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ON ITERATES OF RATIONAL FUNCTIONS WITH MAXIMAL

NUMBER OF CRITICAL VALUES

FEDOR PAKOVICH

Abstract. Let F be a rational function of one complex variable of degree
m ≥ 2. The function F is called simple if for every z ∈ CP1 the preimage
F−1{z} contains at least m− 1 points. We show that if F is a simple rational
function of degree m ≥ 4 and F ◦l = Gr ◦ Gr−1 ◦ · · · ◦ G1, l ≥ 1, is a de-
composition of an iterate of F into a composition of indecomposable rational
functions, then r = l and there exist Möbius transformations µi, 1 ≤ i ≤ r−1,
such that Gr = F ◦ µr−1, Gi = µ−1

i
◦ F ◦ µi−1, 1 < i < r, and G1 = µ−1

1
◦ F .

As applications, we solve a number of problems in complex and arithmetic
dynamics for “general” rational functions.

1. Introduction

Let F be a rational function of one complex variable of degree m ≥ 2. The
function F is called indecomposable if the equality F = F2 ◦ F1, where F1, F2, are
rational functions, implies that at least one of the functions F1, F2 is of degree one.
Any representation of F in the form F = Fr ◦ Fr−1 ◦ · · · ◦ F1, where F1, F2, . . . , Fr
are rational functions of degree at least two, is called a decomposition of F. Two
decompositions

(1) F = Fr ◦ Fr−1 ◦ · · · ◦ F1 and F = Gl ◦Gl−1 ◦ · · · ◦G1

are called equivalent if l = r and either r = 1 and F1 = G1, or r ≥ 2 and there exist
Möbius transformations µi, 1 ≤ i ≤ r − 1, such that

Fr = Gr ◦ µr−1, Fi = µ−1
i ◦Gi ◦ µi−1, 1 < i < r, and F1 = µ−1

1 ◦G1.

It is obvious that any rational function F of degree m ≥ 2 can be decomposed into
a composition of indecomposable rational functions, although in general not in a
unique way. The problem of describing all such decompositions is quite delicate,
and the general theory exists only if F is a polynomial or a Laurent polynomial
(see [47], [31]).

In dynamical applications, one needs to have a description of decompositions of
the whole totality of iterates of a given rational function F (see e.g. [5], [18], [19],
[27], [34], [42], [43]), and the main result of this paper states roughly speaking that
for a general rational function of degree m ≥ 4 all such decompositions are trivial.
As applications, we solve a number of problems in complex and arithmetic dynamics
for general rational functions. Here and below, saying that some statement holds
for general rational functions of degree m, we mean the following: if we identify the
set of rational functions of degree m with an algebraic variety Ratm obtained from
CP2m+1 by removing the resultant hypersurface, then this statement holds for all
F ∈ Ratm with exception of some proper Zariski closed subset.

This research was supported by ISF Grant No. 1092/22.

1

http://arxiv.org/abs/2107.05963v4


2 FEDOR PAKOVICH

In more detail, we prove a number of results, which hold for simple rational
functions, that is, for rational functions F of degree m ≥ 2 such that for every
z ∈ CP1 the preimage F−1{z} contains at least m− 1 points.

Our main result is the following statement.

Theorem 1.1. Let F be a simple rational function of degree m ≥ 4. Then any
decomposition of F ◦l, l ≥ 1, into a composition of indecomposable rational functions
is equivalent to F ◦l.

We apply Theorem 1.1 to describing a variety of objects associated with a rational
function F of degree at least two, using the following notation.

〈F 〉 is the semigroup of rational functions generated by F .
C(F ) is the semigroup of all rational functions commuting with F .
Aut(F ) is the group of all Möbius transformations belonging to C(F ).
C∞(F ) is the semigroup of all rational functions commuting with

some iterate of F .
Aut∞(F ) is the group of all Möbius transformations belonging

to C∞(F ).
〈Aut∞(F ), F 〉 is the semigroup of rational functions generated by F

and Aut∞(F ).
µF is the measure of maximal entropy of F .
E0(F ) is the group of all Möbius transformations preserving µF .
E(F ) is the semigroup consisting of all rational functions G of degree

at least two with µG = µF , completed by the group E0(F ).
G0(F ) is the maximal subgroup of Aut(CP1) such that for every

σ ∈ G0(F ) there exists ν ∈ G0(F ) satisfying F ◦ σ = ν ◦ F .
Using Theorem 1.1, we show that for simple rational functions the above objects

are related in a very simple way.

Theorem 1.2. Let F be a simple rational function of degree m ≥ 4. Then

E0(F ) = Aut∞(F ) = G0(F ) and E(F ) = C∞(F ) = 〈Aut∞(F ), F 〉.
The link between Theorem 1.1 and Theorem 1.2 is based on the results of Ritt

([48]) and Levin and Przytycki ([24], [25]). Namely, the theorem of Ritt about
commuting rational functions implies that for a fixed non-special rational function
F of degree at least two, a rational function G of degree at least two belongs to
C∞(F ) if and only if the equality

(2) F ◦k = G◦l

holds for some k, l ≥ 1. On the other hand, the results of Levin and Przytycki yield
that G belongs to E(F ) if and only if the equality

(3) F ◦k1 = F ◦k2 ◦G◦l

holds for some k1, l ≥ 1, k2 ≥ 0 (see Section 3.1 for more detail).
As an application of Theorem 1.2, we prove the following result.

Theorem 1.3. For a general rational function F of degree m ≥ 4, the equalities

E0(F ) = Aut∞(F ) = G0(F ) = id and E(F ) = C∞(F ) = 〈F 〉
hold.
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Notice that Theorem 1.3 provides an affirmative answer to the question of Ye,
who proved that the equality E(F ) = 〈F 〉 holds after removing from Ratm count-
ably many algebraic sets, and asked whether it remains true if to remove from Ratm
only finitely many such sets ([56]).

Further applications of Theorem 1.1 concern problems that can be reformulated
in terms of semiconjugacies between rational functions (see the papers [4], [9], [11],
[22], [27], [36], [42] for examples of such problems). We recall that a rational
function B of degree at least two is called semiconjugate to a rational function A if
there exists a non-constant rational function X such that the diagram

(4)

CP1 B−−−−→ CP1

X

y
yX

CP1 A−−−−→ CP1

commutes. A comprehensive description of triples A,B,X such that (4) commutes
was obtained in the series of papers [33], [35], [37], [38]. For simple A, Theorem 1.1
permits to reduce this description to the following uncomplicated form suitable for
applications.

Theorem 1.4. Let F be a simple rational function of degree m ≥ 4, and G,X
non-constant rational functions such that the diagram

(5)

CP1 G−−−−→ CP1

X

y
yX

CP1 F◦r

−−−−→ CP1

commutes for an integer r ≥ 1. Then there exist a Möbius transformation ν and
an integer l ≥ 0 such that the equalities

X = F ◦l ◦ µ, G = µ−1 ◦ F ◦r ◦ µ

hold.

As an example of an application of Theorem 1.4, we consider the problem of
describing periodic algebraic curves for endomorphisms of (CP1)2 of the form

(F1, F2) : (z1, z2) → (F1(z1), F2(z2)),

where F1, F2 are rational functions, which reduces to describing solutions of a sys-
tem of semiconjugacies. A description of periodic curves in the case where F1, F2

are polynomials was obtained by Medvedev and Scanlon ([27]) and has numerous
applications in complex and arithmetic dynamics (see e. g. [3], [11], [15], [16], [17],
[20], [30]). A description of periodic curves in the general case was obtained in the
recent paper [42]. Notice that the problem of describing periodic curves is closely
related to a variant of a conjecture of Zhang ([58]) on the existence of Zariski dense
orbits for endomorphisms (F1, F2) defined over a field K of characteristic zero (see
[27], [42], [57]).

Theorem 1.4 permits to shorten considerably the results of [42] in case F1 and F2

are simple, leading to the following result, which can be easily used for applications.
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Theorem 1.5. Let F1 and F2 be simple rational functions of degree m ≥ 4, and C
an irreducible algebraic curve in (P1(C))2 that is not a vertical or horizontal line.
Then (F1, F2)

◦d(C) = C for an integer d ≥ 1 if and only if

F ◦d
2 = α ◦ F ◦d

1 ◦ α−1

for some Möbius transformation α, and C is one of the graphs

y = (α ◦ µ ◦ F ◦s
1 )(x), x = (µ ◦ F ◦s

1 ◦ α−1)(y),

where µ ∈ Aut(F ◦d
1 ) and s ≥ 0.

Using Theorem 1.5, we prove the following result about invariant and periodic
curves for general rational functions.

Theorem 1.6. For every m ≥ 4 there exists a Zariski open set U in Ratm such
that the following holds. For any F1, F2 ∈ U , an irreducible algebraic curve C in
(P1(C))2 that is not a vertical or horizontal line is (F1, F2)-periodic if and only if

F2 = α ◦ F1 ◦ α−1

for some Möbius transformation α, and C is one of the graphs

y = (α ◦ F ◦s
1 )(x), x = (F ◦s

1 ◦ α−1)(y),

where s ≥ 0. In particular, any (F1, F2)-periodic curve is (F1, F2)-invariant.

For proving Theorem 1.1, we use the following strategy. First, we show that if F
is a simple rational function of degree m ≥ 4 and H is an indecomposable rational
function of degree at least two such that the algebraic curve

(6) H(y)− F (x) = 0

is irreducible, then the genus of this curve is greater than zero. Second, we show
that if (6) is reducible, then either H = F ◦µ, where µ is a Möbius transformation,
or degH is equal to the binomial coefficient

(
m
k

)
for some k, 1 < k < m− 1. Third,

using the theorem of Sylvester [53] and Schur [50] about prime divisors of binomial
coefficients, we show that there exists a prime number p such that p |

(
m
k

)
but p ∤ m.

The above statements yield that if F ◦l = H ◦R for some rational function R, then
H necessarily has the form H = F ◦ µ for some Möbius transformation µ, and this
fact allows us to prove the theorem.

