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We study the classical analog of the quantum metric tensor and its scalar curvature for two well-known
quantum physics models. First, we analyze the geometry of the parameter space for the Dicke model with the
aid of the classical and quantum metrics and find that, in the thermodynamic limit, they have the same divergent
behavior near the quantum phase transition, as opposed to their corresponding scalar curvatures which are not
divergent there. On the contrary, under resonance conditions, both scalar curvatures exhibit a divergence at the
critical point. Second, we present the classical and quantum metrics for the Lipkin-Meshkov-Glick model in
the thermodynamic limit and find a perfect agreement between them. We also show that the scalar curvature is
only defined on one of the system’s phases and that it approaches a negative constant value. Finally, we carry
out a numerical analysis for the system’s finite sizes, which clearly shows the precursors of the quantum phase
transition in the metric and its scalar curvature and allows their characterization as functions of the parameters
and of the system’s size.

I. INTRODUCTION

Geometry has found many applications in various areas of
science, especially in physics [1]. An essential element of
geometry is the metric tensor, which contains the relevant in-
formation tomeasure distances in an underlying space. Provost
and Vallee [2] endowed the Hilbert space with a metric that
is invariant under parameter-dependent phase transformations
(gauge invariance), now known as the quantum metric tensor
(QMT). It measures the distance in the parameter space of a
system and, therefore, encodes the information of how close
two quantum states are. The QMT can be obtained from a
second-order expansion of the fidelity, which has been used ex-
tensively in the study of quantum phase transitions (QPTs) [3–
5]. A QPT is characterized by a change in the ground state
function’s analytic properties and separates the system into
two different regions in parameter space [6]. The pioneering
works [7, 8] showed the relevance of the QMT and its scalar
curvature to study QPTs. Further features of the QMT, such as
its scaling properties and critical exponents, have been exam-
ined [9–11]. The geometrical aspects of the QMT have also
been looked into, like its geodesics and its scalar curvature, as
well as their relation to topology [12–16]. Interestingly, the
relation of the QMT to complexity in the context of quantum
computing [17] has also been analyzed. Aside from its theo-
retical relevance, the QMT can be measured experimentally,
providing a direct link to condensed matter systems [18]. A
detailed account of the geometry of QPTs can be found in
Ref. [19]. For an application of geometrical concepts in the
study of QPTs in a different context, see Ref. [20].

The QMT possesses a classical analog first introduced in
Ref. [21]. This classical analog, from now on, called the
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classical metric, measures the distance in the parameter space
between two points in phase space infinitesimally separated;
it is defined for classical integrable systems and relies on the
adiabatic theorem, introducing a torus average over the angle
variables to obtain its components. In Ref. [22], it was proved
that the classical metric results from a semiclassical approx-
imation of the QMT under the time-dependent Lagrangian
approach introduced in [23]. The classical metric possesses
the same properties as its quantum counterpart: it is positive
semidefinite, gauge invariant, and it transforms as a rank-two
covariant tensor. Given a quantum Hamiltonian, one may try
to study its semiclassical version using coherent states. In
this case, the QMT can be computed as in Ref. [2], yielding
a parameter space with a flat, spherical, or hyperbolic ge-
ometry. Nevertheless, the dependence of the coherent states’
coordinates on the Hamiltonian parameters might constitute a
noninvertible mapping, which then results in a QMT whose
components are zero in one or both phases of the system.
Therefore, this semiclassical version of the QMT is useless to
characterize the geometry of the parameter space [24]. On the
other hand, the classical metric shows its relevance emerging
as a tool that, through purely classical functions and a classical
torus average, provides a result consistent with the quantum
description in many cases. We must mention, however, that
some differences between the classical and quantum metrics
may appear essentially due to operator-ordering ambiguities,
which may result in (i) anomalies that contribute with addi-
tional terms [22, 25], (ii) differences coming from the fact
that there might be distinct quantizations for a given classical
Hamiltonian.
In [21, 22], some examples that illustrate the use of the clas-

sical metric were laid out, and it was shown that the classical
metric contains the same or almost the same information about
the parameter space as the QMT; however, the need to delve
into more geometrical details was manifest. In this sense, it is
worth considering the scalar curvature, which is a local invari-
ant of a metric space that quantifies the deviation of this space
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from being Euclidean [26]. We can mention three essential
features of this quantity. First, the value of the scalar curva-
ture at a given point is independent of the parameter space’s
coordinates, which means that it is a geometric invariant quan-
tity. Thus, it is helpful to detect whether a singularity is real
or it is merely an effect of the parameter space’s coordinates
that are being used [27]. This fact contrasts with the classical
and quantum metrics, which depend on the choice of param-
eters and may contain removable singularities. Second, not
all the systems have a Berry curvature and, consequently, a
Berry phase. However, even in these cases, there might be a
nonvanishing scalar curvature that will help characterize the
underlying geometry. Third, the scalar curvature can also be
used to obtain global information of the manifold, like the
Euler characteristic, which is a topological number used to in-
vestigate the nature of the singularities associated with QPTs
and provides a characterization of each quantum phase [13].
Naturally, the scalar curvatures coming from the classical and
quantum metric tensors for a given system can be computed
and compared to see whether the classical treatment yields the
same information as its quantum counterpart.

A first approach to test the classical methods is to examine
quantum many-body systems with a QPT in the thermody-
namic limit. Of the variety of models that can appear, two of
them have been widely used due to their rich parameter space
structure and the effectiveness of a classical treatment: the
Dicke model and the Lipkin-Meshkov-Glick (LMG) model.
The Dicke model [28] consists of two-level atoms interacting
with one mode of a bosonic field inside a cavity. Its param-
eter space geometry has been studied in Ref. [29], where the
thermodynamic limit was considered. On the other hand, the
LMG model [30] describes the interaction of spin-half parti-
cles interacting with each other and with an external magnetic
field. A brief account of the QMT in this model can be found
in Refs. [29, 31]. However, further geometrical analysis is
lacking.

Our goal in this paper is twofold: first, to test the limits of
the classical metric for the Dicke and LMG models, and see
how it departs from the quantum description; second, to study
the scalar curvature of the classical and quantum metrics and
its behavior near the QPT to extract valuable information of
the critical region. We recall that, in a two-dimensional (pa-
rameter) space, which is the case considered here, the scalar
curvature characterizes the geometrical structure of the sur-
face. We will find the Dicke model’s classical and quan-
tum metrics in the thermodynamic limit under the truncated
Holstein-Primakoff approximation, where the system becomes
integrable. Although the metrics are not equal, they turn out
to be singular at the QPT and diverge in the same manner,
whereas their scalar curvatures are not divergent in the criti-
cal region. When the resonance condition is considered, both
metrics and their scalars show divergence at the QPT. In the
case of the LMG model in the thermodynamic limit, the clas-
sical and quantum metrics are the equal up to a quantization
rule for the action variables, and the scalar curvature diverges
at the QPT. In this paper, the classical metric and its scalar
curvature are obtained for the Dicke and LMG models, and it
is remarkable that they are able to give the same information

as their quantum counterparts at the QPT. We also perform a
detailed numerical study of the QMT and its scalar curvature
for finite sizes of the LMG model, which extends the results
of [31] where only the fidelity susceptibility (i.e., a component
of QMT) is analyzed. In this case, we will see the QPT pre-
cursors in the peaks of the metric components and the scalar
curvature, and an extrapolation of the results to the thermo-
dynamic limit will give a clue as to whether the singularities
predicted by the classical metric are genuine or are just a con-
sequence of the choice of parameters. This will shed light on
previous works where the scalar curvature’s behavior for some
models in the critical region was investigated [8, 29].
The structure of the paper is as follows. In Sec. II, we begin

by reviewing the essential geometric elements that will help us
describe the parameter space of a system; we present the QMT
following the approach of Ref. [23], introduce its classical
analog [22], and discuss some features of the scalar curvature
in two dimensions. In Sec. III, we analyze the classical and
quantum metrics for the Dicke model in the thermodynamic
limit and compare their corresponding scalar curvatures for
the nonresonant and resonant cases. In Sec. IV, we consider
the LMG model and we compute the associated classical and
quantum metrics in the thermodynamic limit as well as their
scalar curvatures. Then, for finite sizes of the LMG model,
we obtain numerically the QMT and its scalar curvature. We
also analyze the peaks of these numerical quantities as well as
the slope of the scalar curvature at the QPT, and deduce their
behavior in the thermodynamic limit. Finally, in Sec. V, we
present the conclusions and propose some aspects to address
for future work.

