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We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.
Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and the
entanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-
core limit, after a trap quench from a double well to a single well. On the analytical side, the
quadratic nature of the theory of QGHD is complemented with the emerging conformal invariance
at the TG point to fix the universal part of those quantities. Moreover, the well-known mapping of
hard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjecture
to fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. The
free nature of the TG gas also allows for more accurate results on the numerical side, where a higher
number of particles as compared to the interacting case can be simulated. The agreement between
analytical and numerical predictions is extremely good. For the density fluctuations, however, one
has to average out large Friedel oscillations present in the numerics to recover such agreement.
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I. INTRODUCTION

A. Hydrodynamics, quantum fluctuations, and equal-time correlations

Hydrodynamics offers a powerful way of thinking about the dynamics of many-body systems on macroscopic
scales [1, 2]. While made of microscopic constituents that typically undergo complex collective dynamics, fluids
of many particles are viewed as continuous media on larger scales. Their evolution is encoded in the time- and spatial-
dependence of a small number of local thermodynamic quantities, or hydrodynamic variables, such as particle density,
energy density, or more generally densities of conserved charges in the system. In that effective description at the
macroscopic scale, the microscopic degrees of freedom are not immediately visible, but instead they are reflected in
long wavelength variations of the charge densities. In particular, around an equilibrium configuration, small variations
of the charge densities propagate through the fluid as sound waves. These sound waves are the relevant collective
degrees of freedom at low energy.

The basic ideas of hydrodynamics apply to fluids made of classical or quantum constituents alike. For instance, the
Euler equations for a Galilean-invariant one-dimensional (1D) fluid with conserved particle number and momentum
typically read, in conservative form, {

∂tρ+ ∂x(ρu) = 0
∂t(mρu) + ∂x(mρu2 + P(ρ)) = −ρ∂xV. (1)

Here ρ(x, t) is the particle density, u(x, t) is the mean fluid velocity, m is the particles mass, V (x) is an external
potential that acts as a source term for the momentum density mρu according to Newton’s second law, and P(ρ)
is the equilibrium pressure computed in the underlying microscopic model. This microscopic model can be either
classical or quantum: the Euler equations (1) are applicable to a classical gas at constant temperature, for instance
in contact with a thermostat; they are also applicable to quantum gases at zero temperature [3], in particular to the
one-dimensional Bose gas with contact repulsion [4, 5]. Apart from the specific function P(ρ) entering the momentum
current in (1), which differs from one microscopic system to another, the form of the equations (1) is the same.

Differences between quantum and classical fluids arise at the level of their fluctuations. In a classical fluid at finite
temperature, one expects the low-energy collective modes to have thermal fluctuations, and it is the goal of ‘fluctuating
hydrodynamics’ approaches to capture these, see e.g. [6–9]. In a quantum fluid at zero temperature, there are no
thermal fluctuations, but the low-energy collective modes typically have quantum fluctuations. This is well illustrated
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starting from the Euler equations (1). For simplicity, consider the ground state of the spatially homogeneous system
(V (x) = 0), with ρ(x, t) = ρ0 and u(x, t) = 0. Linearizing the system (1) for small deviations (δρ(x, t), δu(x, t)), one
finds ∂tδρ+ ρ∂xδu = 0 and ∂tδu+ 1

mρ
∂P
∂n ∂xδρ = 0, or equivalently(

∂

∂t
−
(

+v 0
0 −v

)
∂

∂x

)(
π δρ+Km

~ δu
π δρ−Km

~ δu

)
= 0, with v :=

√
1

m

∂P
∂ρ

, K :=
π~ρ
mv

. (2)

Here v is the sound velocity in the fluid, and K is a dimensionless parameter. [K is called the Luttinger parameter,
and it is normalized such that K = 1 in the Tonks-Girardeau (hard core) limit of the 1D Bose gas with contact
repulsion]. We see from Eq. (2) that there are right- and left-moving sound waves, corresponding to specific linear
combinations of δρ and δu parameterized by K, traveling at velocity ±v. The sound waves are then used as the basic
ingredient in a quantized theory of the fluid described by the Euler equations (1). The basic idea is to look at δρ(x)
and δu(x) as operators δρ̂(x), δû(x) in a quantum theory, and to impose the canonical commutation relations [10],

[δû(x), δρ̂(y)] =
~
im

δ′(x− y), (3)

and [δρ̂(x), δρ̂(y)] = [δû(x), δû(y)] = 0. To construct a Hamiltonian for these quantum fluctuations, one imposes that

the Heisenberg equations ∂tδρ̂ = i
~ [Ĥ, δρ̂] and ∂tδû = i

~ [Ĥ, δû] coincide with the equations of motion (2). This leads
to

Ĥ =
~v
2

∫ [
K

π

(m
~
δû(x)

)2

+
π

K
(δρ̂(x))2

]
dx, (4)

which is the Hamiltonian of a Luttinger liquid [11–13]. In conclusion, when one looks at quantum fluctuations of
the collective modes (sound waves) of a standard Euler fluid in 1D, one arrives at the Luttinger liquid, which is the
universal theory of 1D quantum hydrodynamics.

Physically, one consequence of the quantum fluctuations of the collective modes is that they induce equal-time
correlations at different points in the fluid. For instance, the connected part of the density-density correlation in the
ground state of the Hamiltonian (4) is [11–13]:

〈δρ̂(x1)δρ̂(x2)〉conn. =
−K

2π2(x1 − x2)2
. (5)

This is the leading power-law decay for the zero-temperature correlation of microscopic density observables in the
model whose hydrodynamic equations are (1). Similarly, correlations of many other observables can be obtained from
simple calculations within Luttinger liquid theory. We stress that the presence of such power-law correlation functions
between observables at different macroscopic positions in the fluid is really a quantum effect. They are not accounted
for in the classical fluid theory (1), which, by linear response, only predicts nonzero correlations in space-time at
the velocities of sound mode propagation, under the Euler scaling limλ→∞ λ〈δρ̂(λx1, λt1)δρ̂(λx2, λt2)〉conn. [14] in
which (5) vanishes; and they are stronger than correlations that would occur at finite temperatures due to thermal
fluctuations, which decay exponentially in space. This is even more obvious when one considers the entanglement
between different pieces of the fluid. Classically there can be no entanglement. Yet, after quantum fluctuations
have been incorporated in the theory, it makes sense to look at the entanglement entropy in the ground state of the
Hamiltonian (4), leading to the well-known result for a subsystem of length ` [15, 16],

S(`) =
1

3
log(`/ε), (6)

for some cutoff ε. This shows that, despite the simplicity of the approach, quantizing the collective modes of the
hydrodynamic equations (1) has the potential to reveal many features of the fluid that are truly quantum.

