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Abstract

This paper shows that testability of reverse causality is possible even in the ab-
sence of exogenous variation, such as in the form of instrumental variables. Instead
of relying on exogenous variation, we achieve testability by imposing relatively weak
model restrictions and exploiting that a dependence of residual and purported cause
is informative about the causal direction. Our main assumption is that the true func-
tional relationship is nonlinear and that error terms are additively separable. We ex-
tend previous results by incorporating control variables and allowing heteroskedastic
errors. We build on reproducing kernel Hilbert space (RKHS) embeddings of proba-
bility distributions to test conditional independence and demonstrate the efficacy in
detecting the causal direction in both Monte Carlo simulations and an application to
German survey data.

Keywords: Endogeneity; Reverse causality; Conditional Independence; Causal Dis-
covery; Reproducing kernel Hilbert spaces.

1 Introduction

Endogeneity is a central problem in econometric models which potentially invalidates es-
timates of causal effects. Reverse causality, where the dependent variable causes the in-
dependent variable, is one source of such endogeneity. The aim of this paper is to show
that reverse causality is testable under mild assumptions and without relying on exogenous
variation. We build on Hoyer et al. (2009) who provide a link between nonlinear model
structure and causality, namely, that a nonlinear relation between cause and effect leads to
observable signals about causal direction using observational data. While their theoretical
results are striking, their results assume homoskedastic errors and do not generalize to
settings with additional control variables. We show that this assumption can be relaxed
to allow for heteroskedasticty with respect to additional control variables, as is commonly
the case in econometric applications. Our primary conditions for achieving testability are
twofold: First, we necessitate a nonlinear relationship between the dependent variable
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and the regressor (with no restrictions on how controls are incorporated into the model).
Second, we impose additively separable errors.

Following Hoyer et al., 2009, we also demonstrate how our testability result can be
applied in empirical practice. Specifically, we show that identification of the causal direc-
tion is equivalent to a conditional independence test of covariates and error terms given
control variables. We make use of conditional independence tests based on kernel mean
embeddings, i.e., maps of probability distributions into reproducing kernel Hilbert spaces
(RKHS) (see Muandet et al., 2017, for a survey). Intuitively, this corresponds to approxi-
mating conditional distributions with unconditional ones by weighting with an appropriate
kernel, and evaluating their covariance in an RKHS. The method can detect nonlinear
dependencies.

We consider two formal applications of our testability result. First, we explore testing
for causal direction based on conditional independence. As already indicated in the related
literature, achieving exact size control can be challenging within this framework, and we
provide a detailed discussion of this issue below. Second, we conduct causal discovery,
where we remain agnostic about the causal direction and compare test statistics for two
rivaling models to gain insight into which one represents the true causal structure (see
Peters et al., 2014).

In Monte Carlo simulations, we investigate the power of our approach to detect reverse
causality. We see that the degree of nonlinearity increases the power to detect reverse
causation. The procedure has surprisingly high accuracy in detecting the true causal di-
rection even under moderate form of nonlinearities and can be powerful even in linear
models under restrictions on the distribution of errors terms, which is a result described by
(Shimizu et al., 2006). Furthermore, we provide an empirical illustration using data from
the German Survey of Income and Expenditure. We show that our algorithm can infer
from purely observational data that work experience is a causal driver for income, not vice
versa. Substantively, this is not a surprising result; however, the fact that it can be inferred
without exogenous variation is.

Related literature Our test rests on the idea that X causing Y implies an independence
between the error of a regression of Y on X, and X. This idea goes back to Engle et al.
(1983), who propose a definition of an exogenous relation in terms of conditional densities.
In particular, they argue that, if a joint probability density of two random variables Y and
X factorizes as f(Y,X) = f(Y |X)f(X) and the conditional density f(Y |X) is invariant
to changes in the marginal density f(X), then X is called “super exogenous” (p. 278).
Statistical tests for the notion of “super exogeneity” are proposed by Favero and Hendry
(1992), Engle and Hendry (1993), and Hendry and Santos (2010). These tests rely on
analyzing to what extent parameter values are sensitive to exogenous interventions on
the purported cause. Thus, their results specifically rely on exogenous variation (e.g. in
the form of instrumental variables) whereas the approach at hand does not require such
variation.

The problem of identifying causal structure from non-experimental data is receiving con-
siderable attention in the causal machine learning literature (for comprehensive overviews
see Mooij et al., 2016; Peters et al., 2017; Schölkopf et al., 2021). In its bivariate form, the
problem is concerned with deciding whether a variable X is causing Y or vice versa solely
based on a non-experimental joint probability distribution of the two variables. Without
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making any assumptions regarding the true underlying data-generating process, no identi-
fication is possible.1 Shimizu et al. (2006) show that non-Gaussianity of observed variables
leads to identifiability. Subsequently, Hoyer et al. (2009) show that nonlinearity of h can
play a similar role as regards the identifiability of the causal direction as non-Gaussianity.
If the true model is of a nonlinear form, one can infer the causal direction without making
any assumptions about the distribution of the error.

Hoyer et al. (2009) and Mooij et al. (2016) discuss inference of the causal direction
between two random variables (cause and effect) from observational data. Peters et al.
(2014) constitutes a theoretical extension of these methods to more than two variables. The
paper at hand falls between these two strands as it accounts for more than two variables,
yet its primary concern is the causal directionality between a subset of just two of them.
The remaining variables W serve as controls.

In this paper, we rely on RKHSs and kernel mean embeddings, which are not widely used
in the econometrics literature, albeit with notable exceptions. Carrasco and Florens (2000)
and Carrasco et al. (2007) discuss the usefulness of RKHS theory given infinite number of
moment conditions. Singh et al. (2019) study the use of kernel methods in the context of
instrumental variable (IV) methods. They use kernel mean embeddings of the conditional
distribution of the covariates given the instrument to propose a nonlinear extension of
linear IV implementations. Zhang et al. (2020) propose kernelized moment restrictions to
estimate nonlinear IV estimators. Grünewälder et al. (2012) analyze connections between
kernel mean embeddings and vector-valued functions to analyze Markov decision processes.
Flaxman et al. (2015) use kernel mean embeddings to analyze who cast their votes for
Obama in the 2012 US presidential election.

This paper is also related to a strand of the literature, which make use of exogenous
variations to detect endogeneity of regressors. The idea to make use of instrumental vari-
ables to detect endogeneity was originally proposed by Hausman (1978). More recently,
Blundell and Horowitz (2007) and Breunig (2015) provide exogeneity tests using instru-
mental variables for nonparametric models with additively separable errors, Fève et al.
(2018) and Breunig (2020) for models with nonseparable errors.

