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Recent advances in experimental control of colloidal systems have spurred a revolution in the
production of mesoscale thermodynamic devices. Functional “textbook” engines, such as the Stirling
and Carnot cycles, have been produced in colloidal systems where they operate far from equilibrium.
Simultaneously, significant theoretical advances have been made in the design and analysis of such
devices. Here, we use methods from thermodynamic geometry to characterize the optimal finite-
time, nonequilibrium cyclic operation of the parametric harmonic oscillator in contact with a time-
varying heat bath, with particular focus on the Brownian Carnot cycle. We derive the optimally
parametrized Carnot cycle, along with two other new cycles and compare their dissipated energy,
efficiency, and steady-state power production against each other and a previously tested experimental
protocol for the Carnot cycle. We demonstrate a 20% improvement in dissipated energy over previous
experimentally tested protocols and a ∼50% improvement under other conditions for one of our
engines, while our final engine is more efficient and powerful than the others we considered. Our
results provide the means for experimentally realizing optimal mesoscale heat engines.

Introduction. Since the turn of the millennium, our
understanding of nonequilibrium processes has improved
dramatically [1–7]. Over the past decade in particu-
lar, powerful techniques for controlling colloidal meso-
scopic systems have facilitated experimental realizations
of finite-time thermodynamic cycles [8–13]. A major step
forward was achieved by the construction of a mesoscopic
Stirling cycle with a harmonically trapped particle sus-
pended in a temperature-controlled, laser heated fluid [9].
Another significant advance was achieved by placing an
electrically charged colloidal particle in an electrostatic
field with tunable noise in order to mimic a thermal bath
with a continuously varying temperature [10]. By fol-
lowing alternating adiabatic (constant Shannon entropy)
and isothermal strokes, these authors produced a meso-
scopic colloidal Carnot cycle.

However, although a large class of control protocols,
including those used in this experiment, reproduce the
standard Carnot cycle when performed quasistatically,
the choice of a specific temporal parametrization signifi-
cantly impacts the thermodynamic performance of the
engine when operated in finite time. In this Letter,
we connect the versatile thermodynamic geometry ap-
proach with the colloidal harmonic oscillator used pre-
viously [9, 10] and calculate explicit optimal protocols
for this important model system. We find improvements
in the efficiency, output power, and dissipated energy in
steady-state operation for a wide variety of cycle dura-
tions. Our results may find use in practical development
of mesoscale engines.

Thermodynamic geometry. Thermodynamic length
was originally introduced as a notion of metric distance
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between equilibrium states of a physical system [14–19].
Since their introduction, thermodynamic length and sim-
ilar geometric approaches have found wide-ranging ap-
plications in various contexts [20], with recent success in
optimal control of nonequilibrium systems [21–32]. We
will follow the treatment introduced in a recent pioneer-
ing study [33] that successfully applied a geometric ap-
proach to closed thermodynamic cycles. In particular,
we consider a thermodynamic system with two control
parameters, Λ = (T, λ), operated cyclically, where T is
the time-varying temperature of an external bath and λ
represents a mechanically varied parameter. The work,
W , and effective energy intake from the heat source [33],
U , are given

W = −
∮
dt

〈
∂Hλ

∂λt

〉
λ̇t, U =

∮
dt 〈log ρt〉 Ṫt, (1)

where Hλ is the system Hamiltonian for a given value of
λ, ρ is the phase space density, t subscripts denote values
at a given time t, and brackets denote ensemble averages,
i.e. phase space integrals against ρ for a given t.

This expression for the work is fairly standard, but
the quantity U above may be less familiar (U does not
represent the internal energy of the system). For any
quasistatic, reversible process, a change in the entropy of
a system must coincide with an exchange of heat with an
external bath by the amount given by the expression for
U . For systems driven out of equilibrium, the entropy can
increase even in the absence of heat exchange, as is the
case during a free expansion, for example. This quantity,
which upon performing integration by parts converts to∮
TdS in steady-state driving, where S is the system en-

tropy, then includes contributions at each moment from
both the actual amount of heat exchanged with the en-
vironment plus the amount of heat that would result in
the extra increase in S during a corresponding reversible
process at temperature T .
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Thus, the energy irreversibly dissipated over the course
of a full cycle, A, (alternatively known as the dissipated
availability or work) can be written

A = U −W ≥ 0, (2)

where the inequality arises from the second law. The
equality is saturated only for quasistatic driving in which
case the phase space density assumes a Boltzmann form
at all times:

ρΛ = e−β(Hλ−FΛ), (3)

where FΛ is the free energy for a given λ and T and
β ≡ (kBT )−1.

Following [21, 22, 33], we consider the system to be
operating in the slow-driving regime wherein temporal
variations of control parameters are assumed slow rela-
tive to the relaxation timescale of the system. Standard
dynamic linear response then gives the dissipated energy
to lowest order in Λ̇

A ≈
∮
dt Λ̇ · g · Λ̇, (4)

where g is defined as the inverse diffusion tensor, given
by equilibrium time-correlation functions

gij(t) = β(t)

∫ ∞

0

dt′ 〈δXi(0)δXj(t
′)〉Λ(t′) . (5)

Here Xi(t) is the time-dependent thermodynamic force
conjugate to control variable i: XT = − log ρΛ and
Xλ = −∂Hλ/∂λt and δX = X − 〈X〉. The tensor g
is symmetric by construction and can be shown to be
positive-semidefinite [22, 33] as a consequence of the sec-
ond law. Because it satisfies these conditions, one can
interpret g as a metric tensor, introducing a well-defined
notion of geometric distance on cycles in control param-
eter space. Non-cyclical paths can yield a negative dissi-
pated energy, suggesting that entropy production may be
a more appropriate quantity to study when considering
such processes [22, 34]. For an arbitrary closed path φ
through control space, we may define the corresponding
thermodynamic length Lφ as