The paper is organized as follows. In the second section, using the above ap-
proach we prove Theorem 1.1. In the third section, we deduce from Theorem 1.1
Theorem 1.2 and Theorem 1.3. In the fourth section, basing on results about semi-
conjugate rational functions and invariant curves from [33], [38], [42], we prove
Theorem 1.4, Theorem 1.5, and Theorem 1.6.

Finally, in the fifth section, we give a number of conditions implying that some
iterate F ◦k, k > 1, of an indecomposable rational function F has a decomposition
not equivalent to F ◦k itself. We also construct explicit examples of simple rational
functions of degree 2 and 3 for which Theorems 1.1 - 1.2 and Theorems 1.4 - 1.5
are not true. As for Theorem 1.3 and Theorem 1.6, we believe that they have some
analogues for m = 2 and m = 3. However, the methods of this paper do not apply
to this situation.
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2. Decompositions of iterates of rational functions

2.1. The monodromy group and decompositions. Let G be a group which
acts transitively on a finite set S. We recall that a subset T of S is called a block of
G, if for each g ∈ G either g(T ) = T or g(T ) ∩ T = ∅. Clearly, if T is a block, then
T = {σ(T ), σ ∈ G} is a partition of S, which is called an imprimitvity system of G.
The group G is called primitive if its blocks are only singletons and the whole S.
Otherwise, G is called imprimitive.

Let F be a rational function, and c(F ) = {z1, z2, . . . , zr} the set of all critical
values of F . Let us fix a point z0 ∈ CP1\c(F ) and some loops γi around zi, 1 ≤ i ≤ r,
such that γ1γ2...γr = 1 in π1(CP

1\c(F ), z0). Further, let us denote by δi, 1 ≤ i ≤ r,
a permutation of points of F−1{z0} induced by the lifting of γi, 1 ≤ i ≤ r. In this
notation, the monodromy group of F is defined as the permutation group generated
by δi, 1 ≤ i ≤ r. We will denote this group by Mon(F ).

The imprimitivity systems of the group Mon(F ) correspond to decompositions
of F . Namely, if F = A ◦B is a decomposition of F into a composition of rational
functions A and B, where degA = d, then Mon(F ) has an imprimitivity system
consisting of d blocks B−1{ti}, 1 ≤ i ≤ d, where {t1, t2, . . . , td} = A−1{z0}. Fur-
thermore, any imprimitivity system of Mon(F ) arises from a decomposition of F ,
and to decompositions F = A◦B and F = C◦D corresponds the same imprimitivity
system if and only there exists a Möbius transformation µ such that

A = C ◦ µ−1, B = µ ◦D.
In particular, F is indecomposable if and only if Mon(F ) is primitive.

2.2. A calculation of the genus of H(x)−F (y) = 0. Let F be a rational function
of degreem ≥ 2. We denote by deg zF the multiplicity of F at a point z ∈ CP1. The
following two results are known. We include the proofs for the reader convenience.

Lemma 2.1. Let F be a rational function of degree m ≥ 2. Then the following
conditions are equivalent.

i) The function is simple.
ii) The number of critical points of F is equal to the number of critical values,

and the multiplicity of F at every critical point is equal to two.
iii) The number of critical values of F is equal to 2m− 2.

Proof. The equivalence i) ⇔ ii) follows from the definition. Furthermore, it follows
from the Riemann-Hurwitz formula

2m− 2 =
∑

z∈CP1

(deg zF − 1)

that the number of critical points of F does not exceed 2m − 2, and the equality
is attained if and only if the multiplicity of F at every critical point is equal to
two. Since the number of critical values of F does not exceed the number of critical
points, this implies easily the equivalence ii) ⇔ iii). �

Theorem 2.2. Let F be a simple rational function of degree m ≥ 2. Then F is
indecomposable, and Mon(F ) ∼= Sm.

Proof. Assume that

(7) F = F1 ◦ F2,
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where F1 and F2 are rational functions of degrees m1 and m2. Since F is simple,
the number of critical values of F is 2m1m2− 2 by Lemma 2.1. On the other hand,
it follows from (7) by the chain rule that the number of critical values of F does
not exceed (2m1 − 2) + (2m2 − 2). Thus,

2m1m2 − 2 ≤ (2m1 − 2) + (2m2 − 2),

implying that

2m1m2 − 2− (2m1 − 2)− (2m2 − 2) = 2(m1 − 1)(m2 − 1) ≤ 0.

Therefore, at least one of the functions F1 and F2 has degree one.
Since F is indecomposable, the monodromy group Mon(F ) of F is primitive.

Furthermore, for any critical value c of F , the permutation in Mon(P ) corre-
sponding to c is a transposition. Since a primitive permutation group containing a
transposition is a full symmetric group (see [55], Theorem 13.3), we conclude that
Mon(F ) = Sm. �

Let F and H be rational functions of degrees n and m, and H1, H2 and F1, F2

pairs of polynomials without common roots such that H = H1/H2 and F = F1/F2.
Let us define algebraic curves hF,H(x, y) and hF (x, y) by the formulas

hH,F : H1(x)F2(y)−H2(x)F1(y) = 0,

and

hF :
F1(x)F2(y)− F2(x)F1(y)

x− y
= 0.

In case these curves are irreducible, their genera can be calculated explicitly in
terms of ramification of H and F as follows. Let S = {z1, z2, . . . , zr} be the union
of all critical values of H and F . For i, 1 ≤ i ≤ r, we denote by

(ai,1, ai,2, ..., ai,pi)

the collection of multiplicities of H at the points of H−1{zi}, and by

(bi,1, bi,2, ..., bi,qi)

the collection of multiplicities of F at the points of F−1{zi}. In this notation, the
following formulas hold (see [13] or [32]):

(8) 2− 2g(hH,F ) =

r∑

i=1

qi∑

j2=1

pi∑

j1=1

GCD(ai,j1bi,j2)−mn(r − 2),

(9) 4− 2g(hF ) =

r∑

i=1

pi∑

j2=1

pi∑

j1=1

GCD(bi,j1bi,j2)− (r − 2)m2.

Theorem 2.3. Let F be a simple rational function of degree m ≥ 4, and H a
rational function of degree n ≥ 2 such that the curve hH,F is irreducible. Then
g(hH,F ) > 0. In particular, the functional equation F ◦X = H ◦Y has no solutions
in rational functions X,Y .

Proof. Keeping the above notation, let us observe that if zi, 1 ≤ i ≤ r, is not a
critical value of F , then obviously

(10)

pi∑

j1=1

GCD(ai,j1bi,j2) = pi, 1 ≤ j2 ≤ qi,
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and

(11)

qi∑

j2=1

pi∑

j1=1

GCD(ai,j1bi,j2) = mpi.

Assume now that zi, 1 ≤ i ≤ r, is a critical value of F . Then (10) still holds if
bi,j2 = 1, while if bi,j2 = 2, 1 ≤ j2 ≤ qi, we have

pi∑

j1=1

GCD(ai,j1bi,j2) = pi + li,

where li is the number of even numbers among the numbers ai,j1 , 1 ≤ j1 ≤ pi.
Since among the numbers bi,j2 , 1 ≤ j2 ≤ qi, one number is equal to two and m− 2
other numbers are equal to one, we conclude that

(12)

qi∑

j2=1

pi∑

j1=1

GCD(ai,j1bi,j2) = (m− 2)pi + pi + li = mpi + (li − pi).

As

2n− 2 =
∑

z∈CP1

(deg zH − 1) =

r∑

i=1

pi∑

j1=1

(ai,j1 − 1) = rn−
r∑

i=1

pi,

the equality

(13)
r∑

i=1

pi = (r − 2)n+ 2

holds, implying by (11) and (12) that

(14)

r∑

i=1

qi∑

j2=1

pi∑

j1=1

GCD(ai,j1bi,j2) =

r∑

i=1

mpi +
∑

′

(li − pi) =

= m((r − 2)n+ 2) +
∑

′

(li − pi),

where the sum
∑ ′

runs only over indices corresponding to critical values of F . It
follows now from (8) that g(hH,F ) = 0 if and only if

2m− 2 +
∑

′

(li − pi) = 0.

Stating differently, g(hH,F ) = 0 if and only if the preimage H−1{c1, c2, . . . , c2m−2},
where c1, c2, . . . , c2m−2 are critical values of F , contains exactly 2m−2 points where
the multiplicity of H is odd.

Let us observe now that for any finite subset S of CP1 it follows from

2n− 2 =
∑

z∈CP1

(deg zH − 1) ≥
∑

z∈H−1(S)

(deg zH − 1)

that the preimage H−1(S) contains at least n(|S| − 2) + 2 points and the equality
is attained if and only if S contains the set of critical values of H . Therefore,

H−1{c1, c2, . . . , c2m−2} ≥ (2m− 4)n+ 2,
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and the equality is attained if and only if any critical value of H is a critical value of
F . On the other hand, the condition that H−1{c1, c2, . . . , c2m−2} contains 2m− 2
points where the multiplicity of H is odd implies that

H−1{c1, c2, . . . , c2m−2} ≤ (2m− 2) +
n(2m− 2)− (2m− 2)

2
= (n+ 1)(m− 1),

and the equality is attained if and only if all 2m− 2 points with odd multiplicity in
H−1{c1, c2, . . . , c2m−2} have multiplicity one, while all points with even multiplicity
have multiplicity two. Thus, if g(hH,F ) = 0, then

(2m− 4)n+ 2 ≤ (n+ 1)(m− 1),

implying that

(n− 1)(m− 3) ≤ 0.

Since the last inequality is satisfied only for n = 1 or for m = 2, 3, we conclude that
g(hH,F ) > 0. �

Theorem 2.4. Let F be a simple rational function of degree m ≥ 3. Then the
curve hF is irreducible and g(hF ) > 0. In particular, the equality F ◦X = F ◦ Y ,
where X and Y are rational functions, implies that X = Y .

Proof. It is well-known (see e.g. [32], Corollary 2.3) that the curve hF (x, y) is irre-
ducible if and only if the monodromy group Mon(F ) is doubly transitive. Therefore,
since a symmetric group is doubly transitive, the irreducibility of hF (x, y) follows
from Theorem 2.2.

