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We present a detailed thermodynamic analysis of a three-level quantum heat engine coupled
continuously to hot and cold reservoirs. The system is driven by an oscillating external field and is
described by the Markovian quantum master equation. We use the general form of the dissipator
which is consistent with thermodynamics. We calculate the heat, power, and efficiency of the system
for the heat-engine operating regime and also examine the thermodynamic uncertainty relation. The
efficiency of the system is strongly dependent on the structure of the dissipator, and the correlations
between different levels can be an obstacle for ideal operation. In quantum systems, the heat flux
is decomposed into the population and coherent parts. The coherent part is specific to quantum
systems, and in contrast to the population part, it cannot be expressed by a simple series expansion
in the linear-response regime. We discuss how the interplay between the population and coherent
parts affects the performance of the heat engine.

I. INTRODUCTION

One of the main objectives in the field of quantum ther-
modynamics is to find the quantum signatures of heat en-
gines. The thermodynamical description is applied even
when the system has a few degrees of freedom, which al-
lows us to study the quantum effects on heat and work
from a microscopic point of view.
Since the seminal work by Scovil and Schulz-

DuBois [1], the microscopic heat engines with a few dis-
crete energy levels have been studied in many works [2–8].
An upper bound on the efficiency of the heat engine is
given by the Carnot efficiency, as expected from the gen-
eral arguments [9, 10]. Experimental examples of quan-
tum heat engines have been realized in a wide range of
quantum systems such as trapped ions and ensembles of
nitrogen-vacancy centers in diamond [11–13].
It is an important problem to answer the question of

whether the quantum coherence enhances the power out-
put of the heat engine. Several works have shown that the
answer is positive [7, 14–16], which represents a promis-
ing feature for the design of microscopic devices.
Generally speaking, quantum effects arise when the

density operator has off-diagonal components in the ba-
sis of the Hamiltonian operator. The quantum coher-
ence is characterized by the off-diagonal parts, and the
nonequilibrium entropy production can be decomposed
into the classical population part and the quantum co-
herent part [17, 18]. The Markovian dynamics is de-
scribed by the Gorini–Kossakowski–Lindblad–Sudarshan
(GKLS) equation [19–21]. By decomposing the dissipa-
tor into two parts, we can introduce the corresponding
heat for each part [22].
In the present work, we revisit the three-level quantum

heat engine developed by Geva and Kosloff [3] in order to
examine the roles of the population and coherent parts of
the heat flux. We also study how the result depends on

the details of the dissipator part of the GKLS equation.
The choice of the dissipator is important for finding ther-
modynamically consistent results, and we treat a possible
general form of the dissipator.

This paper is organized as follows. In Sec. II, we de-
scribe the settings of our model and define the heat, work,
and efficiency according to the standard scenario. Sec-
tion III summarizes the stationary solution of the model.
We obtain the explicit forms of the heat, power, and effi-
ciency. In Sec. IV, we introduce the concept of population
heat currents and coherent heat currents to discuss how
the quantum nature affects the performance. We also
discuss the thermodynamic uncertainty relation (TUR)
in Sec. V. The conclusion is summarized in Sec. VI.

II. SYSTEM SETTING AND ENERGETIC

RELATIONS

A. GKLS equation

We define a continuous quantum heat engine by using a
three-level maser as shown in Fig. 1. The system consists
of three states |0〉, |1〉, and |2〉, and each level has energy
ω0, ω1, and ω2, respectively. We set ω0 < ω1 < ω2.
Two of the states, |0〉 and |1〉, are coupled to the cold
reservoir with temperature Tc = 1/βc, and |0〉 and |2〉
are coupled to the hot reservoir with Th = 1/βh, where
Th > Tc. We study the performance of the heat en-
gine when the system is continuously coupled to the two
heat reservoirs. The system is operated by applying a
time-oscillating field with frequency ω. The field induces
transitions between |1〉 and |2〉, generating a heat flow,
as we discuss below. The system Hamiltonian is given in
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FIG. 1. A schematic view of the three-level quantum heat
engine. The system is driven by the time-dependent field
V (λ, ω, t) = λeiωt|1〉〈2| + λe−iωt|2〉〈1|.

the state basis as

Ĥ(t) =





ω0 0 0
0 ω1 λeiωt

0 λe−iωt ω2



 , (1)

where λ represents the field intensity. This Hamiltonian
is diagonalized as Ĥ(t) =

∑2
n=0 ǫn|ǫn(t)〉〈ǫn(t)|, and the

energy eigenvalues are independent of t, as shown in Ap-
pendix A. We assume λ2 < ω10ω20, where ω10 = ω1 −ω0

and ω20 = ω2 −ω0, so that the order of the energy levels
is unchanged, ǫ0 < ǫ1 < ǫ2, in the presence of the field.
The present setting is basically the same as discussed

in related works [3–6, 8]. A difference arises when we
carefully treat the dissipation effect. The state of the
system is described by the density operator ρ̂(t). We
assume the Markovian dynamics, and the time evolution
is described by the GKLS equation,

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)] +
∑

α=c,h

D̂α[ρ̂(t)]. (2)

The dissipation affects the quantum dynamics in three
ways. Two of them are described by the dissipator D̂α.
It changes the eigenbasis of the density operator and the
population of each basis element [22]. The remaining

one shifts only the energy levels of the Hamiltonian Ĥ(t)
and is called the Lamb shift. Here we simply neglect
the Lamb shift term or take Ĥ(t) to be a renormalized
Hamiltonian.
The dissipator D̂α is chosen so that the time evolution

is a completely positive and trace-preserving map. The
explicit form of the dissipator is dependent on coarse-
graining procedures. In order to obtain a thermodynam-
ically consistent description for the present problem, we
use the form

D̂α[ρ̂] =
∑

ǫ

γα(ǫ)

[

L̂ǫ
α(t)ρ̂(L̂

ǫ
α(t))

†

−
1

2

(

(L̂ǫ
α(t))

