E,; € EM(E;); thus, by Proposition 2.2

|Ek+1(9 + mk+1oz) — Ek(e + mk+1a)| < 205, € pk/2
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. Thus,
|E — Epy1(0 + mppa)| = |E— Eg(0 + my1a)| — [Egy1 (0 + mpio) — Eg(6 + mpq0)|
> Pk = PR/2 > Pri1-

In particular, this means {mg,1} is & + 1-nonresonant, which contradicts the con-
struction of my,1; we must therefore have my.; = my, and consequently my, is in fact
independent of k, and we may set m., = my, for all sufficiently large k. O

Proof of Anderson localization. As noted above, we need only show that ¢ decays
exponentially. Let K and mg be the integers defined in Lemma For |[n —my| >
8M[({211, let £ > K +1 be such that 8M,§2) < |n—my| < 8M,§i)1. Consider the interval

|

All m e A satisfy 0 < |m — mg| < 12M1ﬁ)1. Thus, by Lemma B9 A satisfies the
hypotheses of Lemma [5.17 at scale k; therefore, there is some subinterval

A= T[a,b] = ln - {Wl +3M2 n+ {L _2m"°|} - 3M,§2)]

el

which satisfies the Green’s function decay property for (¢, vx). Note that [‘”%:Lw‘] >
%M,Ez) > (}; thus, by the Poisson formula (LIT]),

(n)] < ePorelnmmal® (@ — 1)| + [w(b+ 1))

We have
max{|a — 1|, b+ 1|} < |n| + [L;W} o
< |n = me +|n_27m”| +2+43M2
< g|n — M| + MY
< 2|n — my|.
Therefore,
[b(n)| < 4CeoBeln=macli9(|yy _ 12 4 1),
which decays exponentially away from m.,. -
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A Bootstrapped Green’s function decay

In this appendix, we will show that, if one can partition an interval A into subintervals
alternating between long intervals with Green’s function decay and short intervals
with resolvent bounds, one can iterate the resolvent identity to bootstrap the decay
to all of A. Results of this variety are well-established in the literature (cf. e.g. [13]);
we include the details relative to our specific application for the reader’s convenience.

Let v € C*(T,[—1,1]) with [0pv]o + [03v] e < Do, (O, Ex) e T xR, 0 <& < 1/7,
and 0 < p < 1/2. Additionally, let £ e N, 1 <~ < |loge|, and

M := max{/,|log pl}.
Consider an integer ¢ € N with ¢ > 16|log | M, and define
§ =~ — 16| loge|M/L.

Assumption 4. Suppose that A © Z admits a partition P satisfying:

1. Every other interval of P satisfies the Green’s function decay property for (¢, ).
We denote the intervening intervals by A; and use the notation A; /. to refer to
the interval (on which the Green’s function decay property for (¢, ) is satisfied)
immediately to the left /right of A;.

Note that, with this convention, one will have, e.g., A;, = A1
2. For each A; = [a;, b;], the interval /A\Z =Ny U A U A, satisfies
|PRMTp| < 257, (A1)

where P; denotes the projection onto coordinates [a;—/, b;+/] m/A\i. Furthermore,

RY is well-defined.
3. |Asy| > 20.
4. |A;| < M.

We illustrate one segment of Assumption dlin Figure[dl Under these assumptions,
we get (¢,7) decay on A:

Lemma A.1. Suppose /& satisfies Assumption [4 Then A satisfies the Green’s func-
tion decay property for (¢,7).

Before proving Lemma [A.1l we will first handle the special case where there is
precisely one interval A;:

Assumption 5. Suppose that A s partitioned by P into A; U A U A, such that
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Ay A Ay

) )

(¢,7) decay (€,7) decay

decoupled resolvent bound

Figure 9: An illustration of one segment /AXZ- of the partition P from Assumption [l note that the
naming convention for the decay intervals is non-unique, i.e. A;, = A;j11.

1. Ay, satisfies the Green’s function decay property for (¢, 7).
2. RN is well-defined, and, denoting A = [a, b],
|PRATp| < 257", (A:2)

where P denotes the projection onto coordinates [a — ¢,b + £] N A.
3. |A| < M.