The classical Euler equations (1) describe a fluid with conserved particle number and momentum. When there are
more conserved quantities, these two equations are complemented with more conservation equations, one for each
additional conservation law. Remarkably, even when there are infinitely many conserved quantities, it is still possible
to derive an Euler-scale description. This is ‘Generalized Hydrodynamics’ (GHD), the hydrodynamic theory of 1D
integrable systems introduced in 2016 in two very influential papers by Castro-Alvaredo et al. [17] and by Bertini et
al. [18].

In a recent paper, we asked the following question [19]: What is the theory of quantum fluctuations around GHD?
In other words: What happens if one mimics the derivation of quantum hydrodynamics above, replacing the standard
Euler equations (1) that lead to a standard Luttinger liquid (4), by the GHD equations of Refs. [17, 18]?
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The answer given in Ref. [19] is that the theory of quantum fluctuations around GHD is a multi-component, time-
dependent and spatially inhomogeneous Luttinger liquid, where excitations propagate as the linear sound waves of
the standard GHD theory. This setup was dubbed ‘quantum GHD’ in Ref. [19]. [We note that some authors have
expressed their preference for other names for that setup, e.g. for ‘generalized quantum hydrodynamics’ [20]. This
terminology also makes sense, but to make the connection with our previous work [19] perfectly clear, we keep the
name ‘quantum GHD’ in this paper.] Numerical comparisons of that theory with t-DMRG simulations for the 1D
Bose gas at finite repulsion strength were presented in Ref. [19]. In this follow-up paper, our goal is to investigate the
special case of infinite repulsion (Tonks-Girardeau limit), which maps to non-interacting fermions [21], so it allows to
do more analytical calculations and to perform more stringent tests of the theory. We focus in particular on spatial-
and time-dependence of density correlations, and on the evolution of the entanglement entropy in the system. We
obtain a number of analytical results that are exact in the hydrodynamic limit, and for which we provide extensive
numerical checks (Fig. 2). We stress that as the Tonks-Girardeau limit is described by a free fermionic theory, whose
hydrodynamic equations are linear, certain subtle correlation effects due to nonlinearities, discussed in [19], are not
present. Although our techniques are, to some extent, similar to semiclassics and to other recent related works [22–25],
to our knowledge there exists no alternative method to arrive at our results.

B. This paper: tests of ‘quantum GHD’ in the Tonks-Girardeau gas

This paper is a follow-up of Ref. [19]; we aim at clarifying some aspects of the results of [19] by analyzing the simple
case of the Tonks-Girardeau gas in more details. We start from the 1d Bose gas with delta repulsion in an external
potential V (x, t), with the Hamiltonian [26–28]

Ĥ(t) =

∫
dx

(
~2

2
(∂xΨ̂†)(∂xΨ̂) + (V (x, t)− µ)Ψ̂†Ψ̂ +

g

2
Ψ̂†2Ψ̂2

)
, (7)

where Ψ̂†(x), Ψ̂(x) are operators that create/annihilate a boson at position x, and satisfy the canonical commutation

rule [Ψ̂(x), Ψ̂†(x′)] = δ(x − x′). µ is the chemical potential, and we set the mass of the bosons to m = 1. The hard
core (or Tonks-Girardeau [21]) limit is given by

g → +∞. (8)

In that limit, the Hamiltonian (7) maps to the one of non-interacting fermions through the non-local (Jordan-Wigner)
transformation,

Ψ̂†F (x) = eiπ
∫
y<x

ρ̂(y)dy Ψ̂†(x), (9)

where ρ̂(y) = Ψ̂†(y)Ψ̂(y) = Ψ̂†F (y)Ψ̂F (y) is the particle density operator, such that the fermion creation/annihilation

modes satisfy the canonical anti-commutation relations {Ψ̂F (x), Ψ̂†F (x′)} = δ(x − x′). In terms of the fermions, the
Hamiltonian (7) in the limit (8) is quadratic,

Ĥ(t) =

∫
dx

(
~2

2
(∂xΨ̂†F )(∂xΨ̂F ) + (V (x, t)− µ)Ψ̂†F Ψ̂F

)
, (10)

which allows to perform many analytical calculations that are impossible away from the hard core limit (8).
Similarly to Ref. [19], we focus on the following protocol. The system is initially in the ground state |ψ0〉 of the

Hamiltonian (7) with V (x, t = 0) = a4x
4 − a2x

2, representing a double-well trapping potential, and fixed chemical
potential µ. Then, it is let evolve with the same Hamiltonian, but after a sudden change of the trap to V (x, t >
0) = ω2x2/2. This protocol can in principle be realized experimentally in ultracold gases: 1D gases near the Tonks-
Girardeau limit have been realized e.g. in Refs. [29–31], and the temperature can be extremely low so that the gas
is initially very close to its ground state. In particular, the validity of the zero-entropy GHD description [4] of the
gas reviewed in Section II has been established experimentally in Ref. [32]. Quenches from double-well to harmonic
potentials can also be realized experimentally, see e.g. Ref. [33].

As in previous references [5, 19], a convenient way of taking the hydrodynamic limit is to fix the potential V (x, t)
and the chemical potential µ, and then send ~ to zero. Indeed, in the local density approximation (LDA), the number
of particles in the system at t = 0 can be estimated to be

N '
(LDA)

1

~

∫
dx

π

√
2(µ− V (x, t = 0)), (11)
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where the integration domain is the interval where µ− V (x, t = 0) > 0 (we assume that it is a single interval). So we
see that taking ~→ 0 is equivalent to taking the number of particles

N ∝ 1/~→ +∞. (12)

All the results in this paper are obtained in that limit. Throughout the paper, 〈·〉 is the expectation value in the
initial state |ψ0〉.