†L̂ǫ
α(t)ρ̂+ ρ̂(L̂ǫ

α(t))
†L̂ǫ

α(t)
)

]

, (3)

where L̂ǫ
α(t) represents projected jump operators

L̂ǫ
α(t) = (L̂−ǫ

α (t))†

=
2

∑

m,n=0

δǫ,ǫm−ǫn |ǫn(t)〉〈ǫn(t)|L̂α|ǫm(t)〉〈ǫm(t)|, (4)

with

L̂c = |0〉〈1|, (5)

L̂h = |0〉〈2|. (6)

The dissipator coupling γα(ǫ) is generally nonnegative
and is a system-dependent function of ǫ and βα. To con-
struct a thermodynamically consistent theory, we assume
the detailed balance condition

γα(−ǫ) = e−βαǫγα(ǫ). (7)

Then, the Gibbs distribution becomes an instantaneous
stationary solution [21, 22].
We can derive the form of the dissipator in Eq. (3)

from a microscopic model by using several approxima-
tions such as the Markov approximation and the rotating-
wave approximation. In principle, the derivation implies
that the present model is justified only within a certain
range of parameters. However, the present setting with-
out any additional constraints is completely consistent
with the laws of thermodynamics, and we can discuss
the performance of the quantum heat engine. The use
of the jump operators projected onto the instantaneous
eigenstates of the Hamiltonian is an important ingredient
to find a thermodynamically consistent theory. It is con-
trasted to the “local” master-equation approach in which
the jump operators are not projected to the eigenstate
basis. The local approach is shown to be inconsistent
with thermodynamics [23]. Although some ideas to over-
come this shortcoming have been discussed [24, 25], here
we use the “global” approach defined by Eq. (3).
In principle, the present model has four types of the

dissipator coupling, γc(ǫ10), γc(ǫ20), γh(ǫ10), and γh(ǫ20),
where ǫ10 = ǫ1 − ǫ0 and ǫ20 = ǫ2 − ǫ0. In previous works,
only γc(ǫ10) and γh(ǫ20) were kept nonzero [3, 4]. As
we mentioned above, γα(ǫ) is a system-dependent func-
tion and is obtained from the correlation function of a
bath operator. A typical form is represented by using a
Lorentzian function. In the following, we do not assume
any functional form of γα(ǫ) and consider three possible
cases:

(i) Resonant coupling

γc(ǫ10) = γh(ǫ20) > γc(ǫ20) = γh(ǫ10) = 0. (8)

(ii) Intermediate coupling

γc(ǫ10) = γh(ǫ20) > γc(ǫ20) = γh(ǫ10) > 0. (9)

(iii) Uniform coupling

γc(ǫ10) = γh(ǫ20) = γc(ǫ20) = γh(ǫ10) > 0. (10)
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FIG. 2. An expected heat flow. W = Qh + Qc, and the
efficiency is given by Eq. (13).

The resonant-coupling case corresponds to the preceding
works.

B. Heat, work, and efficiency

According to the standard scenario, we define the heat
flux from the reservoirs to the system as

Q̇(t) = Tr
[

∂tρ̂(t)Ĥ(t)
]

=
∑

α

Tr
[

D̂α[ρ̂(t)]Ĥ(t)
]

. (11)

The last expression allows us to write Q̇(t) =
∑

α Q̇α(t),

where Q̇α(t) represents the heat flux from each reser-
voir. When the system is operated periodically, the en-
ergy goes back to the original value after one period such
that the work done by the system in the one period is
given by

W =
∑

α

Qα =
∑

α

∫ T+T0

T

dt Q̇α(t), (12)

where T0 = 2π/ω. When the system acts as a heat en-
gine, the relations Qh > 0, Qc < 0, and W > 0 hold, as
we see in Fig. 2, and the efficiency is defined as

η =
W

Qh
= 1 +

Qc

Qh
. (13)

The second law of thermodynamics is derived from the
nonnegativity of the entropy production [10]. For the
present model we obtain

−
∑

α

βαQα ≥ 0, (14)

and as a result, the efficiency is bounded from above by
the Carnot efficiency

ηC = 1−
Tc
Th
. (15)

The nonnegativity of the entropy production holds even
in the present model [22], which confirms the previous
result on the upper bound on the efficiency [1–6].

III. POWER AND EFFICIENCY

A. Stationary solution

We use the stationary solution of the GKLS equation
in the present setting to evaluate the performance of the
heat engine. We note that the stationary solution means
that the system settles down to a stable periodic behav-
ior after transient evolutions during the first several peri-
ods. The eigenstate decomposition of the jump operator
〈ǫn(t)|L̂α|ǫm(t)〉 is shown to be time independent, which
gives a simple stationary result. We describe the details
in Appendix B. Here we summarize the result.
The stationary solution of the GKLS equation was

studied in the preceding works. As we stressed above,
the crucial difference is that the dissipator is represented
by four types of dissipator couplings. Correspondingly,
the explicit form of the dissipator is parametrized by four
types of coupling functions,

g1 = γc(ǫ10)
1 + cos θ

2
+ γh(ǫ10)

1− cos θ

2
, (16)

g2 = γh(ǫ20)
1 + cos θ

2
+ γc(ǫ20)

1− cos θ

2
, (17)

g−1 = γc(−ǫ10)
1 + cos θ

2
+ γh(−ǫ10)

1− cos θ

2
, (18)

g−2 = γh(−ǫ20)
1 + cos θ

2
+ γc(−ǫ20)

1− cos θ

2
, (19)

where θ is defined by the relation

tan θ =
2λ

ω2 − ω1
. (20)

θ represents a rotation angle for the diagonalization
of the Hamiltonian, as shown in Appendix A. In the
resonant-coupling limit, relations g−1 = e−βcǫ10g1 and
g−2 = e−βhǫ20g2 hold, and the dissipator is characterized
by g1 and g2. In the general case, no trivial relations hold
between g1, g2, g