Further, applying (14) and (13) for H = F we see that

r∑

i=1

pi∑

j2=1

pi∑

j1=1

GCD(bi,j1bi,j2) =

2m−2∑

i=1

mpi+

2m−2∑

i=1

(1−pi) =
2m−2∑

i=1

(m−1)pi+2m−2 =

= (m− 1)((2m− 4)m+ 2) + 2m− 2 = m2(2m− 4)− 2m2 + 8m− 4.

Therefore, by formula (9), we have:

(15) g(hF ) = (m− 2)2,

and hence g(hF ) > 0 whenever m ≥ 3. �

2.3. Conditions for reducibility of H(x) − F (y) = 0. The problem of find-
ing conditions under which the algebraic curve hH,F is reducible, the so-called
Davenport-Lewis-Schinzel problem, has a long story and is not solved yet in its full
generality (see [14] for an introduction to the topic). In this section, we consider
a very particular case of this problem (Theorem 2.7 below), which is related to
the subject of this paper and can be handled without using serious group theoretic
methods. The reader interested in these methods is referred to the recent paper
[23], where a significant progress has been made in the polynomial case, and the
bibliography therein.

Let F be a rational function of degree m ≥ 2, and U ⊂ CP1 a simply connected
domain containing no critical values of F . Then in U there existm = degF different
branches of the algebraic function F−1(z). We will denote these branches by small
letters f1, f2, . . . , fm.
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Lemma 2.5. Let F be a rational function of degree m ≥ 2 such that Mon(F ) = Sm,
f1, f2, . . . , fm different branches of F−1(z) defined in some simply connected domain
U containing no critical values of F , and Ci, 0 ≤ i ≤ m, rational functions. Then
the equality

(16) C1f1 + C2f2 + · · ·+ Cmfm = C0

implies that C1 = C2 = · · · = Cm.

Proof. Assume, say, that C1 6= C2. Since Mon(F ) = Sm, the transposition
σ = (1, 2) is contained in Mon(F ), and considering the analytical continuation
of equality (16) along a loop corresponding to σ we obtain the equality

(17) C1f2 + C2f1 + · · ·+ Cmfm = C0.

It follows now from (16) and (17) that

(C1 − C2)(f1 − f2) = 0,

whence f1 = f2 in contradiction with the assumption that f1, f2, . . . , fm are diffe-
rent. �

Lemma 2.6. Let H be an indecomposable rational function of degree n ≥ 2,
h1, h2, . . . , hm different branches of H−1(z) defined in some simply connected do-
main V containing no critical values of H, and R another rational function. Then
either R(hi) 6= R(hj) for i 6= j, 1 ≤ i, j ≤ n, or R(h1) = R(h2) = · · · = R(hn). In
the last case, R(h1) is a rational function.

Proof. It is easy to see that for fixed j, 1 ≤ j ≤ n, the set of all i, 1 ≤ i ≤ n,
such that R(hi) = R(hj) is a block of Mon(H). Since H is indecomposable, this
implies the first statement of the lemma. Finally, if the functions R(hi), 1 ≤ i ≤ n,
are equal, then the algebraic function obtained by a full analytical continuation of
R(h1) is single-valued in CP1 and therefore it is a rational function. �

Theorem 2.7. Let H and F be rational functions of degrees n ≥ 2 and m ≥ 2
such that H is indecomposable, Mon(F ) = Sm, and the curve hH,F is reducible.
Then either H = F ◦ µ, where µ is a Möbius transformation, or n =

(
m
k

)
for some

k, 1 < k < m− 1.

Proof. Suppose that

hH,F (x, y) =M(x, y)N(x, y)

for some non-constant polynomials M(x, y), N(x, y). Notice that since H and F
are non-constant, for such polynomials the degrees deg xM, deg yM, deg xN, deg yN
are distinct from zero.

Let h1, h2, . . . hn be different branches of H−1(z) and f1, f2, . . . fm different
branches of F−1(z) defined in a simply connected domain U ⊂ CP1 containing
no critical values of F or H. Since

hH,F (h1, fi) = 0, 1 ≤ i ≤ m,

among the indices i, 1 ≤ i ≤ m, there are k = deg yM > 0 indicies for which the
equality

(18) M(h1, fi) = 0
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holds. Moreover, k < m, since otherwise the equality deg yM+deg yN = m implies
that deg yN = 0. Let i1, i2, . . . , ik be indices for which (18) holds. Writing M(x, y)
in the form

M(x, y) = Pk(x)y
k + Pk−1(x)y

k−1 + · · ·+ P1(x)y + P0(x),

where Pi, 0 ≤ i ≤ k, are polynomials, we see that (18) implies that

(19) fi1 + fi2 + · · ·+ fik = Q(h1),

whereQ = Pk−1/Pk is a rational function. Furthermore, since the set {i1, i2, . . . , ik}
is a proper subset of {1, 2, . . . ,m}, the function Q(h1) is not a rational function by
Lemma 2.5. Therefore, by Lemma 2.6, the functions Q(hi), 1 ≤ i ≤ n, are pairwise
different.

Continuing equality (19) analytically along an arbitrary closed curve γ in CP1,
we obtain an equality where on the left side is a sum of branches of F−1(z) over
a subset of {1, 2, . . . ,m} containing k elements, while on the right side is a branch
Q(hi), 1 ≤ i ≤ n, of the function Q(h1). Furthermore, to different subsets of
{1, 2, . . . ,m} correspond different branches of Q(h1), for otherwise subtracting we
obtain a contradiction with Lemma 2.5. Since the equality Mon(F ) = Sm implies
that for an appropriately chosen γ we can obtain on the left side a sum of branches of
F−1(z) over any k-element subset of {1, 2, . . . ,m}, while the transitivity of Mon(H)
implies that for an appropriately chosen γ we can obtain on the right side any branch
of Q(hi), 1 ≤ i ≤ n, we conclude that n is equal to the number of k-element subsets
of {1, 2, . . . ,m}, for some k, 1 ≤ k ≤ n, that is, n =

(
m
k

)
.

To finish the proof, let us observe that if k = 1, then n =
(
m
k

)
implies that

n = m. Furthermore, equality (19) implies the equality

z = F (fi1) = (F ◦Q)(h1).

Thus, the function F ◦Q is inverse to h1, that is, H = F ◦Q. Finally, Q is a Möbius
transformation since n = m. The same conclusion is true if k = m − 1, since we
can switch between M(x, y) and N(x, y). �

2.4. Prime divisors of
(
m
k

)
. The classical theorem of Sylvester [53] and Schur

[50] states that in the set of integers a, a+ 1, . . . , a+ b− 1, where a > b, there is a
number divisible by a prime greater than b. For a natural number x, let us denote
by P(x) the greatest prime factor of x. Then the theorem of Sylvester and Schur
may be reformulated as follows ([7]): for any m ≥ 2k the inequality P(

(
m
k

)
) > k

holds. Furthermore, the last inequality may be sharpened to the inequality

(20) P

((
m

k

))
≥ 7

5
k

(see [10], [21]). We will prove that this implies the following corollary.

Theorem 2.8. Let m ≥ 4 be a natural number, and k a natural number such that
1 < k < m− 1. Then there exists a prime number p such that p |

(
m
k

)
but p ∤ m.

Proof. Since
(
m
k

)
=

(
m

m−k
)
, it is enough to prove the theorem under the assumption

that m ≥ 2k. Applying the Sylvester-Schur theorem, we conclude that there is a
number s, m− k + 1 ≤ s ≤ m, such that P(

(
m
k

)
) = P(s) = p > k. Moreover, if s is

strictly less than m, then p cannot be a divisor of m for otherwise

(21) p|(m− s),
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where m− s ≤ k − 1 in contradiction with

(22) p > k.

Since however s can be equal to m, we modify slightly this argument. Namely, we
apply the Sylvester-Schur theorem in its strong form (20) to the binomial coefficient(
m−1
k−1

)
related with

(
m
k

)
by the equality

(23)

(
m

k

)
=
m(m− 1) . . . (m− k + 1)

k(k − 1) . . . 1
=
m

k

(
m− 1

k − 1

)
.

Notice that (23) implies that every prime factor p of
(
m−1
k−1

)
satisfying (22) remains

a prime factor of
(
m
k

)
.

Since m ≥ 2k implies m− 1 ≥ 2(k− 1), applying (20) to
(
m−1
k−1

)
we conclude that

there is a number s, m− k + 1 ≤ s ≤ m− 1, such that

P

((
m− 1

k − 1

))
= P(s) = p ≥ 7

5
(k − 1).

Furthermore, if k > 3 then

p ≥ 7

5
(k − 1) > k,

implying that p |
(
m
k

)
. On the other hand, p ∤ m since otherwise (21) holds in

contradiction with (22).
For k ≤ 3, the theorem can be proved by an elementary argument. If k = 2,

then (
m

k

)
=
m(m− 1)

2
.

Therefore, since GCD(m,m−1) = 1, the statement of the theorem is true, whenever
(m− 1) ∤ 2, and the last condition is always satisfied if m > 3. Similarly, if k = 3,
then (

m

k

)
=
m(m− 1)(m− 2)

2 · 3 ,

and the statement of the theorem is true whenever (m− 1) ∤ 6. The last condition
fails to be true for m > 3 only if m is equal to 4 or 7. However, the pair m = 4,
k = 3 does not satisfy the condition 1 < k < m − 1. On the other hand, for the
pair m = 7, k = 3, we have

(
m
k

)
=

(
7
3

)
= 5 · 7, and the statement of the theorem is

satisfied for p = 5. �

Proof of Theorem 1.1. The proof is by induction on l. Let

(24) F ◦l = Fr ◦ Fr−1 ◦ · · · ◦ F1

be a decomposition of F ◦l, l ≥ 1, into a composition of indecomposable rational
functions. Since F is indecomposable by Theorem 2.2, for l = 1 the theorem is
true. On the other hand, since by Theorem 2.4 the equality F ◦X = F ◦ Y implies
that X = Y , to prove the inductive step it is enough to show that equality (24)
implies that

(25) Fr = F ◦ µ
for some Möbius transformation µ.