II. GEOMETRY OF THE PARAMETER SPACE

Before studying the Dicke and LMG models, we briefly
review the main features of the QMT and its classical analog.
The QMT is a second-rank covariant symmetric tensor which
measures the separation in the parameter space between two
quantum states with infinitesimally different parameters [2].
Consider a quantum system in the time interval t ∈ (−∞, 0)
which is described through the path integral formulation by a
HamiltonianH(q(t), p(t);x), where q = {qa} and p = {pa},
a = 1, ..., n are the coordinates and momenta, and x = {xi}
with i = 1, ...,N is a set of N adiabatic parameters. Let
us now suppose that at t = 0, a perturbation is turned on
such that during the time interval t ∈ (0,∞) the system is
described by a perturbed HamiltonianH ′=H+Oiδxi, where
the deformations Oi(t) are given by

Oi(t) :=

(
∂H

∂xi

)
q,p

. (1)

In order to compare the ground states |0〉 and |0′〉 that belong to
the systems described byH andH ′, respectively, we introduce
the fidelity. It is defined as F(x, x + δx) = |〈0′|0〉| and
its expansion to second order in δxi yields F(x, x + δx) =

1− 1
2g

(0)
ij (x)δxiδxj , where g(0)

ij (x) is the QMT for the ground
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state and reads as [23]

g
(0)
ij (x) =− 1

~2

0∫
−∞

dt1

∞∫
0

dt2

(
1

2
〈{Ôi(t1), Ôj(t2)}〉0

− 〈Ôi(t1)〉0〈Ôj(t2)〉0
)
. (2)

In this expression, Ôi(t) are the Heisenberg operators corre-
sponding to the deformations (1), which can be written now
as

Ôi(t) =

(
∂Ĥ

∂xi

)
q̂,p̂

, (3)

and are functions of q̂(t), p̂(t) and the parameters x. Also, the
symbol {·, ·} stands for the anticommutator of two operators,
and the expectation values, denoted as 〈·〉0, are taken in the
ground state of the system with Hamiltonian Ĥ . It is worth
mentioning that this approach to the QMT can be naturally
adapted to problems where the ground state is not known and
perturbation theory is required [32].

The QMT possesses a classical analog, called the classi-
cal metric tensor, which measures the distance in parame-
ter space between the phase space points (q(x), p(x)) and
(q(x+δx), p(x+δx)). It can be shown to arise from the semi-
classical approximation of Eq. (2) for integrable systems [22]
and is given by

gij(x) =−
0∫

−∞

dt1

∞∫
0

dt2
(
〈Oi(t1)Oj(t2)〉cl

− 〈Oi(t1)〉cl〈Oj(t2)〉cl

)
, (4)

where the Oi(t) are the classical deformation functions given
by

Oi(t) =

(
∂H

∂xi

)
q,p

. (5)

These functions can be written in terms of the initial con-
ditions (q0, p0) and time and, subsequently, in terms of the
initial action-angle variables (φ0, I) and time; therefore, the
deformations (5) with their full dependence are Oi(t) =
Oi(q(φ0, I, t;x), p(φ0, I, t;x);x). The notation 〈f〉cl stands
for the classical torus average of the function f(φ0, I, t;x)
over the n initial angle variables,

〈f〉cl =
1

(2π)n

2π∫
0

dnφ0 f(φ0, I, t;x). (6)

Notice that this classical average replaces the quantum expec-
tation value that appears in Eq. (2).

Now that we have endowed our parameter space with a
metric structure, we can construct a quantity which in two
dimensions contains all the manifold’s local information in an
invariant way: the scalar curvature, also known as the Ricci

scalar. In two dimensions, given the coordinates (x1, x2), the
scalar curvature can be computed as [33]

R =
1
√
g

(A+ B), (7)

where

A =
∂

∂x1

[
1
√
g

(
g12

g11

∂g11

∂x2
− ∂g22

∂x1

)]
, (7a)

B =
∂

∂x2

[
1
√
g

(
2
∂g12

∂x1
− ∂g11

∂x2
− g12

g11

∂g11

∂x1

)]
, (7b)

and g is the determinant of the metric. Notice that the
definition (7) differs by a global sign from that used in
Ref. [29] since we are employing the more common contrac-
tion R := gijRkikj , where Rijkl is the Riemann tensor.
Having presented an overview of the parameter space’s ge-

ometry, we devote the following sections to study the classical
metric and its scalar curvature for the Dicke and LMG models
and compare them with the results of the quantum analysis.

III. DICKE MODEL

The Dicke model [28] describes a collection ofN two-level
atoms interacting with one mode of a bosonic field inside a
cavity. Its quantum and classical dynamics have been ex-
plored [34, 35], and it has been widely studied in the context
of quantum and classical chaos [36, 37], entanglement and
fidelity [38–41].
The Hamiltonian of the Dicke model is

Ĥ = ω0Ĵz + ωâ†â+
λ√
N

(â† + â)(Ĵ+ + Ĵ−), (8)

where ω0 is the splitting of the two levels, ω is the frequency
of the bosonic mode, λ is the coupling of the dipole interaction
between the field and the atoms, â and â† are the creation and
annihilation operators of the field, and Ĵz, Ĵ± = Ĵx ± iĴy are
the collective spin operators. Also, we have chosen ~ = 1.
We see that the operator Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z commutes with
the Hamiltonian so the total pseudospin is conserved, and
we can restrict ourselves, as usual, to the consideration of the
maximum pseudospin j = N/2. This has the effect of treating
the collection of N two-level atoms as a single (N + 1)-level
system with pseudospin j = N/2 [36]. We are interested in
the thermodynamic limit j →∞, where the system undergoes
a QPT at the critical coupling λ = λc ≡

√
ωω0

2 that separates
the normal phase λ < λc and the superradiant phase λ > λc.

A. Analysis in the thermodynamic limit

1. Normal phase

To describe the system in the thermodynamic limit, we fol-
low the work of Emary and Brandes [36]. We first use the
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Holstein-Primakoff transformation [42]

Ĵ+ = b̂†
√

2j − b̂†b̂, Ĵ− =

(√
2j − b̂†b̂

)
b̂, Ĵz = b̂†b̂−j,

(9)
which is a way to associate the bosonic operators, b̂ and b̂†,
to the angular momentum operators Ĵz, Ĵ±. After performing
this transformation, the Dicke Hamiltonian takes the form

Ĥ = −jω0 + ω0b̂
†b̂+ ωâ†â

+ λ(â† + â)

b̂†
√

1− b̂†b̂

2j
+

√
1− b̂†b̂

2j
b̂

 .

(10)

Next, we expand the square roots in Eq. (10) and take the limit
j →∞, keeping only the zeroth order term in 1/j. This leads
to the effective Hamiltonian

Ĥn = −jω0 + ω0b̂
†b̂+ ωâ†â+ λ(â† + â)(b̂† + b̂), (11)

which is valid for λ < λc, i.e., the normal phase. The term
proportional to j, which is dominant as j increases, is identified
as the ground state energy of the system in the normal phase.
From Eq. (11), we readily recognize that this Hamiltonian
corresponds to two coupled harmonic oscillators, as can be
explicitly seen by applying the operator transformation

q̂1 =
1√
2ω

(â† + â), p̂1 = i

√
ω

2
(â† − â), (12a)

q̂2 =
1√
2ω0

(b̂† + b̂), p̂2 = i

√
ω0

2
(b̂† − b̂), (12b)

which casts it in the position-momentum representation as

Ĥn =− jω0 −
(ω + ω0)

2
+

1

2

(
p̂2

1 + p̂2
2 + ω2q̂2

1 + ω2
0 q̂

2
2

+ 4λ
√
ωω0 q̂1q̂2

)
. (13)

We can uncouple the two oscillators by going to the normal
coordinates (Q̂1, Q̂2) through the transformation(

q̂1

q̂2

)
=

(
cosαn sinαn
− sinαn cosαn

)(
Q̂1

Q̂2

)
, (14)

and similarly for the corresponding conjugate normalmomenta
(P̂1, P̂2). The angle αn is such that

tan 2αn =
4λ
√
ωω0

ω2
0 − ω2

, (15)

with αn ∈
(
−π4 ,

π
4

)
, and we assume that ω0 6= ω. After

performing this transformation, the Hamiltonian acquires the
form

Ĥn = −jω0−
(ω + ω0)

2
+

1

2

(
P̂ 2

1 + P̂ 2
2 + ε2

1nQ̂
2
1 + ε2

2nQ̂
2
2

)
,

(16)

where the two (squared) normal frequencies are

ε2
1n =

1

2

[
ω2 + ω2

0 −
√

(ω2 − ω2
0)2 + 16λ2ωω0

]
, (17a)

ε2
2n =

1

2

[
ω2 + ω2

0 +
√

(ω2 − ω2
0)2 + 16λ2ωω0

]
. (17b)

We clearly see that at the critical coupling λc =
√
ωω0

2 , the nor-
mal frequency ε1n vanishes and the system reduces effectively
to only one normal mode.