The remainder of the paper is organised as follows. Section 2 establishes testability
of reverse causality under nonlinear regression functions and introduces the RKHS test
for independence. In Section 3, we analyze finite sample power of our RKHS procedure
in a Monte Carlo simulation study. Section 4 provides an application of our method to
empirical data. Appendix A provides a proof of our main testability result. Appendix B
gives a review of the construction of RKHS. Appendix C contains additional Monte Carlo
simulation results.

1Previous work shows that the causal direction cannot be identified without making further assumptions.
Peters (2012, Proposition 2.6) proves that for every joint distribution of two variables, X and Y , there is
a model Y = h(X, ε), with X ⊥⊥ ε with h a measurable function and ε a real-valued noise variable. The
roles of X and Y can be easily interchanged showing that the joint distribution itself does not identify the
causal direction in this most general form.
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2 Testing Reverse Causality

We show how to test for reverse causality between two variables X and Y in the presence of
additional covariatesW . First, we introduce the model, discuss how the model specification
relates to the existing causal discovery literature, and derive testable implications. Second,
we present the conditional independence test that is a central component of the test. Third,
we present the implementation of the test.

2.1 Model and Assumptions

Consider a model where observable continuous scalar variable X causes observable scalar
variable Y in the presence of the vector of covariates W (which we refer to in the following
as the model):

Y = h(X,W ) + U where U = σ(W ) ε and ε ⊥⊥ (X,W ) (1)

where ε are unobservable variables and σ(·) some strictly positive function. In addition,
we assume E[ε] = 0 without loss of generality.

Note that the error U is additively separable. The additive separability of U precludes
the dependence of marginal effects on unobservables except through a dependence via W .
The model allows for heteroskedasticity of the error term U with respect to the control
variables W . In particular, model equation (1) implies U ⊥⊥ X|W , which is also known as
conditional exogeneity (see White and Chalak, 2010). It corresponds to the unconfound-
edness assumption in the treatment effects literature (Imbens and Rubin, 2015) and is also
closely related to the special regressor assumption (see Lewbel, 2014, for an overview).

The main idea of this paper is to study the conditions under which this model is
distinguishable form reversed analog without relying on exogenous information. The reverse
model, where Y is causing X, again in the presence of the vector of covariates W , is defined
as

X = h̃(Y,W ) + Ũ where Ũ = ε̃ σ̃(W ) and ε̃ ⊥⊥ (Y,W ) (2)

where ε̃ are unobservable variables and σ̃(·) some strictly positive function.

We denote the probability density function of a random vector V by fV and make the
following assumptions.

Assumption 1 (Regularity). The functions h, h̃, fX|W , fY |W , fε, and fε̃ are three times
differentiable.

Assumption 2 (Nonlinearity). The functions h and h̃ are nonlinear in their first argu-
ments.

The nonlinearity of regression functions (Assumption 2) can be used to make inference
on the causal structure of a model is obtained first by Hoyer et al. (2009). We extend their
work by allowing for additional control variables W and also considering heteroskedasticity
of the error term with respect to these covariates. Intuitively, nonlinearity of h ensures that
the error terms in the reverse model are not independent of the regressor, which provides
power of the test. While linear models are used in many economic applications, they are
typically seen as approximations of nonlinear relationships between dependent variable and
regressors.
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2.2 Testability

We are now in a position to formulate the main theorem of this paper.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Both model (1) and the reverse model
(2) exist only if ξ(x,w) := log fX|W (x|w) satisfies the linear inhomogeneous differential
equation

∂3ξ(x, w̄)

∂x3
=

∂2ξ(x, w̄)

∂x2
G1(x, ȳ, w̄) +G2(x, ȳ, w̄) (3)

for all x and some fixed (ȳ, w̄), where G1(x, ȳ, w̄) and G2(x, ȳ, w̄) are defined in Appendix A.

The proof of this statement can be found in Appendix A. For the proof of the result,
we build on Hoyer et al. (2009) and extend their result to allow for control variables W
with additional form of heteroskedasticity. Intuitively, it is shown that causal and anti-
causal models can only exist simultaneously under very specific circumstances: if the joint
distribution of (Y,X,W ) satisfies both a causal and a anticausal model, we can show that
densities log fX|W and log fε of the causal model have to satisfy the linear inhomogeneous
differential equation (3). The solutions of this differential equation restrict the log density
of X given W to lie in a (specific) three-dimensional space, although a priori the (generic)
space of possible log marginal densities of X given W is infinite-dimensional (this argument
follows Hoyer et al., 2009, closely). To achieve testability of reverse causality, we need to
exclude those distributions that satisfy the differential equation, i.e., we need to exclude
specific combinations of log fX|W , log fε, and h(·).
Remark 1 (Characterization of differential equation (3)). In Table 1, we reproduce an
exhaustive list of all model specifications that satisfy the differential equation (3) by Zhang
and Hyvärinen (2009) under the additional assumption that the error ε has large support.
The list of (fX , fε, h(·)) tuples that satisfy the differential equation is even smaller than in
Zhang and Hyvärinen (2009) because we constrain the model space by assuming a nonlinear
h. It is remarkable that in each specification I, II, and III, the density of ε is not even
integrable. Even more, E[ε] does not exist. This illustrates that even though solutions to
the differential equation (3) can be computed, they are not relevant in most (if not all)
empirical applications.

fε fX

I fε(u) = c1 exp(c2u) + c3u+ c4 (log fX(x))
′ → c1 ̸= 0 as x→ +∞ or x→ −∞

II fε(u) = c1 exp(c2u) + c3u+ c4 fX(x) = {c1 exp(c2x) + c3 exp(c4x)}c5

III fε(u) = {c1 exp(c2u) + c3 exp(c4u)}c5 lim
x→−∞

(log fX(x))
′ = c1 ̸= 0, lim

x→+∞
(log fX(x))

′ = c2 ̸= 0

Table 1: All situations in which reverse causality is not testable. Constants c1, c2, c3, c4, c5
might be different in different cases. In all situations, h strictly monotonic, and h′(x) → 0, as

x→ +∞ or as x→ −∞ under the maintained assumption of large support of ε.

The next result provides a more concrete formulation of Theorem 1 and how it can be
applied to model specification testing. This corollary follows immediately from Theorem 1
and its proof is thus omitted.
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Corollary 1. Let Assumptions 1 and 2 be satisfied. Then model (1) rules out the reverse
model (2) if the joint distribution of (X,W ) does not satisfy the differential equation (3).

Corollary 1 allows identification of the causal direction from observational data by
analyzing to what extent the independence of errors and covariates holds. The nonlinearity
of h and the additive separability of the error term, U , give the proposed test power.