Lφ =

∫ √
dφ · g · dφ, (6)

which is independent of parametrization. Beyond the
thermodynamic length, a different geometric quantity,
the thermodynamic divergence, may be understood as
the thermodynamic cost in dissipated energy of a physi-
cal operation. The divergence is defined as

Dφ = τ

∫ τ

0

dt φ̇ · g · φ̇, (7)

where now φ is explicitly parametrized by a time-varying
protocol with t ∈ [0, τ ] and the divergence depends on
this parametrization. By comparing Eqs. (4) and (7), we

see that the thermodynamic divergence precisely matches
the dissipated energy of a protocol scaled by the protocol
duration. Paths and parametrizations that minimize the
thermodynamic divergence are therefore minimally dissi-
pative and thermodynamically optimal in that sense. Be-
tween any two points, such paths are known as geodesics.
Moreover, for any given path in control space that is not
a geodesic, there still exists an optimal parametrization
that minimizes the divergence, and therefore the dissi-
pated energy, for a fixed protocol duration. Explicitly,
comparing Eqs. (6) and (7), the Cauchy-Schwarz in-
equality implies A = D/τ ≥ L2/τ . This bound is sat-
urated only for optimal driving protocols where control
parameters are changed in such a way that the quantity
φ̇ · g · φ̇, which we identity as the instantaneous dissi-
pated power, Pdiss, is constant over the full protocol du-
ration [21].
Brownian working substance. The parametric har-

monic oscillator is often used as the paradigmatic model
of colloidal thermodynamic systems and has been suc-
cessfully applied as the working substance in physical re-
alizations of mesoscopic heat engines [9, 10]. This model
system consists of a particle of mass m in a harmonic
trap with time dependent stiffness k(t) in contact with a
heat bath at temperature T (t), evolving under Langevin
dynamics

mz̈ = −ζż − k(t)z + η(t), (8)

where z is the position of the particle, ζ is the friction
coefficient, and η(t) is Gaussian white noise satisfying

〈η(t)η(t′)〉 = 2ζkBTδ(t− t′), (9)

ensuring that the dynamics satisfy detailed balance.
With these two control variables, the thermodynamic
forces can be expressed as

X =

(
1
2T (p2/m+ kz2) + 1

T log

(
2π
√

mT 2

k

)
, −1/2z2

)
,

(10)
where p is the momentum of the particle. Following
methods similar to [22], we arrive at our first major re-
sult, the full metric tensor for this thermodynamic space
(see [35] for a detailed derivation):

gij = β

∫ ∞

0

dt 〈δXi(t)δXj(0)〉

=
mkB
4ζ




1
T

(
4 + ζ2

km

)
− 1
k

(
2 + ζ2

km

)

− 1
k

(
2 + ζ2

km

)
T
k2

(
1 + ζ2

km

)


ij

. (11)

Optimal Brownian Carnot engine. The Carnot engine
is a four-stroke engine consisting of alternating isother-
mal steps in contact with a heat bath of either a hot
temperature Th or a cold temperature Tc < Th and adi-
abatic steps during which no heat is exchanged with a
bath. Consistent with the second law, all engines acting
reversibly between two heat baths at these temperatures
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FIG. 1: Shape and temporal parametrization of a previously tested Brownian Carnot cycle, the optimized Brownian Carnot
cycle, and an optimal geodesic cycle matched to the Carnot cycle. (a) The stiffness (top) and temperature (bottom) for
three heat engines as a function of time: an experimentally tested Brownian Carnot cycle [10] (solid black), the optimally
parametrized Brownian Carnot cycle (dashed orange), and the optimal cycle employing geodesics between adjacent pairs of
corners of the previous Carnot cycles (dotted blue). Horizontal axes are shared between subplots. (b) The functional form
in control parameter space of the Carnot cycle (solid black) and the optimal geodesic cycle (dotted blue). Orange circles
(blue triangles) denote points along the optimal Carnot (geodesic) cycle parametrization at 25 equal duration intervals in time.
(c) Same as in (b) for the Clausius diagram of stiffness k against its conjugate thermodynamic force in the quasistatic limit
−Xk = x2/2 = kBT/2k.

cannot have a lower thermodynamic efficiency than the
Carnot engine, with Carnot thermodynamic efficiency
given by ηC = 1− Tc/Th. However, the classical Carnot
engine operates quasistatically and therefore performs
only a finite amount of work over an arbitrarily long cy-
cle period, thus delivering no power. Accordingly, finite-
time, nonzero-power thermodynamics of this engine have
been a topic of significant interest [30, 37–51].

Recently, a laser trapped colloidal particle in contact
with a time-varying (effective) heat bath was used to ex-
perimentally produce a Carnot engine with the Brow-
nian working substance described in the previous sec-
tion. Isothermal expansion and compression arise from
changes in k(t) for a fixed temperature T . Adiabatic
paths were achieved by holding fixed T 2/k, an adiabatic
invariant for this system, which maintains a constant
value of Shannon entropy [52]. A portrait of the Carnot
cycle in (T, k) space is plotted in Fig. 1(b).