−
1 , and g−2 , although we still have the

detailed balance condition in Eq. (7).
We also introduce dimensionless nonnegative parame-

ters

q1 =
γh(ǫ10)

1−cos θ
2

γc(ǫ10)
1+cos θ

2 + γh(ǫ10)
1−cos θ

2

, (21)

q2 =
γc(ǫ20)

1−cos θ
2

γh(ǫ20)
1+cos θ

2 + γc(ǫ20)
1−cos θ

2

, (22)

to characterize thermodynamic quantities in the follow-
ing. For the resonant-coupling case these quantities col-
lapse to zero q1 = q2 = 0.
At the stationary limit, the heat flux from each reser-

voir is given by

Q̇c(t) →

[

ǫ20
ǫ21

q2 −
ǫ10
ǫ21

(1 − q1)

]

P − ρ0P0, (23)

Q̇h(t) →

[

ǫ20
ǫ21

(1− q2)−
ǫ10
ǫ21

q1

]

P + ρ0P0, (24)
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where ǫmn = ǫm − ǫn and

P = ǫ21
ω2 sin2 θ

2G

(

g−2
g2

−
g−1
g1

)

1

Z
, (25)

Z =

[

1 +
ω2 sin2 θ

2G

(

1

g1
+

1

g2

)](

1 +
g−1
g1

+
g−2
g2

)

+
ω2 sin2 θ

2G

(

1

g1
−

1

g2

)(

g−2
g2

−
g−1
g1

)

, (26)

G =
1

2
(g1 + g2) +

(ǫ21 − ω cos θ)2

1
2 (g1 + g2)

, (27)

ρ0 =
1

1 +
g
−

1

g1
+

g
−

2

g2

[

1−

(

1

g1
−

1

g2

)

P

ǫ21

]

, (28)

P0 = ǫ10g1q1(1 − q1)
(

e−βhǫ10 − e−βcǫ10
)

+ǫ20g2q2(1− q2)
(

e−βhǫ20 − e−βcǫ20
)

. (29)

All the quantities introduced above are independent of t.
ρ0 and G are always positive, irrespective of the choice
of the parameters. We show below that P represents the
power of the heat engine and ρ0 represents the ground-
state component of the density operator, 〈0|ρ̂(t)|0〉. The
term ρ0P0 represents a direct flow from the hot reservoir
to the cold reservoir, and P0 goes to zero when the tem-
perature difference βc − βh disappears. Further details
are discussed below.

B. Power and efficiency

Anticipating Qh > 0, Qc < 0, and W > 0, we can
obtain the explicit form of the work done by the system.
The power of the heat engine, which is defined by the
work divided by the cycle period, is given by

W

T0
→ P (30)

at the stationary limit. P is given in Eq. (25).
The corresponding efficiency is obtained as

η = ηSSD
1

ηSSDP
1

ηSSDP + ρ0P0

, (31)

where

ηSSD =
1

1− q2 −
ǫ10
ǫ20
q1

(

1−
ǫ10
ǫ20

)

. (32)

ηSSD is reminiscent of the Scovil–Schulz-DuBois effi-
ciency [1]. This expression is simplified when we consider
the resonant-coupling limit γc(ǫ20) = γh(ǫ10) = 0. In this
case, we find q1 = 0, q2 = 0, and P0 = 0, and the effi-
ciency coincides with the Scovil–Schulz-DuBois efficiency

η = ηSSD → 1−
ǫ10
ǫ20

. (33)

This result is consistent with the preceding works [2–8].
The efficiency in the general case is dependent on various
parameters such as the temperatures and the frequency
and is bounded from above by Eq. (33).

C. Heat engine conditions

The above results in the present section are exact and
hold irrespective of the choice of parameters. When we
require that the system works as a heat engine, the rela-
tions Qh > 0, Qc < 0, and P > 0 must hold.
As we see from Eq. (25), P > 0 holds when

g−1
g1

<
g−2
g2
. (34)

This condition is satisfied only when

βcǫ10 > βhǫ20. (35)

This is a necessary condition in general and is the nec-
essary and sufficient condition in the resonant-coupling
case. In the general case, Eq. (34) is rewritten as

q1
q10

+
q2
q20

< 1, (36)

where

q10 =
e−βhǫ20 − e−βcǫ10

e−βhǫ10 − e−βcǫ10
, (37)

q20 =
e−βhǫ20 − e−βcǫ10

e−βhǫ20 − e−βcǫ20
. (38)

The coupling-constant parameters in the dissipator are
taken so that Eq. (36) is satisfied. We note that ηSSD in
Eq. (32) becomes positive in that case. The condition in
Eq. (35) determines possible values of parameters in the
Hamiltonian for a given ηC as

ω20

ω10
<

1

1− ηC
, (39)

λ2 <

[

ω20

ω10
− (1 − ηC)

] [

1− (1− ηC)ω20

ω10

]

(2 − ηC)2
. (40)

Equation (35) shows that the power becomes negative
when the temperature difference is too small. In that
case, the system does not work as a heat engine, and we
can observe a heat flow from the low-temperature reser-
voir to the high-temperature one as Qh < 0 and Qc > 0.
This behavior implies that the present system cannot be
understood from the standard linear-response theory in
which the heat flow arises due to the temperature differ-
ence. We discuss the origin of this quantum nature in
the next section.

D. Plot of the results

At small frequency values, the power P is proportional
to ω2. The efficiency η is also proportional to ω2 pro-
vided P0 > 0, as we see from Eq. (31). We see that the
frequency-independent result in Eq. (33) is specific to the
resonant coupling and is unusual.
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FIG. 3. Typical behavior of the power P as a function of the
frequency ω. P has a peak at the frequency given in Eq. (41)
and approaches a positive finite value at the limit ω → ∞.