Note that even when h is linear (Y = X + U , simplifying by abstracting from W ), it

is only possible to rewrite this as a reverse model, X = Y + Ũ , with Y independent of Ũ ,
if all variables are Gaussian. If at most one of the exogenous variables is non-Gaussian,
residual and purported cause are dependent in the reverse model (Shimizu et al., 2006).

2.3 Implementation the Reverse Causality Test

Algorithm 1 shows detailed steps of the implementation of the test. In words, after some
pre-processing (Step 1 and 2), we propose estimating a nonlinear model in both directions,
i.e. with Y and X as dependent variables respectively (Step 3), calculating residuals for
both models (Step 4) and testing for conditional independence using a kernel conditional
independence test (KCI) introduced by Zhang et al. (2011) (Step 5). We discuss this test
statistic, see eq. (7), and its development in Section 2.5; see the detailed discussion in
Section 2.6.

Data: D = {Yi, Xi,Wi}ni=1

Input: hyperparameters for KCI test: heuristic kernel bandwidth λ, set at λ = 0.8
if sample size n ≤ 200, λ = 0.3 if sample size n > 1200 and λ = 0.5
otherwise; heuristic regularization parameter λR is set to 10−3

Output: Decision whether to reject the model in (1)
Step 1: Normalize data to have mean equal to zero and variance equal to one.
Step 2: Randomly split data in half to form training Dtr = {Yi, Xi,Wi}n/2i=1 and
test set Dte = {Y ′i , X ′i,W ′

i}ni=(n/2)+1

Step 3: Estimate generalized additive models (GAMs) based on Dtr
GAM1: Y = h(X,W ) + U , call resulting estimate ĥ

GAM2: X = h̃(Y,W ) + Ũ , call resulting estimate
̂̃
h

Step 4: calculate residuals based on Dte
Û := Y ′ − ĥ(X ′,W ′), and
̂̃
U := X ′ − ̂̃h(Y ′,W ′)
Step 5: Test conditional independence with KCI test (based on residuals from
Step 4)

use Û , X ′ and W ′ to test U ⊥⊥ X|W with KCI test whose null hypothesis is
conditional independence; call resulting p-value pmodel

use
̂̃
U , Y ′ and W ′ to test Ũ ⊥⊥ Y |W with KCI test whose null hypothesis is

conditional independence; call resulting p-value preverse
Step 6: Decide to reject model (1) if pmodel < α.

Algorithm 1: Reverse causality test at nominal level α ∈ (0, 1)
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2.4 Causal Discovery

Alternatively, instead of imposing model (1) as a maintained hypothesis, we can also remain
agnostic about the true causal relationship and infer which of the models is the correct one.
Formally, this requires assuming that either model (1) or (2) hold. This is formalized in
the following corollary which follows immediately from Theorem 1 and its proof is thus
omitted.

Corollary 2. Let Assumptions 1 and 2 be satisfied. Suppose either the model (1) or the
reverse model (2) holds. Then, if the joint distribution of (X,W ) does not satisfy the
differential equation (3), the true model is identified.

Data: D = {Yi, Xi,Wi}ni=1

Input: hyperparameters for KCI test: heuristic kernel bandwidth λ, set at λ = 0.8
if sample size n ≤ 200, λ = 0.3 if sample size n > 1200 and λ = 0.5
otherwise; heuristic regularization parameter λR is set to 10−3.

Output: Decision whether true causal model is X → Y or Y → X
Step 1: Normalize data to have mean equal to zero and variance equal to one.
Step 2: Randomly split data in half to form training Dtr = {Yi, Xi,Wi}n/2i=1 and
test set Dte = {Y ′i , X ′i,W ′

i}ni=(n/2)+1

Step 3: Estimate generalized additive models (GAMs) based on Dtr
GAM1: Y = h(X,W ) + U , call resulting estimate ĥ

GAM2: X = h̃(Y,W ) + Ũ , call resulting estimate
̂̃
h

Step 4: calculate residuals based on Dte
Û := Y ′ − ĥ(X ′,W ′), and
̂̃
U := X ′ − ̂̃h(Y ′,W ′)
Step 5: Test conditional independence with KCI test (based on residuals from
Step 4)

use Û , X ′ and W ′ to test U ⊥⊥ X|W with KCI test; call resulting test statistic
KCIcausal

use
̂̃
U , Y ′ and W ′ to test Ũ ⊥⊥ Y |W with KCI test; call resulting test statistic

KCIanticausal
Step 6: Decide on causal direction
if KCIcausal < KCIanticausal then

accept X → Y as correct model
else if KCIcausal > KCIanticausal then

accept Y → X as correct model
else if KCIcausal = KCIanticausal then

inconclusive result
end

Algorithm 2: Bivariate causal discovery with control covariates

Algorithm 2 shows detailed steps of the implementation of the bivariate causal discovery
which is motivated by 2. Steps 1 to 4 are the same as in 1. In step 5, we compute the test
statistics corresponding to two conditional independence tests: one for model (1) and one
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for (2). The relative size of the resulting test statistics is informative about which model
is the correct causal model (Step 6).

CHAPTER 3. REPRESENTING DATA 37
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(b) Data representation

Figure 3.1: The rings data

3.1 Kernel methods

The central object of study in kernel methods (Schölkopf and Smola, 2001) is
the kernel function. Throughout this section, we assume that X is a compact
metric space.

Definition 3.1 (Kernel function). A symmetric function k : X × X → R is
a positive definite kernel function, or kernel, if for all n ≥ 1, x1, . . . , xn ∈ R,
and c1, . . . , cn ∈ R

n∑

i=1

cicjk(xi, xj) ≥ 0.

Each kernel k provides with a fixed feature map φk.

Definition 3.2 (Kernel representation). A function k : X × X → R is
a kernel if and only if there exists a Hilbert space H and a feature map
φk : X → H such that for all x, x′ ∈ X

k(x, x′) = 〈φk(x), φk(x
′)〉H,

We refer to φk(x) ∈ H as a kernel representation of x ∈ X .

Kernel representations often lack explicit closed forms, but we can access
them implicitly using the inner products 〈φk(x), φk(x

′)〉 computed as k(x, x′).
In general, there exists more than one feature map φk and Hilbert space H
satisfying k(x, x′) = 〈φk(x), φk(x

′)〉H, for a fixed given k. But, every kernel
k is associated to an unique Reproducing Kernel Hilbert Space (RKHS) Hk,
with corresponding unique canonical feature map k(x, ·) ∈ Hk, such that

k(x, x′) = 〈k(x, ·), k(x′, ·)〉Hk .