Letting
¥ = — 6[loge[M/¢,

in this case we get slightly improved decay on A:

Lemma A.2. Suppose /A\A satisfies Assumption[d. Then A satisfies the Green’s func-
tion decay property for (¢,7).

Proof. Suppose m,n € A and lm —n| = 7>3M =20+ |A|. Then at most one of
m, n satisfies dist(-, A) < ¢. In the case neither m nor n is within ¢ of A, we use the
resolvent expansion

RM = RS — RATHRN = RA — RATSRA + RATSRATHRA.
Since m,n do not belong to adjacent intervals in P, the middle term of Rﬁ(m, n) in

this expansion vanishes. By Green’s function decay on Ay, and (A.2)),

log | R*(m, n)| < log (e ™™l 4 2ep~ e (Im=nl=IAI=D)

< log
< log (3?16_7(|m—n|—\/\|_24_1))

m —n|

6|loge|M
<—(7—%) |m—n|
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On the other hand, if dist(n, A) < ¢, we have |m — n| < dist(m, A) + |A| + 2¢. We
use the resolvent expansion

RM = RE — RATp RN,
By Green’s function decay on A, and (A.2),
log |R7\(m, n)| < log (e‘”"”_"‘ - 2;)“16_7(‘11“("“’/\)_1)) < log (3,()“16_7(‘"“_"‘_'/\‘_26_1)) ,
and the proof concludes as in the first case. O

The following lemma is useful to ensure that the decoupled resolvent bounds (A.])
or (A2) are satisfied:

Lemma A.3. Suppose 7eN is an integer with

. log 7l + 1
£>max{£,%}.
Y

Suppose that A is partitioned by P into Ay u A U A, such that
1. Ny, satisfies the Green’s function decay property for (£,7).

2. There exists an interval A > A = [4,5] > A = [a,b] such that

min{|d — al, [b — |} = ¢,

IR < 57"

Then R} is well-defined, (A.2) is satisfied, and A satisfies Assumption [3.

Proof. Denote by 75Athe partition of A into A and its complement /A\\K, and denote
as shorthand R = R% and [' = F%.

We expand the resolvent RA by alternating the resolvent formulas
R = R— RTRY,
R = RE — RAT,RY,
to get the expansion
R = R— RTR) + RTRATpR— ... (A.3)

Note that PR = PR™, where P is defined as in (A.2); similarly, because the boundary
points of P are in A, I'pR = I'p R*. Thus multiplying on the left by P gives

PRM = PRY — PRATRA + PRATRAT,RY — .
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By the Green’s function decay on A;; > K\A,
IFRALS| < [FRMTp| + [TRMTp|| < exp(—70), (A4)

and so we get that

|PR*Tp| = | P ) (R RpTp)*(RY — RATRp)Tp
k=0
—~e k —t
- Z (eA ) 2e +Ae
p p

k=0

<2p !

Using the same method to estimate the expansion ([A.3]) gives an upper bound on
IR ||, which ensures R* is well-defined. O

Proof of LemmalA. 1. Each interval /A\, = A;; UA; UA,;, satisfies the Green’s function
decay property for (¢,%) by Lemma [A.2l Define the partitions Py := |, jqqNi U
Ui oven Ni and Py := U, cven Ni U U, oqq Ai- For ease of notation, we define P; = Py

whenever ¢ is an even integer, and P; = P; whenever ¢ is an odd integer.

We first show that RM is well-defined. Partition A = AguUA; such that U; even A,
Ay and U, oaq i © Al, and let )y, )1 be projections onto the coordinates AO,Al
respectlvely Then, by Assumption IZL we have upper bound estimates on HQORPOH
and HQlRpl |, and we have HFPORPOFpl I, \|FP1RP1FPOH « 1. Thus, we can write
RN = Qo RMN 4 QlRA and expand each term using an infinite resolvent expansion
alternating between Py and P, the first term starting with Py and the second term
starting with P;. This will give an upper bound on HRAH ensuring it is well-defined.