2. Superradiant phase

In the case of the superradiant phase (λ > λc), one can
derive an effective Hamiltonian Ĥs by letting the field and the
set of atoms acquire macroscopic occupation numbers; one
way to achieve this is by displacing the bosonic operators that
appear in (10) and demanding that the linear terms in â and
â† vanish. After expanding the square roots and changing
to the position-momentum representation, we arrive at the
Hamiltonian for the superradiant phase, which reads as [36]

Ĥs =− j
(

2λ2

ω
+
ω2

0ω

8λ2

)
− 4λ2 + ω2

2ω

+
1

2

(
p̂2

1 + p̂2
2 + ω2q̂2

1 +
16λ4

ω2
q̂2
2 + 2ωω0 q̂1q̂2

)
.

(18)

As in the normal phase, we use the transformation (14), which
casts the Hamiltonian in the form

Ĥs =− j
(

2λ2

ω
+
ω2

0ω

8λ2

)
− 4λ2 + ω2

2ω

+
1

2

(
P̂ 2

1 + P̂ 2
2 + ε2

1sQ̂
2
1 + ε2

2sQ̂
2
2

)
, (19)

where now the rotation angle αs is such that

tan 2αs =
2ω3ω0

16λ4 − ω4
, (20)

and we have assumed that λ 6= ±ω/2. The two resulting
(squared) normal frequencies are

ε2
1s =

1

2

16λ4 + ω4

ω2
−

√(
16λ4 − ω4

ω2

)2

+ 4ω2ω2
0

 ,
(21a)

ε2
2s =

1

2

16λ4 + ω4

ω2
+

√(
16λ4 − ω4

ω2

)2

+ 4ω2ω2
0

 .
(21b)

Notice, once more, that at the critical coupling λ = λc, the
frequency ε1s vanishes. Indeed, it can be easily verified that
Ĥn(λc) = Ĥs(λc). Furthermore, looking at the dominant
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term of order j in the Hamiltonians (13) and (18), we can read
off the ground state energy for both phases:

Eg
j

=

{
−ω0, λ < λc

−
(

2λ2

ω +
ω2

0ω
8λ2

)
, λ > λc.

(22)

This normalized ground state energy exhibits a discontinuity in
its second derivative atλ = λc, which is precisely the hallmark
of theQPT in this model. Interestingly, themain features of the
QPT were reproduced using only a quadratic approximation
coming from the truncated Holstein-Primakoff transformation.
This is one of the main virtues of this approach, which was
precisely exploited by Emary and Brandes in their remarkable
papers [36]. We are also taking advantage of this method as a
first step toward understanding the underlying geometry of the
parameter space. The interested reader can consult Ref. [43],
where some shortcomings of the truncated Holstein-Primakoff
approximation are addressed.

B. Classical and quantum metric tensors for the Dicke model

Our aim is now to compute the classical and quantum met-
rics for the normal and superradiant phases and compare
them to see how well the classical metric captures the es-
sential information of the quantum system. After that, we
will analyze the scalar curvatures of both metrics. We fix
ω0 = const and take as our adiabatic parameters the fre-
quency ω and the strength of the dipole coupling λ, which
results in a two-dimensional parameter manifold with coordi-
nates x = {xi} = (ω, λ), i = 1, 2.

1. Metrics of the normal phase

We begin our computation of the classical metric tensor (4)
for the normal phase, whose Hamiltonian is the classical coun-
terpart of Eq. (13):

Hn,cl =− jω0 −
(ω + ω0)

2
+

1

2

(
p2

1 + p2
2 + ω2q2

1 + ω2
0q

2
2

+4λ
√
ωω0 q1q2

)
. (23)

The deformation functions associated to the parameters are

O1n =
∂Hn,cl

∂ω
= ωq2

1 + λ

√
ω0

ω
q1q2, (24a)

O2n =
∂Hn,cl

∂λ
= 2
√
ωω0 q1q2, (24b)

wherewe have ignored the terms that do not depend on (qa, pa)
since they would not contribute to the metric integrands
Λij(t1, t2) := 〈Oin(t1)Ojn(t2)〉cl − 〈Oin(t1)〉cl〈Ojn(t2)〉cl.
Actually, we can deal with both deformation functions simul-
taneously and write them as

Oin(t) =ε1nQ
2
1(t)∂iε1n + ε2nQ

2
2(t)∂iε2n

+ (ε2
2n − ε2

1n)Q1(t)Q2(t)∂iαn, (25)

where ∂i := ∂/∂xi, the Qa(t), (a = 1, 2) are the nor-
mal coordinates that uncouple the two harmonic oscillators
through the transformation (14), and εan are the normal fre-
quencies (17). The next step is to write theQa(t) as functions
of the initial conditions (Qa0, Pa0) and time as

Qa(t) = Qa0 cos εant+
Pa0

εan
sin εant, (26)

and then, the initial conditions in terms of initial action-angle
variables (φa0, Ia) as

Qa0 =

√
2Ia
εan

sinφa0, Pa0 =
√

2Iaεan cosφa0. (27)

Now, we use the classical torus average (6) to form the
integrands Λij(t1, t2) which turn out to be

Λij(t1, t2) =
1

2
∂iε1n∂jε1nI1 cos (2ε1nT )

+
1

2
∂iε2n∂jε2nI2 cos (2ε2nT )

+
∂iαn∂jαn
ε1nε2n

(
ε2

1n− ε2
2n

)2
cos (2ε1nT ) cos (2ε2nT ) .

(28)

where T = t1 − t2. Then, we convert the trigonometric
functions to complex exponentials, substitute (28) into (4),
and use the standard regularization

0∫
−∞

dt1

∞∫
0

dt2 e
±iΩT := lim

δ→0+

0∫
−∞

dt1

∞∫
0

dt2 e
±i(Ω∓iδ)T

= − 1

Ω2
(29)

to finally obtain the classical metric for the normal phase,
whose components are

gij =
∂iε1n∂jε1n

8ε2
1n

I2
1 +

∂iε2n∂jε2n

8ε2
2n

I2
2

+ ∂iαn∂jαn

(
ε1n

ε2n
+
ε2n

ε1n

)
I1I2. (30)

It is clear from this expression that the appearance of normal
frequency ε1n in the denominator causes a divergence in the
metric components at λc =

√
ωω0

2 since ε1n vanishes at the
critical coupling [see Eq. (17)]; this property of the classical
metric signals the QPT in the Dicke model.
We now compute the QMT (2) for the normal phase. From

the Hamiltonian (13), we obtain the corresponding deforma-
tion operators, which can be written in compact form as

Ôin(t) =ε1nQ̂
2
1(t)∂iε1n + ε2nQ̂

2
2(t)∂iε2n

+ (ε2
2n − ε2

1n)Q̂1(t)Q̂2(t)∂iαn, (31)

where Q̂a(t), (a = 1, 2) are the operators corresponding to
the normal modes of the diagonal Hamiltonian, which can be
written in terms of annihilation and creation operators as

Q̂a(t) =
1√

2εan

(
b̂†a0e

iεant + b̂a0e
−iεant

)
. (32)
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With these operators at hand, we can compute the combination
1
2 〈{Ôin(t1), Ôjn(t2)}〉0−〈Ôin(t1)〉0〈Ôjn(t2)〉0 and then use
the regularization (29) to arrive at the components of the QMT,
which turn out to be

g
(0)
ij =

∂iε1n∂jε1n

8ε2
1n

+
∂iε2n∂jε2n

8ε2
2n

+ ∂iαn∂jαn

[
1

4

(
ε1n

ε2n
+
ε2n

ε1n

)
− 1

2

]
. (33)

Notice that, as in the case of the classical metric, the fre-
quency ε1n appears in the denominator in Eq. (33), causing a
divergence when λ = λc and signaling the QPT in the Dicke
model. Moreover, with both metrics [Eqs. (30) and (33)] at
our disposal, we find the relation

g
(0)
ij = gij −

1

2
∂iαn∂jαn, (34)

where we have made the identifications I1 = I2 = 1/2 and
I2
1 = I2

2 = 1, which will be assumed in the rest of this paper.
From (34) it is clear that the QMT (33) has an extra parameter-
dependent term that does not appear in its classical analog (30);
these type of terms have been related to an anomaly arising
from the ordering of the operators in the quantum case (see
Ref. [22] for details).