Considering the metric given in Eq. (11), we now con-
struct the optimal parametrization for the Carnot en-
gine. For isothermal steps, the dissipated power can be
obtained by setting Ṫ = 0 in the integrand of Eq. (4),
which gives

Pdiss,iso =
mkBT

4ζ

k̇2

k2

(
1 +

ζ2

km

)
. (12)

The optimal trajectory in k is then found through the
corresponding Euler-Lagrange equation

(
2ζ +

2mk

ζ

)
k̈ −

(
3ζ

k
+

2m

ζ

)
k̇2 = 0, (13)

which can be solved numerically for given initial and final
values of k. The total thermodynamic cost of such an
isothermal step is given by the integral of Eq. (12) for the

solution k∗iso of Eq. (13) over the duration of the protocol.
For adiabatic steps, the key constraint is that α ≡

T 2/k be held fixed. Under this constraint, the dissipated
power is given by

Pdiss =
kBζαṪ

2

4T 3
, (14)

leading to the Euler-Lagrange equation,

T̈ =
3Ṫ 2

2T
, (15)

which is analytically solvable. For a generic adiabatic
protocol of duration τ that transitions from initial stiff-
ness ki and temperature Ti ≡

√
αki at time t = 0 to a

final stiffness kf and temperature Tf ≡
√
αkf at time

t = τ , the protocol is

T ∗adiab(t) =
TiTfτ

2

(
√
Tfτ + (

√
Ti −

√
Tf )t)2

, (16)

k∗adiab(t) = T ∗adiab(t)2/α, (17)

leading to a (constant) energetic cost of

P∗diss,adiab =
kBζα(

√
Tf −

√
Ti)

2

TiTfτ2
. (18)

The total Carnot cycle consists of alternating isother-
mal and adiabatic processes connecting four points in
(T, k) space. Following [10], we order the four strokes
as: 1) isothermal compression at Tc, 2) adiabatic com-
pression between Tc and Th, 3) isothermal expansion at
Th, and 4) adiabatic expansion between Th and Tc. In
order to allocate the optimal amount of time to each
stroke of the cycle, we note that for any optimally-
parametrized process φ∗, the dissipated energy is given
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Aφ∗ = Dφ∗/τ = L2
φ∗/τ , such that Pdiss,φ∗ = L2

φ∗/τ
2.

This must be true of both the full cycle and each opti-
mized stroke, such that L2

i /τ
2
i = L2

tot/τ
2 =⇒ Li/τi =

Ltot/τ =⇒ τi = τLi/Ltot where τi and Li are the dura-
tion and thermodynamic length, respectively, of the ith
stroke (

∑
i τi = τ).

Optimal geodesic engine. The Carnot engine is signif-
icant in reversible thermodynamics as the paradigmatic
model of a heat engine with maximal efficiency under var-
ious conditions, such as for specified hot and cold heat
baths and considering only inward heat flows when as-
sessing the thermodynamic cost. As discussed previously,
its path in control space follows a prescribed shape set
by the well-known quasistatic cycle. However, in this ge-
ometric framework, there is (at least) one well-defined
minimal dissipation path connecting any two points in
control space: a geodesic. Given the existence of geodesic
protocols that are less dissipative than the corresponding
strokes of the Carnot cycle, we next construct an engine
consisting only of geodesics that connect adjacent pairs
of the four corners of the Carnot cycle. The shape of
such an engine is depicted in Fig. 1(b). The two adi-
abatic strokes are in fact exactly geodesic and are un-
changed for this cycle, though the geodesic paths corre-
sponding to the isothermal strokes now involve variations
in temperature. Individual strokes again may be pieced
together according each stroke a duration proportional
to its thermodynamic length as required for optimally-
parametrized processes, leading to the parametrization
of the cycle depicted in Fig. 1(a).

Engine performance. We now calculate the perfor-
mance of the various engines described in the pre-
vious section and compare them against a previ-
ously studied experimental cycle [10], which we use
as a benchmark. To mimic the experiment, we pin
the four corners of the Carnot cycle at (T0, k0) =
(300 K, 2 pN µm−1), (T1, k1) = (300 K, 6.5 pN µm−1),

(T2, k2) = (600
√

10/13 K, 20 pN µm−1), (T3, k3) =

(600
√

10/13 K, 80/13 pN µm−1), and (T (τ), k(τ)) =
(T0, k0). Following standard methods starting from
Eq. (8), we can derive an equivalent Fokker-Planck equa-
tion for the evolution of the probability density over
phase space. Integrating across various covariances [35],
we arrive at the coupled differential equations governing
the evolution of 〈z2〉, 〈pz〉, and 〈p2〉:

d

dt
〈z2〉 =

2

m
〈pz〉 , (19)

d

dt
〈pz〉 =

〈p〉2
m
− k 〈z2〉 − ζ

m
〈pz〉 , (20)

d

dt
〈p2〉 = 2k 〈pz〉 − 2

ζ

m
〈p2〉+ 2ζkBT. (21)

Given that our model system only encounters a harmonic
potential, if we assume the system starts in a Gaussian
form, it will remain Gaussian for the duration of the pro-
tocol, such that these covariances encode the entire phase
space distribution of the Brownian oscillator. Therefore,

numerically solving these equations for given control pa-
rameters k(t) and T (t) and allowing the system to come
to its steady state, we are able to fully simulate the sys-
tem and evaluate various performance metrics of the en-
gine. We use simulations of the experimental protocol
of [10] as a benchmark. We do this rather than use the ac-
tual experimental results to allow for the evaluation of a
greater range of protocol durations and for more detailed
(simulated) data than was experimentally measured. We
validate our numerical simulations by direct comparison
to the experiment in the Supplemental Materials [35].