C. Organization of the paper

In Section II, we specialize the derivation of quantum fluctuations around GHD of Ref. [19] to the Tonks-Girardeau
gas. This allows us to introduce the main notations and concepts, in particular the concept of multiple (or split) Fermi
seas, and of the Fermi contour in phase space. There, we also clarify the main difference between this work and previous
works [5, 34]. In Section III we present our results for the correlations of density fluctuations, and in Section IV the
results for the entanglement entropy. For the entanglement entropy, we need to compute a non-universal contribution
of order O(1) when N → ∞ that is necessary to make quantitative comparisons with numerical simulations; this is
done by extending results by Jin and Korepin [35] and Keating and Mezzadri [36, 37] in Subsection IV B. Our main
results are summarized in Fig. 2. The details of the numerical simulation are explained in an Appendix.

II. GENERALIZED HYDRODYNAMICS AND ITS QUANTUM FLUCTUATIONS: THE
NON-INTERACTING CASE

In this section we review the generalized hydrodynamics description of the Tonks-Girardeau gas and its semi-
classical quantization. For a more general discussion also including the general interacting case, see, e.g., the recent
review [20].

A. ‘Generalized Hydrodynamics’ of non-interacting fermions: free evolution of the Wigner function

For the Tonks-Girardeau gas, GHD is nothing but the evolution equation for the Wigner function of the underlying
non-interacting fermions (9) [4, 5] . The Wigner function is defined as [38–40]

n(x, p, t) =

∫
dy ei

py
~

〈
Ψ̂†F (x+ y/2, t)Ψ̂F (x− y/2, t)

〉
(13)

and it satisfies the evolution equation

∂tn+ p∂xn = (∂xV (x, t))∂pn. (14)

This is the classical Liouville equation, or equivalently the GHD equation for non-interacting particles. It has been
used extensively in the study of out-of-equilibrium 1D systems long before the advent of GHD, see e.g. [41–45]. Strictly
speaking, Eq. (14) is exact only if the potential V (x) is harmonic. If it is not harmonic, then Eq. (14) is the zeroth
order in an ~-expansion of the true evolution equation, known as the Moyal evolution equation [46]. Recently, such
corrections have been addressed in Refs. [22, 47, 48]. We discuss briefly these corrections in our Conclusion. But for
the quench protocol we are interested in, the potential V (x, t > 0) is harmonic so we need not worry about them in
this paper.

Next, while in the free case (14) is valid at the microscopic level, here we want to interpret n(x, p, t) as a coarse
grained (or semiclassical) slowly varying distribution function in position and momentum. A special role in what
follows is played by the zero-entropy states [4], defined as follows,

n(x, p, t) =

{
1 if (x, p) is inside the contour Γt
0 if (x, p) is outside Γt.

(15)

The zero-entropy states are fully specified by the contour Γt, a set of points (xt, pt) in phase-space known as Fermi
contour (see also Eq. (18) below). Moreover, locally (around a given x), they take the form of split Fermi seas [49–52],

n(x, p, t) =

{
1 p ∈ [p1(x, t), p2(x, t)] ∪ · · · ∪ [p2Q−1(x, t), p2Q(x, t)],
0 otherwise.

(16)
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where pa(x, t), a ∈ {1, · · · , 2Q}, denote the Fermi points at position x and time t. Analogous split Fermi seas can
be defined also in the interacting case [49–52]. For such states, GHD, namely Eq. (14), which can be seen an infinite
number of equations (one for each value of the momentum p), reduces to a finite number of equations, as many as
the number of these Fermi points. Such equations take the form of Burgers’ equations [5, 41–45]

∂tpa(x, t) + pa(x, t)∂xpa(x, t) = −∂xV (x, t). (17)

In the special case when there are only two Fermi points (Q = 1), the two resulting equations can be interpreted
as those of conventional Euler hydrodynamics at zero temperature, Eqs. (1). Indeed, they are just a change of
variables with respect to the more common equations for density and hydrodynamic velocity, see e.g. the discussion
in Ref. [5]. Conversely, if more than two Fermi points appears, GHD cannot be reduced to conventional hydrodynamics
anymore [4].

It is sometimes convenient to rewrite Eq. (17) in the following form. Parameterizing the contour Γt clockwise by a
parameter s from 0 to 2π, i.e.

Γt = { (xt(s), pt(s)); s ∈ [0, 2π)} , (18)

the points (xt(s), pt(s)) of the contour simply move according to Newton’s equation,

d

dt

(
xt(s)
pt(s)

)
=

(
pt(s)

−∂xV (xt(s))

)
. (19)

We now argue that the protocol introduced in Section I B can be described in terms of zero-entropy states, initially
with two Fermi points (Q = 1) and then at later times with four Fermi points (Q = 2), see Fig. 1. Indeed, at initial
time, the state of the system (in the large N limit) is of the form (15), and the Fermi contour Γ0 has a “butterfly-shape”
(Fig. 1, left). Specifically, it reads

n(x, p, 0) =

{
1 if |p| ≤

√
2(µ− V (x, 0)),

0 otherwise.
(20)

This means that locally it is parametrized by a single pair of Fermi points (Q = 1). However, at time t > 0 the
evolution takes place within a harmonic trap V (x, t > 0). If (x0, p0) is a given point of Γ0, the corresponding point
(xt, pt) of the evolved contour Γt at a given time t is (cf. Eq. (19))(

xt
pt/ω

)
=

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)(
x0

p0/ω

)
, (21)

meaning that, with the rescaling pt → pt/ω, Γt simply rotates in phase space at the trap frequency ω. [In contrast
with the interacting case discussed in Ref. [19], Γt is not deformed under time evolution.] Then, after some fraction
of the period of the trap τ = 2π/ω, a region appears near the center with a split Fermi sea, Q = 2 (Fig. 1, right).