Clearly, equality (24) implies that the algebraic curve

(26) F (x) − Fr(y) = 0
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has a factor of genus zero. Therefore, (26) is reducible by Theorem 2.3. Since
Mon(F ) = Sm by Theorem 2.2, it follows now from Theorem 2.7 that either (25)
holds, or degFr =

(
m
k

)
for some k, 1 < k < m − 1. However, the last case is

impossible since (24) implies that any prime divisor of degFr is a prime divisor of
degF in contradiction with Theorem 2.8. �

Corollary 2.9. Let F be a simple rational function of degree m ≥ 4, and Gi,
1 ≤ i ≤ r, rational functions of degree at least two such that

F ◦l = Gr ◦Gr−1 ◦ . . . G1

for some l ≥ 1. Then there exist Möbius transformations νi, 1 ≤ i < r, and integers
si ≥ 1, 1 ≤ i ≤ r, such that

Gr = F ◦sr ◦ νr−1, Gi = ν−1
i ◦ F ◦si ◦ νi−1, 1 < i < r, and G1 = ν−1

1 ◦ F ◦s1 .

Proof. To prove the corollary, it is enough to decompose each Gi, 1 ≤ i ≤ r, into a
composition of indecomposable rational functions and to apply Theorem 1.1. �

3. Groups and semigroups related to rational functions

3.1. Groups and semigroups related to simple rational functions. We
start this section by recalling some basic facts concerning the groups and semigroups
defined in the introduction. We will say that a rational function F of degree at
least two is special if F is either a Lattès map, or it is conjugate to a power z±n or
to a Chebyshev polynomial ±Tn (we will recall the definition of Lattès maps below,
in Section 4.1, in a more general context).

It is obvious that C(F ) is a semigroup, and it follows from the inclusions

C(F ◦k), C(F ◦l) ⊆ C(F ◦LCM(k,l))

that C∞(F ) is also a semigroup. We use the following characterization of C∞(F ).

Theorem 3.1. Let F be a non-special rational function of degree at least two. Then
a rational function G of degree at least two belongs to C∞(F ) if and only if equality
(2) holds for some k, l ≥ 1.

Proof. By the Ritt theorem (see [48], and also [8], [40]), commuting rational func-
tions of degree at least two are either special or have a common iterate. Thus, if G
belongs to C∞(F ) \Aut∞(F ), then (2) holds for some k, l ≥ 1. On the other hand,
if (2) holds, then G commutes with F ◦k, and thus G belongs to C∞(F ). �

Notice that a practical method for describing C(F ) for an arbitrary non-special
rational function F was given in the recent paper [40], but a satisfactory description
of C∞(F ) is still not known (see [44] for some particular results). Thus, condition
(2) remains the only characterization of C∞(F ).

Let us recall that by the results of Freire, Lopes, Mañé ([12]) and Lyubich ([26]),
for every rational function F of degree n ≥ 2, there exists a unique probability
measure µF on CP1, which is invariant under F , has support equal to the Julia
set JF , and achieves maximal entropy logn among all F -invariant probability mea-
sures. The measure µF can be characterized as follows. For a ∈ CP1, let zki (a),
i = 1, . . . , nk, be the roots of the equation F ◦k(z) = a counted with multiplicity,
and µF,k(a) be the measure defined by

(27) µF,k(a) =
1

nk

nk∑

i=1

δzk
i
(a).
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Then for every a ∈ CP1 with two possible exceptions, the sequence µF,k(a), k ≥ 1,
converges in the weak topology to µF . It follows from the characterization of µF as
a limit of (27) that any G sharing an iterate with F belongs to E(F ). Thus,

(28) C∞(F ) ⊆ E(F ).

Moreover, since the equality

F ◦n = α−1 ◦ F ◦n ◦ α,
where α ∈ Aut(CP1) and n ≥ 1, implies that

|S ∩ F−nk(a)| = |α(S) ∩ F−nk(α(a))|, k ≥ 1,

for any set S ⊂ CP1 and a ∈ CP1, this characterization yields that

(29) Aut∞(F ) ⊆ E0(F ).

The fact that E(F ) is a semigroup can be established using the Lyubich operator
or the balancedness property of µF (see [6], [44]), and the analogue of Theorem 3.1
is the following statement.

Theorem 3.2. Let F be a non-special rational function of degree at least two. Then
a rational function G of degree at least two belongs to E(F ) if and only if equality
(3) holds for some k1, l ≥ 1, k2 ≥ 0.

Proof. It is known and can be easily shown using the Lyubich operator that equality
(3) implies the equality µF = µG ([24]). On the other hand, it is shown in [56]
that the characterization of non-special rational functions sharing the measure of
maximal entropy obtained in the papers [24], [25] implies that for such functions F
and G equality (3) holds. �

A complete description of E(F ) is known only if F is a polynomial, in which
case E(F ) \E0(F ) coincides with the set of polynomials sharing a Julia set with F
(see [1], [2], [49] and also [41], [44]). Some partial results in the rational case can
be found in [39], [56].

The group G0(F ) obviously is a subgroup of the larger group G(F ) consisting of
all σ ∈ Aut(CP1) such that

(30) F ◦ σ = ν ◦ F
for some ν ∈ Aut(CP1). It is easy to see that G(F ) is indeed a group and that the
map

γ : σ → νσ

is a homomorphism from G(F ) to the group Aut(CP1). The group G(F ) is finite
and its order is bounded in terms of m = degF , unless

(31) α ◦ F ◦ β = zm

for some Möbius transformations α, β (see [37], Section 4 or [45], Section 2). Thus,
the group G0(F ) is also finite, unless (31) holds.

Lemma 3.3. Let F be a simple rational function of degree m ≥ 3. Then the group
G0(F ) is finite, and the restriction of γ to G0(F ) is an automorphism of G0(F ).

Proof. Since equality (31) is impossible for simple F of degree m ≥ 3, the group
G0(F ) is finite. Furthermore, since the equality F = F ◦ σ, where σ ∈ G0(F ),
implies by Theorem 2.4 that σ is the identity element, the restriction of γ on
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G0(F ) is a monomorphism. Since γ(G0(F )) ⊆ G0(F ) by the definition, this implies
that the restriction of γ to G0(F ) is an automorphism of G0(F ). �

Corollary 3.4. Let F be a simple rational function of degree m ≥ 3. Then
G0(F ) ⊆ Aut(F ◦s), where s = |Aut(G0(F ))|.
Proof. For s = |Aut(G0(F ))|, the iterate γ◦s is the identity automorphism ofG0(F ).
Therefore, since for every σ ∈ G0(F ) the equality

F ◦l ◦ σ = γ◦l(σ) ◦ F ◦l, l ≥ 1,

holds, every σ ∈ G0(F ) commutes with F ◦s. �

Lemma 3.5. Let F be a rational function, and σ a Möbius transformation such
that

(32) (σ ◦ F )◦l = F ◦l

for some l ≥ 1. Then σ ∈ Aut(F ◦l).

Proof. Clearly, equality (32) implies the equality

(33) (σ ◦ F )◦(l−1) ◦ σ = F ◦(l−1).

Composing now F with the both parts of equality (33), we obtain the equality

(34) (F ◦ σ)◦l = F ◦l.

It follows now from (32) and (34) that

F ◦l ◦ σ = (σ ◦ F )◦l ◦ σ = σ ◦ (F ◦ σ)◦l = σ ◦ F ◦l. �

Lemma 3.6. Let F be a simple rational function of degree m ≥ 4. Then F is not
a special function.

Proof. The proof follows easily from the analysis of ramifications of special func-
tions. Since below we prove a more general result (Lemma 4.3), we omit it. �

Theorem 3.7. Let F be a simple rational function of degree m ≥ 4. Then

E0(F ) = G0(F ) = Aut∞(F ) = Aut(F ◦s),

where s = |Aut(G0(F ))|.
Proof. By Corollary 3.4 and (29), we have:

G0(F ) ⊆ Aut(F ◦s) ⊆ Aut∞(F ) ⊆ E0(F ).

Thus, to prove the theorem we only must prove that E0(F ) ⊆ G0(F ). For this, it
is enough to show that for every σ ∈ E0(F ) there exists ν ∈ E0(F ) such that (30)
holds. Let σ be an element of E0(F ). Then F ◦σ is a simple rational function which
belongs to E(F ), implying by Lemma 3.6 and Theorem 3.2 that

F ◦k1 = F ◦k2 ◦ (F ◦ σ)◦l

for some k1, l ≥ 1, k2 ≥ 0. Applying to the last equality recursively Theorem 2.4,
we see that

(35) F ◦(k1−k2) = (F ◦ σ)◦l.
Therefore, by Theorem 1.1, there exist Möbius transformations µi, 1 ≤ i ≤ l − 1,
such that

F ◦ σ = F ◦ µr−1, F ◦ σ = µ−1
i ◦ F ◦ µi−1, 1 < i < l, and F ◦ σ = µ−1

1 ◦ F.
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Thus, equality (30) holds for ν = µ−1
1 . Furthermore, since equality (35) implies that

k1 − k2 = l, we have:

F ◦l = (F ◦ σ)◦l = (µ−1
1 ◦ F )◦l,

implying by Lemma 3.5 that

µ−1
1 ∈ Aut(F ◦l) ⊆ Aut∞(F ) ⊆ E0(F ). �

Corollary 3.8. Let F be a simple rational function of degree m ≥ 4. Then every
element of the semigroup 〈Aut∞(F ), F 〉 can be represented in a unique way in the
form α ◦ F ◦s, where α ∈ Aut∞(F ) and s ≥ 0. Moreover, for every k ≥ 1, every
element of the semigroup 〈Aut(F ◦k), F 〉 can be represented in a unique way in the
form α ◦ F ◦s, where α ∈ Aut(F ◦k) and s ≥ 0.