In Fig. 2(a), we plot the power output P = W/τ as a
function of cycle duration τ . As expected, for small times
W is negative such that no work is extracted from the
cycle and the power is large in magnitude and negative
for each of the engines, resulting in a maximum positive
value for the power at a finite value of cycle duration. We
observe a noticeable benefit to the use of the optimized
Carnot engine, though the optimal geodesic engine actu-
ally leads to a reduction in power.

To better understand this, we plot the dissipated en-
ergy A for these protocols in Fig. 2(c)-(d). We note a
>20% decrease in the dissipated work per cycle for both
the optimal Carnot engine as well as the geodesic engine
compared to the previously tested experimental proto-
col. For these experimental parameters, the thermody-
namic length of the optimal Carnot cycle is only 0.0003%
greater than that of the geodesic cycle, such that its ben-
efit is difficult to observe in these figures. We therefore
also simulate for a different set of material values where
the benefits are clearer, now demonstrating a ∼50% de-
crease in dissipated work for the optimal geodesic engine;
these results are plotted in Fig. 2(e)-(h). This second
set of material parameters corresponds to using a ball of
millimeter radius and density comparable to gold, which
may not be achievable with current experimental tech-
nology but serves to illustrate the differences between
the various cycles in a significantly more underdamped
regime. See [35] for further simulation details. We can
compute the efficiency of all of these engines, displayed in
Fig. 2(b) and (f) as a function of cycle duration. Here we
define efficiency not as the ratio of work output to heat
input, but as the ratio of work output to total effective
thermal energy uptake [33]:

η =
W

U
≈ 1− A

W , (22)

where W is the net work extracted from a quasistatic
cycle with ρt = ρΛ at all time; Eq. (22) holds to lowest
nontrivial order in driving rates. As stated previously,
this definition is more appropriate for engines of time-
variable heat baths and has a universal maximum value
of one for any reversible engine. As expected, we observe
that both optimized protocols yield a superior efficiency
relative to the experimental protocol in the long time
limit, as well as for earlier times in most cases. Inter-
estingly, the optimal Carnot cycle is more efficient than
the optimal geodesic cycle. This surprising result, along
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FIG. 2: Performance of various engines considered in the main text as a function of protocol duration τ . We numerically
simulate the system under cyclic operation of the control parameters for protocol duration τ and plot the performance of each
engine after reaching steady state. In all plots, results of simulations of an engine following the experimental protocol used in
[10] are shown with black squares and a straight black linear interpolation, the optimal Carnot cycle with orange circles and
dashed orange linear interpolation, the optimal geodesic cycle with blue triangles and blue dotted linear interpolation, and a
hybrid cycle consisting of the optimized Carnot cycle with the cold isothermal compression step replaced by the corresponding
geodesic path with green diamonds and dashed linear interpolation. (a) Average power. (b) Average efficiency. (c) Average
dissipated energy. (d) Dissipated energy scaled relative to that of experimental protocol. Material parameters, i.e. m, ζ, Tc, Th

and k, are chosen based on those used in the experiment of [10]. Observe the dissipation is minimized for the geodesic engine,
though this engine is less efficient and less powerful than the optimized Carnot and hybrid engines; the hybrid engine is both
most efficient and powerful for all protocol durations considered. (e)-(h) Same as (a)-(d) for different material parameters
for which the contrasting performance between different cycles is clearer (see [35] for details of material parameter values).
Horizontal axes of (a),(c),(e), and (g) are the same as each subfigure below them, (b),(d),(f), and (h), respectively.

with the comparable result found for the powers, may be
understood by recognizing that the cost function for this
optimization scheme is only the availability A, and in-
deed we see the geodesic cycle produces the smallest total
availability. In fact, for slowly driven cycles, the optimal
geodesic cycle yields the minimum possible value of A for
any cycle passing through the four corners of the Carnot
cycle in a given time. However, the efficiency and power
depend not only on the dissipated energy but also on the
total possible energy accessible to the engine in the most
ideal conditions, namely W. This therefore introduces
a further figure of merit of an engine: for slowly driven
systems, the most efficient engine will minimize the ra-
tio A/W. Thus, although the (optimal) Carnot engine
produces a larger dissipated energy, it is more efficient.

In fact, given that W is a monotonic function of the
area enclosed by the cycle plotted in Fig. 1(b), the
geodesic corresponding to the hot isothermal expansion
acts to decrease the value ofW as it bows downward into
the the cycle, whereas the equivalent for cold isothermal
compression acts to increase W. This intuition suggests
that we form a more efficient cycle than any considered
above by starting with the optimized Carnot cycle and
replacing only the cold isothermal compression with the
corresponding geodesic path. We plot the shape of this
cycle in comparison to others we consider in Fig. 3. In-
deed, of all the cycles we considered, this hybrid cycle

k

T

Experiment Opt. Carnot Geodesic Hybrid

FIG. 3: The thermodynamic cycles and parametrizations we
consider. Closed curves represent the bath temperature (T )
vs. trap stiffness (k) for each engine. Markers are placed at
20 points along each cycle separated by equal time intervals.
Colors and marker shapes correspond to the conventions in
previous figures.

produces the most efficient engine in terms of both A/W
and power (Fig. 2). See [35] for further comparisons of
all simulated cycles to the experimental results of [10].
All of the optimized cycles statistically significantly out-
perform the experimentally measured Carnot cycle.