2. Metrics of the superradiant phase

The treatment of the superradiant phase is analogous to that
of the normal phase in both the classical and quantum settings;
the difference lies in the explicit expressions of the rotation
angle (20) and the normal frequencies (21) in terms of the
parameters. The classical counterpart of the Hamiltonian (18)
is

Hs,cl =− j
(

2λ2

ω
+
ω2

0ω

8λ2

)
− 4λ2 + ω2

2ω

+
1

2

(
p2

1 + p2
2 + ω2q2

1 +
16λ4

ω2
q2
2 + 2ωω0 q1q2

)
,

(35)

and its deformation functions are

O1s =
∂Hs,cl

∂ω
= ωq2

1 −
16λ4

ω3
q2
2 + ω0 q1q2, (36a)

O2s =
∂Hs,cl

∂λ
=

32λ3

ω2
q2
2 . (36b)

By following the same steps as in the normal phase, we arrive
at the classical and quantum metrics, which turn out to be

gij =
∂iε1s∂jε1s

8ε2
1s

I2
1 +

∂iε2s∂jε2s

8ε2
2s

I2
2

+ ∂iαs∂jαs

(
ε1s

ε2s
+
ε2s

ε1s

)
I1I2 (37)

and

g
(0)
ij =

∂iε1s∂jε1s

8ε2
1s

+
∂iε2s∂jε2s

8ε2
2s

+ ∂iαs∂jαs

[
1

4

(
ε1s

ε2s
+
ε2s

ε1s

)
− 1

2

]
, (38)

respectively. Notice that these metrics have the same form as
those of Eqs. (30) and (33) and hence satisfy the relation (34),
but with the normal frequencies ε1s and ε2s and the rotation
angle αs, showing a quantum anomaly effect. It is worth
mentioning that despite their same appearance, the metrics
are entirely different when written explicitly in terms of the
Hamiltonian parameters x = (ω, λ). This fact accounts for
their different form when plotted, as can be seen in Fig. 1.
Moreover, due to the presence of ε1s in the denominator of
(37) and (38), both metrics exhibit a divergence at λ = λc,
which reveals the existence of theQPT. Remarkably, this shows
once again that the classical metric is sensitive to the presence
of the QPT.

0.2 0.4 0.6 0.8
λ
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8

g11
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(b)
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-2
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(d)

FIG. 1. Metric components and scalar curvature of the classical met-
ric (solid blue) and the quantum metric (dashed red) as a function of
λ when ω0 = 1 and ω = 0.8. All the components show a diver-
gence at the phase transition (dotted orange) with critical coupling
λc = 0.447, whereas the scalar curvature does not.

To gain more insight into this, in Figs. 1(a)–1(c) we show
the components of the classical and quantum metrics for both
phases and fixed values of ω and ω0. Clearly, we see that both
metrics diverge at λc, which signals the QPT. Moreover, these
metrics have a very close behavior in the neighborhood of λc.
Nevertheless, the component g22 of the classical metric at λ =
0 shows a different behavior than its quantumcounterpart. This
can be attributed to the fact that the anomalous extra term that
appears in (38) produces this notorious difference, making the
classical metric more sensitive to the vanishing of the coupling
term in the Hamiltonian (23). The scalar curvatures, computed
using (7), for both the classical and quantummetrics are shown
in Fig. 1(d). We observe some features from the plots. First,
the agreement between them is right in the superradiant phase
(λ > λc). Second, an important difference between them
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appears in the normal phase (λ < λc): while in the quantum
case the scalar curvature takes a constant value very close
to −4, in the classical case the scalar curvature possesses a
minimum around λ = 0.16. Such a difference can be related
to the behavior of the component g22 at that phase. And
third, in the limit λ→ λc the scalar curvatures approach each
other and tend to −4. Notice, however, that for λ = λc they
are not defined since the classical and quantum Hamiltonians
used to compute the metrics are not valid at that point. The
behavior of the scalar curvatures when λ → λc implies that
the singularity of the classical and quantummetrics at the QPT
is merely an artifact of the parameter space’s coordinates, i.e.,
it is a removable singularity. This is why in the next model
that we analyze, we carry out a numerical study for finite j to
elucidate the nature of the singularity. It is worth mentioning
that the scalar curvature of the quantum metric resembles the
one found in Ref. [29], the only difference being the method
used to compute it and the overall sign due to the convention
that we explained in Sec. II.

3. Metrics under resonance

A special important case of the Dicke model is that of res-
onance, i.e., when ω = ω0. We are unaware of previous

geometric analyses in this case. In order to treat it, we take
the limits αn → π/4 and ω0 → ω in the classical and quan-
tum metrics corresponding to the normal phase [Eqs. (30) and
(33)], whereas in the superradiant phase we only set ω0 → ω
in the associated metrics [Eqs. (37) and (38)]. The resulting
metric components in terms of the parameters are greatly sim-
plified, and we find that in the normal phase, the components
g12 and g22 of the classical and quantum metrics perfectly
match when the identifications of the action variables are used.
These components are

g12 = g
(0)
12 =

λ(4λ2 − 3ω2)

8ω(ω2 − 4λ2)2
, (39a)

g22 = g
(0)
22 =

4λ2 + ω2

4(ω2 − 4λ2)2
. (39b)

On the other hand, the g11 and g
(0)
11 components do not match,

as we can see below:

g11 =
16λ4ω3 − 8λ2ω5 + ω7 + λ2

√
ω2 − 4λ2(8λ4 − 6λ2ω2 + 2ω4)

32λ2ω2 (ω2 − 4λ2)
5/2

, (40a)

g
(0)
11 =

−16λ6 + 48λ4ω2 − 23λ2ω4 + 3ω6 − ω
√
ω2 − 4λ2(4λ4 − 3λ2ω2 + ω4)

16ω2(ω2 − 4λ2)5/2
(
ω +
√
ω2 − 4λ2

) . (40b)

In the superradiant phase, the classical and quantum metric
components are more complicated and do not match; however,
it can be seen that all of them diverge at the critical coupling
λc = ω/2. We show in Figs. 2(a)–2(c) the components of
the metrics under the resonance condition ω = ω0, for both
phases. We can see that the component g11 has a divergence
at λ = 0. Moreover, we observe that in the normal phase, the
components g12 and g22 of the classical metric are exactly the
same as those of the quantum metric, just as we mentioned
earlier. It is also worth noting that both metrics show the same
behavior in the limiting cases λ→ λc and λ→∞.

Figure 2(d) shows the scalar curvatures associated with the
classical and quantummetrics. We notice that the scalar curva-
ture in the classical case presents a divergence at λ = 0, which
is inherited from the g11 metric component. Once again, we
see that the anomaly’s role is to get rid of that singularity
in the quantum result. In this regard, it might be interesting
to study if the behavior of the Dicke model in the resonance
case can be considered as a quantum simulator [44] of some
kind of cosmology. Furthermore, in contrast to the nonres-
onant analysis, both scalar curvatures diverge at the QPT in

the same way. There is an alternative approach to the metrics
under the resonance condition. One could set ω0 = ω in the
Hamiltonian from the very beginning and, from there, derive
the correspondingOi. The resulting deformation operators are
different from those we have used, and lead to different expres-
sions for both classical and quantum metrics as functions of ω
and λ. As a matter of fact, it turns out that both metrics have
zero scalar curvature in the whole range of ω and λ, which is
not particularly illuminating. We are unaware of the physical
reason behind this result and consider that it deserves further
analysis.