Suppose m,n € A and |m —n| = > /. Because the A cover A with overlaps of size
at least 26 there must some A; 5 m such that m is separated from its boundary by
at least . Without loss of generality, let this be AO

Suppose first that dist(n, A;) > ¢ for all A;. We expand the resolvent first from
the left using Py, then from the right using the partition P defined in Assumption [4]
and then from the left alternating between P; and Py:

R = Ry — Ry Up Ry + Rp I'p, Ry 'pRiy — Ry I'p Rp T'p, Ry TpRp + ... (A.5)

We now expand R*(m,n) using (A5). Since |m — n| > 7, the first term is bounded
by Ae’:"m’"‘ by Lemma [A.2l The second term gives a sum of terms of the form
eRp, (m,p + 1)R3(p,n) where p € A; for some i; then Rj(p,n) = 0 because n does
not belong to any A;. Subsequent terms are of the form

(—1)MEMIRS (po, qo) R, (1, q1) - -+ Ry, (i, @) B (prs1, m) (A.6)
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for £ > 1, where py = m, and for 0 < ¢ < k, ¢; is a boundary point of the interval
in P; containing p;, and p;11 = ¢; £ 1; prs1 is a boundary point of the interval in P
containing n, and q; = pry1 £ 1.

The structure of the intervals, our assumption on m, and Lemma guarantee
that log |R7/§i (pi, ;)| < —7|pi—qi| for all 0 < i < k. Similarly, Assumption [l guarantees
log | R (pr+1,n)| < —7[pr+1 — n|. To estimate |RS (pk, qi)|, we note that g, must be
near some A; (i.e., either g, € A; or dist(qx, Aj) < ), and we make the following
considerations:

e If k shares the same parity as j, then in order for Rék (pk, qx) to be nonzero, we
must have py € A; € Pg. Then (A.2)) applies, and |py — qx| < 20+ |log p| < 3M,
giving | RS (pk, qx)| = |RY (pr, qi)| < 267171 < 2e7 1 ptedMieee—anl,

e If £ and j have opposite parities, then |py — qx| = 20— ¢ > 5M > (. Thus either
R%k (P, qr) = 0, or Lemma [A.2] applies, giving log |R§§Ic Pk, k)| < —7|pr — qr|-

Finally, since |m—n| < |prs1—n)| —i—Zf:O Ipi—q;| +k+1, and e¥*! < 77+ each term
of the form ([A.6)) is bounded by 2e~'p1e3MYe=7Im=7l By the same considerations,
but using the fact that [p; — ¢ = U for all 0 < i < k, each term of the form (A.6) is
bounded by 2e7'p e3¢ We consider the first term R% (m,n) from (AF) to
be the sole term of the expansion with & = 0, and note that the same bounds apply.

In the case that n € A; or dist(n,A;) < ¢, we follow the same procedure but do
not use P, i.e., we use the expansion

R = RS —RA T'p, RS, + R T'p, RA T'p, RS — R T'p, R T'p, RS Ty R +.... (A7)
to obtain terms of the form

(—1)*e* R, (po, q0) Ry, (p1, 1) - - Ry, (P, i) (A.8)

where pg = m, ¢ = n, and for 0 < i < k, ¢; is a boundary point of the interval in
Pi containing p;, and p;1 = ¢; + 1. By considerations analogous to those in the first
case, we obtain the same bounds 2e 7' p~1e3MTe=7m=7l and 2715~ 1e3MYe=* for each
term of the form (A.g]).

Since each p; gives two choices for ¢;, there are at most 2! nonzero terms of the

form ([AXG) or (A.) for each nonzero value of k. Let ko = [@] For the at most

2ko+1 terms with k < ko, we use the bound 2p~'e3M7e=7m="l while we use the bound
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Qﬁ_le?’M:*e_k:*Z for k > kg, giving

0
|RA(m, n)| < nglbvle?;Mﬁ/ <2k0+16fymn + Z 2k+1€kw>
k=ko

45 D ~1 3M'\/ <2k0€7:\7|m7n| + 2k0+1€7:\7koi>

de —1b¥1 3M§2ko+26—§|m—n|

N

glm—n|/t+5 1 5-1,3M7 ,~F|m—n|

N

5

It follows that

2 log 2 log 2 1 log p M~
g [ )| < — (3 - 242 - a2t Lonel PoeALE3 ) ),y

-~ 10[loge|M
< - V—T im — n

—q|m — n|.
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B Proofs of preliminaries

Below we collect proofs of the foundational results from the introduction.