We stress that the appearance of multiple Fermi seas is a major difference with respect to the situations addressed
in Refs. [5, 34]. While there the hydrodynamic problem is equivalent to a conventional form of hydrodynamics, the
protocol considered here (as well as in Ref. [19]) is the simplest generalization where GHD is really needed (see also
Ref. [4]).

B. Quantum fluctuations around (non-interacting) Generalized Hydrodynamics

The goal of the theory of QGHD is to capture long-wavelength quantum fluctuations around the hydrodynamic
solution of the GHD equation (14). This has been obtained in the free case in [5], and later generalized to truly
interacting models in [19].

1. Propagation of quantum fluctuations

We now briefly recall the main steps for its derivation, restricting to the case of interest, namely the TG limit
or, equivalently, non-interacting fermions. Starting from a zero-entropy hydrodynamic configuration (Eq. (15) or,
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p/ω

x

Γ0 Γt

p/ω

xx1x2x0

FIG. 1. Left: Wigner function at initial time t = 0. For any choice of x0 the maximum number of Fermi points (intersections
between the vertical line x = x0 and the contour Γ0) is two. Right: Evolved Wigner function according to Eq. (14): this
corresponds to a simple rotation in the rescaled coordinates (x, p/ω) (cf. (21)). After time t > 0 there are different regions,
associated to a different number of Fermi points. For example, for a fluid cell around x1 the number of Fermi points is still
two. However, around x2, there are four of them.

equivalently, Eq. (16)), small fluctuations can be expressed as deformations of the contour [11, 12], meaning, locally,
of the Fermi points, pa → pa + δpa. As shown in Ref. [19], {δpa} obey (at first order) the following equation

(∂t + pa(x, t)∂x)δpa(x, t) = 0, (22)

describing the propagation of linear sound waves. Note that, as an important simplification occurring with respect to
the interacting case, here the equations do not couple pa, pb with a 6= b. To make contact with Ref. [19], this follows
from the fact that the flux jacobian Aa,b ≡ ∂aε/∂pb with εa = pa(x, t)2/2 + V (x, t) denoting the semiclassical energy
associated to pa, is diagonal in this case (cf. Eq. (8) there).

One considers the quantized version of such fluctuations, obtained by viewing the small displacement of the contour
δpa as an operator acting on a Hilbert space, δpa(x, t)→ δp̂a(x, t), a = 1, . . . , 2Q. A small displacement of the contour
is equivalent to a small excess of particles around point (xt, pt) in phase space, so we define the excess density operator

as δρ̂a(x, t) = (−1)a

2π~ δp̂a(x, t). Then, using the parameterization (18), it is more convenient to work with the excess
density along the contour Γt, defined as

δρ̂(s, t) ≡
∣∣∣∣dxt(s)ds

∣∣∣∣ δρ̂a(xt(s), t), (23)

for the index a such that pt(s) = pa(xt(s), t). Here the Jacobian |dxt(s)/ds| is included because we want δρ̂(s) to be
a density along the contour; in particular we want

δN̂ ≡
∫ 2π

0

δρ̂(s)ds (24)

to be the operator that measures the excess of particles in the gas with respect to the average number N . Notice that
δN̂ must have integer eigenvalues.

Next, we impose that the operator δρ̂(s) satisfies the U(1) current algebra

[δρ̂(s), δρ̂(s′)] =
1

2πi
δ′(s− s′), (25)

so δρ̂(s) is a chiral field that lives along the contour Γt. Note that instead of imposing the commutation relations
of total densities and velocities, as in (3), we use the excess densities at different momenta, which are more natural
variables in the QGHD context and lead to the commutation relations of a U(1) algebra. Locally, i.e., in a small cell
around a fixed x, the above commutation relations are written in terms of several chiral components δρ̂a(x) (as many
as the number of local Fermi points pa(x)),

[δρ̂a(x), δρ̂b(y)] =
(−1)a

2πi
δabδ

′(x− y) . (26)

The time-dependent Hamiltonian that generates the dynamics of the quantum fluctuations is [19]

Ĥ[Γt] = π~
∑
a

∫
dx (−1)apa(x, t) (δρ̂a(x))

2
= π~

∫
ds

(
dxt(s)

ds

)−1

pt(s) (δρ̂(s))
2
. (27)
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This Hamiltonian depends on time only through its dependence on the contour Γt, and it is chosen so that it reproduces
the evolution equation of sound waves (22). Indeed, plugging the Hamiltonian (27) into the Schrödinger equation for

δρ̂a, i.e. ∂tδρ̂a(x) = i
~

[
Ĥ[Γt], δρ̂a(x)

]
, gives back the wave equation (22). Eq. (27) is a special case of the QGHD

Hamiltonian given in [19] (for the Tonks-Girardeau gas, the flux Jacobian is Aa,b = δab ka, see the comment above).
For the Tonks-Girardeau gas, time-evolution under the Hamiltonian (27) simply induces a rotation of the field δρ̂(s)
together with the contour Γt. Indeed, the Heisenberg evolution equation for δρ̂(s, t) reads (see Eq. (23))

d

dt
δρ̂(s, t) =

(
∂t

∣∣∣∣dxt(s)ds

∣∣∣∣) δρ̂a(xt(s), t) +

∣∣∣∣dxtds
∣∣∣∣ (∂txt(s))∂xδρ̂a(xt(s), t) +

i

~
[Ĥ[Γt], δρ̂(s, t)]

= sign

(
dxt
ds

)
dpt(s)

ds
δρ̂a(xt(s), t) +

∣∣∣∣dxtds
∣∣∣∣ pt(s)∂xδρ̂a(xt(s), t) +

i

~
[Ĥ[Γt], δρ̂(s, t)]

= sign

(
dxt
ds

)
dpt(s)

ds
δρ̂a(xt(s), t) + sign

(
dxt
ds

)
pt(s)∂sδρ̂a(xt(s), t) +

i

~
[Ĥ[Γt], δρ̂(s, t)]

=
∂

∂s

(
pt(s)