To conclude this section, we would like to stress the fact
that both the classical and quantum metrics exhibit a divergent
behavior at the QPT for the nonresonant and resonant cases.
This is a remarkable result since it shows that the classical
metric can be used to get a first insight into the information
contained in the QMT. Additionally, according to the analysis
of the (classical and quantum) scalar curvatures in the resonant
case, there is a genuine singularity at the QPT which cannot be
removed by a change of parameters, while in the nonresonant
case there seems to be a spurious (removable) singularity. This
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FIG. 2. Metric components and scalar curvature of the classical met-
ric (solid blue) and the quantum metric (dashed red) for the resonant
case as a function of λ when ω = 0.8. All of them show a diver-
gence at the phase transition (dotted orange) with critical coupling
λc = 0.4.

effect could be a consequence of the fact that the Holstein-
Primakoff approximation fails at the QPT [45]. Then, in order
to clarify this point it would be valuable to carry out a study
for finite j of the parameter space associated to the Dicke
model. This model has features that make the study for finite
j subtle, although some authors have successfully employed
techniques that can be implemented numerically and allow the
exploration of the system in various regimes [35, 37]. In the
next section, we study a simpler system with a finite Hilbert
space that consists of one degree of freedom: the LMGmodel.
In this case, we shall find a perfect agreement between the
classical and quantum descriptions of the parameter space in
the thermodynamic limit. Furthermore, we will be able to
carry out a numerical analysis of the QMT for finite sizes of
the system, providing additional information of interest.

IV. LIPKIN-MESHKOV-GLICK MODEL

The LMG model consists of N mutually interacting spin-
half particles affected by a transverse magnetic field. It was
first introduced in the context of nuclear physics [30], and it
has been deeply studied through various analytic and numerical
techniques [45–48]. Furthermore, it has been used as a model
for Floquet time crystals [49], in the study of out-of-time order
correlators [41], and to illustrate the orthogonality catastrophe
and its relation to quantum speed limit [50].

The Hamiltonian considered is given by [31]

Ĥ = −h
∑
i

σiz −
1

N

∑
i<j

(σixσ
j
x + γσiyσ

j
y), (41)

where σix, σiy , and σiz are the Pauli spin matrices for the ith
spin, h, γ are real parameters, and we have set ~ = 1. From
here, it is customary to define the pseudospin (collective spin)

operators as Ĵα =
∑
i σ

i
α/2 and cast the Hamiltonian into the

form

Ĥ = −2hĴz −
1

j

(
Ĵ2
x + γĴ2

y

)
, (42)

where, as usual, we restrict ourselves to the maximum pseu-
dospin representation with j = N/2. We also consider h ≥ 0
and −1 < γ < 1, and analyze the system in the thermody-
namic limit j →∞, where the QPT occurs.

A. Analysis in the thermodynamic limit

The description of the LMG model when j →∞ begins by
taking the expectation value of the Hamiltonian (42) in spin
coherent states |z〉 given by [41, 51]

|z〉 =
ezĴ+

(1 + |z|2)j
|j,−j〉, (43)

where |j,−j〉 is the state with the lowest pseudospin projection
and z is a complex number parametrized in terms of the two
angles of the Bloch sphere as z = eiφ tan θ

2 . The function
thus obtained is

Hcl(θ, φ) := lim
j→∞
〈z|Ĥ|z〉 = −2hJz −

1

j
(J2
x + γJ2

y ), (44)

and it defines the classical energy surfacewhere the pseudospin
vector ~J = j(sin θ cosφ, sin θ sinφ, cos θ) dynamics will take
place. Explicitly in terms of the angles (θ, φ), the function

Hcl = −j[2h cos θ + sin2 θ(cos2 φ+ γ sin2 φ)] (45)

possesses two extrema, each of which defines a phase of the
system. These phases are as follows:
(i) Symmetric phase: θ0 = 0. It corresponds to a classical

pseudospin vector aligned with the z axis. The ground state
energy is Eg := Hcl(0, φ0) = −2hj.
(ii) Broken phase: θ0 = cos−1 h with φ0 = 0 or φ0 = π.

It corresponds to two possible configurations of the pseu-
dospin vector, signaling two ground states with energy Eg :=
Hcl(cos−1 h, 0) = Hcl(cos−1 h, π) = −(1 + h2)j. In this
case, the classical pseudospin is not aligned with the z axis.
The ground state energy Eg = Eg(h) is thus the piecewise

function

Eg
j

=

{
−(1 + h2), h < 1

−2h, h > 1
(46)

which has a discontinuous second derivative at h = 1, signal-
ing a second order QPT [6]. The region h > 1 corresponds to
the symmetric phase where the ground state is unique, whereas
the region h < 1 is the broken phase which has a degenerate
ground state energy. We will not pursue further the treatment
with coherent states since the QMT resulting from their use
provides no valuable information, as can be easily seen from
the dependence of the ground state’s coordinates (θ0, φ0) on
the parameters x = (h, γ).
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1. Symmetric phase

To carry out the analysis of the symmetric phase in the
thermodynamic limit, wewill use again theHolstein-Primakoff
transformation [42]:

Ĵ− = â†
√

2j − â†â, Ĵ+ =
(√

2j − â†â
)
â, Ĵz = j−â†â,

(47)
which is then truncated to zeroth order in 1/j under the as-
sumption that j →∞. Hence, we have

Ĵ− '
√

2j â†, Ĵ+ '
√

2j â, Ĵz ' j − â†â. (48)

Taking this into account and using Ĵ± = Ĵx ± iĴy , the
resulting quadratic Hamiltonian that corresponds to (42) is

Ĥ ' −1 + γ

2
− 2hj− (1 + γ− 2h)â†â− 1− γ

2

(
â†2 + â2

)
,

(49)
which, in terms of Q̂ and P̂ , can be written as

Ĥ ' −h− 2hj + (h− γ)P̂ 2 + (h− 1)Q̂2. (50)

From (49), it is clear that the Hamiltonian can be diagonalized
through the Bogoliubov transformation from operators (â, â†)

to (b̂, b̂†) given by

â = coshα b̂+sinhα b̂†, â† = sinhα b̂+coshα b̂†, (51)

with tanh 2α = 1−γ
2h−γ−1 . By doing this, the Hamiltonian

takes the form

Ĥ ' −h− 2hj + 2
√

(h− 1)(h− γ)

(
b̂†b̂+

1

2

)
. (52)

It is readily noted here that at the phase transition, h = 1, the
frequency of the resulting harmonic oscillator vanishes.

2. Broken phase

In the case of the broken phase, we need to perform a rotation
around the y axis to align the z axis with the pseudospin ground
state configuration. Hence, we shall transform the operators
(Ĵx, Ĵy, Ĵz) to a new set of operators (Ĵ ′x, Ĵ

′
y, Ĵ
′
z) asĴxĴy

Ĵz

 =

 cos θ0 0 sin θ0

0 1 0
− sin θ0 0 cos θ0

Ĵ ′xĴ ′y
Ĵ ′z

 , (53)

where cos θ0 = h and sin θ0 =
√

1− h2, which is the
ground state configuration that corresponds to (θ0, φ0) =
(cos−1 h, 0). Thus, the Hamiltonian of the broken phase turns
out to be [46]

Ĥ ′ =− 2h2Ĵ ′z + 2h
√

1− h2Ĵ ′x −
1

j
(1− h2)Ĵ ′2z

− 1

j

[
h2Ĵ ′2x + h

√
1− h2(Ĵ ′xĴ

′
z + Ĵ ′zĴ

′
x) + γĴ ′2y

]
.