B.1 Perturbation theory lemmas

Proof of Lemma[I.1. We proceed by contraposition. Suppose rank(y) < rank(
Then dim(ker(x)) + dim(im(P)) > dim(V') by rank-nullity. Consequently, ker(x

im(P) contains a unit vector Pv. But then
|(T =x) Pl = [|Pv] =1,
so (I =x)P| = 1.

Proof of Lemma[13. There must be an eigenvalue in Bs(E,), since

52 (A= EJO = (A~ EJx(A)of > inf )~ B,

By assumption we have

0 2 (A= B)o|* = [(I = XB, (5 (A)(A = E)|*

PN = XB,(E2) (A) 8]

which is (L.4). To see (LH), notice that, since

=
=

11 = Xm0 (ANS]” = 1 — |xB,m0) (A]* < (3/p)?,

it follows from xp,(g,)(A)* = XB, (k) (A4) that

lo — | =2(1 — x5,z (A)0])
2(1 — [xB,zs) (A)0]*)
2(6/p)?,

NN

which was the claim.

P).
)N

O

Proof of Lemma[l.3. The family of eigenpairs (E,1)(#) in question are the implicit

function defined by the vanishing of

Indeed, since F, is simple, one has that

(D,0)F) (B, Y, 0:)



is non-singular: denoting P = v, @1 and Q = I — P, one computes via the Schur
complement that

det((D(g.6)F)(Ex, s, 04)) = det (lg ﬂ) det (Q(A(0x) — E.)Q)

=2 [ = E) #0.

Nj#Ey

Thus the implicit function (E,)(€) is defined in a neighborhood of 6, and twice-
differentiable at 0,.
We differentiate the eigenvalue relation (A — E)¢ = 0 at 0, to get that

(A — %E) = —(A— E)og. (B.1)

Equation (L) follows by taking inner products of the relation (B with +; (L)
follows from the uniqueness of the implicit function since (L8)) satisfies (B.)); and
(L3) follows by differentiating (LT). Finally, (LI0) is immediate from (L8]). O

Finally, we have the simple proof of the Poisson formula:

Proof of Lemma [T This follows by applying the resolvent R*(E) to the observation

(H* = E)¢ = ep(a — 1), + (b + 1)6,. O

B.2 Cauchy Interlacing Theorem
The Cauchy Interlacing Theorem [3.7] follows from the Min-Max Principle:

Proof of Theorem[3.7. 1f w; is an eigenvector for B with eigenvalue 3; and W :=

span{w;, ..., w,,}, then one has that P*W} is a k-dimensional subspace of R" and
By = max BYY _ LAY y) L CAPTY), Pry)
vt yl® et yl? yewlt [Pyl

> m[}n{mgx{% L ze U\{O}} - dim(U) = k;} = ay.

On the other hand, one has that P*W}" is an m—k+1 = n—(n—m+k)+1-dimensional
subspace, and one likewise has that

(A(P*y), P*y)

O T TP
A
< mgx{min {< |j|’f> C X € U\{O}} cdim(U) =m —k + 1} = Qp_mik. O
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B.3 Eigenvalue separation lemma

This lemma is classical (cf. [I4]20]), but we include a proof for the sake of complete-
ness. Consider the transfer matrix

A(V,E) = lv—lE ‘01]

with associated Schrodinger cocycle

My (V, E) := | A(S*V, E)
k=b

where (S¥V),, = Viuik, the product concatenates on the right, and b > a.
By definition, one has that ¢ = (n) solves the formal Schrédinger difference
equation if and only if

Mia(V, E) Mﬁ@l)} - Lﬁ(lé@l)]

for all n € Z. We also have the fundamental cocycle identity
M[a,b](V, E) = M[CJrl’b](v’ E)M[a,c](v, E), a<c<b (B.2)

The proof of Lemma comes from the simplicity of the eigenvalues of H* and
the orthogonality of the corresponding eigenvectors; namely, forcing a sufficient pro-
portion of the masses of two distinct eigenvectors into the same window pushes the
corresponding eigenvalues apart. We make this quantitative below:

Proof of Lemma L3 If |E72 - E1| > e ((%)2 + 2) /|A%, the claim follows immedi-
ately; suppose for the remainder of the proof that

A~ ~ m 2
By — By <e¢ ((f) + 2) JIA2.