(
dxt
ds

)−1

δρ̂(s, t)

)
+
i

~
[Ĥ[Γt], δρ̂(s, t)]. (28)

Note that the above derivation is done assuming to be far from the turning points (this means in particular that
the ‘sign’ function is just a constant). We see that the first term is a convection term, which expresses the fact

that the excess density is transported along the contour with a velocity pt(s)
(
dxt

ds

)−1
. The second term is fixed by

the Hamiltonian (27); in the general case of interacting theories, it is a non-trivial term, see [19]. However, for the
Tonks-Girardeau gas, it is easy to see from Eq. (27) that this term exactly compensates the convection term, so that

d

dt
δρ̂(s, t) = 0 . (29)

This is a consequence of s being a co-moving coordinate in the evolution equation (19), and of the theory being
non-interacting (no other terms come from the commutator, in contrast with the interacting case). Eq. (29) means
that the evolution of the field is trivial, so that we only need to compute correlations at t = 0 and the latter are then
just “transported” in time according to (21) [in the general case the same would be “transported” according to GHD].

2. Quantum fluctuations and correlations at time t = 0.

In the previous subsection, we have seen that quantum fluctuations propagate in a very simple way in the Tonks-
Girardeau gas: they simply follow the motion of the contour Γt, as expressed by Eq. (29). If we know the correlation
functions of the field δρ̂(s) at time zero, then it is trivial to propagate them to later times thanks to Eq. (29).

To find correlation functions at time t = 0, we observe that the system at t = 0 must be in the ground state of the
Hamiltonian H[Γ0]. Notice that, so far, we have not made any specific choice of parameterization for the contour, see
Eq. (18). All the equations we wrote so far were valid for an arbitrary parameterization. However, now it is useful to
make the following choice, which greatly simplifies all calculations: we choose [5, 53]

s(x0) = π

∫ x0

−R/2 dx/p(x, 0)∫ R/2
−R/2 dx/p(x, 0)

, (30)

where p(x, t) = 1
π

√
2(µ− V (x, t)) and [−R/2, R/2] is the interval where V (x, 0) < µ. This provides a coordinate

s ∈ [0, π] for the upper part of the Fermi contour at t = 0, which can be continued to s ∈ [π, 2π] to parameterize also
the lower part. With this choice, we have (

dx0(s)

ds

)−1

p0(s) = constant, (31)

so that the Hamiltonian at time t = 0 is simply

H[Γ0] ∝
∫ 2π

0

(δρ̂(s))2ds. (32)
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We recognize the Hamiltonian of a chiral U(1) CFT on a circle of circumference 2π. All correlation functions in that

theory can be expressed in terms of the ones of the dimensionless bosonic field φ̂(s) ∈ R/(2πZ), defined such that

δρ̂(s) =
1

2π
∂φ̂(s). (33)

The operator φ̂(s) satisfies the U(1) current algebra [∂φ̂(s), ∂φ̂(s′)] = −2πiδ′(s − s′) as a consequence of (25). The
two-point function in the ground state of the quadratic Hamiltonian (32) is

〈φ̂(s)φ̂(s′)〉 = − log

∣∣∣∣2 sin
s− s′

2

∣∣∣∣ , (34)

and all other correlation functions of primary operators in the theory can be obtained using Wick’s theorem. We stress
that the fact that we have arrived at a CFT is specific to the GHD description of non-interacting particles [5, 53].
As an important consequence, the (quadratic) theory of quantum fluctuations around GHD is complemented by
conformal symmetry and leads to explicit results for correlation functions. In the interacting case, even though the
theory is still quadratic, the Hamiltonian typically involves terms that break conformal invariance [54–57] (we note
that, even in the interacting case, there can exist peculiar situations where conformal invariance survives [58]). In the
general case, the two-point function (34) needs to be computed numerically, as the solution of a generalized Poisson
equation [54].

Finally, note that one needs to relate observables defined in the initial microscopic model to quantities in the theory.
Specifically, a given observable O(x, t) will take the form an expansion in series [54, 59]

Ô(x, t) =
∑
j

cjΦ̂j(x, t) (35)

where, in our case, Φ̂j(x, t) are (conformally normalised) operators of a CFT that we can order according to their
scaling dimension, and cj are non-universal constants, which in inhomogeneous and out-of-equilibrium settings, as
the one we consider in this work, will further acquire a space and time dependence, i.e., cj → cj(x, t). The operators
entering the expansion (35) are fixed by transformation under symmetries, dimension requirements, and so on (this
was explicitly done, e.g., in [54]).

III. RESULTS FOR THE DENSITY FLUCTUATIONS

In this section, we explicitly compute the leading asymptotic of the equal-time density-density (connected) corre-
lation function, which cannot be predicted by GHD alone as Euler scaling gives simply zero (all correlations within
different fluid cells vanish faster than the inverse distance).

Following the program outlined above, we first express the density operator ρ̂(x, t) in terms of operators in the
CFT (27). Assuming to start with a zero-entropy state (cf. (16)), let x and t be such that the corresponding Wigner
function n(x, p, t) is associated with Q Fermi seas. They can be traced back to their initial positions at t = 0 via
Eq. (21) so that, at initial time, they correspond to the 2Q points {sa}a=1,··· ,2Q on the initial contour Γ0. Then, the
claim is that ρ̂(x, t), at leading order, takes the form

ρ̂(x, t) = ρGHD(x, t) + δρ̂(x, t) + · · · , δρ̂(x, t) =

2Q∑
a=1

1

2π

(
dsa
dx

)
∂φ̂(sa) (36)

where ρGHD(x, t) =
∫

dp
2π~ n(x, p, t) is the particle density, and the ellipses denote further contributions coming from

operators with higher scaling dimension (giving rise to subleading terms in the CFT). The operator δρ̂ measures the
fluctuations of the particle density and we are interested in its two-point function at time t, namely,

〈δρ̂(x, t)δρ̂(x′, t)〉 =

2Q∑
a,b=1

1

(2π)2

(
dsa
dx

)(
dsb
dx′

)
〈∂φ(sa)∂φ(sb)〉 . (37)