Discussion. Here we have considered the optimal tem-
poral parametrization for the Brownian Carnot cycle,
and we have also derived two new finite-time thermody-
namic cycles that incorporate geodesics connecting con-
secutive pairs of corners of the Carnot cycle. We have
demonstrated that each of these three new engines is
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less-dissipative than the experimentally tested temporal
parametrization of the Brownian Carnot cycle [10], with
our hybrid engine being the most efficient among those
studied. A clear next step would be to carry out a similar
procedure for other thermodynamic engines and refriger-
ators, such as those corresponding to the Stirling and
Otto cycles.

Although the treatment of thermodynamic length is
highly accurate for slowly driven cycles [35], contribu-
tions from higher order corrections have been reported
in the literature [53] and have been used, for example, to
give stronger bounds on free energy estimates of thermo-
dynamic processes [54]. Likewise, lessons from studies of
finite-time processes that shortcut relaxation timescales
could further facilitate the development of optimal cyclic
engines [55–65]; such questions have been studied for
overdamped dynamics [66, 67]

Finally, although we were able to construct a novel
and minimally-dissipative cycle connecting each of the
four pairs of adjacent corners of the Carnot cycle with
geodesics, it was less efficient than the corresponding
Carnot cycle. Recognizing that we could simultaneously
reduce the availability A and increase the work W by in-
corporating a geodesic path in place of the cold isother-
mal compression while retaining the other three strokes
of the optimized Carnot cycle, we obtained our hybrid
cycle, which is the most efficient of the engines we con-
sidered. We found this more efficient cycle by assembling
strokes that were obtained by minimizing only dissipa-
tion, but it may be possible to derive maximally efficient
cycles more directly. Importantly, for slow driving, the
form of efficiency we considered here (Eq. 22) is a purely

geometric quantity, such that its optimization suggests
a new design principle for the shape of a cycle, beyond
just its optimal temporal parametrization or introducing
geodesics between pairs of points. We will pursue this
further in future work.

Conclusion. In this Letter, we have characterized the
thermodynamic geometry of the colloidal harmonic os-
cillator system and used these results to derive explicit
protocols for optimal Carnot-like cycles. Using similar
methods, one could construct optimal parametrizations
and introduce geodesics to minimize dissipation for any
chosen cycle of the model working system studied. Future
work may be directed towards higher order corrections to
our results, application of our results to the study of fur-
ther cycles, and the development of fundamentally new
and more efficient nonequilibrium thermodynamic cycles.
We hope our results will facilitate the design and con-
struction of optimal thermal machines at the mesoscale.
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Phys. Rev. E 95, 032122 (2017), URL https://link.

aps.org/doi/10.1103/PhysRevE.95.032122.
[58] G. Li, H. T. Quan, and Z. C. Tu, Phys. Rev. E

96, 012144 (2017), URL https://link.aps.org/doi/

10.1103/PhysRevE.96.012144.
[59] A. Patra and C. Jarzynski, New Journal of Physics

19, 125009 (2017), URL https://doi.org/10.1088/

1367-2630/aa924c.



8

[60] M. Chupeau, S. Ciliberto, D. Guéry-Odelin, and
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A. Petrosyan, L. Bellon, and S. Ciliberto, SciPost Phys.
9, 64 (2020), URL https://scipost.org/10.21468/

SciPostPhys.9.5.064.
[63] A. Baldassarri, A. Puglisi, and L. Sesta, Phys. Rev. E

102, 030105 (2020), URL https://link.aps.org/doi/

10.1103/PhysRevE.102.030105.
[64] S. Iram, E. Dolson, J. Chiel, J. Pelesko, N. Krishnan,
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Throughout the Supplementary Material, all equations and figures are listed are notated with an “S” before the
appropriate number. Any reference to equations or figures without an S refers to one in the main text.

S1. THERMODYNAMIC METRIC FOR THE PARAMETRIC HARMONIC OSCILLATOR

Here, we will derive the thermodynamic metric given in Eq. (11) of the main text. Significant methods in our
treatment were previously developed in [1, 2], and we will follow a similar derivation. First, we recapitulate the
definition

gij = β

∫ ∞

0

〈δXi(t)δXj(0)〉 , (S1)

where δXi ≡ Xi−〈Xi〉, β ≡ (kBT )−1 is inverse temperature, and brackets denote an ensemble average over an initial
equilibrium distribution and thermal noise. Following Eq. (10) of the main text, these thermodynamic forces take the
form

X =

(
1

2T (p2/m+ kz2) + 1
T log

(
2π
√

mT 2

k

)
, −1/2z2

)
. (S2)

where z is the particle’s position, m is mass, k is the stiffness constant, and T is the temperature of the heat bath.
In order to calculate the metric, therefore, we need to calculate various two-point correlation functions, which are
dynamical quantities for fixed external parameters. In particular, we will be interested in z and p ≡ mż(t) for a
particle whose dynamics are given by Eq. (8) of the main text at fixed values of k and T , reproduced here

mz̈ + kz + ζż = F (t). (S3)

Given that this is a second order linear differential equation, we may write its solution as the sum of homogeneous,
z(h), and particular, z(p), solutions, z = z(h) +z(p), where all dependence on initial conditions is carried in z(h) and all
dependence on the random thermal forcing F (t) is carried in z(p). Following this reasoning and assuming F (t) is a zero-

mean Gaussian white noise process, it is a simple exercise to show that in general 〈δXi(t)δXj(0)〉 = 〈δX(h)
i (t)δXj(0)〉

for any thermodynamic force X. Therefore, we need only calculate the homogeneous solution to the differential
equation, and thus set F = 0.