Proof. The first part of the corollary follows from the equality Aut∞(F ) = G0(F ).
To prove the second, it is enough to observe that for every ν ∈ Aut(F ◦k) the
element ν′ ∈ Aut∞(F ) such that

(36) F ◦ ν = ν′ ◦ F
belongs to Aut(F ◦k). Indeed, (36) implies that

F ◦k ◦ ν′ ◦F = F ◦k ◦F ◦ ν = F ◦F ◦k ◦ ν = F ◦ ν ◦F ◦k = ν′ ◦F ◦F ◦k = ν′ ◦F ◦k ◦F,
whence ν′ ∈ Aut(F ◦k). �

Proof of Theorem 1.2. In view of Theorem 3.7, we only must show that

C∞(F ) = E(F ) = 〈Aut∞(F ), F 〉.
By (28), the first equality follows from Theorem 3.2 and Theorem 2.4, since the
latter implies that any G satisfying (3) satisfies (2) for k = k1 − k2. Since the
semigroup 〈Aut∞(F ), F 〉 is obviously a subsemigroup of C∞(F ), to finish the proof
we only must show that if a rational function G satisfies (2), then it belongs to
〈Aut∞(F ), F 〉.

Applying Corollary 2.9 to equality (2), we see that there exist Möbius transfor-
mations µi, 1 ≤ i ≤ l− 1, such that

G = F ◦s ◦ µl−1, G = µ−1
i ◦ F ◦s ◦ µi−1, 1 < i < l, and G = µ−1

1 ◦ F ◦s,

where s = k/l. Moreover, since

F ◦sl = G◦l = (µ−1
1 ◦ F ◦s)◦l,

Lemma 3.5 implies that

µ−1
1 ∈ Aut(F ◦sl) ⊆ Aut∞(F ).

Thus,

G = µ−1
1 ◦ F ◦s ∈ 〈Aut∞(F ), F 〉. �

3.2. Groups and semigroups related to general rational functions. Let
us recall that writing a rational function F = F (z) of degree m as F = P/Q, where

P (z) = amz
m+am−1z

m−1+...+a1z+a0, Q(z) = bmz
m+bm−1z

m−1+...+b1z+b0

are polynomials of degree m without common roots, we can identify the space of
rational functions of degree m with the algebraic variety

Ratm = CP2m+1 \ Resm,m,z(P,Q),
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where Resm,m,z(P,Q) denotes the resultant of P and Q. We recall that we say that
some statement holds for general rational functions of degree m, if it holds for all
F ∈ Ratm with exception of some proper Zariski closed subset.

Lemma 3.9. A general rational function F of degree m ≥ 2 is simple.

Proof. We recall that for F ∈ Ratm the set of finite critical points of F coincides
with the set of zeroes of its Wronskian

W (z) = P ′(z)Q(z)− P (z)Q′(z).

Obviously, degW ≤ 2m − 2. Moreover, degW = 2m− 2, unless F belongs to the
projective hypersurface U in CP2m+1 defined by

U : ambm−1 − bmam−1 = 0.

Let us define now a polynomial R(t) by the formula

R(t) = Res2m−2,m,z(W (z), P (z)−Q(z)t).

By the well-known property of the resultant, for F ∈ Ratm \ U the equality

R(t) = c
∏

ζ,W (ζ)=0

(P (ζ)−Q(ζ)t)

holds for some c ∈ C∗, and thus the set of zeroes of R(t) coincides with the set of
finite critical values of F .

Finally, let us define a projective hypersurface Z in CP2m+1 by

Z : Res2m−2,2m−3,t(R(t), R
′(t)) = 0.

By the resultant properties, F ∈ Ratm \ U belongs to Z if and only if either some
finite critical values of F coincide, or degR(t) < 2m− 2 meaning that infinity is a
critical value of F . Thus, every rational function F ∈ Ratm \ Z ∪ U has 2m − 2
distinct finite critical values, and hence is simple. �

Lemma 3.10. For a general rational function F of degree m ≥ 3 the group G(F )
is trivial.

Proof. Let

α =
α1,1z + α0,1

α1,2z + α0,2
, β =

β1,1z + β0,1
β1,2z + β0,2

be elements of Rat2, and

F =
fm,1z

m + fm−1,1z
m−1 + · · ·+ f1,1z + f0,1

fm,2zm + fm−1,2zm−1 + · · ·+ f1,2z + f0,2

an element of Ratm. It is easy to see that the coefficients of the numerator of the
rational function α ◦F ◦ β−F are polynomials in αji , β

j
i , f

j
i homogenous of degree

one in αji , homogenous of degree two in f ji , and homogenous of degree m in βji .
Thus, the equality

α ◦ F ◦ β = F

implies that the coefficients of α, β, and F belong to some projective algebraic
variety

W ⊆ CP3 × CP2m+1 × CP3.

Since the projection

pk : (CP1)l × (CP1)k → (CP1)k, k, l ≥ 1,
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is a closed map (see e.g. [29]), this implies that the set of F ∈ Ratm with non-trivial
group G(F ) is contained in some Zariski closed subset of CP2m+1.

To finish the proof, we only must show that Z does not contain the whole variety
Ratm for m ≥ 3. For this, it is enough to show that for every m ≥ 3 there exists a
polynomial F of degree m such that the group G(F ) is trivial. Let us recall that for
any polynomial F of degreem ≥ 2 the group G(F ) is a finite cyclic group generated
by a polynomial, unless (31) holds (see e.g. [45], Section 2). On the other hand, it
is easy to see that if F has the form

(37) F = zm + am−2z
m−2 + am−3z

m−3 + · · ·+ a0,

then equality (30) may hold for polynomials σ = az + b, µ = cz + d only if b = 0
and a is a root of unity. This implies easily that for any polynomial of the form
(37) with am−2 6= 0, am−3 6= 0 the group G(F ) is trivial. �

Notice that Lemma 3.10 is not true form = 2. Indeed, for every rational function
F of degree two there exist Möbius transformations α, β such that equality (31)
holds, implying that the group G(P ) is non-trivial, and even infinite.

Proof of Theorem 1.3. Since G0(F ) is a subgroup of G(F ), the theorem follows
from Theorem 1.2 combined with Lemma 3.9 and Lemma 3.10. �

4. Semiconjugate rational functions and invariant curves

4.1. Generalized Lattès maps, semiconjugate rational functions, and

invariant curves. In this section, we recall some definitions and results related to
the functional equation

(38) A ◦X = X ◦B
in rational functions, and to invariant curves for endomorphisms of (CP1)2 of the
form

(A1, A2) : (z1, z2) → (A1(z1), A2(z2)),

where A1, A2 are rational functions.
Let us recall that an orbifold O on CP1 is a ramification function ν : CP1 → N,

which takes the value ν(z) = 1 except at a finite set of points. For an orbifold O,
the set of singular points of O is the set

c(O) = {z1, z2, . . . , zs, . . . } = {z ∈ CP1 | ν(z) > 1},
and the Euler characteristic of O is the number

χ(O) = 2 +
∑

z∈R

(
1

ν(z)
− 1

)
.

Let A be a rational function, and O1, O2 orbifolds with ramifications functions
ν1 and ν2. We say that A : O1 → O2 is a covering map between orbifolds if for any
z ∈ CP1 the equality

ν2(A(z)) = ν1(z)deg zA

holds. In case the weaker condition

ν2(A(z)) = ν1(z)GCD(deg zA, ν2(A(z))

is satisfied, we say that A : O1 → O2 is a minimal holomorphic map between
orbifolds.

In the above terms, a Lattès map can be defined as a rational function A such
that A : O → O is a covering map for some orbifold O (see [28], [38]). Following
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[38], we say that a rational function A of degree at least two is a generalized Lattès
map if there exists an orbifold O, distinct from the non-ramified sphere, such that
A : O → O is a minimal holomorphic map. Thus, A is a Lattès map if there exists
an orbifold O such that

(39) ν(A(z)) = ν(z)deg zA, z ∈ CP1,

and A is a generalized Lattès map if there exists an orbifold O such that

(40) ν(A(z)) = ν(z)GCD(deg zA, ν(A(z))), z ∈ CP1.

Since (39) implies (40), any Lattès map is a generalized Lattès map. More generally,
any special function is a generalized Lattès map (see [38]). Notice that if (39) holds
for some rational function A and orbifold O, then O has zero Euler characteristic,
while (40) implies that the Euler characteristic of O is non-negative (see e.g. [38]
for more detail).

Lattès maps and generalized Lattès maps can be characterized also in different
terms (see [28], [38]). However, the definition using orbifolds is most convenient for
our purposes since it permits to show easily that a simple rational function of degree
at least four is not a generalized Lattès map. In turn, this fact is crucial for our
proof of Theorem 1.4 and Theorem 1.5 since for rational functions A and A1, A2 that
are not generalized Lattès maps describing solutions of (38) and (A1, A2)-invariant
curves reduces to describing decompositions of iterates of A and A1, A2.

Specifically, our proof of Theorem 1.4 relies on the following corollary of the
classification of semiconjugate rational functions (see [42], Proposition 3.3).

Theorem 4.1. Let A,B be rational functions of degree at least two and X a rational
function of degree at least one such that equality (38) holds and A is not a generalized
Lattès map. Then there exists a rational function Y such that X ◦ Y = A◦d for
some d ≥ 0. �

In turn, our proof of Theorem 1.5 uses the following corollary of the description
of invariant curves for endomorphisms (A1, A2) of (CP

1)2 (see [42], Theorem 1.1).

Theorem 4.2. Let A1, A2 be rational functions of degree at least two that are not
generalized Lattès maps, and C an irreducible algebraic (A1, A2)-invariant curve in
(CP1)2 that is not a vertical or horizontal line. Then there exist rational functions
X1, X2, Y1, Y2, B such that:

1. The diagram

(41)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y
y(X1,X2)

(CP1)2
(A1,A2)−−−−−→ (CP1)2

commutes,
2. The equalities

X1 ◦ Y1 = A◦d
1 , X2 ◦ Y2 = A◦d

2 ,

hold for some d ≥ 0,
3. The map t→ (X1(t), X2(t)) is a parametrization of C. �

Notice that if diagram (41) commutes, then this condition alone obviously is
sufficient for (A1, A2)-invariance of the curve C parametrized by t→ (X1(t), X2(t)).
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4.2. Proof of Theorem 1.4, Theorem 1.5, and Theorem 1.6. We start by
proving the following lemma.