Each correlator in the sum in the r.h.s. is readily determined: indeed it corresponds to the two point function of the

primary field ∂φ̂(s) in the ground state of the CFT (27), simply given by [60]

〈∂φ̂(sa)∂φ̂(sb)〉 =
1∣∣2 sin sa−sb

2

∣∣2 . (38)
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FIG. 2. Quantum quench from double to single well in the Tonks-Girardeau gas ḡ →∞. First row: Fermi contour. Second row:
Absolute value of the connected density-density correlator. Last row: Entanglement entropy. Each row shows the corresponding
quantity as a function of the spatial coordinate x, at different times, expressed as a fraction of the period τ (from t = 0 in
the first column to t = 0.60τ in the last). Orange symbols are the numerical data (obtained from a lattice model in the
dilute limit), whereas dashed blue lines are the QGHD predictions. The numerics for the density-density correlator shows
large oscillations (cyan continuous line), therefore the analytic prediction is compared with its spatial averaging. It diverges at
coinciding points as x−2. The parameters are chosen as follows: system size L = 1200; number of particles N = 66; pre-quench
potential V (x, t = 0) = a4x

4−a2x2 with a4 = 6/L4, a2 = 1/L2 and µ = 0.003 for the chemical potential; post-quench potential
V (x, t > 0) = ω2x2/2 with ω = 1/L (and period τ = 2π/ω).

In the specific protocol depicted in Section I B, two regimes are expected: if, at time t, there are only two Fermi
points at position x, then the sums in (37) stop at Q = 1; if there are four Fermi points, then, it stops at Q = 2.
With this further prescription, Eq. (37) together with Eq. (38) is the final result.

Our prediction is plotted in the second row of Fig. 2 and compared with exact numerics, which is achieved by taking
advantage of the free fermionic nature of the TG limit (see Appendix A for details on the implementation) which
makes it possible to consider large numbers of particles and long times. The exact microscopic solution has large
Friedel oscillations (cyan curve) – coming from the presence of the trap, that breaks translational invariance [61–63]
–, which can be suppressed by spatially averaging over a small window [x −∆x/2, x + ∆x/2]. After averaging, the
agreement with the prediction of QGHD is remarkable.

One interesting physical feature already noted in Ref. [19] is the divergence appearing at the points where a change
in the number of Fermi points occurs, a genuine predictions of our theory. While in [19] such peaks were not visible in
the microscopics of the interacting case, here (in the TG limit), instead, those are in fact visible also in the averaged
microscopic simulations. Note that, in this case, we are able to get closer to the thermodynamic limit (N = 66 in the
Fig. 2 versus N ≤ 20 in Ref. [19]), and therefore fluid cells are on smaller scale, so that peaks remain as meaningful
non-microscopic features, beyond Euler cells.

IV. RESULT FOR THE ENTANGLEMENT ENTROPY

In this section, we compute the entanglement entropy, as a function of space and time, for the protocol detailed in
Section I B. While it is known to vanish in GHD [65–67], we are going to show that it is instead non-zero in QGHD.
We also remind that this quantity is particularly challenging to compute directly within the microscopic model and
therefore its calculation in this framework manifests the predictive power of our approach.

The entanglement entropy S(x, t) between the subsystem A = [−∞, x] and its complement is defined as

S(x, t) = −tr (σA lnσA) (39)
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where σA is the reduced density matrix associated with A. In field theory, S is usually obtained from the corresponding
Rényi entropies Sα = 1

1−α ln tr (σαA) (labelled by α ∈ R) via replica limit (α→ 1). Sα can be expressed as the sum of
two parts

Sα(x, t) = Sα(x, t)− ε(x, t). (40)

Here Sα(x, t) may be predicted by QGHD complemented with conformal invariance, whereas ε(x, t) is an ultraviolet
cutoff. In the inhomogeneous situation, such cutoff also acquires a dependence on space and time [53].

The final result, that we are going to derive below, reads

Sα(x, t) = − 1

12

(
1 +

1

α

){ 2Q∑
a>b

(−1)a+b ln

∣∣∣∣(pa(x, t)− pb(x, t)) sin
sa − sb

2

∣∣∣∣+

2Q∑
a

ln

∣∣∣∣dsadx
∣∣∣∣
}

+ Φα . (41)

where, depending on the value of x and t, Q = 1 or 2, and

Φα =

(
Υα +

1

6

(
1 +

1

α

)
log 2

)
× Q

2
(42)

is a non-universal constant, with Υ1 ' 0.4950179 . . . for the von Neumann entropy (α = 1) and the expression for
generic α can be found in [35].

The comparison with numerics is shown in the last row of Fig. 2: the agreement is impressive.

A. Universal contribution

Let us start with the derivation of the QGHD contribution. When α ∈ N, Sα can be expressed as the correlation
function of special fields known as twist fields [15, 16, 68], T and T̄ , local operators lying at the boundary of the
subsystem (in our case, the point x). Explicitly, we can write

Sα(x, t) =
1

1− α ln〈T (x, t)〉. (43)

In our chiral theory, twist fields are products of chiral excitations. We refer to them as chiral twist fields τ and τ̄ .
Crucially, in CFT, they behave as primary fields, with scaling dimension ∆ = 1

24

(
α− 1

α

)
[15]. As in the previous

example, two regimes are expected: if, at time t, there are only two Fermi points at position x, then 〈T (x, t)〉 is a
two-point function in the chiral CFT that lives along the Fermi contour; if there are four Fermi points 〈T (x, t)〉 is a
four-point function.

Let x and t be such that there are two Fermi point. Then, they can be traced back to their initial positions at t = 0
via Eq. (21). Denoting the two initial coordinates along the Fermi contour by s1, s2, Eq. (43) becomes

Sα =
1

1− α ln

(∣∣∣∣ds1

dx

∣∣∣∣∆ ∣∣∣∣ds2

dx

∣∣∣∣∆ 〈τ(s1)τ̄(s2)〉
)
, (44)

and

〈τ(s1)τ̄(s2)〉 ' 1∣∣sin s1−s2
2

∣∣2∆
. (45)

up to a normalization constant, giving rise to a subleading contribution in the final result (it can actually be computed
as well, see Eq. (42)).