First, let us consider the case ζ2 6= 4km, such that Eq. (S3) with F = 0 is easily solved to give

zh(t) =
p(0) +mΛ−z(0)

m(Λ− − Λ+)
e−Λ+t +

p(0) +mΛ+z(0)

m(Λ+ − Λ−)
e−Λ−t (S4)

for given initial conditions z(0) and p(0) and

Γ± ≡
ζ

2m
± 1

2

√(
ζ

2

)2

− 4k

m
. (S5)

p(t) is then given by mż. Assuming the system is initially Boltzmann distributed, ρBoltzmann(z, p) ∝ exp[−β(p2/2m+
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kz2/2)], equilibrium correlation functions can then be written as follows:

〈z(0)2〉 =
kBT

k
(S6a)

〈p(0)2〉 = mkBT (S6b)

〈z(0)4〉 = 3

(
kBT

k

)2

(S6c)

〈z(0)2p(0)2〉 = 〈z(0)2〉 〈p(0)2〉 = (kBT )2m

k
(S6d)

〈p(0)4〉 = 3 (mkBT )
2
, (S6e)

and we find the following averages

〈δzh(t)2δz(0)2〉 = 〈(zh(t)2 − 〈z(0)2〉)(z(0)2 − 〈z(0)2〉)〉 = 2

(
kBT

k(Λ+ − Λ−)

)2

(Λ−e
−Λ+t − Λ+e

−Λ−t)2 (S7a)

〈δph(t)2δz(0)2〉 = 〈(ph(t)2 − 〈p(0)2〉)(z(0)2 − 〈z(0)2〉)〉 = 2

(
mkBTΛ+Λ−
k(Λ+ − Λ−)

)2

(e−Λ+t − e−Λ−t)2 (S7b)

〈δzh(t)2δp(0)2〉 = 〈(zh(t)2 − 〈z(0)2〉)(p(0)2 − 〈p(0)2〉)〉 = 2

(
mkBT

Λ+ − Λ−

)2

(e−Λ+t − e−Λ−t)2 (S7c)

〈δph(t)2δp(0)2〉 = 〈(ph(t)2 − 〈p(0)2〉)(p(0)2 − 〈p(0)2〉)〉 = 2

(
mkBT

Λ+ − Λ−

)2

(Λ−e
−Λ−t − Λ+e

−Λ+t)2, (S7d)

(S7e)

which, upon integration yield
∫ ∞

0

dt 〈δzh(t)2δz(0)2〉 =
m(kBT )2

k2ζ

(
1 +

ζ2

km

)
(S8a)

∫ ∞

0

dt 〈δph(t)2δz(0)2〉 =

∫ ∞

0

dt 〈δzh(t)2δp(0)2〉 =
(mkBT )2

kζ
(S8b)

∫ ∞

0

dt 〈δph(t)2δp(0)2〉 =
m3(kBT )2

ζ
, (S8c)

(S8d)

which we can now use to calculate the thermodynamic metric. Before doing so, we must also consider the unique case
of critical damping for which ζ2 = 4mk =⇒ Λ+ = Λ− and the dynamics yield an entirely different homogeneous
solution:

zh,crit(t) = e−
√

k
m t

[
y(0) +

(
z(0)

√
k

m
+
z(0)

m

)
t

]
. (S9)

Carrying out the same procedure yields

〈δzh,crit(t)
2δz(0)2〉 =

2

m

(
kBT

k

)2

(m+ 2
√
kmt+ kt2)e−2

√
k
m t (S10a)

〈δph,crit(t)
2δz(0)2〉 = 〈δzh,crit(t)

2δp(0)2〉 = 2(kBT )2t2e−2
√

k
m t (S10b)

〈δph,crit(t)
2δp(0)2〉 = 2m(kBT )2(m− 2

√
kmt+ kt2)e−2

√
k
m t, (S10c)

and
∫ ∞

0

dt 〈δzh(t)2δz(0)2〉 =
5(kBT )2

√
km

2k3
=
m(kBT )2

k2ζ

(
1 +

ζ2

km

)
(S11a)

∫ ∞

0

dt 〈δph(t)2δz(0)2〉 =

∫ ∞

0

dt 〈δzh(t)2δp(0)2〉 =
m(kBT )2

√
km

2k2
=

(mkBT )2

kζ
(S11b)

∫ ∞

0

dt 〈δph(t)2δp(0)2〉 =
(kBT )2m2

√
km

2k
=
m3(kBT )2

ζ
, (S11c)

(S11d)
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such that, ultimately, regardless of the value of k, we arrive at the same time correlation functions. We must calculate
correlations between various pairs of the conjugate forces

δX =
(

1
2T (δp2/m+ kδz2) − 1

2δz
2
)
.

Combining Eqs (S1),(S8), and (S11), we finally have

gij =

(
gTT gTλ
gλT gλλ

)

ij

=
mkB
4ζ




1
T

(
4 + ζ2

km

)
− 1
k

(
2 + ζ2

km

)

− 1
k

(
2 + ζ2

km

)
T
k2

(
1 + ζ2

km

)


ij

, (S12)

reproducing Eq. (11) of the main text.