We set βcω10 = 5.0, βhω10 = 1.0, γc(ǫ10)
ω10

= γh(ǫ20)
ω10

= 2.0,

γc(ǫ20) = γh(ǫ10) = 0, λ
ω10

= 0.5, and ω20

ω10
= 2.5.

FIG. 4. The power P and the efficiency η at the resonant

coupling γc(ǫ10)
ω10

= γh(ǫ20)
ω10

= 2.0 and γc(ǫ20) = γh(ǫ10) = 0.
We set βcω10 = 5.0 and βhω10 = 1.0. The frequency is chosen
as in Eq. (41). (a) P as a function of the parameters in the
Hamiltonian. (b) η as a function of the parameters in the
Hamiltonian. (c) Distributions of (η, P ). We note that the
Carnot efficiency is given by ηC = 0.8 in the present choice of
parameters.

P as a function of ω has a Fano resonant form and is
plotted in Fig 3. It is maximized at

ω =
ǫ221 +

1
4 (g1 + g2)

2

ω2 − ω1
. (41)

Interestingly, the efficiency η is also maximized at this
frequency. The magnitude of the optimal frequency is
basically determined by the energy gap ǫ21. The dissipa-
tion effect enhances the resonant frequency slightly.
We plot the power P and the efficiency η for the opti-

mal frequency ω in Eq. (41) in Fig. 4 (resonant coupling),
Fig. 5 (intermediate coupling), and Fig. 6 (uniform cou-
pling). We set βcω10 = 5.0 and βhω10 = 1.0, which gives
the Carnot efficiency ηC = 0.8. P and η are plotted as

FIG. 5. The power P and the efficiency η at the intermediate

coupling γc(ǫ10)
ω10

= γh(ǫ20)
ω10

= 2.0 and γc(ǫ20)
ω10

= γh(ǫ10)
ω10

= 0.5.
See the caption of Fig. 4 for other remarks.

FIG. 6. The power P and the efficiency η at the uniform

coupling γc(ǫ10)
ω10

= γh(ǫ20)
ω10

= γc(ǫ20)
ω10

= γh(ǫ10)
ω10

= 2.0. See the
caption of Fig. 4 for other remarks.

functions of ω20 and λ under the heat-engine conditions
in Eqs. (36), (39), and (40).
We observe that the power is maximized at small

ω20/ω10 (> 1) and at a moderate value of λ. Although
the possible parameter range for a heat engine is depen-
dent on the dissipator couplings as well as the temper-
atures, the contour map is basically insensitive to the
parameters.
In contrast to the power, the efficiency exhibits a

stronger dependence on the dissipator coupling. As
shown in Fig. 4(b) for the resonant coupling, the effi-
ciency attains its maximum at the boundary where the
power goes to zero. This behavior is totally reversed
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in comparison to the other dissipator coupling cases in
Figs. 5(b) and 6(b), where the efficiency is minimized at
the boundary. We also find that the efficiency and the
power are reduced when we move away from the resonant
coupling.
We plot the distribution (η, P ) in Figs. 4(c), 5(c), and

6(c). We find that the envelope curve of the distribu-
tions has a tendency towards being symmetric around
the efficiency at maximum power as we approach the uni-
form coupling. We note that the efficiency at maximum
power cannot be understood from Curzon–Ahlborn effi-
ciency even in the linear-response regime [26, 27]. As we
mentioned above, the present system does not exhibit a
heat-engine behavior at the linear response regime.
Summarizing the present result, we find that the per-

formance of the present model as a heat engine worsens
when we move away from the resonant coupling. In the
next section, we discuss the origin of this behavior.

IV. DECOMPOSITION OF HEAT

Compared to the resonant coupling, we see that the
decreasing of the efficiency in extended couplings is un-
derstood from the presence of ρ0P0 in Eq. (31). As we
also see in Eqs. (23) and (24), it represents a direct flow
from the hot reservoir to the cold reservoir, which clearly
reduces the performance of the heat engine. P0 goes to
zero when the temperature difference is zero and remains
positive even at the zero-field limit λ → 0. This implies
that the direct flow has a classical interpretation.
The quantum nature of the system can be understood

by realizing that the basis of the density operator is differ-
ent from that of the Hamiltonian. The density operator
is diagonalized as

ρ̂(t) =
∑

n

pn|ρn(t)〉〈ρn(t)|. (42)

The eigenvalues of the density operator obey the master-
equation-like relation

∂tpn =
∑

α

〈ρn(t)|D̂α[ρ̂(t)]|ρn(t)〉, (43)

and the basis of the density operator obeys the unitary
time evolution

i∂t|ρn(t)〉 = ξ̂(t)|ρn(t)〉, (44)

where ξ̂(t) represents a generator of the time evolu-
tion [22]. The explicit forms of the eigenvalues and
the eigenstates of the density operator are given in Ap-
pendix C.
Accordingly, the heat flux in Eq. (11) is decomposed

into the diagonal and nondiagonal parts as Q̇α(t) =

Q̇d
α(t) + Q̇nd

α (t), where

Q̇d
α(t) =

∑

n

〈ρn(t)|D̂α[ρ̂(t)]|ρn(t)〉〈ρn(t)|Ĥ(t)|ρn(t)〉

(45)

and Q̇nd
α (t) is defined by the residual contribution of

Q̇α(t). The diagonal part is related to the population
dynamics in Eq. (43), and the nondiagonal part is re-
lated to the coherent dynamics. In the present setting,
the eigenvalue pn is independent of t. As a result, we
obtain

Q̇d
h + Q̇d

c = 0. (46)

This relation shows that the diagonal part of the heat
flux just goes through the system as Q̇d

h = −Q̇d
c and does

not contribute to the work. This direct flow reduces the
efficiency of the heat engine.
To quantify the diagonal and nondiagonal contribu-

tions, we decompose the efficiency as

η = ηd
Qd

h

Qh
+ ηnd

Qnd
h

Qh
, (47)

where

ηd = 1 +
Qd

c

Qd
h

, (48)

ηnd = 1 +
Qnd

c

Qnd
h

. (49)