Figure 1: A nonlinear classifier. Panel (a): data can only be separated by a nonlinear
decision boundary (green circle), a linear algorithm fails. Panel (b) mapping the data to a
higher-dimensional space by introducing an additional feature z = x2 + y2 enables a linear
decision boundary (green line) to separate the data. Note that the y dimension is ommited
in (b); it extends perpendicular to the 2D sheet of paper/screen. In a 3D graph, the data
looks like an inverted cone with a rounded bottom. Figure credit: Lopez-Paz (2016, Figure
3.1)

2.5 Testing Conditional Independence

This section introduces the concept of Hilbert Space embeddings of probability distributions
and their use for (un)conditional independence testing of random variables. Since this
notion is not common in the econometrics literature and conditional independence testing
forms a central part of the proposed algorithm, we discuss the procedure in detail. We first
intuitively introduce important underlying concepts such as feature maps, reproducing
kernel Hilbert spaces, etc. keeping technical details to a minimum before turning to how
these constructs can help to formulate a conditional independence test. See Appendix B
for the formal statements.

2.5.1 Feature maps

To introduce the usefulness of a feature map, consider the following problem. Terms used
loosely in this paragraph are precisely defined below. Imagine you want to distinguish
between two groups of subjects each characterized by two dimensions, say x = weight and
y = height, by using a linear classifier (i.e. a linear regression that serves as a boundary
between the two classes). If the data looks like those in Figure 1(a), a linear classifier
will perform poorly since there is no linear decision boundary that it could uncover. A
solution to the problem lies in mapping the data from two-dimensional input space to a
higher-dimensional feature space by introducing an additional feature z = x2 + y2 that

8



complements existing features x and y (here the map is from a two-dimensional to a three-
dimensional space; in practice the feature space will have many more dimensions). In this
higher-dimensional space, there is a linear boundary that separates the two classes, see
Figure 1(b). This example is adopted from Lopez-Paz (2016).

Similarly to the linear classifier in Figure 1(a) that does not succeed in distinguishing
between two classes that are separated by a nonlinear decision boundary in input space,
the (linear) covariance between two random variables does not succeed in detecting non-
linear statistical dependencies. Mapping the data from input to feature space enables the
exemplary classifier to linearly describe the decision boundary in feature space despite it
being nonlinear in input space. Similarly, one can use the theory on reproducing kernel
Hilbert spaces (RKHS) to construct a representation of marginal and conditional probabil-
ity distributions in higher-dimensional feature space. The covariance operator between two
random variables in that feature space is then informative about nonlinear dependencies
in input space. In sum, any linear algorithm in high-dimensional feature space corresponds
to a nonlinear algorithm in input space. Crucially, inner products between feature space
representations can be estimated without knowing the exact feature representation itself
(the so-called ‘kernel trick’). We now turn to a formal definition of a RKHS and kernel
mean embedding of probability distributions.

2.5.2 Kernels as inner product of implicit feature map

In practice, instead of manually defining a set of appropriate features (such as z = x2+y2 in
the previous example), flexible functions can be used to define the feature map. Formally,
we define a feature map Φ from input space X to the space of functions RX :

Φ : X → RX

x 7→ k(·, x)

where k is a positive-definite kernel2, such as the Gaussian kernel, which is defined as

k(v, v′) := exp
(
− ∥v − v′∥2ℓ2

λ

)
(4)

for arbitrary vectors v and v′ and a bandwidth parameter λ > 0, where ∥·∥ℓ2 denotes the
ℓ2 norm. Each data point can thus be richly represented by its similarity (defined by the
kernel) to all other data points. It can be shown that the inner product of two such feature
maps in an RKHS reduces to an evaluation of the kernel itself (see Schölkopf and Smola,
2001, and Appendix B):

⟨k(·, x), k(·, x′)⟩ = ⟨Φ(x),Φ(x′)⟩ = k(x, x′).

This result shows that the inner product of possibly infinite-dimensional feature repre-
sentations, ⟨Φ(x),Φ(x′)⟩, can be evaluated through the kernel k without making the feature
representation explicit (the so-called ‘kernel trick’ in machine learning). Any algorithm or
other data processing technique that relies on calculating inner products between data rep-
resentations can be ‘kernelized,’ i.e. transformed into a nonlinear algorithm by mapping

2A positive-definite kernel is a kernel with an associated kernel matrix K, which has entries Kij :=
k(xi, xj), that is positive-definite.
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the data into a higher-dimensional Reproducing Kernel Hilbert Space. The covariance,
which can be defined as a dot product, falls into this category.

Instead of representing a specific data point by means of a feature vector, we subse-
quently intend to represent a whole probability distribution in terms of a higher-dimensional
vector. One way to think about this procedure intuitively is to note that probability dis-
tributions can be characterized uniquely by an infinite sequence of their moments. Thus,
the elements of the infinite-dimensional feature vector can be populated by moments of
increasing order when embedding a probability distribution in the RKHS, which gives rise
to a unique representation of the probability distribution.

2.5.3 Partial cross-covariance operators and conditional independence

The conditional independendece test we use relies on a characterization of conditional
independence as a vanishing partial cross-covariance operator between two RKHSs. To get
an intuition, consider an analogy to the characterization of conditional independence for
jointly Gaussian variables in terms of vanishing partial correlation. First note that, for
jointly Gaussian variables (Z1, Z2, ZW ), the conditional independence, Z1 ⊥⊥ Z2|ZW can be
characterized as the correlation between Z1|ZW and Z2|ZW being zero. Partial correlation
is a linear concept defined by the orthogonality of linear maps of Z1 and Z2 on the space
orthogonal to ZW . It can only characterize conditional independence for jointly Gaussian
variables because of the linearity of the underlying maps. Intuitively, one can extend the
results to apply to nonlinear dependence of arbitrarily distributed random variables if
such maps can be described more flexibly. We have seen how maps of data into higher-
dimensional RHKS enables the use of linear algorithms to study nonlinear relationships.
This reasoning also underlies the following characterization of conditional independence for
arbitrarily distributed random variables.

Daudin (1980) establishes the equivalence

sup
f∈F

X̃
, g∈FU

E[f(X̃)g(U)] = 0⇔ X ⊥⊥ U |W, (5)

for properly chosen function spaces, based on function spaces FX̃ :=
{
f ∈ L2

X̃
: E[f(X̃)|W ] =

0
}
and FŨ :=

{
g : g(Ũ) = ǧ(U)− E[ǧ(U)|W ] where ǧ ∈ L2

U

}
where for any random vari-

able Z the Hilbert space L2
Z = {f : E[f 2(Z)] <∞}.