S2. FOKKER-PLANCK DYNAMICS OF THE HARMONIC OSCILLATOR AND SIMULATIONS

Here we present a derivation of the system of equations used to simulate the harmonic oscillator and we provide
some details of those simulations. Following standard methods [3], we may translate the Langevin equation given in
Eq. (S3) into a Fokker-Planck equation over the particle’s distribution in phase space:

∂ρ

∂t
+

p

m

∂ρ

∂z
− kz ∂ρ

∂p
− ζ

m

∂(pρ)

∂p
− ζ

β

∂2ρ

∂p2
= 0. (S13)

Integrating across various dynamical variables leads to evoluation equations for the covariances. Explicitly, let us first
integrate against z2. All terms that do not involve derivatives with respect to z trivially die as ρ is normalized and
therefore must be zero at the (infinite) boundaries. This then leaves

(
∂ρ

∂t
+

p

m

∂ρ

∂z

)
z2 =⇒ d

dt
〈z2〉 = − 1

m

∫
dzdp pz2 ∂ρ

∂z
=

2

m

∫
dzdppzρ =

2

m
〈pz〉 ,

where we have integrated by parts in the intermediate steps. Similar arguments lead to the rest of the coupled system
in Eqs. (19)-(21) of the main text.

We reiterate here that, for the dynamics considered, if the system is initially Gaussian distributed, it will remain
so for all times, such that knowledge of these covariances specifies the entire phase space distribution:

ρGaussian =
1

2π

√
〈p2〉 〈z2〉 − 〈pz〉2

exp

[
−〈p

2〉 z2 + 〈z2〉 p2 − 2 〈pz〉 pz
2(〈p2〉 〈z2〉 − 〈pz〉2)

]
,

from which one may derive the free energy, entropy, and all other thermodynamic quantities of interest. As a result,
with these three covariances alone, we can faithfully study the system well outside of the linear response regime.

Simulations are then done by numerically integrating Eqs. (19)-(21) for a given set of parameter values. In
particular, we first fix m and ζ and then repeatedly integrate Eqs. (19)-(21), where k(t) and T (t) are cyclically varied
with a set time period τ according to the protocol in question (e.g., according to the optimal Carnot engine or the
geodesic engine) until the engine arrives at a steady state. For protocols with very small values of τ , reaching the
steady state may take a significant number of cycles, whereas for large values where the cycle is near-equilibrium,
steady state cyclic operation can be accomplished after only a handful of cycles. All thermodynamic quantities are
then calculated under steady state operation, again by means of numerical integration. All integrations are carried
by the NIntegrate function of Wolfram Mathematica 12. See Table S1 for details of the parameter values used to
generate Fig. 2 of the main text.

For Fig. 2(a)-(d), we use parameter values consistent with a spherical polystyrene bead of 1 micron diameter. The
value of ζ is chosen to be consistent with the bead suspended in water at 300K and undergoing Stokes flow. We note
that viscosity itself is a temperature dependent quantity, though we leave the consideration of these small corrections
to future work. For Fig. 2(e)-(h) in contrast, we consider a denser and larger bead, such that the thermodynamic
costs of the resulting protocols are more easily distinguished.

S3. NUMERICAL VALIDATION OF SLOW-DRIVING APPROXIMATION

In this section, we expand on the definition of the slow-driving approximation and compare the results of this
approximation to the numerical results from simulation. In essence, the crux of this regime is that all driving
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Parameter Fig. 2(a)-(d) Fig. 2(e)-(h)

m 0.545 pg 80.9 mg
ζ 7.51 µg s−1 15.0 mg s−1

T0 300 K 300 K
T1 300 K 300 K
T2 526.235 K 526.235 K
T3 526.235 K 526.235 K
k0 2.00 mg s−2 6.40 mg s−2

k1 6.50 mg s−2 20.8 mg s−2

k2 20.0 mg s−2 64.0 mg s−2

k3 6.15 mg s−2 19.6 mg s−2

TABLE S1: Parameter values used to generate Fig. 2 of the main text.

timescales, given by τD,i ∼ |Λi/Λ̇i|, occur slower than all relaxation timescales for the system in question. Under this
assumption and following standard linear response theory [1] or alternatively a derivative truncation approximation
[2] leads to the definition of the thermodynamic metric tensor given by Eq. (5) of the main text and Eq (S1) of the
supplement.

For the model system in question, there are two relaxation timescales relevant to driving: the inertial, underdamped
timescale τu = m/ζ and the overdamped timescale τo = ζ/k. For driving that occurs significantly slower than this
timescale, the assumptions underpinning thermodynamic geometry become more accurate and so too should its
predictions. However, τo itself depends on the current value of the control parameter k, as does the characteristic
maximum driving timescale τD, set by the maximum value of {|Λi/Λ̇i|}. Therefore, for protocols that occur over a
variety of values of k and T , thermodynamic geometric increasingly becomes accurate for τu/τD, τo/τD � 1 at all
times over the full protocol. This is especially true of steady-state engines for which accumulated distances from
equilibrium compile over time. To this end, we define the dimensionless quantities

A =
1

τ

∮ τ

0

τu
τD(t)

dt, B =
1

τ

∮ τ

0

τo(t)

τD(t)
dt (S14)

where, as in the main text, τ represents the protocol duration of a full cycle, and A and B serve as time averages of
the ratios of the time scales. As before, thermodynamic geometry will prove more accurate for A,B � 1. Finally,
defining the fractional time s ≡ t/τ and the non-dimensionalized driving timescale τ̃D(s) ≡ τD(sτ)/τ , we have

A =
1

τ

∮ τ

0

τu
τD(t)

dt =

∮ 1

0
τu

τ̃D(s)

τ
≡ τA

τ
, B =

1

τ

∮ τ

0

τo(t)

τD(t)
dt =

∮ 1

0
τo(sτ)
τ̃D(s)

τ
≡ τB

τ
,

where we define

τA ≡
∮ 1

0

τu
τ̃D(s)