(54)

Next, we apply the truncated Holstein-Primakoff transforma-
tion (48) to these rotated operators to find the quadratic Hamil-
tonian for the broken phase. The resultingHamiltonian is given
by

Ĥ ′ ' −(1 + h2)j + (1− γ)P̂ 2 + (1− h2)Q̂2 (55)

or, in terms of the creation and annihilation operators b̂ and b̂†,

Ĥ ′ ' −(1 + h2)j + 2
√

(1− h2)(1− γ)

(
b̂†b̂+

1

2

)
. (56)

We observe once more that at the critical point h = 1, the fre-
quency of the resulting harmonic oscillator vanishes, which
signals the QPT. Now that we have at hand the effective
quadratic Hamiltonians for both the symmetric and the bro-
ken phases, we proceed to compute the classical and quantum
metric tensors.

B. Classical and quantum metric tensors for the LMG model

We are now ready to compute the classical and quantum
metrics in the thermodynamic limit j →∞. In what follows,
we take x = {xi} = (h, γ), i = 1, 2, to be the adiabatic
parameters. To build the classical metric, we need to derive
the deformation functions from the Hamiltonian (44). They
are

O1 =
∂Hcl

∂h
= −2Jz, (57a)

O2 =
∂Hcl

∂γ
= −

J2
y

j
. (57b)

At this point, we introduce canonical coordinates for the de-
scription of the classical system. It is easy to see that the
coordinates (φ, Jz) are canonical in the sense that they repro-
duce the angular momentum algebra {Ji, Jj}(φ,Jz) = εijkJk,
where

{f, g}(φ,Jz) :=
∂f

∂φ

∂g

∂Jz
− ∂f

∂Jz

∂g

∂φ
. (58)

Then, we perform a canonical transformation and move to the
(Q,P ) representation, where

Q =
√

2(j − Jz) cosφ, P =
√

2(j − Jz) sinφ. (59)

After this, the resulting classical LMG Hamiltonian is

Hcl = −2hj+h(P 2+Q2)− (γP 2+Q2)

(
1−P

2+Q2

4j

)
.

(60)
In Fig. 3, we show the level curves of the classical Hamiltonian
Hcl in terms of the (Q,P ) coordinates for the two different
phases of the model. Once the mean field Hamiltonian Hcl

is constructed with the coherent states, the analysis is purely
classical in terms of fixed points and their stability. This
highlights the importance of the classical methods for quantum
systems.
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FIG. 3. Phase space corresponding to the classical Hamiltonian Hcl

for γ = 0.1 and (a) h = 1.3 or (b) h = 0.3. In (a), the red point is
the only minimum; this is the symmetric phase. On the other hand,
in (b), the red point becomes a local maximum and the green points
appear as two degenerate minima; this is the broken phase.

1. Metrics for the symmetric phase

We first consider the symmetric phase. The quadratic
Hamiltonian associated to (60) is

Hcl ' −2hj + (h− γ)P 2 + (h− 1)Q2. (61)

Notice that when Q = P = 0, only the ground state energy
of the symmetric phase, Eg = −2hj, survives. We need
to express the deformation functions (57) in terms of initial
action-angle variables and time. To do this, wefind the solution
to the equations of motion of (61), which are

Q(t) =Q0 cosωt+
P0

ω
sinωt, (62a)

P (t) =P0 cosωt− ωQ0 sinωt, (62b)

where we have identified the frequency as
ω =

√
(h− 1)(h− γ). From here, we readily find

the action-angle variables (φ0, I) and write the initial
conditions in terms of them as

Q0 =

√
2I
√
h− γ√
h− 1

sinφ0, P0 =

√
2I
√
h− 1√
h− γ

cosφ0.

(63)
We substitute (63) in (62) and use (4) with the deformation
functions (57) to find the classical metric. The resultingmetric
components are

g11 =
I2

32

[
1− γ

(h− 1)(h− γ)

]2

, (64a)

g12 =
I2(1− γ)

32(h− 1)(h− γ)2
, (64b)

g22 =
I2

32(h− γ)2
. (64c)

We see that at the QPT, h = 1, the components g11 and g12

diverge. Nevertheless, we can also note that the determinant
of the classical metric is zero.

Now, to compute the QMT in the thermodynamic limit, we
use the Hamiltonian (42) which leads to the quantum defor-
mation operators

Ô1 =
∂Ĥ

∂h
= −2Ĵz, (65a)

Ô2 =
∂Ĥ

∂γ
= −

Ĵ2
y

j
. (65b)

Recall that when j → ∞, the truncated Holstein-Primakoff
transformation allows us to cast the angular momentum oper-
ators in the (Q̂, P̂ ) representation, as suggested by Eq. (48).
Thus, the quantum deformation operators read as

Ô1 = P̂ 2 + Q̂2 − 2j − 1, (66a)

Ô2 = −P̂ 2. (66b)

We express them in terms of creation and annihilation oper-
ators and time, and read off the spectrum from the effective
quadratic Hamiltonian (50). This information is then substi-
tuted into Eq. (2), which yields the following metric compo-
nents of the QMT:

g
(0)
11 =

1

32

[
1− γ

(h− 1)(h− γ)

]2

, (67a)

g
(0)
12 =

1− γ
32(h− 1)(h− γ)2

, (67b)

g
(0)
22 =

1

32(h− γ)2
. (67c)

This QMT has already been obtained in Ref. [29] by using
another method. Hence, we corroborate it with our approach.
We also see that its determinant is zero, which was noted in
the same reference and implies that information geometry is
ill defined in the symmetric phase of this model. Compar-
ing Eqs. (64) and (67), it is easy to see that the classical and
quantum results have exactly the same parameter dependence
and that the classical metric reproduces the singularities of the
QMT. Moreover, both metrics match perfectly if the identifi-
cation I2 = 1 is made. This is a remarkable result, because
through a classical procedure, like the parametrization of the
canonical coordinates (Q,P ) in terms of action-angle vari-
ables [see Eq. (63)] and the classical torus average (6), we
have been able to obtain the quantum result.

2. Metrics for the broken phase

For the broken phase, the classical Hamiltonian is obtained
by taking the expectation value of Eq. (54) in spin coherent
states |z〉, which leads to

H ′cl =− j(1 + h2) + (1− γ)P 2 + (1− h2)Q2

+
h√
j

√
1− h2Q(P 2 +Q2)

√
1− P 2 +Q2

4j

+
1

4j
(P 2+Q2)

[
γP 2+h2Q2− (1−h2)(P 2+Q2)

]
.

(68)
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The quadratic approximation of this Hamiltonian is given by

H ′cl ' −j(1 + h2) + (1− γ)P 2 + (1− h2)Q2. (69)

In this case, the evaluation of H ′cl at Q = P = 0 yields the
broken phase ground stateEg = −j(1+h2). The deformation
functions are the same as those of (57); however, they must
be expressed in terms of rotated quantities, in which case they
take the following form:

O′1 = 2
√

1− h2J ′x − 2hJ ′z, (70a)

O′2 = −
J ′2y
j
. (70b)

From here, we move to the position-momentum representation
through the transformation (59) and find that the deformation
functions are

O′1 = h(P 2 +Q2) + 2
√
j(1− h2)Q− 2hj − h, (71a)

O′2 = −P 2. (71b)

Then, we use (62) and (63), and substitute (71) into (4), which
yields the components of the classical metric

g11 =
jI√

(1− h2)(1− γ)
+
I2

32

[
h(h2 − γ)

(1− h2)(1− γ)

]2

,

(72a)

g12 =
I2h

(
h2 − γ

)
32 (1− h2) (1− γ)2

, (72b)

g22 =
I2

32(1− γ)2
. (72c)

As for the QMT in the broken phase, we use the deformation
operators (65), rewrite them in terms of the rotated angular
momenta (53), and use the truncated Holstein-Primakoff trans-
formation (48) to compute the metric. The resulting QMT is

g
(0)
11 =

j

2
√

(1− h2)(1− γ)
+

1

32

[
h(h2 − γ)

(1− h2)(1− γ)

]2

,

(73a)

g
(0)
12 =

h(h2 − γ)

32(1− h2)(1− γ)2
, (73b)

g
(0)
22 =

1

32(1− γ)2
. (73c)

It is remarkable that both classical and quantum metrics have
the exactly same parameter structure and perfectly match using
the identifications of the action variables. In contrast to the
symmetric phase, both metrics are now invertible and have the
determinants

det g =
I3

32
√

(1− h2)(1− γ)5
, (74a)

det g(0) =
j

64
√

(1− h2)(1− γ)5
, (74b)

which at the critical point h = 1 diverge. This is a further
result since Ref. [29] did not analyze the broken phase of the
model. Thus, we have found that the broken phase has a
well-defined metric structure that allows a further geometric
characterization with the aid of the scalar curvature. Further-
more, we see once more that the classical metric contains the
whole information that can be extracted from the QMT, with
the advantage that it is simpler to compute. The scalar cur-
vature for either of these two metrics can be computed with
Eq. (7), which yields

R = −4 +
7h4 − (9γ − 2)h2 − 4(1− γ)

j
√

(1− h2)(1− γ)3
. (75)

From this expression, we observe that for large values of j (as
is expected in the thermodynamic limit), the scalar curvature
practically takes on the constant value −4, and that it diverges
at h = 1, which indicates the presence of the QPT. It is inter-
esting to observe that the metric’s singularity is independent
of the coordinate system for this phase since it also appears in
the scalar curvature which is a geometric invariant [26].