Lemma 4.3. Let F be a simple rational function of degree m ≥ 4. Then F is not
a generalized Lattès map.

Proof. If F is a simple rational function of degree m ≥ 4, then the preimage of any
k distinct points of CP1 under F contains at least k(m− 2) ≥ 2k distinct points z
such that deg zF = 1. Thus, if the equality

ν(F (z)) = ν(z)GCD(deg zF, ν(F (z))), z ∈ CP1

holds for some orbifold O distinct from the non-ramified sphere, then the preimage
F−1{c(O)} must contain at least 2|c(O)| points where ν(z) > 1. However, this is
impossible since any such a point belongs to c(O). �

Proof of Theorem 1.4. By Lemma 4.3, F is not a generalized Lattès map. Since
a rational function F is a generalized Lattès map if and only if some iterate F ◦d,
d ≥ 1, is a generalized Lattès map (see [42], Section 2.3), this implies that F ◦r also
is not a generalized Lattès map. Hence, by Theorem 4.1, there exists a rational
function Y such that the equality

X ◦ Y = F ◦rd

holds for some d ≥ 0. By Corollary 2.9, this implies that

X = F ◦l ◦ µ
for some Möbius transformation µ and l ≥ 0. Thus, diagram (5) reduces to the
equality

F ◦r ◦ F ◦l ◦ µ = F ◦l ◦ µ ◦G,
and applying to this equality Theorem 2.4, we conclude that

G = µ−1 ◦ F ◦r ◦ µ. �

Proof of Theorem 1.5. Assume that

(42) (F1, F2)
◦d(C) = C, d ≥ 1.

Then Theorem 4.2 and Theorem 1.4 imply that C is parametrized by

(43) t→
(
(F ◦d1

1 ◦ β)(t), (F ◦d2
2 ◦ α)(t)

)

for some d1, d2 ≥ 0 and Möbius transformations α, β such that

β−1 ◦ F ◦d
1 ◦ β = α−1 ◦ F ◦d

2 ◦ α.
It is clear that without loss of generality we may assume that β is the identity

map implying that

(44) F ◦d
1 = α−1 ◦ F ◦d

2 ◦ α = (α−1 ◦ F2 ◦ α)◦d.
This yields that

α−1 ◦ F2 ◦ α ∈ C(F ◦d
1 ) ⊆ C∞(F1),

and hence

(45) α−1 ◦ F2 ◦ α = µ ◦ F1
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for some µ ∈ Aut∞(F1) by Theorem 1.2 and Corollary 3.8. Further, equalities (44)
and (45) imply by Lemma 3.5 that µ ∈ Aut(F ◦d

1 ). Therefore,

(46) F2 = α ◦ µ ◦ F1 ◦ α−1

for some µ ∈ Aut(F ◦d
1 ), and parametrization (43) takes the form

(47) t→
(
F ◦d1
1 (t), α ◦ (µ ◦ F1)

◦d2(t)
)
.

Moreover, it follows from (47) by Corollary 3.8 that there exists µ′ ∈ Aut(F ◦d
1 )

such that this parametrization can be written in the form

(48) t→
(
F ◦d1
1 (t), (α ◦ µ′ ◦ F ◦d2

1 )(t)
)
.

If d1 ≤ d2, then (48) implies that C is parametrized by

t→
(
t, (α ◦ µ′ ◦ F ◦(d2−d1)

1 )(t)
)

for some µ′ ∈ Aut(F ◦d
1 ). On the other hand, if d1 > d2, then C is parametrized by

t→
(
F

◦(d1−d2)
1 (t), (α ◦ µ′)(t)

)
.

Since Corollary 3.8 implies that

F
◦(d1−d2)
1 ◦ µ′−1 ◦ α−1 = µ′′ ◦ F ◦(d1−d2)

1 ◦ α−1

for some µ′′ ∈ Aut(F ◦d
1 ), we see that in this case C is also parametrized by

t→
(
(µ′′ ◦ F ◦(d1−d2)

1 ◦ α−1)(t), t
)

for some µ′′ ∈ Aut(F ◦d
1 ). This proves the “only if” part of the theorem.

In the other direction, let us assume that (44) holds and C is a curve parametrized
by

t→ (t, (α ◦ µ ◦ F ◦s
1 )(t))

for some µ ∈ Aut(F ◦d
1 ), Möbius transformation α, and s ≥ 0. Since

F ◦d
2 ◦ (α ◦ µ ◦ F ◦s

1 ) = α ◦ F ◦d
1 ◦ µ ◦ F ◦s

1 = α ◦ µ ◦ F ◦d
1 ◦ F ◦s

1 = (α ◦ µ ◦ F ◦s
1 ) ◦ F ◦d

1 ,

in this case the diagram

(49)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y
y(X1,X2)

(CP1)2
(F◦d

1
,F◦d

2
)−−−−−−−→ (CP1)2

commutes for

B = F ◦d
1 , X1 = z, X2 = α ◦ µ ◦ F ◦s

1 ,

implying that (42) holds. Similarly, if C is parametrized by

t→
(
(µ ◦ F ◦s

1 ◦ α−1)(t), t
)
,

then it follows from

F ◦d
1 ◦ (µ ◦ F ◦s

1 ◦ α−1) = µ ◦ F ◦d
1 ◦ F ◦s

1 ◦ α−1 = µ ◦ F ◦s
1 ◦ α−1 ◦ α ◦ F ◦d

1 ◦ α−1 =

= (µ ◦ F ◦s
1 ◦ α−1) ◦ F ◦d

2
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that diagram (49) commutes for

B = F ◦d
2 , X1 = µ ◦ F ◦s

1 ◦ α−1, X2 = z. �

Proof of Theorem 1.6. By Lemma 3.9 and Lemma 3.10, there exists a Zariski open
set U in Ratm such that every F ∈ U is simple and the group G(F ) is trivial.
By Theorem 1.2, this implies that for every F ∈ U the group Aut∞(F ) is also
trivial. Since for simple F1, F2 equality (44) yields equality (46), it follows now
from Theorem 1.5 that if F1, F2 ∈ U , then (F1, F2)-periodic curves exist if and only
if

F2 = α ◦ F1 ◦ α−1

for some Möbius transformation α. Furthermore, these periodic curves have the
form

y = (α ◦ F ◦s
1 )(x), x = (F ◦s

1 ◦ α−1)(y),

and it is easy to check arguing as above that these curves are (F1, F2)-invariant. �

5. Indecomposable functions with non-trivial decompositions of

iterates

Let F be an indecomposable rational function. In this section, we give a number
of conditions implying that some iterate F ◦k, k > 1, of F has a decomposition into
a composition of indecomposable rational functions that is not equivalent to F ◦k.
For brevity, in this case we will say that F ◦k has a non-trivial decomposition. We
also give explicit examples of simple rational functions of degrees 2 and 3 for which
Theorems 1.1 - 1.2 and Theorems 1.4 - 1.5 do not hold.

Let us recall that for a rational function F the group G(F ) is defined as the
group of all Möbius transformations σ such that

F ◦ σ = ν ◦ F
for some Möbius transformations ν. Along with the group G(F ) we will consider
its subgroup Σ(A) consisting of all Möbius transformations σ such that A ◦ σ = A.
We recall that for a finite subgroup G of Aut(CP1) an invariant function for G is
a rational function θG such that the equality

θG(x) = θG(y), x, y ∈ CP1,

holds if and only if there exists σ ∈ G such that σ(x) = y. Such a function always
exists and is defined in a unique way up to the transformation θ → µ ◦ θ, where
µ is a Möbius transformation. Obviously, the degree of θG is equal to the order of
G, and it follows easily from the Lüroth theorem that a rational function F is a
rational function in θG if and only if G ⊆ Σ(F ).

Theorem 5.1. Let F be an indecomposable rational function such that the group
G(F ◦k0) for some k0 > 1 contains an element that does not belong to the group
G(F ). Then the iterate F ◦k0 has a non-trivial decomposition.

Proof. Let α be a Möbius transformation such that α ∈ G(F ◦k0) but α 6∈ G(F ).
Then

F ◦k0 ◦ α = ν ◦ F ◦k0

for some Möbius transformation ν, implying that

F ◦k0 = (ν−1 ◦ F ) ◦ F ◦ · · · ◦ F ◦ (F ◦ α).
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Moreover, the decomposition on the right side of this equality is non-trivial since
otherwise F = µ ◦ (F ◦α) for some Möbius transformation µ, in contradiction with
the assumption α 6∈ G(F ). �

Theorem 5.2. Let F be an indecomposable rational function of degree n ≥ 2 that
is not conjugate to z±n such that the group Σ(F ◦k0) for some k0 > 1 contains an
element that does not belong to the groups Σ(F ◦k), 1 ≤ k < k0. Then the iterate
F ◦k0 has a non-trivial decomposition.

Proof. Let σ be such an element. Since 〈σ〉 is a subgroup of Σ(F ◦k0), there exists
a rational function R such that F ◦k0 = R ◦ θ〈σ〉. Assume for a moment that

|〈σ〉| < (degF )k0 .

Since deg θ〈σ〉 = |〈σ〉|, in this case degR ≥ 2. Let now

R = G1 ◦G2 ◦ · · · ◦Gl and θ〈σ〉 = H1 ◦H2 ◦ · · · ◦Ht

be any decompositions into compositions of indecomposable rational functions.
Concatenating them we obtain a decomposition

(50) F ◦k0 = G1 ◦G2 ◦ · · · ◦Gl ◦H1 ◦H2 ◦ · · · ◦Ht

of F ◦k0 . If this decomposition is equivalent to F ◦k0 , then

F ◦k = µ ◦H1 ◦H2 ◦ · · · ◦Ht = µ ◦ θ〈σ〉,
for some Möbius transformation µ and k ≥ 1. Moreover, k < k0 since degR ≥ 2.
Thus, σ ∈ Σ(F ◦k), where k < k0, in contradiction with the condition. Hence,
decomposition (50) is non-trivial.