Denote [a, b] := A, [c,d] := A, and ¢, := [ik(c), ik(c—l)]T. Since the eigenvectors
1y, are real, we may suppose they are normalized at the left endpoint ¢ of A such that

HJ]@H2 = ]-> k= 1a2>
and

(P, @;2> = 0.
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In particular, we note for later use that HQZ;CHQ > |]|2 = 1. With this normalization,
if 0 € (0, 7/2] denotes the acute angle between v, and 1, one has

1— (1) =1—cosf < 1—cos>f

< sin?f < sinf
= [P (e)dha(c = 1) = i (c = V)ia(e)] = [W (¥, v)(c)|
and consequently
1 - - ~ -
5”% — | < W (1, 2)(c)]-

By Green’s identity, one has

Eg—El b ~ N0 . 1 b ~ . A . A . .
- Z%(])%(]) = EZ%(])(H V) (J) — (H 1) (5)¢2(5)
= W(@l; 122)(0) - W@Zh%)(b +1).

Since dJk are eigenfunctions for HIY  they satisfy the Dirichlet boundary condition
at b; in particular, W(@Dl, @Dg)(b + 1) =0, and we see

7~ ~ b
R

by the Cauchy-Schwarz inequality. Combining these observations, we see that

~ A~

W (41, ) (c)| = < |Ey — Ev||n]|[[1]

1/2
j%M—@K<“ 'wmw>. (B.3)

We will apply observation (B.3]) with a telescoping estimate on transfer matrices
to get an upper estimate on |1 — )[4 in terms of |Ey — Fy|. Specifically, we have
By — By

~ ~ | ~ ~
| Mie.q) (Vs Br) = Mgy (V, )| < | Mpe -y (V, BV || Mj1,a(V; E2)|

jJeA €

(1A]=1)/2

Ey—FE 2
BB 1||A|((@> +2> ,
3 g
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and consequently

[ = Palla < Y. 11 () — (5]

JEA
< Z | Miejy(V, By )b — Mie (V. Eo) |
JEA
< [Miejy (V. Ey) = Moy (V, Eo)| + | M[e, §1(V, Ex) (41 — o)
JEA

1/2

|Ey — E ma\ 2 (=7 ma\2 A2 (2B — By~ »
< AR () 2 FAL(() +2) (TP ]

Since |Ey— Ey| <€ ((m)2 + 2) /|A|? by our very first assumption, it follows that

€

5 _a\"? |Al/2
~ ~ E,— E 2 ~ o~
|m-¢wA<<Li;ig |M(G?)+a) (1 + V(I 1:l))
and thus

N~ A E,—E Al SRR
0=l < 2B ((22) 2) (14 vaBIa )’

3

|E, — Ei my 2 A~
<62 =HAR ((Z2) +2) i,

3

where in the last line we used that 1 < (|| |¢s]))Y? and (1 + v/2)% < 6.

On the other hand, since 1, and 1y are eigenfunctions for different eigenvalues,
they are orthogonal, and we have

(91 = ol = 1 = ol = 1 = ol
~ ~ 1/ ~ ~
> ([0 + 152 = 5 (2 + 16 1°)
1/ ~ ~
> < (I + 1421?)
= |91 ][[[42]

where the first line above uses orthogonality of vectors with disjoint supports, the
second uses orthogonality of distinct eigenvectors and the localization assumption
[Yelz = |vx]?/2, and the fourth line uses the inequality of arithmetic and geometric
means. L

Combining the upper and lower bounds on |1); — ;|3 above yields the claim. [
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