When at position x and time t we have four Fermi points, they can be traced back to positions s1, s2, s3, s4 along
the contour at time t = 0. Then Eq. (43) becomes

Sα =
1

1− α ln

(
4∏
a=1

∣∣∣∣dsadx
∣∣∣∣∆ 〈τ(s1)τ̄(s2)τ(s3)τ̄(s4)〉

)
, (46)

where, similarly,

〈τ(s1)τ̄(s2)τ(s3)τ̄(s4)〉 '
∣∣sin s1−s3

2

∣∣2∆ ∣∣sin s2−s4
2

∣∣2∆∣∣sin s1−s2
2

∣∣2∆ ∣∣sin s3−s4
2

∣∣2∆ ∣∣sin s1−s4
2

∣∣2∆ ∣∣sin s2−s3
2

∣∣2∆
. (47)



12

B. Inhomogeneous cutoff and constant term via a generalized Fisher-Hartwig conjecture

The cutoff part ε(x, t) instead is not predicted by conformal invariance and has to be determined by other means,
as well as the non-universal constant Φα in (42). To do that, we start from a free fermionic model defined on a lattice
and consider the continuous limit only at the end. Taking advantage of the free nature of the problem, we can rely
on the Fisher-Hartwig conjecture [35, 69–71].

Let us start with a uniform system and consider the discrete version of a split Fermi sea, identified by a number of
(adimensional) Fermi points {κa}. Those are related to their continuous analog {pa} by pa = limδ→0 κa/δ, where δ is
the lattice spacing. The cutoff is a function of them, that we denote as ε({κa}). The expression for two Fermi points
is well-known [35] and can be generalized to a generic number of Fermi seas.

The starting point is to write the entanglement entropy as the contour integral

Sα =
1

2πi

∫
C
eα(λ)

d lnD(λ)

dλ
, (48)

where eα(x) = 1
1−α log(xα + (1− x)α) and D(λ) = det(λ− CA). CA is the correlation matrix of the subsystem A in

the split Fermi sea state and is a Toeplitz matrix. The symbol of such matrix in the case of multiple Fermi seas reads

g(κ) =

{
1 if κ ∈ Fermi seas,

−1 if κ 6∈ Fermi seas.
(49)

Hence the symbol defining D(λ) is g̃(κ) = λ−g(κ). If we consider Q Fermi seas, such function has 2Q discontinuities,
and can be represented as

g̃(κ) = ψ(κ)

2Q∏
a=1

tβi(λ),κa
(κ), (50)

where the points {κa} correspond to the location of the discontinuities (i.e., the Fermi points), ψ(κ) is the same as
for a single Fermi sea [35] and for m ∈ N

β2m(λ) = −β2m+1(λ) = β(λ) ≡ 1

2πi
ln

(
λ+ 1

λ− 1

)
, tβa,κa(κ) = exp[−iβi(λ)(π − κ+ κa)]. (51)

The Fisher-Hartwig conjecture provides the asymptotics of D(λ). We are only interested in the additive constant
(with respect to the subsystem size) part of D(λ), which provides the cutoff. In particular, we consider the part of
the constant term which depends on {κa}, omitting an overall function of λ. This is∏

1≤a6=b≤2Q

(
1− ei(κa−κb)

)βaβb

. (52)

The logarithmic derivative in (48) then gives

d

dλ

∑
a6=b

βa(λ)βb(λ) ln
(

1− ei(κa−κb)
) =

(
dβ(λ)2

dλ

)∑
a6=b

(−1)a+b ln(1− ei(κa−κb)) = 4β′(λ)β(λ)ε({κa}), (53)

where, in the last equality, we factorised the same expression appearing in the case of a single Fermi sea. Hence we
can read off the cutoff as

ε({κa}) =
1

12

(
1 +

1

α

)1

2

∑
a 6=b

(−1)a+b ln
(

1− ei(κa−κb)
) . (54)

One can verify that Eq. (54) reduces to the known expressions in the case of a single Fermi sea [35] and the case of
many but symmetric Fermi seas [36, 37].

The continuous limit (in terms of {pa}) is obtained by sending δ → 0 in (54), which gives

ε({pa}) '
1

12

(
1 +

1

α

)∑
a>b

(−1)a+b ln |pa − pb| (55)
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where we kept only the leading term, and we disregard a term proportional to ln δ. The latter, indeed does not enter
in the final result (41) as it must be exactly compensated by a similar term in the universal contribution computed in
Sec. IV A. In fact, it is clear that in Eq. (44) or (46), in order to have dimensionless quantities inside the logarithm,
the jacobians should be multiplied by a length scale (e.g., reasoning on the lattice, δ).

For inhomogeneous systems, then, we just replace the Fermi points in (55) with the spacetime dependent ones
pa → pa(x, t).

Finally, also the non-universal constant Φα in (42) is similarly deduced from the result in the homogeneous model,
still relying on the Fisher-Hartwig conjecture.

V. CONCLUSIONS

This work is a follow-up of Ref. [19]. We consider a 1d Bose gas undergoing the same quench dynamics as in [19],
but focusing on the Tonks-Girardeau (infinite repulsion) limit. In this case, on the analytical side, more explicit results
can be obtained by taking advantage of the restored conformal invariance. On the numerical side more stringent tests
can be performed. In particular, analytical results are provided for the density fluctuations and the entanglement
entropy after the quench, which are exact at the Euler scale, and systematically checked against numerics. For the
entanglement entropy a non-universal space and time dependent contribution appears, which we are able to access by
a generalization of the Fisher-Hartwig conjecture.

The theory introduced in Ref. [19] and further analysed in the present work has the potential to be applied to
many out-of-equilibrium situation, as the one considered in this paper, and opens several further directions, also in
connections with experiments.