, τB ≡
∮ 1

0

τo(sτ)

τ̃D(s)
(S15)

both of which are timescales independent of τ such that for τA, τB � τ , thermodynamic geometry is a good approxi-
mation. We can now calculate τA and τB for all protocols considered, which we show in Table S2:

Protocol
Parameters of Fig. 2(a)-(d) Parameters of Fig. 2(e)-(h)

τA (s) τB (s) τA (s) τB (s)

Optimal Carnot 3.33755 × 10−7 0.00676226 24.8006 4.22641
Optimal geodesic 3.33755 × 10−7 0.00676226 33.6818 6.52093

Hybrid 3.33755 × 10−7 0.00676226 26.6871 5.12534
Protocol of [4] 3.33755 × 10−7 0.00676226 24.8006 4.22641

TABLE S2: Timescales τA and τB at which slow-driving and thermodynamic geometry becomes a valid approximation. The
larger of τA/B is shown in dotted lines in Fig. S1

With these results in hand, we now plot the numerical simulation results of dissipated energy and power as a function
of protocol duration on the same axes as the linear response result (in red upside down triangles). Each subplot contains
the simulation results for a single quantity for a single protocol (e.g. the Hybrid protocol is in green diamonds on the
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Protocol of [4]
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FIG. S1: Comparison of full numerical results to linear response: Power and dissipated availibility A as a function of protocol
duration for optimal Carnot (orange circles), geodesic (blue triangles), hybrid (green diamonds), and simulations of the experi-
mental protocol used in [4] (black squares), compared against the calculated linear response result for each (red down triangles).
The linear response result is calculated for each protocol specifically. Dashed lines represent the larger of τA/B and therefore the
timescale at which linear response is expected to start to be predictive. The left two columns are for overdamped parameters,
same as Fig. 2(a)-(d) of main text, and the right two columns are for underdamped parameters, same as Fig. 2(e)-(h) of main
text, see Table S1 for specific material values. All subplots in the same column share horizontal axes.

third row) and is plotted against the linear response prediction for the corresponding protocol: importantly, although
all linear response predictions are shown with identical red triangles, the linear response prediction in each subplot
is the one specifically matched to the numerical protocol shown in the same subplot (i.e. they are not all the same).
The two left columns correspond to similar material parameters as [4] and Fig. 2(a)-(d) of the main text and the two
right columns correspond to the same as Fig. 2(e)-(h) of the main text. The vertical dotted lines are the maximum
of τA, τB for each plot. For τ � τA, τB indeed we see excellent agreement with the linear response predictions and
often even relatively good agreement for τ & τA, τB , showing the significant predictive power for this theory over
a wide range of protocol durations and further justifying its popularity as one perturbative approach to finite-time
thermodynamics.

S4. COMPARISON OF SIMULATED RESULTS TO EXPERIMENT

In the main text, we showed the results of simulations for cycles operating in steady state for the colloidal parametric
harmonic oscillator system studied previously in experiment [4, 5], and used simulations of the Carnot cycle protocol
studied in [4] as a benchmark. To validate these simulations, here we compare directly with the experiment itself.
In Fig. S2(a)-(b), we display the stochastic efficiency and power as a function of protocol duration for experimental
data provided by the authors of [4] plotted against the numerical simulation meant to replicate this experiment. We
find good agreement throughout the experimental regime tested but now with further quantitative predictions beyond
this regime. In addition, in Fig. S2(c)-(d), we plot the same thermodynamic quantities but now for the experimental
results plotted against all the all numerically simulated cycles again using similar material parameters to those used
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experimentally. We now see that the optimized Carnot and hybrid engines outperform not only the averages of the
experimental results but also the uncertainties for a large range of protocol durations, further bolstering our results.
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FIG. S2: (a) Stochastic efficiency and (b) power as a function of protocol duration for simulations of the experiment in [4]
(black squares) compared against experimental data provided from the authors of [4] (purple down triangles). Error bars are
the standard error of this data and the purple line is a best-fit (cf. Fig. 2b of [4]). (c) and (d) same as (a) and (b), respectively,
but now with optimal Carnot (orange circles), geodesic (blue triangles), hybrid (green diamonds) for same material parameters
also shown. Horizontal axes of (a) and (b) are the same as (c) and (d), respectively.

It bears mentioning that the stochastic efficiency is a further different definition of efficiency, introduced in [4]. To
reiterate, the efficiency we consider in the main text, which we will term “irreversible efficiency” to avoid confusion, is
defined as η ≡W/U ≤ 1 where W is output work and U is input thermal energy, which has an upper bound of unity
saturated for any reversible cycle. The standard “textbook” definition of efficiency, which we term “thermodynamic
efficiency” ηth is given by the ratio of W/Q+ where Q+ is the rectified heat flow into the system over the full cycle (i.e.
only heat flow in is counted). For the quasistatic Carnot cycle, the thermodynamic efficiency is by definition W/QH
where QH is the heat flow into the system from the hot reservoir as all other strokes are either adiabatic, Q = 0,
or have a heat flow purely out of the system. However, for finite-time Carnot engines, this is not necessarily true,
such that [4] defines the “stochastic efficiency” as ηs = W/(Qadia

1 +QH +Qadia
2 ), where Qadia

1/2 are total (non-rectified)

heat flow during the adiabatic strokes. They show that this definition of efficiency converges faster to the quasistatic
value of ηth as a function of protocol duration and so study it in their experiment. This quantity is what is plotted
in Fig. S2(a),(c).
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