ηd denotes the contribution from the diagonal part of
the heat flux, and ηnd denotes the contribution from the
nondiagonal part. Equation (46) shows that ηd = 0 in
the present case. The efficiency is given by

η = ηnd
1

ηndP
1

ηSSDP + ρ0P0

, (50)

and the explicit form of ηnd is

1

ηnd
=
g1q1G1 + g2(1− q2)G2

g1G1 + g2G2

+
−g1(1− q1)

q1
q10

+ g2(1− q2)
q2
q20

1− q1
q10

− q2
q20

G1 +G2

g1G1 + g2G2
,

(51)

where G1 = G + 4λ2ω2

g1ǫ
2

21

and G2 = G + 4λ2ω2

g2ǫ
2

21

. From

Eq. (50), we can identify the diagonal and nondiagonal
heat flows, respectively, as

Qd
h

T0
= −

Qd
c

T0
=

(

1

ηSSD
−

1

ηnd

)

P + ρ0P0, (52)

Qnd
h

T0
=

1

ηnd
P. (53)

We plot 1/ηnd as a function of λ in Fig. 7. From the
value of 1/ηnd, we can understand the pattern of the heat
flow. When ηnd > 1, both Qnd

c and Qnd
h are positive, and

we can obtain the ideal heat flow as a heat engine. The
case ηnd > 1 is represented by pattern (ii) in Fig. 7. ηnd
has a purely quantum-mechanical origin and can exceed
the Carnot efficiency. However, we cannot neglect the
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FIG. 7. Left: 1/ηnd as a function of λ for ω20/ω10 = 2.6. We
take βcω10 = 5.0, βhω10 = 1.0 for plots of decreasing functions
and βcω10 = 1.0, βhω10 = 0.2 for plots of increasing functions
with high T . We use the parametrizations of the dissipator
couplings in Fig. 4 (for “resonant”), Fig. 5 (for “intermed”),
and Fig. 6 (for “uniform”). The frequency is chosen as in
Eq. (41). Right: Sketch of heat flows. Each arrow denotes
the direction of the flow. “d” denotes the diagonal part, and
“nd” denotes the nondiagonal part.

FIG. 8. Three possible patterns of heat flow drawn in Fig. 7
in the uniform-coupling case. (a) βcω10 = 5.0 and βhω10 =
1.0. (b) βcω10 = 1.0 and βhω10 = 0.2. The arrows denote red
dashed lines in Fig. 7.

diagonal contribution, which reduces the total efficiency.
As a result, even in the quantum system, the efficiency in
Eq. (50) is bounded from above by the Carnot efficiency.

In the resonant-coupling case, ηnd is always larger than
unity, which leads to a high-performance result in Fig. 4.
The situation is significantly changed when we move
away from the resonant-coupling case. As we increase λ,
the nondiagonal heat flow changes, and we observe the
reduction of the efficiency as a result. Dependent on the
parameters in the equation, we can observe pattern (i)
and pattern (iii) in Fig. 7 within the heat-engine domain.

In Fig. 8, we plot the patterns of the heat flow in the
uniform-coupling case. We can find patterns (i) and (iii)
around the boundary where the efficiency becomes small.
This behavior is consistent with that in Fig. 6.

The decomposition of the diagonal part and the nondi-
agonal part has been discussed in some works [17, 18]. It
is a difficult problem to observe each one as an indepen-
dent contribution. However, the nondiagonal part goes

to zero at λω → 0. The diagonal part is insensitive to the
parameter and can be extracted in the weak-field regime.

V. THERMODYNAMIC UNCERTAINTY

RELATION

As a final subject to study, we examine the TUR [28,
29]. The standard form of the TUR is represented as

〈σ̇〉
varP

P 2
≥ 2, (54)

where 〈σ̇〉 is the entropy production rate averaged over
one cycle and varP is the variance of the power. The
variance is bounded from below, and the bound is de-
termined by the entropy production. Although this re-
lation was shown in a broad range of classical systems,
the relation does not necessarily hold, and the violation
can be found especially in quantum systems. The quan-
tum TUR is modified by a different bound [30]. For the
present three-level system, the violation of the standard
TUR was shown in [31, 32]. Here we examine how this
result is affected by the modification of the dissipator.
The entropy production rate at each t is given by

σ̇(t) = −Tr ∂tρ̂(t) ln ρ̂(t) −
∑

α βαQ̇α(t). The first term
comes from the von Neumann entropy of the system
and goes to zero when we take the average over one
period. The average of the entropy production rate

〈σ̇〉 = limT→∞

∫ T+T0

T
dt σ̇(t)/T0 is calculated as

〈σ̇〉 = (βc − βh)

[(

1

ηSSD
−

1

ηC

)

P + ρ0P0

]

. (55)

The variance of the power varP is calculated in Ap-
pendix D. It is decomposed as varP = (varP )1 +
(varP )2 + (varP )3 + (varP )4, and each part is respec-
tively given as

(varP )1 = ǫ21

g
−

1

g1
+

g
−

2

g2

g
−

2

g2
−

g
−

1

g1

P, (56)

(varP )2 = −

[ 1
g1

+ 1
g2

+
(

1
g1

− 1
g2

)(

g
−

2

g2
−

g
−

1

g1

)

1 +
g
−

1

g1
+

g
−

2

g2

+
1

g1
+

1

g2
−

4

g1 + g2
+

4

G

]

P 2, (57)

(varP )3 =

[

(

1

g1
−

1

g2

)2

+

(

1

g1
+

1

g2

)(

1

g1
+

1

g2
−

4

g1 + g2
+

4

G

)

×

(

1 +
g−1
g1

+
g−2
g2

)

]

P 3

ǫ21

(

g
−

2

g2
−

g
−

1

g1

) , (58)
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FIG. 9. The variance of the power. (a) Resonant-coupling
case in Fig. 4. (b) Uniform-coupling case in Fig. 6.