Throughout the remainder of this section, we consider continuous random variables X,
U and W with domains X , U and W , and with positive definite kernels kX , kU , and kW
defined on these domains. These give rise to RKHSsHX , HU andHW respectively. Further,
we make use of the notation X̃ = (X,W ) and Ũ = (U,W ) and define kX̃ = kX × kW and
corresponding RKHS HX̃ . Denote the feature maps corresponding to RKHS H with ϕH.
To reduce the complexity of Daudin’s equivalence result, Zhang et al. (2011) show that
restricting function spaces of f and g to lie in RKHSs HX̃ and HU . This restrictions are
sufficient to derive an estimable statistic in terms of the Hilbert Schmidt norm of a partial
cross-covariance operator:

ΣX̃U |W := ΣX̃U − ΣX̃WΣ−1WWCWU

where ΣX̃U is the covariance operator ΣX̃U : HX̃ → HU defined as

⟨ΣX̃UϕX̃ , ϕU⟩HU = Cov(ϕX̃ (X̃), ϕU(U)). (6)
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Following Zhang et al. (2011), a vanishing Hilbert Schmidt norm of the partial cross-
covariance operator characterizes conditional independence yielding the equivalence result:

∥∥ΣX̃U |W
∥∥
HS

= 0⇔ X ⊥⊥ U |W (7)

where the Hilbert Schmidt norm of an operator A : HX̃ → HU is defined as ∥A∥HS =√∑
j,l≥1⟨fj, Ael⟩2HU

where {ej}j≥1 and {fj}j≥1 are an orthonormal basis in HX̃ and HU ,
respectively.

2.5.4 The KCI test statistic

Zhang et al. (2011) build on the conditional independence characterization in (7) and define
the KCI test statistic:

KCI =
1

n
tr(K̃X̃|W K̃U |W ) (8)

where K̃X̃|W and K̃U |W are centralized kernel matrices defined as follows. The centralized

kernel matrix for any variable Z is given by K̃Z = HKZH where KZ is the uncentralized
kernel matrix, i.e. a matrix whose (i, j) element is given by k(xi, xj) where k is the Gaussian
kernel in eq. (4), and H = In − n−11n1⊤n where In denotes the identity matrix of size n
and 1n a vector of ones of length n. These centralized kernel matrices need to be adjusted
to reflect the conditioning on W . This is achieved using kernel ridge regression to derive a
matrix RW

RW = In − K̃W (K̃W + λRIn)
−1

where λR is a regularization parameter. Finally, the kernel matrix K̃X̃|W can be expressed
as

K̃X̃|W = RW K̃X̃RW .

Similarly, the construction for K̃U |W is analogous and yields

K̃U |W = RW K̃URW .

Following Zhang et al. (2011), we normalize the data and choose the hyperparameters
heuristically as follows. The bandwidth parameter λ is set at λ = 0.8 if sample size n ≤ 200,
λ = 0.3 if sample size n > 1200, and λ = 0.5 otherwise for the construction of K̃X̃ and

K̃U , and at half that value for K̃W . The regularization parameter λR is set to 10−3. These
parameters are deemed appropriate when the dimenstionality of W is small, say less than
three. For higher-dimensional W , Zhang et al. (2011) recommend choosing different λ and

λR for K̃X̃ and K̃U , which can be achieved using cross-validation.
Zhang et al. (2011) derive the asymptotic distribution and corresponding p-values of the

KCI test statistic under H0 : conditional independence and show that it achieves pointwise
asymptotic level (see also Strobl et al., 2019). In sum, the idea of feature representations
motivates the map of the distributions ofX and U conditional onW into higher-dimensional
spaces where linear correlations correspond to nonlinear dependencies in original space.
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2.6 On Critical Values

The theory implies an independence of errors and the covariate in the causal model and a
dependence between the errors and the covariate in the anticausal model. The algorithm
involves testing the independence between errors and covariate conditional on W in both
causal and anticausal model. Ideally, the test would conclude with the following decisions:
i) if independence can be rejected at a pre-specified significance level in one model but
not in the other, one would conclude that the latter model represents the correct causal
relation, ii) if independence is rejected in both models, one would conclude that the relation
betweenX and Y is confounded, and iii) if independence cannot be rejected in either model,
one would conclude that the test does not have sufficient power to decide on the causal
direction. It is not possible to implement such a strategy in practice because the true
errors are unobserved and the practitioner has to rely on estimated errors. Specifically, the
practitioner does not have a sample of U := Y − h(X,W ) in eq. (1) at their disposal and,

therefore, must rely on estimated errors Û := Y − ĥ(X,W ), and the respective estimated
errors of the model in eq. (2), to investigate which model is correct. That these residuals

are estimated and, in particular, that they depend on the estimated ĥ, poses a challenge
that we discuss now.

Mooij et al. (2016) and Hoyer et al. (2009) propose randomly splitting the available

data D = {Yi, Xi,Wi}ni=1 in training and test sets, denoted Dtr = {Yi, Xi,Wi}n/2i=1 and

Dte = {Y ′i , X ′i,W ′
i}ni=(n/2)+1, respectively. Dtr is used to get an estimate ĥ of the true

regression function h. Dte is then used to get estimates ε̂′ := Y ′ − ĥ(X ′,W ′) of the true

errors ε. An error in the estimated ĥ induces a dependence of ε̂′ and X ′ (conditional
on W ′) even though ε and X are truly independent (conditional on W ). Consequently,
conventional thresholds for the independence test tend to be too loose and would ideally
incorporate the fact that ĥ is estimated. Specifically, for a conventional threshold of, say,
α∗ = 0.05 the empirical rejection rate will be larger than α∗ in the causal model even
though under H0 we have that U ⊥⊥ X|W , which should lead to an empirical rejection
rate roughly equal to α∗. To achieve an empirical size of α∗, one needs to use a threshold
α = α∗ × λα with 0 < λα < 1. There are no theoretical results on how to choose λα to
account for the dependence of ε̂′ and X ′.3 However, Mooij et al. (2016) show that one
can infer the correct directionality under additional assumption that the causal or the
anticausal model exist. Therefore, the identifiability result in Theorem 1, which states that
either causal or anticausal model, but not both, can satisfy the independence of the error
with the covariate, in combination with the existence assumption imposed in Corollary 2,
which states that either causal or anticausal model exist, allows us to infer the directionality
with Algorithm 2.