3. Numerical analysis for finite j

We now want to address the effects of having a finite j
directly and without resorting to any approximations. This
will help us delve into the nature of the singularities of the
QMT and the scalar curvature, and deduce whether they are
effects of the truncated Holstein-Primakoff transformation or
are intrinsic to the system. It is worth mentioning that, to our
knowledge, the numerical computation of the scalar curvature
for the LMG has not been carried out previously.
The Hamiltonian (42) can be numerically diagonalized,

which will give us in turn the differences between the clas-
sical metric [Eqs. (64) and (72)] with the QMT for a given
value of j. We obtain the numerical results by employing the
so-called perturbative form of the QMT, which reads as

g
(0)
ij (x) =

∑
n 6=0

〈0|Ôi|n〉〈n|Ôj |0〉
(En − E0)2

. (76)

The evaluation of this formula requires time-independent de-
formation operators, as opposed to Eq. (2), but at the cost of
summing over all the elements of the eigenspace of Ĥ (for
details, see [3]).
We begin by comparing, in Figs. 4(a)–4(c), the classical (or

quantum) metric in the thermodynamic limit1 with the exact
QMT [obtained through (76)] for j = 500 and γ = −0.5.
We see that the agreement between them is acceptable as long
as we are not close to the QPT where the Holstein-Primakoff
approximation fails [45]. At the transition, the analytic metric
components g11 and g12 show a divergence that is not present

1 Recall that the classical and quantum metrics yield the same result in the
thermodynamic limit.
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FIG. 4. Metric components and scalar curvature of the classical (or
quantum)metric in the thermodynamic limit (solid blue) and the exact
QMT for j = 500 (dashed black) as a function of h when γ = −0.5.
In the thermodynamic limit, the g11 and g12 components and the
scalar curvature diverge at the phase transition (dotted orange).

in their finite j counterparts coming from Eq. (76). For the
scalar curvature, we see in Fig. 4(d) that the analytic plot has
a divergence at h = 1, and that it does not exist in the region
h > 1, which was expected from Eq. (75).

FIG. 5. Metric components and scalar curvature for j = 100. The
plots clearly show the presence of the QPT precursors. The critical
line h = 1 is shown in cyan.

In Fig. 5, we show the three components of the QMT for
j = 100 and the scalar curvature obtained through numerical
differentiation over a mesh in the parameter space. We see
the appearance of peaks near h = 1, which we identify as
the precursors of the QPT. This is most clearly seen in Fig. 6,
where we show the QMT and its determinant for a fixed γ
and different values of j. We notice that the peaks of both
the metric components and its determinant become narrower
and get closer to h = 1 as j increases, which corroborates

their identification as the precursors of the QPT. Actually, this
suggests that for large values of j and h = 1, the exact QMT
components g11 and g12 will have a singularity. On the other
hand, g22 does not seem to have such a good agreement with
its analytic counterpart near the QPT; this is because g22 [see
Eqs. (64) and (72)] is not sensitive to the critical value h = 1,
unlike the other components.
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FIG. 6. QMT components and determinant for different values of j
when γ = −0.5. The peaks in the metric components and in the
determinant become narrower as j increases.

Now, Fig. 6(d) helps us understand the behavior of the scalar
curvature (see Fig. 7) when h > 1. The determinant falls
rapidly to near-zero values just before the separatrix and main-
tains these values when h > 1. That is why we see in Figs. 7
and 8 that the slope of the descending curve for h > 1 gets
steeper as j increases. Thus, we expect that for large values of
j and h = 1, the scalar curvature will be an almost vertical line
that falls off to large negative values. The exhibited dissimilar
behavior between the analytic and numerical results is a con-
sequence of the failure of the Holstein-Primakoff truncation at
h = 1, which causes the scalar curvature to diverge, in contrast
to the smooth numerical curve.
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0.7 0.8 0.9 1.0
h
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-15

-10
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0

R

FIG. 7. Scalar curvature for different values of j when γ = −0.5. It
is seen that the two peaks (one negative and one positive) approach
each other and that the slope of R around h = 1 gets steeper as j
increases.
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FIG. 8. Derivative of the scalar curvature with respect to h evaluated
at h = 1 for different values of j when γ = −0.5. The plot clearly
shows the tendency of the slope to higher negative values.

In Fig. 8, we analyze in more detail the behavior of the
derivative of R with respect to h evaluated at h = 1 as a
function of j for γ = −0.5. The function that fits the points is

∂R

∂h

∣∣∣∣
h=1

= −34.2− 0.65j. (77)

This equation clearly shows that the derivative of R goes to
−∞ as j → ∞, confirming the behavior displayed in Fig. 7.
Therefore, we infer that in the thermodynamic limit, the dis-
continuity of the scalar curvature (which is −4 in the sym-
metric phase and does not exist in the broken phase) is the
cause of the singularity in the derivative at the QPT. In another
work [24], we explore a modified LMG model that has an
invertible metric in both phases and makes this point clearer,
showing without doubt that the scalar curvature is discontinu-
ous at the QPT in the thermodynamic limit, which causes the
divergence in its derivative there.

Having studied the slope ofR at the QPT, we analyze in the
next section the behavior of the QMT and its scalar curvature
in terms of the maxima and minima that they display.

4. Peak analysis

To better understand the behavior of numerical QMT and
its scalar curvature for finite j, we close this section with an
analysis of their peaks. In Fig. 9, we plot the height of the
peaks of the exact QMT components as a function of h while
we fix γ = −0.5. The curves that interpolate the points have
the following form:

(i) g11 peak:

g
(peak)
11 = −22.5317 +

1.5333

(h− 1)2
. (78)

(ii) g12 peaks:

g
(peak 1)
12 = 0.0608 +

0.1990

h− 1
, (79a)

g
(peak 2)
12 = −0.0103− 0.0048

h− 1
. (79b)

(iii) g22 peaks:

g
(peak 1)
22 = 0.0498− 0.0142h+ 0.0042h2, (80a)

g
(peak 2)
22 = 0.0046− 0.0042h+ 0.0019h2, (80b)

g
(peak 3)
22 = 0.0207− 0.0125h− 0.0194h2. (80c)

From the functions (78) and (79), it is clear that in the lim-
its h = 1 and j → ∞ the QMT components g11 and g12

exhibit a divergent behavior, which is in accordance with the
corresponding classical (or quantum) metric components in
the thermodynamic limit.
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FIG. 9. Peaks of the QMT components as functions of h when
γ = −0.5. The value of j is indicated for each point. The g11
component has only one peak, g12 has two peaks, and g22 has three
peaks.

In Fig. 10, we plot the height of the peaks as a function of
j for γ = −0.5. A linear relation between these quantities is
evident when using a log-log scale. The function we use to fit
the points is

ln(g
(peak)
ij ) = m ln(j) + n, (81)

where the parameters m and n are shown in Table I for every
peak. Notice that we reproduce the value m ≈ 1.3 for the
metric component g11 that was obtained in [31, 46]. In ad-
dition to this, we analyze the other components, finding that
the sum of the m values for the two peaks of g12 is 1.3142,
which a similar result to that of the g11 component. This is
because g12 has mixed information about the parameters h and
γ. Accordingly, the m values of g22 do not relate with those
of the other components.