A quantity of clear experimental interest is the one-particle density matrix, namely two-point correlation of the
boson Ψ entering the Lieb-Liniger Hamiltonian (7). This was obtained in [5] for a quench in a single-well potential,
after a sudden change of the frequency. The extension of that analysis to the protocol studied here or, more generally
speaking, in presence of multiple Fermi points, requires to work out the expression of Ψ in terms of the CFT operators
(cf. Eq. (35)), something that we plan to address in the near future. In the TG limit, this is something that would
be experimentally accessible with modern setups such as the ones in Refs. [31, 32]. The case of a finite interaction
would be also interesting to investigate.

Moreover, we stress that the quantum GHD theory is defined when starting from zero-entropy states (cf. Eq. (15)).
While they naturally arise in the thermodynamic limit of ground states of trapped bosons, this is not the case for
thermal states, and how to extend the theory in this case is not straightforward. Indeed, by introducing a finite
temperature, the Fermi contour entering the definition of zero-entropy Wigner functions gets smoothen, which in turn
makes it difficult to clearly define chiral excitation around Fermi points. Still, this should be doable, at least at low
temperature (similarly to what happens for standard Luttinger Liquid theory), and it would be interesting to study
the interplay between thermal and quantum fluctuations.

A final point, mentioned in Section II, is that Eq. (14) for the evolution of the Wigner function is only valid at
leading order when the potential V (x, t) is not quadratic. Otherwise, corrections to that come as a series expansion
in 1/~, also known as Moyal expansion [46]. Such corrections have been recently analyzed in great details [47, 48]
for free models, while for now it is not understood how to include them in truly interacting systems. We stress that
they are different from the ones we are interested in, and in our case they are actually not there (the post-quench
potential is quadratic). In general, however, the relation between the two needs to be clarified: eventually, taking into
account the whole Moyal series should correspond to solving exactly the original microscopic model, thus including
the ‘quantum’ effects we can describe with the quantum GHD approach.
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Appendix A: Details of the numerics

In order to simulate the Tonks-Girardeau limit of the Lieb-Liniger model (7), we consider its fermionic analog (10)
and discretize it on a lattice. As well known, the procedure to go from a continuous to a discrete model is not unique.
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In our case, we focus on the following discretized quadratic Hamiltonian

Hd(t) =

L−1∑
i=1

J
(1)
i (c†i ci+1 + c†i+1ci) +

L−2∑
i=1

J
(2)
i (c†i ci+2 + c†i+2ci) +

L∑
i=1

Vi(t)c
†
i ci (A1)

which includes next-nearest neighbour hopping. Above, ci are spinless fermionic operators satisfying the canonical

anticommutation relations {ci, c†j} = δij . In (A1) L is the system size (that, due to the inhomogeneity, we need to

keep finite to diagonalize the problem numerically), J
(1)
i and J

(2)
i are (inhomogeneous) hopping amplitudes, and Vi(t)

is the trapping potential. For our quench protocol, the latter is given by

Vi(t) =

{
a4 (i− L/2)

2 − a2 (i− L/2)
2

t = 0

ω (i− L/2)
2

t > 0
. (A2)

For the simulations in Fig. 2 the parameters are fixed as follows: J (1) = −2/3, J (2) = 1/24, a4 = 6/L4, a2 = 1/L2, ω =
1/L and the chemical potential is fixed to µ = 0.003 (corresponding to N = 66 particles in the ground state of the
double well potential). We checked that, with this choice, the curves for the density profile after the quench looks
perfectly periodic (namely, they are indistinguishable at t = 0 and t = π/ω).

To access the quantities of interest, we only need to diagonalize the two-point correlation function

Cij(t) = 〈c†i (t)cj(t)〉 , (A3)

where c
(†)
i (t) = U†(t)ciU(t) are the time evolved creation/annihilation operators (with U(t) = eiHd(t>0)t the time-

evolution operator).
Indeed, the state of the system is gaussian at all times, so that one can rely on Wick theorem [72] to compute the

(connected) density-density correlations as

〈δρi(t)δρj(t)〉 = Cij(t)(δij − Cji(t)) , (A4)

where δρi(t) = ρi(t)− 〈ρi(t)〉, and ρi(t) = c†i (t)ci(t) is the local discrete density.
Moreover, for gaussian states, standard free fermions techniques can be used to compute the entanglement en-

tropy [73–78]. Specifically, if for the subsystem A = [−L, i] of the whole system, we define the two-point function
restricted to A with matrix elements CAij(t) = Cij(t) for i, j ∈ A, and {νj} is its spectrum, then the entanglement
entropy between A and the rest (cf. Eq. (39)), is given by

S(i, t) = −
∑
j

(νj log νj + (1− νj) log(1− νj)) . (A5)

The two-point function, in turn, can be computed via the following standard procedure. First, one needs to obtain
the single-particle eigenstate amplitude of the pre-quench and post-quench Hamiltonian. By rewriting (A1) as

Hd(t) =
∑
ij

c†i Hij(t) cj (A6)

this is obtained by diagonalizing the L × L matrices H(t = 0) and H(t > 0), respectively. If we denote by |η0
k〉 and

|ηq〉, respectively, the eigenstates of such matrices, the two sets of corresponding eigenstates amplitudes are given
by η0(k, i) ≡ 〈ci|η0

k〉 and η(q, i) ≡ 〈ci|ηq〉, with eigenvalues {ε0k} and {εq}, for pre- and post-quench. Cij(t) is then
expressed in terms of such quantities only. In fact, using the explicit form of the ground state of H(t = 0)

|ψ0〉 = η0 †
kN
η0 †
kN−1

· · · η0 †
k1
|0〉 (A7)

with |0〉 the state annihilated by fermionic operators η0
k (∀k) – those bringing H(t = 0) in diagonal form –, and the

decomposition

ci(t) =
∑
q

η(q, i) ηq(t), ηq(t) = ηq e
−iεqt (A8)

it can written as

Cij(t) =

L∑
q,p=1

N∑
l=1

eit(εq−εp) η∗(q, i) η(p, j)αqklα
p ∗
kl
, αqk ≡ 〈η0

k|ηq〉 =

L∑
n=1

η0 ∗(k, n) η(q, n) (A9)
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which is straightforwardly implemented.
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