In particular, under the conditions of Corollary 2, one can infer that the model with
the lower KCI test statistic (i.e. a larger p-value of the conditional independence test)
is the correct causal model, thereby circumventing the lack of theoretical guidance about
an appropriate threshold. Making this assumption comes at a cost; namely, a procedure
that relies on comparing two test statistics can never conclude that there is not enough

3Simulation studies, which are not replicated here, show that λα depends on the type of distribution
that the true error follows. Since there is no way for a practitioner to get a hold on that error distribution,
it is impossible to propose rules of thumb, substantiated by simulation exercises, to indicate the level of
λα as a function of observable or estimable quantities.
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information in the data to decide on the causal direction. In other words, such a procedure
will never conclude that there is a lack of power to make a decision.

3 Monte Carlo Simulations

We investigate finite sample performance of our heteroskedasticity robust reverse causality
test and its use in the causal discovery context with Monte Carlo experiments. The results
are based on 500 Monte Carlo replications in each experiment and the sample size is varied
with n ∈ {250, 500, 1000}.

We simulate data for the following model:



Xi

Wi

U∗i


 ∼ N





0
0
0


 ,



2 0 0
0 1 0
0 0 1






and

Ui = cρ,q sgn(U
∗
i )
∣∣∣(1 + ϕ(Wi))

ρ/2U∗i

∣∣∣
q

, (9)

where ϕ denotes the standard normal probability density function, sgn(·) is the sign func-
tion, and q, ρ, cρ,q are constants which vary in the experiments below. The dependent
variable is generated by

Yi = κj(Xi,Wi, τ) + Ui

where j ∈ {1, 2} and the functions κj are given by

κ1(x,w, τ) = x+ τx2 + w,

κ2(x,w, τ) = x+ τ sin(x+ π/2) + w + w2.

Here, τ controls the degree of nonlinearity between Y and X. The linear case corresponds
to τ = 0. The parameter ρ captures degree of the heteroskedasticity w.r.t. the control
variable W . That is, Var(U |W = w) = (1 + ϕ(w))ρ and hence, ρ = 0 corresponds to the
homoskedastic case. We simulate data for τ ∈ {0, 0.25, 0.5, 0.75, 1} and ρ ∈ {0, 1}. We rely
on the R package CondIndTests (Heinze-Deml et al., 2019) for the implementation of the
HSIC independence test.

To explore the robustness of our results with respect to the distribution of the error
U , we run the simulation with errors drawn from sub- and super-Gaussian distributions.
We choose the constant cρ,q (via numerical approximation) such that the variance of U
is normalized to one under each choice of ρ and q. We estimate both causal and reverse
models with a Generalized Additive Model using smoothing splines.

3.1 Testing for Reverse Causality

We implement the test as described in Algorithm 1 for the nominal level α = 0.05. Figure 2
reports the empirical rejection probabilities of testing conditional independence of covari-
ates and estimated residuals under the reverse model (2). Overall, the empirical rejection
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Figure 2: Empirical rejection rates of testing conditional independence of covariates and
estimated residuals under the model (1) when cρ,q is chosen such that Var(U) = 1.

rates are close to the nominal level for different choices of ρ, q, and τ . This is remarkable
as the testing problem is complex and builds on nonparametric procedures. As such, we
cannot expect exact control over the significance level; see also the discussion in Section
2.6. The test shows some degree of oversizing under super-Gaussian error distributions,
indicating the complexity of the testing problem.

We illustrate the empirical power of the reverse causality test in Figure 3. The power
of the test, i.e., the probability of rejecting the independence of estimated residual and
candidate cause in model (2), increases sharply as the degree of nonlinearity τ increases.
While our identifiability results rely on a nonlinear h, see Assumption 2, it can be seen
that non-Gaussianity can be a source of power similar to nonlinearity: with sufficiently
many samples (rightmost column), the empirical rejection rates lie above 0.4 even in the
linear case (τ = 0) as long as q ̸= 1. This is a well-known result in the causal discovery
community, see e.g. Shimizu et al., 2006.

3.2 Causal Discovery

In Figure 4 we report empirical probabilities of correct classification of the causal direction.
When the relationship between X and Y is linear, i.e. τ = 0, and the error Gaussian, i.e.
q = 1, the algorithm performs at about chance level. This is consistent with the theory since
the causal direction is not identifiable in the linear case.4 As soon as the relation between
cause and effect becomes nonlinear, i.e. τ ̸= 0, the accuracy of the reverse causal discovery
algorithm increases. For instance, when n = 500 and the relation between cause and τ = 1
the algorithm arrives at the correct conclusion in more than 95% of the Monte Carlo runs,

4Note that Shimizu et al. (2006) show that the direction is identifiable in the linear case with a non-
Gaussian, homoskedastic error distribution, i.e. when q ̸= 1 and ρ = 0. Though our simulation results
suggest that the result also holds with heteroskedastic errors w.r.t. W , we do not extended it formally.
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Figure 3: Empirical rejection rates of testing conditional independence of covariates and
estimated residuals under the reverse model (2) when cρ,q is chosen such that Var(U) = 1.

regardless of the level of heteroskedasticity (parameterized by ρ) and shape of the error
distribution (parameterized by q). We also see that our procedure has power to detect the
correct causal directions in cases where the nonlinearity is less pronounced, i.e., 0 < τ < 1.
Moreover, the performance of the algorithm is robust to changes in the specification of the
functional form, which can be seen by comparing the κ1 and κ2 rows in Figure 4. For a given
τ , the test has more power for κ1 because the nonlinear relation between X and Y is more
pronounced than for κ2. Overall we see that the accuracy of causal discovery increases with
sample size, where this change is stronger when the regression function is given by κ2. We
show that the results remain robust to different error variances in Appendix C.Specifically,
we consider a low noise regime where cρ,q is chosen such that Var(U) = 0.8 and a high noise
regime where Var(U) = 1.2.

In sum, two observations are worth stressing. First, the results show that the algorithm
has surprisingly high power when cause and effect are related nonlinearly. Second, the
performance of the algorithm does not suffer from heteroskedastic errors w.r.t. W .

4 Empirical Illustration

We use data from the 2013 Survey of Income and Expenditure (“Einkommens- und Ver-
brauchsstichprobe”, EVS), which is a voluntary survey of roughly 60,000 households in
Germany, to test the proposed algorithm. We consider the following variables: income, ex-
penditure, highest educational attainment of the main earner, highest professional training
of the main earner, and age group of the main earner. We analyze the causal direction
between income and work experience, which we proxy by age group.