FIG. 10. The thermodynamic uncertainty relation. (a)
Resonant-coupling case in Fig. 4. (b) Uniform-coupling case
in Fig. 6. The red lines denote the bound 〈σ̇〉var(P )/P 2 = 2.

(varP )4 =

[

(

1

g1
+

1

g2

)



1 +
1

1 +
g
−

1

g1
+

g
−

2

g2





+

(

1

g1
−

1

g2

)



1 +

g
−

2

g2
−

g
−

1

g1

1 +
g−

1

g1
+

g−

2

g2





+
1

g1
+

1

g2
−

4

g1 + g2
+

4

G

]

(

1
g1

− 1
g2

)

P 3

ǫ21
.

(59)

We note that (varP )1 and (varP )3 are nonnegative. We
also see that (varP )2 is negative, and (varP )4 is zero at
g1 = g2.
We plot varP in Fig. 9. The variance is basically an

increasing function of λ/ω10 and is insensitive to ω20/ω10.
This result holds irrespective of the choice of the dissi-
pator coupling. The corresponding behavior of the TUR
is shown in Fig. 10. As we see Fig. 10, the TUR bound
is strictly satisfied with the present choice of parameters.
The bound is tight in the case of the resonant coupling
and is loosened as we move away from the resonant cou-
pling.
All of the results in Figs. 9 and 10 satisfy the standard

TUR in Eq. (54). The optimal frequency in Eq. (41) is
used there, and the result is changed by considering the
frequency dependence in Fig. 11. We observe a violation

FIG. 11. The frequency dependence of the thermodynamic
uncertainty product 〈σ̇〉var(P )/P 2 in the resonant-coupling
case with ω20/ω10 = 2.6. (a) (βcω10, βhω10) = (5.0, 1.0). (b)
(βcω10, βhω10) = (1.0, 0.2).

FIG. 12. The thermodynamic uncertainty prod-
uct 〈σ̇〉var(P )/P 2 in the resonant-coupling case. (a)
(βcω10, βhω10) = (5.0, 1.0). (b) (βcω10, βhω10) = (1.0, 0.2).
See the caption of Fig. 4 for the choice of the other parame-
ters.

of the standard TUR. We show the contour maps of the
uncertainty product in Figs. 12 and 13. The violation
occurs in a tiny range of parameters in the resonant-
coupling case.
These numerical results can be understood from the

analytical expression. Basically, the bound comes from
Eq. (56). In the resonant-coupling case, we find

〈σ̇〉
(varP )1
P 2

=
βcǫ10 − βhǫ20

tanh βcǫ10−βhǫ20
2

≥ 2. (60)

We numerically find that the other parts are very small,
at least with the present choice of parameters. The small
violation of the TUR in Fig. 11 is understood from a
negative contribution of (varP )2. We note that the con-
tributions (varP )1 and (varP )2 are similar to the result
in Ref. [31], where the variance takes the form

varP = AP −BP 2. (61)

A and B are positive, and the second term leads to a vi-
olation of the TUR in a certain range of parameters. We
note that the local approach is used in Ref. [31] and the
form of the dissipator is different from the present model.
Our model includes additional contributions, (varP )3
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FIG. 13. The thermodynamic uncertainty product
〈σ̇〉var(P )/P 2 in the uniform-coupling case. We plot the
region where 〈σ̇〉var(P )/P 2 ≤ 20. (a) (βcω10, βhω10) =
(5.0, 1.0). (b) (βcω10, βhω10) = (1.0, 0.2). See the caption
of Fig. 6 for the choice of the other parameters.

and (varP )4, but we numerically find that these con-
tributions are small and do not play any significant role.
In the case of the other dissipator coupling, we can un-

derstand the loose bound from the expression of the en-
tropy production rate. The last term in Eq. (55) includes
P0, which makes the uncertainty product 〈σ̇〉var(P )/P 2

very large.

VI. CONCLUSIONS

We have presented a detailed thermodynamic analysis
of a continuous quantum heat engine based on the global
form of the quantum master equation. We found that the
performance of the heat engine is strongly dependent on
the form of the dissipator. The quantum coherence does

not necessarily enhance the efficiency of the heat engine.
The quantum coherent heat flow cannot be understood

from the laws of thermodynamics. It produces a nontriv-
ial heat flow even in the linear-response regime. Although
the coherent flow has the potential ability to enhance
the efficiency of the heat engine, the efficiency is affected
by the population heat flow, which prevents the system
from violating the second law of thermodynamics. In the
present model, the population heat flow does not con-
tribute to the power of the heat engine but is required to
keep the system within the heat-engine operation regime.
The decomposition of the efficiency in Eq. (47) allowed

us to discuss the interplay between the population and
coherent parts. We compared ηd and ηnd to find which
part is important for the system to work as a heat en-
gine. In the present setting, we found ηd = 0. Micro-
scopically, this property is due to the time independence
of the eigenvalues of the Hamiltonian. When we consider
a more general form of the Hamiltonian, the eigenvalue is
generally dependent on t, and the population heat flow
contributes to the power generation. It will be an in-
teresting problem to study the performance of the heat
engine and the interplay between the population and co-
herent parts in that case.
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Appendix A: Diagonalization of the Hamiltonian

The Hamiltonian in Eq. (1) is easily diagonalized as

Ĥ(t) =
∑

n ǫn|ǫn(t)〉〈ǫn(t)|. The eigenvalues are inde-
pendent of t and are given by

ǫ0 = ω0, (A1)

ǫ1 =
ω0 + ω1

2
−

√

(

ω2 − ω1

2

)2

+ λ2, (A2)

ǫ2 =
ω0 + ω1

2
+

√

(

ω2 − ω1

2

)2

+ λ2. (A3)

ǫ2 is the largest eigenvalue under the condition ω0 <
ω1 < ω2. The additional relation ǫ0 < ǫ1 holds when we
assume λ2 < (ω1 − ω0)(ω2 − ω0).