Now, we study the scalar curvature for two representative
values of γ. This will allow us to characterize R for finite j
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FIG. 10. Peaks of the QMT components as functions of j when
γ = −0.5. The axes are presented in logarithmic scale.

TABLE I. Values ofm and n in Eq. (81) for γ = −0.5. Notice that
the two peaks of g12 have the property that their values ofm sum up
to 1.3142, which is close to them value of g11 peak.

Peak m n

g
(peak)
11 1.3103 -0.7480

g
(peak 1)
12 0.6549 -2.2513
g
(peak 2)
12 0.6593 -4.1853
g
(peak 1)
22 -0.0081 -3.1676
g
(peak 2)
22 -0.0037 -6.0269
g
(peak 3)
22 0.0731 -4.9007

and infer its behavior in the j →∞ limit. We first analyze the
behavior of the extrema as a function of h. In Fig. 11, we plot
the two peaks of R for γ = −0.5 and −0.1. One of the peaks
is a local minimum (peak 1) and the other is a maximum (peak
2). The functions that interpolate the points of the minima are

R(peak 1)(h, γ = −0.5) = −3.407− 2.197

h+ 0.795
, (82a)

R(peak 1)(h, γ = −0.1) = −3.443− 1.525

h+ 0.285
, (82b)

whereas for the maxima they are

R(peak 2)(h, γ = −0.5) = −2.972 +
3.674

h+ 0.412
, (83a)

R(peak 2)(h, γ = −0.1) = −2.685 +
2.145

h− 0.073
. (83b)

At h = 1, where the QPT appears in the thermodynamic limit,
the first peak of R takes the value of −4.631 when γ = −0.5
and−4.630 when γ = −0.1, whereas the second peak goes to
−0.370 when γ = −0.5 and to −0.371 when γ = −0.1. The
value of the first peak in both cases is very close to the one
predicted by the truncated Holstein-Primakoff approximation.
Also, notice that at h = 1, the minima for the two different

values of γ are similar, which is also the case for the maxima.
This is seen in Fig. 11, where both lines intersect.
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FIG. 11. Peaks of the scalar curvature as functions of h for γ = −0.5
and −0.1. The values of j =12,16,20,24,28,32,40,50,75,100,125,
175,250,300,500 were considered. In both plots, j grows with h.

If we now analyze the value of the peaks as a function of j,
we can fit the data for the minima as follows:

R(peak 1)(j, γ = −0.5) = −4.645− 3.882

j0.812
, (84a)

R(peak 1)(j, γ = −0.1) = −4.655− 6.100

j0.879
. (84b)

For the maxima, the functions take the form

R(peak 2)(j, γ = −0.5) = −0.365 +
3.408

j0.695
, (85a)

R(peak 2)(j, γ = −0.1) = −0.360 +
4.749

j0.726
. (85b)

We show in Fig. 12 the behavior of the two peaks of R as a
function of j when γ = −0.5 and −0.1. Two main features
are seen. First, the minimum (peak 1) grows as j increases
and the maximum (peak 2) decreases with j. Second, the
functions (84) reveal that the minimum reaches a value around
−4.6when j →∞, whereas themaximum (85) goes to−0.36.
This means that both peaks persist in the thermodynamic limit,
which is also consistent with Eqs. (82) and (83), since the
limits h = 1 and j → ∞ in both sets of equations predict
the same results. Therefore, although the scalar curvature is
smooth near the QPT, its peaks serve as precursors of the phase
transition for finite j. Furthermore, in contrast to the QMT
which is singular at the QPT in the thermodynamic limit, the
scalar curvature is discontinuous there.
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FIG. 12. Peaks of the scalar curvature as functions of j for γ = −0.5
and−0.1. The minimum is shown in (a) and the maximum is shown
in (b).

A final comment can be made regarding the change of sign
in the maximum of R. Solving the condition R(peak 2) = 0
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yields the value of j for which the maximum is zero. For
γ = −0.5 this value is j = 25, while for γ = −0.1 the result
is j = 35. This indicates a local change in the geometry of the
parameter space, i.e., a change in curvature from spherical type
to hyperbolic type, although we do not attribute any special
interpretation to those values of j.

V. CONCLUSIONS

We studied in this paper the classical analog of the QMT
and its scalar curvature for the Dicke and LMG models. Our
results confirm that the classical torus average reproduces all
or almost all the parameters’ structure of the QMT. In the
Dicke model, we considered the thermodynamic limit under
the truncated Holstein-Primakoff approximation and showed
that the classical metric and its scalar curvature have simi-
lar behavior as their quantum counterparts near the QPT. The
classical metric was obtained in this case, and the QMT was
corroborated under our time-dependent deformation functions
approach. Also, the resonance condition was analyzed, and a
divergence in the scalar curvature was found, as opposed to the
nonresonant case; here, too, both the classical and quantum
scalars diverge in the same manner. In the LMG model, our
analysis consisted of two main parts. First, we calculated the
classical metric and the QMT in the thermodynamic limit and
showed that they are identical, modulo a quantization rule for
action variables. Second, we computed the QMT for finite j
and compared it with the analytic counterpart, resulting in a re-
markable agreement except near the QPT, where the truncated
Holstein-Primakoff transformation is not valid anymore. In
Ref. [31], the authors found the fidelity susceptibility related
to the parameter h. However, we contributed by exploring the
parameter γ through the other two components of the QMT
and closed the geometric study with the analytic and numer-
ical computation of the scalar curvature, which had not been
performed for this model. The numerical results showed that
both the QMT and the scalar curvature are smooth for finite
j. The numerical analysis was further expanded by describing
the peaks of the metric components and the scalar curvature
near the critical region, which provided us with one last cru-
cial result: the maxima’s and minima’s dependence on h and
j. This analysis showed that the peaks of the QMT as well
as of the scalar curvature are the QPT precursors for finite
j. Furthermore, the extrapolation to j → ∞ showed that the
QMT is singular at the QPT and that the scalar curvature is
discontinuous there. For the Dicke model, the classical met-
ric’s behavior is the same as the quantum one near the QPT,
and the scalar curvature has the same value there regardless
of the presence of an anomaly. Remarkably, the effect of
the anomaly is not that relevant near the QPT. This is worth
pointing out since through a renormalization procedure in the
critical region, the thermodynamic limit results can provide
information regarding the scaling properties for finite j and
help classify the models in universality classes [45]. All these
features support our claim that the classical metric can give a
preliminary or even a complete idea of the quantum result.

The use of the classical metric opens the way to extend our

present work. For instance, we could study the quantum Dicke
Hamiltonian for finite j (8), and compare the results with those
obtained here. Furthermore, we could go deeper into the clas-
sical setting and explore the full mean-field Dicke Hamiltonian
constructed with coherent states, which is far more involved
andmay even contain chaotic dynamics (see Refs. [52, 53]). A
first way to proceed would be to carry out a classical perturba-
tive analysis as in Ref. [21] to find corrections to the quadratic
approximation in the thermodynamic limit and compare the re-
sults with their quantum counterpart [32]. Besides, the chaotic
region could be approached by studying the adiabatic gauge
potential (which is deeply related to the QMT) since it has been
found recently that it serves as a sensitive measure of quantum
chaos [54]. In this regard, the classical metric may also be of
interest to study quantum scarring in the Dicke model [55].
A different perspective in the study of quantum systems

can also be addressed. We could use the Wigner function
formulation of the QMT [56] to study a variety of many-
body systems and see whether it provides a deeper insight not
only into the QPTs, which refer to the ground state, but also
into excited-state quantum phase transitions (ESQPTs) [57].
Additionally, the Wigner function formalism may shed some
light on the semiclassical approximation and help clarify the
anomalies’ role that accounts for the difference between the
classical and quantum results. Furthermore, the full mean-
field LMG Hamiltonian (60) could be addressed and establish
the similarities and differences with the truncated results of the
Holstein-Primakoff transformation. Of course, the exploration
of the classical metric, the QMT, and their scalar curvature for
plenty other models from quantum optics and condensed mat-
ter can be carried out, and hopefully, the results will provide
us with a geometric picture that will allow a deeper under-
standing of the dynamics of these systems. Moreover, it will
be interesting to compute quantum, and classical metrics in
the case of Weyl and Dirac semimetals [25] and observe if the
classical metric can detect the chiral anomalies.
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