Hump-shaped income profiles over the life-cycle are well-documented in labor economics
(Heckman et al., 2006). It is interesting to test the algorithm for a cause-effect pair where
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Figure 4: Empirical probabilities of correct recovery of the causal direction when cρ,q is
chosen such that Var(U) = 1.

the causal direction is a priori clear. Since work experience mechanically increases over
the life-cycle, it can be credibly assumed not to be caused by income changes. Therefore,
we analyze the directionality between income (Inc) and age where age can be interpreted
as proxy for work experience (Exp). We posit the correct causal model to be

Inc = h(Exp,W ) + εy, (10)

where experience Exp causes income Inc. Vice versa, the anticausal model in which income
causes work experience is given as

Exp = h̃(Inc,W ) + εe (11)

where in each model W contains all remaining covariates as control (expenditure, highest
educational attainment of the main earner, highest professional training of the main earner).

We aim to alleviate the problem that we are likely to omit many crucial confounding
variables by splitting the data in nq quantiles of the expenditure distribution. At least part
of the omitted confounding factors can be assumed to be fixed within given quantiles as
they collect individuals with roughly similar life-styles. This argument applies even more
strongly as the expenditure distribution is split into a larger number of quantiles. On the
other hand, the larger nq the smaller the number of observations within each quantile and
the lower the power of the test to identify the correct causal direction. Therefore, we show
results for a set of nq = {4, . . . , 20} quantiles.5 For each number of quantiles nq, we run
the causal discovery algorithm in each of these nq quantiles and plot the share of quantiles
in which the algorithm prefers either model (note that the x-axis in Figure 5 refers to the

5The KCI test, which forms an important part of the algorithm, requires the inversion of n×n matrices
where n is the number of observations. Constraints on local computing power preclude running the test
on the whole sample with roughly 60,000 observations or with nq = {1, 2, 3}.
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number of quantiles the income distribution is split in, not the quantiles as such). For
example, the bar above nq = 5 in Figure 5 denotes that in 4 of the 5 quantiles, i.e. 80%,
the algorithm concludes that experience causes income. Regardless of nq, the test always
favours the model where work experience causes income in at least 50% of quantiles. The
algorithm favours the causal model in more than 75% of the quantiles for most nq.

In sum, this application documents that our algorithm gives economically meaningful
results in empirical applications.

0.00

0.25

0.50

0.75

1.00

5 10 15 20

number of quantiles of the expenditure distribution

re
la

tiv
e 

sh
ar

e

income −> experience

experience −> income

Does experience cause income or vice versa?

Figure 5: This Figure shows the results of the empirical application of Algorithm ?? to
the question whether work experience causes income or vice versa. The x-axis shows the
number of quantiles that the expenditure distribution is split in (not to be mistaken with the
quantiles as such). The stacked bars show the shares of the respective number of quantiles
the algorithm decides the causal or anticausal model is the correct model.

5 Conclusion

Endogeneity is a common threat to causal identification in econometric models. Reverse
causality is one source of such endogeneity. We build on work by Hoyer et al. (2009)
and Mooij et al. (2016) who have shown that the causal direction between two variables
X and Y is identifiable in models with additively separable error terms and nonlinear
function forms. We extend their results by allowing for additional control covariates W
and heteroskedasticity w.r.t. them and, thus, provide a heteroskedasticity-robust method to
test for reverse causality. In addition, we show how this test can be extended to a bivariate
causal discovery algorithm by comparing the test statistics of residual and purported cause
of two candidate models. We extend known results on causal identification and causal
discovery to settings with heteroskedasticity with respect to additional control covariates.

An empirical application underscores the feasibility of the proposed algorithm. We ana-
lyze the causal link between income and work experience, as proxied by age, and show that
our procedure provides evidence that the true causal direction is from work experience to
income. Though this result is not substantively surprising because income cannot causally
influence work experience, it is encouraging that our algorithm can distinguish between
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the causal directions without resorting to instruments or other sources of exogenous varia-
tion. This underscores the value of our proposed methodology to shed light on the causal
structure of economic phenomena without resorting to exogenous variation.
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A Irreversibility Proof

Proof of Theorem 1. For the proof of the result, we proceed in three steps. First, for
the reverse model (2), we establish restrictions on the third derivative of the conditional
density of the model. Second, we perform this calculation explicitly for the model (1).
Third, from the previous steps, we derive distributional restrictions when both models are
satisfied.

Step 1. For the reverse model (2), we first derive an expression for the conditional density
of X given (Y,W ), and calculate a third-order derivative of that expression. Under the
reverse model (2), the cumulative distribution function of X given (Y,W ) satisfies

P (X ≤ x|Y = y,W = w) = P (h̃(Y,W ) + ε̃ σ̃(W ) ≤ x|Y = y,W = w)

= P

(
ε̃ ≤ x− h̃(Y,W )

σ̃(W )
|Y = y,W = w

)

= P

(
ε̃ ≤ x− h̃(y, w)

σ̃(w)

)
(12)

where the last step uses the independence assumption ε̃ ⊥⊥ (Y,W ). Thus, we conclude for
the conditional probability density functions that

fX|Y,W (x|y, w) = fε̃

(
x− h̃(y, w)

σ̃(w)

)

and, in particular,

fX,Y |W (x, y|w) = fε̃

(
x− h̃(y, w)

σ̃(w)

)
fY |W (y|w).

We define ν̃ := log fε̃, η := log fY |W and

π(x, y, w) : = log f(x, y|w) = η(y, w) + ν̃

(
x− h̃(y, w)

σ̃(w)

)

for all (x, y, w) such that fε̃
(
(x− h̃(y, w))/σ̃(w)

)
> 0 and fY |W (y, |w) > 0. Taking partial

derivatives yields

∂2π(x, y, w)

∂x∂y
= −ν̃ ′′

(
x− h̃(y, w)

σ̃(w)

)
∂h̃(y, w)

∂y

1

σ̃2(w)

and

∂2π(x, y, w)

∂x2
= ν̃ ′′

(
x− h̃(y, w)

σ̃(w)

)
1

σ̃2(w)
,

which, in turn, results in

∂2π(x,y,w)
∂x2

∂2π(x,y,w)
∂x∂y

= − 1
∂h̃(y,w)
∂y

. (13)
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Therefore, taking the derivative of the ratio in eq. (13) w.r.t. x, we conclude

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
= 0. (14)

Step 2. We derive restrictions similar to eq. (14) for the causal model in eq. (1). First, we
derive an expression for the conditional density of Y |X,W . Similar to (12), we can write

P (Y ≤ y|X = x,W = w) = P (h(X,W ) + εσ(W ) < y|X = x,W = w) = P

(
ε ≤ y − h(x,w)

σ(w)

)

which uses the independence assumption ε ⊥⊥ (X,W ). This lets us conclude for the prob-
ability density functions

fY |X,W (y|x,w) = fε

(
y − h(x,w)

σ(w)

)
.

Therefore, the conditional density of X, Y |W can be expressed as

fX,Y |W (x, y|w) = fε

(
y − h(x,w)

σ(w)

)
fX|W (x|w).