The corresponding eigenstates are given by

|ǫ0(t)〉 = |0〉, (A4)

|ǫ1(t)〉 = |1〉 cos
θ

2
− |2〉e−iωt sin

θ

2
, (A5)

|ǫ2(t)〉 = |1〉eiωt sin
θ

2
+ |2〉 cos

θ

2
, (A6)

where θ is defined in Eq. (20).

Appendix B: Stationary solution of the GKLS

equation

We obtain the stationary solution of the GKLS equa-
tion in Eq. (2). Multiplying 〈ǫm(t)| from the left and
|ǫn(t)〉 from the right in Eq. (2), we obtain the expres-
sion

∂t〈ǫm(t)|ρ̂(t)|ǫn(t)〉

= −i(ǫm − ǫn)〈ǫm(t)|ρ̂(t)|ǫn(t)〉

+
∑

α

〈ǫm(t)|D̂α[ρ̂(t)]|ǫn(t)〉

+〈∂tǫm(t)|ρ̂(t)|ǫn(t)〉 + 〈ǫm(t)|ρ̂(t)|∂tǫn(t)〉. (B1)

Due to the property |ǫ0(t)〉 = |0〉 and our choice of the
jump operators in Eqs. (5) and (6), 〈0|ρ̂(t)|ǫ1(t)〉 and
〈0|ρ̂(t)|ǫ2(t)〉, their conjugates do not couple to the other
components and decay exponentially as a function of t.
We write the off-diagonal component

〈ǫ1(t)|ρ̂(t)|ǫ2(t)〉 = eiωt (∆1(t) + i∆2(t)) , (B2)

where ∆1 and ∆2 are real, to obtain

∂t〈0|ρ̂|0〉 = g1〈ǫ1|ρ̂|ǫ1〉+ g2〈ǫ2|ρ̂|ǫ2〉 − (g−1 + g−2 )〈0|ρ̂|0〉,

(B3)

∂t〈ǫ1|ρ̂|ǫ1〉 = −g1〈ǫ1|ρ̂|ǫ1〉+ g−1 〈0|ρ̂|0〉 − ω∆2 sin θ, (B4)

∂t〈ǫ2|ρ̂|ǫ2〉 = −g2〈ǫ1|ρ̂|ǫ1〉+ g−2 〈0|ρ̂|0〉+ ω∆2 sin θ, (B5)

∂t (∆1 + i∆2) =
iω sin θ

2
(〈ǫ1|ρ̂|ǫ1〉 − 〈ǫ2|ρ̂|ǫ2〉)

+

[

i(ǫ21 − ω cos θ)−
1

2
(g1 + g2)

]

(∆1 + i∆2) . (B6)

Due to the normalization of the density operator, the first
three equations are not independent from each other. We
can write











1
∂t〈ǫ1|ρ̂|ǫ1〉
∂t〈ǫ2|ρ̂|ǫ2〉
∂t∆1

∂t∆2











= L











〈0|ρ̂|0〉
〈ǫ1|ρ̂|ǫ1〉
〈ǫ2|ρ̂|ǫ2〉

∆1

∆2











, (B7)
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where

L =











1 1 1 0 0
g−1 −g1 0 0 −ω sin θ
g−2 0 −g2 0 ω sin θ
0 0 0 −g −ǫ̃
0 ω

2 sin θ −ω
2 sin θ ǫ̃ −g











. (B8)

Here we use the notation g = (g1 + g2)/2 and ǫ̃ = ǫ21 −
ω cos θ. Since each component of L is independent of
t, the stationary solution is obtained by neglecting the
derivative on the left-hand side of Eq. (B7). Solving the
equation algebraically, we obtain at the stationary limit

〈0|ρ̂(t)|0〉 → ρ0, (B9)

〈ǫ1(t)|ρ̂(t)|ǫ1(t)〉 →
g−1
g1
ρ0 −

ω sin θ

g1
∆0, (B10)

〈ǫ2(t)|ρ̂(t)|ǫ2(t)〉 →
g−2
g2
ρ0 +

ω sin θ

g2
∆0, (B11)

∆2(t) → ∆0, (B12)

where

∆0 = −
ω sin θ

2G

(

g−2
g2

−
g−1
g1

)

1

Z
, (B13)

and ρ0 is given in Eq. (28). The heat flux in Eq. (11) is
expressed by using the above relations as

Q̇(t) = −ǫ10
(

g1〈ǫ1(t)|ρ̂(t)|ǫ1(t)〉 − g−1 〈0|ρ̂(t)|0〉
)

−ǫ20
(

g2〈ǫ2(t)|ρ̂(t)|ǫ2(t)〉 − g−2 〈0|ρ̂(t)|0〉
)

.

(B14)

By using Eqs.(16)–(19), we decompose this expression
into two parts to write Eqs. (23) and (24). In a similar
way, the work done by the system can be calculated as

Ẇ (t) = −Tr
[

ρ̂(t)∂tĤ(t)
]

= −2λω∆2(t), (B15)

which leads to the expression of the power in Eq. (25).
It is reasonable to find that the off-diagonal compo-
nent 〈ǫ1(t)|ρ̂(t)|ǫ2(t)〉 drives the system to make a finite
amount of the work.