To finish the proof, we only must show that the equality

|〈σ〉| = (degF )k0

for σ ∈ Aut(CP1) with |〈σ〉| <∞ implies that F is conjugate to z±n. Since

θ〈σ〉 = α ◦ z|〈σ〉| ◦ β
for some Möbius transformations α and β, this reduces to showing that if

(51) F ◦k0 = zn
k0 ◦ β

for some k0 > 1 and Möbius transformations β, then F is conjugate to z±n.

Clearly, if (51) holds, then the preimage
(
F ◦k0

)−1 {0,∞} contains only two

points, implying that all the preimages
(
F ◦k)−1 {0,∞}, 1 ≤ k < k0, also contain

only two points. Set {a, b} = F−1{0,∞}. Then it follows from (51) that

(52)

∣∣∣∣
(
F ◦(k0−1)

)−1

{0,∞}
∣∣∣∣ =

∣∣∣∣
(
F ◦(k0−1)

)−1

{a, b}
∣∣∣∣ = 2,

implying that

(53)

∣∣∣∣
(
F ◦(k0−1)

)−1

{0,∞, a, b}
∣∣∣∣ ≤ 4.

Let us recall now that the Riemann-Hurwitz formula implies that the preimage
of a finite set S under a rational function H of degree d ≥ 2 contains at least
d(|S| − 2) + 2 points, and the equality is attained if and only if the set of critical
values c(H) of H belongs to S. In particular, if S contains at least three points,
then

|H−1{S}| ≥ d+ 2.
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Thus, if n > 2 or k0 > 2, then (53) is possible only if {0,∞} = {a, b}, implying that
F is conjugate to z±n. On the other hand, if n = k0 = 2, then it follows from (52)
that c(F ) = {0,∞} and c(F ) = {a, b}, implying again that {0,∞} = {a, b}. �

As an example illustrating the above theorems, let us consider the function

(54) F =
z2 − 1

z2 + 1
.

Since F = z−1
z+1 ◦z2, the group G(F ) consists of the transformations cz±1, c ∈ C\{0}

(see e. g. Section 2 of [45]). On the other hand, for

F ◦2 = − 2z2

z4 + 1
,

the corresponding group G(F ◦2) contains the transformation µ = z+i
z−i satisfying

F ◦2 ◦ µ = ν ◦ F ◦2

for ν = −z+1
−3 z−1 . Hence,

(55)
z2 − 1

z2 + 1
◦ z

2 − 1

z2 + 1
=

(
ν−1 ◦ z

2 − 1

z2 + 1

)
◦
(
z2 − 1

z2 + 1
◦ µ

)
= − z2

z2 − 2
◦ 2 iz

z2 − 1
,

where the decomposition on the right side is non-trivial by Theorem 5.1.
Furthermore, the transformation δ : z → 1

z obviously satisfies

F ◦ δ = −F, F ◦2 ◦ δ = F.

Thus, δ ∈ Σ(F ◦2) but δ 6∈ Σ(F ), and therefore F ◦2 is a rational function in

θ〈δ〉 = z +
1

z
.

The corresponding non-trivial decomposition provided by Theorem 5.2 is given by
the formula

(56)
z2 − 1

z2 + 1
◦ z

2 − 1

z2 + 1
= − 2

z2 − 2
◦
(
z +

1

z

)
.

Notice that although δ does not belong to Σ(F ), it belongs to G(F ). Thus, we
cannot apply to δ previous Theorem 5.1.

Let us remark that decompositions of F ◦2 on the right sides of (55) and (56)
are not equivalent to each other. Indeed, for equivalent decompositions (1) the sets
of critical points of F1 and G1 are equal. On the other hand, the sets of critical
points of the functions 2 iz

z2−1 and z + 1
z are {−i, i} and {−1, 1}. Notice that since

the set of critical points of F is {0,∞}, this also gives another proof of the fact
that decompositions (55) and (56) are non-trivial. Finally, let us mention that
F ◦2 has no other non-trivial decompositions. To see this, let us observe that the
function F ◦2 is an invariant function for the Klein four group V ∼= Z/2Z × Z/2Z
generated by the transformations z → 1

z and z → −z. Since Mon(θG) ∼= G for any

finite subgroup G of Aut(CP1), this implies that Mon(F ◦2) ∼= V . Therefore, as
the group V has three proper imprimitivity systems, F ◦2 has three non-equivalent
decompositions (one of which corresponds to the decomposition F ◦2 itself).

In relation with Theorem 5.1 and Theorem 5.2, let us mention that according
to the recent results of [45] for any rational function A of degree n ≥ 2 that is not
conjugate to zn, the orders of the groups G(A◦k), k ≥ 2, are finite and uniformly
bounded in terms of n only.
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To construct further examples of rational functions whose iterates admit non-
trivial decompositions, we will use Lattès maps. More precisely, we will use those
Lattès maps that can be obtained as projections on the x-coordinate of self-isogenies
of elliptic curves. We emphasize that this class of Lattès maps does not exhaust
the entire class Lattès maps as it was defined in Section 4.1. However, for brevity,
in the rest of the article we will call by Lattès maps only these particular Lattès
maps, which are defined in detail below. Notice that this time we use another, more
common definition of Lattès maps.

Let C and C̃ be elliptic curves over C defined in the short Weierstrass form.

We recall that an isogeny between C and C̃ is a morphism ψ : C → C̃ that sends

the identity element of the group C to the identity element of the group C̃. Such
a morphism is necessarily a homomorphism of groups (see e. g. [51]). Thus,
ψ(−x) = −ψ(x), implying that there exists a rational function F such that the
diagram

(57)

C
ψ−−−−→ C̃

yx
yx

CP1 F−−−−→ CP1

commutes. If C = C̃ and ψ is an endomorphism, we will call the corresponding
rational function F a Lattès map. For example, for any elliptic curve C, the mul-
tiplication by n on C induces an endomorphism [n] : C → C of degree n2. We
will denote by FC,n the corresponding Lattès map of degree n2, which makes the
diagram

C
[n]−−−−→ C

yx
yx

CP1 FC,n−−−−→ CP1

commutative.
Below, we will use the following results about isogenies (see e.g. [51], Ch. III).

Let ψ : C → C̃ be a non-zero isogeny of degree n. Then its kernel Γ is a subgroup of

order n in C. Moreover, for any subgroup of C there exists an isogeny ψ : C → C̃ such
that kerψ = Γ, and this isogeny is defined in a unique way up to an isomorphism of

C̃. Finally, for any isogeny ψ : C → C̃ of degree n there exists a unique dual isogeny

ψ̂ : C̃ → C such that ψ̂ ◦ ψ = [n] on C and ψ ◦ ψ̂ = [n] on C̃.

Theorem 5.3. Let p be a prime number, and C an elliptic curve such that the
multiplication by i

√
p on C induces an endomorphism of C. Then the corresponding

Lattès map F is indecomposable, and the iterate F ◦2 has a non-trivial decomposi-
tion.

Proof. Clearly, F ◦2 makes the diagram

C
−[p]−−−−→ C

yx
yx

CP1 F◦2

−−−−→ CP1
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commutative. Since the change of the sign of ψ in (57) obviously does not affect
the corresponding Lattès map, this implies that F ◦2 = FC,p. Therefore, as any
rational function of prime degree is clearly indecomposable, to prove the theorem
it is enough to show that the function FC,p has more than one equivalence class of
decompositions into compositions of indecomposable rational functions.

Let us show that starting from any finite subgroup Γ of C of order p one can
construct a decomposition of FC,p into a composition of rational functions of degree
p. Let ψ : C → CΓ be an isogeny such that kerψ = Γ. Then there exists a rational
function VΓ such that the diagram

C
ψΓ−−−−→ CΓyx

yx

CP1 VΓ−−−−→ CP1

commutes. Similarly, for the dual isogeny ψ̂Γ : CΓ → C there exists a rational
function UΓ such that the diagram

CΓ
ψ̂Γ−−−−→ C

yx
yx

CP1 UΓ−−−−→ CP1

commutes. Gluing these diagrams we obtain a decomposition

FC,p = UΓ ◦ VΓ.
Let us prove now that if Γ1 6= Γ2, then the decompositions UΓ1

◦VΓ1
and UΓ2

◦VΓ2

are not equivalent. Let us consider the maps VΓ1
◦ UΓ1

and VΓ2
◦ UΓ2

, which make
the diagrams

CΓ1

ψΓ1
◦ψ̂Γ1−−−−−−→ CΓ1yx

yx

CP1
VΓ1

◦UΓ1−−−−−−→ CP1 ,

CΓ2

ψΓ2
◦ψ̂Γ2−−−−−−→ CΓ2yx

yx

CP1
VΓ2

◦UΓ2−−−−−−→ CP1

commutative. Clearly, VΓ1
◦ UΓ1

and VΓ2
◦ UΓ2

are Lattès maps. Moreover, if the
decompositions UΓ1

◦ VΓ1
and UΓ2

◦ VΓ2
are equivalent, then these Lattès maps are

conjugate. However, for conjugate Lattès maps the corresponding elliptic curves
are isomorphic (see e.g. [52], Theorem 6.46). Thus, if the above decompositions
are equivalent, then CΓ1

∼= CΓ2
, implying that Γ1 = Γ2.

To finish the proof, we only must show that there exist at least two different
subgroups of order p in C. In fact, it is easy to see that there exist exactly p + 1
such subgroups. Indeed, any subgroup of order p is cyclic and is contained in the
subgroup of points of C whose order divides p, that is, in the kernel of [p]. Thus,
the number of subgroups of order p is equal to the number of cyclic subgroups of
order p in Z/pZ × Z/pZ. In turn, this number is equal to the number of elements
of order p in Z/pZ × Z/pZ, which is equal to p2 − 1, divided by the number of
elements generating the same subgroup, which is equal to p− 1. �

Notice that Lattès maps satisfying conditions of Theorem 5.3 exist for every
prime p. To see this, it is enough to observe that i

√
p is an endomorphism of an

elliptic curve corresponding to the lattice generated by 1 and i
√
p.
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Examples illustrating Theorem 5.3 for p = 2 and p = 3 are given by the functions

(58) L =
2
√
2x− x2 − 1

2x
and P =

6x

x3 − 2

(see [28]). Using Vélu’s formulas for isogenies ([54]) or a brute force calculation,
one can find the following non-trivial decompositions of their second iterates:

(59) L◦2 = U ◦ V,
where

U =
x2

4(x− 1√
2−1

)
, V =

x2 − 1

x−
√
2 + 1

,

and

(60) P ◦2 = Q ◦R,
where

Q = − 23328x

x3 + 216 3
√
2x2 + 3888 22/3x− 93312

, R =
36x

(
22/3x2 − 4 x+ 2 3

√
2
)

22/3x2 + 2 x+ 2 3
√
2

.