We define ν := log fε, ξ := log fX|W and

π(x, y, w) : = log fX,Y |W (x, y|w) = ξ(x,w) + ν
(y − h(x,w)

σ(w)

)

for all (x, y, w) such that fε
(
(x − h(y, w))σ(w)

)
> 0 and fY |W (y, |w) > 0. Taking partial

derivatives, we conclude

∂2π(x, y, w)

∂x2
=

1

σ2(w)





(
∂h(x,w)

∂x

)2

ν ′′
(
y − h(x,w)

σ(w)

)
− ∂2h(x,w)

∂x2
ν ′
(
y − h(x,w)

σ(w)

)


+
∂2ξ(x,w)

∂x2

=: ϕ1(x, y, w) +
∂2ξ(x,w)

∂x2

(15)

and

∂2π(x, y, w)

∂x∂y
= −ν ′′

(
y − h(x,w)

σ(w)

)
∂h(x,w)

∂x

1

σ(w)2
=: ϕ2(x, y, w). (16)

In the following derivations we omit the arguments (x,w) for ξ, and (x, y, w) for ϕ1 and
ϕ2. The ratio of eqs. (15) and (16) is given by

∂2π
∂x2

∂2π
∂x∂y

=
ϕ1(x, y, w) + ∂2ξ(x,w)/∂x2

ϕ2(x, y, w)
(17)

21



which we derive w.r.t. x to conclude

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=

∂3ξ/∂x3

ϕ2

− (∂2ξ/∂x2)(∂ϕ2/∂x)

ϕ2
2

+
(∂ϕ1/∂x)ϕ2 − (∂ϕ2/∂x)ϕ1

ϕ2
2

. (18)

Step 3. If the reverse model (2) holds, we know from (14) that (18) must equal zero. By
setting (18) equal to zero and given h, ν, we obtain for each fixed y and w, which we denote
ȳ and w̄, respectively, a linear inhomogenous differential equation for ξ:

∂3ξ(x, w̄)

∂x3
=

∂2ξ(x, w̄)

∂x2
G1(x, ȳ, w̄) +G2(x, ȳ, w̄). (19)

where G1 = ∂ϕ2/∂x
ϕ2

and G2 = (∂ϕ2/∂x)ϕ1−(∂ϕ1/∂x)ϕ2
ϕ2

. Making use of the notation χ(x,w) :=

∂2ξ(x,w)/∂x2, we may write

∂χ(x, w̄)

∂x
= χ(x, w̄)G1(x, ȳ, w̄) +G2(x, ȳ, w̄),

which completes the proof.

Finally, given such a solution for χ(x, w̄) exists, it is given by

χ(x, w̄) = χ(x0, w̄)e
∫ x
x0
G1(x̃,ȳ,w̄)dx̃ +

∫ x

x0

e
∫ x
x̂ G1(x̃,ȳ,w̄)dx̃G2(x̂, ȳ, w̄)dx̂.

Following Hoyer et al. (2009), we can see that the set of all functions satisfying the
condition in eq. (19) is a 3-dimensional affine space. We can fix ξ(x0, w), ξ

′(x0, w), ξ
′′(x0, w)

for some arbitrary x0, and w at w̄, which determines ξ. Given fixed f and ν, and arbitrary
w̄, the set of all ξ admitting an anticausal model is, thus, contained in a three-dimensional
subspace, and therefore not generic.

B Construction of the RKHS

1. Generalizing the example illustrated in Figure 1, we consider higher-dimensional fea-
ture representations formalized as kernel functions. For instance, consider the Gaus-
sian kernel defined as

k(v, v′) := exp
(
− ∥v − v′∥2ℓ2

λ

)
.

for arbitrary vectors v and v′ and parameter λ > 0. This kernel can serve as a
higher-dimensional feature representation. In particular, each data point x is mapped
from input space to higher-dimensional feature space where it is represented by its
distance to all other data points, i.e. k(·, x). Each data point is richly represented by
its similarity (defined by the kernel) to all other data points.

Formally, we define a feature map Φ from input space X to the space of functions
RX :

Φ : X → RX

x 7→ k(·, x)
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where k is a positive-definite kernel. A positive-definite kernel is a kernel whose
associated kernel matrix K, which has entries Kij := k(xi, xj), is positive-definite.
Thus, each data point x is represented by a theoretically infinite-dimensional vector
or, in other words, a function k(·, x). In practice, a data point x is represented by an
n-dimensional vector where n is the number of data points in the sample.

2. The next step in constructing an RKHS is opening the vector space. Consider linear
combinations of the feature representations of the form

f(·) =
m∑

j=1

αjk(·, xj)

for αj ∈ R and samples x1, . . . , xm of input space X where m is an integer index.

3. Given a similarly constructed function

g(·) =
m′∑

l=1

βlk(·, x′l)

with βl ∈ R and samples x′1, . . . , x
′
m′ of input space X where m′ is an integer index,

we can define an inner product between f and g as

⟨f, g⟩ :=
m∑

j=1

m′∑

l=1

αjβlk(xj, x
′
l) (20)

4. Then complete the space spanned by (20) by adding the limit points of sequences
in the norm defined by ||f || :=

√
⟨f, f⟩, the resulting space H is called reproducing

kernel Hilbert space (RKHS).

This construction implies the ‘reproducing property’ of the positive-definitive kernel
that gives rise to H:

⟨k(·, x), f⟩ = f(x),

see also Schölkopf and Smola (2001, Section 2.2., p.33) for more details. In particular, we
obtain

⟨k(·, x), k(·, x′)⟩ = ⟨Φ(x),Φ(x′)⟩ = k(x, x′).

C Further Simulation Results

In this section, we present further simulations results analogous to Figures 2, 3, 4 but with
Var(U) = 0.8 and Var(U) = 1.2.
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Figure 6: Empirical rejection rates of independence of estimated residual and X of model
(1) when cρ,q is chosen such that Var(U) = .8.
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Figure 7: Empirical rejection rates of independence of estimated residual and Y of model
(2) when cρ,q is chosen such that Var(U) = .8.
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Figure 8: Empirical probabilities of correct recovery of the causal direction when cρ,q is
chosen such that Var(U) = .8.
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Figure 9: Empirical rejection rates of independence of estimated residual and X of model
(1) when cρ,q is chosen such that Var(U) = 1.2.
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Figure 10: Empirical rejection rates of independence of estimated residual and Y of model
(2) when cρ,q is chosen such that Var(U) = 1.2.
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Figure 11: Empirical probabilities of correct recovery of the causal direction when cρ,q is
chosen such that Var(U) = 1.2.
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