Appendix C: Density operator at stationary

At the stationary limit, the density operator is written
as

ρ̂(t) =

2
∑

n=0

|ǫn(t)〉〈ǫn(t)|ρ̂(t)|ǫn(t)〉〈ǫn(t)|

+|ǫ1(t)〉e
iωt (∆1 + i∆2) 〈ǫ2(t)|

+|ǫ2(t)〉e
−iωt (∆1 − i∆2) 〈ǫ1(t)|. (C1)

We diagonalize this operator as ρ̂(t) =
∑

n pn|ρn(t)〉〈ρn(t)|. The eigenvalues are given by

p0 = ρ0, (C2)

p1 =
1 + cosΘ

2 cosΘ
ρ1 −

1− cosΘ

2 cosΘ
ρ2, (C3)

p2 = −
1− cosΘ

2 cosΘ
ρ1 +

1 + cosΘ

2 cosΘ
ρ2, (C4)

where ρn = 〈ǫn|ρ̂|ǫn〉 and

tanΘ =
|∆1 + i∆2|
1
2 (ρ2 − ρ1)

. (C5)

At the stationary limit, these eigenvalues are independent
of t.
The corresponding eigenstates are given by

|ρ0(t)〉 = |0〉, (C6)

|ρ1(t)〉 = |ǫ1(t)〉 cos
Θ

2
− |ǫ2(t)〉e

−iΦ(t) sin
Θ

2
, (C7)

|ρ2(t)〉 = |ǫ1(t)〉e
iΦ(t) sin

Θ

2
+ |ǫ2(t)〉 cos

Θ

2
, (C8)

where

Φ(t) = ωt+ arg(∆1 + i∆2). (C9)

Appendix D: Power fluctuation

The higher-order correlations of heat flows can be cal-
culated by the introduction of the counting field [31, 32].
The dissipator is modified as

D̂χ
α[ρ̂] =

∑

ǫ

γα(ǫ)

[

e−χαǫL̂ǫ
α(t)ρ̂(L̂

ǫ
α(t))

†

−
1

2

(

(L̂ǫ
α(t))

†L̂ǫ
α(t)ρ̂+ ρ̂(L̂ǫ

α(t))
†L̂ǫ

α(t)
)

]

. (D1)

χα represents the counting field. The average power is
calculated by setting χc = χh = χ as

P = lim
T→∞

1

T

∂

∂χ
Tr ρ̂χ(T )

∣

∣

∣

∣

χ=0

. (D2)

In the same way, the variance of the power is given by

varP = lim
T→∞

1

T





(

∂

∂χ

)2

Tr ρ̂χ(T )

∣

∣

∣

∣

∣

χ=0

− (PT )2



 .

(D3)
The GKLS equation with the dissipator in Eq. (D1)

is solved perturbatively. The density operator and the
dissipator are expanded with respect to the counting field
χα as ρ̂χ(t) = ρ̂χ(t) + ρ̂χ1 (t) + ρ̂χ2 (t) + · · · and D̂χ

α[ρ̂] =

D̂α[ρ̂]+D̂
χ
α1[ρ̂]+D̂

χ
α2[ρ̂(t)]+ · · · , respectively. Taking the

trace of the GKLS equation at first order in χ, we obtain

∂tTr ρ̂
χ
1 (t) =

∑

α

Tr D̂χ
α1[ρ̂(t)] =

∑

α

χαTr Ĵα(t)ρ̂(t),

(D4)
where

Ĵα(t) = −
∑

ǫ

ǫγα(ǫ)(L̂
ǫ
α(t))

†L̂ǫ
α(t). (D5)

Ĵα(t) is interpreted as the current operator, which jus-
tifies the use of the dissipator in Eq. (D1). Then, by
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setting χα = χ and by using the stationary solution, we
obtain

∂tTr ρ̂
χ
1 (t) → χP. (D6)

This result is consistent with that in Eq. (30).
Next, we consider the trace of the GKLS equation at

second order given by

∂tTr ρ̂
χ
2 (t) =

∑

α

Tr D̂χ
α1[ρ̂

χ
1 (t)] +

∑

α

Tr D̂χ
α2[ρ̂(t)]. (D7)

In order to solve the equation, we need to find the explicit
form of ρ̂χ1 , not of Tr ρ̂χ1 . The GKLS equation at first
order in χ is given by

L











〈0|ρ̂χ1 |0〉
〈ǫ1|ρ̂

χ
1 |ǫ1〉

〈ǫ2|ρ̂
χ
1 |ǫ2〉

∆χ
1

∆χ
2











=













Tr ρ̂χ1
∂t〈ǫ1|ρ̂

χ
1 |ǫ1〉 −

∑

α〈ǫ1|D̂
χ
α1[ρ̂]|ǫ1〉

∂t〈ǫ2|ρ̂
χ
1 |ǫ2〉 −

∑

α〈ǫ1|D̂
χ
α1[ρ̂]|ǫ1〉

∂t∆
χ
1

∂t∆
χ
2













, (D8)

where L is given in Eq. (B8). As we have shown above,
ρ̂χ1 is a linear function of t. This means that the first com-
ponent of the vector on the right-hand side of Eq. (D8)

is proportional to t and the other components are inde-
pendent of t. By using Eqs. (B7) and (D4), we can write
the solution as











〈0|ρ̂χ1 |0〉
〈ǫ1|ρ̂

χ
1 |ǫ1〉

〈ǫ2|ρ̂
χ
1 |ǫ2〉

∆χ
1

∆χ
2











= t











〈0|ρ̂|0〉
〈ǫ1|ρ̂|ǫ1〉
〈ǫ2|ρ̂|ǫ2〉

∆1

∆2











∑

α

Tr D̂χ
α1[ρ̂] + L−1

∑

α

|ψχ
α〉,

(D9)

where

|ψχ
α〉 =













0

〈ǫ1|ρ̂|ǫ1〉Tr D̂
χ
α1[ρ̂]− 〈ǫ1|D̂

χ
α1[ρ̂]|ǫ1〉

〈ǫ1|ρ̂|ǫ1〉Tr D̂
χ
α1[ρ̂]− 〈ǫ1|D̂

χ
α1[ρ̂]|ǫ1〉

∆1Tr D̂
χ
α1[ρ̂]

∆2Tr D̂
χ
α1[ρ̂]













. (D10)

This solution is inserted into Eq. (D7). Tr ρ̂χ2 (t) is a
quadratic function of t. The t2 term represents the dis-
connected part of the fluctuation and is canceled out by
subtracting the square of the average as in Eq. (D3). We
obtain the expression of the variance given in the main
text.