As above, to see directly that these decompositions are indeed non-trivial it is
enough to compare the sets of critical points of L and V for (59) and the sets
of critical points of P and R for (60). In the first case, one can check that the
corresponding sets are

{−1, 1} and {
√
2− 1 + i

√
−2 + 2

√
2,
√
2− 1− i

√
−2 + 2

√
2}.

In the second case, it is enough to observe that ∞ is a critical point of P , but is
not a critical point of R.

It is clear that any rational function of degree 2 is simple. Moreover, one can
check that the function P in (58) has four critical values (in fact it is true for any
Lattès map) and hence is simple by Lemma 2.1. Thus, the functions given by (54)
and (58) provide us with counterexamples to Theorem 1.1 for m equal 2 and 3.
Moreover, for these values of m, functions given by (58) give counterexamples also
to Theorem 1.2. Indeed, for a Lattès map F the semigroups E(F ) and C∞(F ) are
not finitely generated (see [28]). On the other hand, the group Aut∞(F ) is finite
for any rational function F (see [45]).

A simple counterexample to Theorem 1.4 for m = 2 is obtained from the semi-
conjugacy

CP1 zm−−−−→ CP1

1

2 (z+
1

z )
y

y 1

2 (z+
1

z )

CP1 Tm−−−−→ CP1

for m = 2. Indeed, it is clear that zm and Tm are not conjugate. On the other
hand, T2 is simple. Furthermore, the commutative diagram

(CP1)2
(z2,z2)−−−−→ (CP1)2

(z, 12 (z+
1

z ))
y

y(z, 12 (z+ 1

z ))

(CP1)2
(z2,T2)−−−−→ (CP1)2
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defines for non-conjugate simple rational functions z2 and T2 an irreducible (z2, T2)-
invariant curve parametrized by z →

(
z, 12

(
z + 1

z

))
, providing a counterexample to

Theorem 1.5.
Counterexamples to Theorem 1.4 and Theorem 1.5 for m = 3 can be obtained

from the semiconjugacy

CP1
z
(

z2−a

z2−b

)

−−−−−−→ CP1

yz2
yz2

CP1
z( z−a

z−b )
2

−−−−−−→ CP1,
where a, b ∈ C, which is a particular case of the semiconjugacy

CP1 zrR(zn)−−−−−→ CP1

yzn
yzn

CP1 zrRn(z)−−−−−→ CP1,

where R is an arbitrary rational function and r, n are integer positive numbers.
Setting, for example, a = 2, b = 3 and observing that

A = z

(
z − 2

z − 3

)2

has three fixed points 0,∞, 5/2, while

B = z

(
z2 − 2

z2 − 3

)

has only two fixed points 0 and ∞, we see that A and B are not conjugate. On the
other hand, since A has four critical values 0,∞, 32/3, 1/4, it is a simple rational
function. Thus, we obtain a counterexample to Theorem 1.4. A counterexample to
Theorem 1.5 is obtained from the diagram

(CP1)2
(B,B)−−−−→ (CP1)2

(z,z2)

y
y(z,z2)

(CP1)2
(B,A)−−−−→ (CP1)2

in the same way as above, taking into account that B is also simple since it has

four critical values ± 1
2 , ± 4

√
6

3 .
In conclusion, we mention that if F is decomposable, then the problem of de-

scribing the whole totality of its iterates seems to be even more complicated than
in the indecomposable case, and a “qualitative” description comes to the fore. An
example of such a description is the result of ([59]), which states that if F is a
polynomial of degree n ≥ 2 not conjugate to zn or to ±Tn, then decompositions
of its iterates can be obtained from decompositions of a single iterate F ◦N for N
big enough in the following sense: there exists an integer N ≥ 1 such that any
decomposition of F ◦d with d ≥ N has the form

X = F ◦k1 ◦X ′, Y = Y ′ ◦ F ◦k2 ,

where F ◦N = X ′ ◦ Y ′ and k1, k2 ≥ 0 (see [59] and also [34], [43] for different proofs
of this fact).
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Conjecturally, the result of [59] remains true for any non-special rational function
F . To the date, this conjecture is proved for “tame” rational functions, that is, for
the functions F satisfying the following condition: the algebraic curve

F (x)− F (y) = 0

has no factors of genus zero or one distinct from the diagonal ([43]). Since any
simple rational function F of degree m ≥ 4 is tame by Theorem 2.4 and formula
(15), this also shows that the conjecture is true for simple and general rational
functions of degree at least four. On the other hand, Theorem 1.1 shows that for
such functions it is true already for N = 1.
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IMRN 2018, no. 8, 2447-2480.
[21] D. Hanson, On a theorem of Sylvester and Schur, Canad. Math. Bull. 16 (1973), 195–199.

[22] H. Inou, Extending local analytic conjugacies, Trans. Amer. Math. Soc. 363 (2011), no. 1,
331-343,

[23] J. König, D. Neftin, Reducible Fibers of Polynomial Maps, arXiv:2001.03630.
[24] G. Levin, Symmetries on Julia sets, Math. Notes 48 (1990), no. 5-6, 1126-1131.

http://arxiv.org/abs/2001.03630


ON ITERATES OF RATIONAL FUNCTIONS 29

[25] G. Levin, F. Przytycki, When do two rational functions have the same Julia set?, Proc.
Amer. Math. Soc. 125 (1997), no. 7, 2179-2190.

[26] M. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic
Theory Dynam. Systems 3 (1983), no. 3, 351-385.

[27] A. Medvedev, T. Scanlon, Invariant varieties for polynomial dynamical systems, Annals of
Mathematics, 179 (2014), no. 1, 81 - 177.

[28] J. Milnor, On Lattès maps, Dynamics on the Riemann Sphere. Eds. P. Hjorth and C. L.
Petersen. A Bodil Branner Festschrift, European Mathematical Society, 2006, pp. 9-43.

[29] D. Mumford, Algebraic geometry I. Complex projective varieties, Grundlehren der Mathe-
matischen Wissenschaften, No. 221. Springer-Verlag, Berlin-New York, 1976.

[30] K. D. Nguyen, Some arithmetic dynamics of diagonally split polynomial maps, Int. Math.
Res. Not. IMRN 2015, no. 5, 1159-1199.

[31] F. Pakovich, Prime and composite Laurent polynomials, Bull. Sci. Math., 133 (2009), 693-732.
[32] F. Pakovich, The algebraic curve P (x) − Q(y) = 0 and functional equations, Complex Var.

and Elliptic Equ., 56 (2011), no. 1-4, 199-213.
[33] F. Pakovich, On semiconjugate rational functions, Geom. Funct. Anal., 26 (2016), 1217-1243.
[34] F. Pakovich, Polynomial semiconjugacies, decompositions of iterations, and invariant curves,

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. XVII (2017), 1417-1446.
[35] F. Pakovich, Recomposing rational functions, Int. Math. Res. Not., 2019, no. 7, 1921-1935.

[36] F. Pakovich, Algebraic curves A◦l(x)−U(y) = 0 and arithmetic of orbits of rational functions,

Mosc. Math. J., Vol. 20 (2020), no 1, 153-183.
[37] F. Pakovich, Finiteness theorems for commuting and semiconjugate rational functions, Con-

form. Geom. Dyn. 24 (2020), 202-229.
[38] F. Pakovich, On generalized Lattès maps, J. Anal. Math., 142 (2020), no. 1, 1-39.
[39] F. Pakovich, On rational functions sharing the measure of maximal entropy, Arnold Math.

J., 6, 387-396 (2020)
[40] F. Pakovich, Commuting rational functions revisited, Ergodic Theory Dynam. Systems, 41

(2021), no. 1, 295 -320.
[41] F. Pakovich, Sharing a measure of maximal entropy in polynomial semigroups, Int. Math.

Res. Not. IMRN 2022, no. 18, 13829–13840.
[42] F. Pakovich, Invariant curves for endomorphisms of P1 × P1, Math. Ann. 385 (2023), no.

1-2, 259-307.
[43] F. Pakovich, Tame rational functions: Decompositions of iterates and orbit intersections, J.

Eur. Math. Soc. (JEMS) 25 (2023), no. 10, 3953-3978.
[44] F. Pakovich, On amenable semigroups of rational functions, Trans. Amer. Math. Soc. 375

(2022), no. 11, 7945–7979.
[45] F. Pakovich, On symmetries of iterates of rational functions, to appear in Ann. Sc. Norm.

Super. Pisa.
[46] J. F. Ritt. On the iteration of rational functions, Trans. Amer. Math. Soc. 21 (1920), no. 3,

348-356.
[47] J Ritt, Prime and composite polynomials, American M. S. Trans. 23, 51-66 (1922).
[48] J. F. Ritt. Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448.
[49] W. Schmidt, N. Steinmetz, The polynomials associated with a Julia set, Bull. London Math.

Soc. 27 (1995), no. 3, 239–241.
[50] I. Schur, Einige Satze uber Primzahlen mit wendung auf Irreduzibilitatsfragen, Sitzung-

berichte der preussichen Akedemie der Wissenschaften, Phys. Math. Klasse, 23 (1929), 1-24.
[51] J. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math., 106. Springer-Verlag,

New York, 1986.
[52] J. Silverman, The arithmetic of dynamical systems, Grad. Texts in Math., 241. Springer,

New York, 2007.
[53] J. Sylvester, On arithmetical series, Messenger of Math, 21 (1892), 1-19, 87-120.
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