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LOCAL FINITENESS AND AUTOMORPHISM GROUPS OF LOW

COMPLEXITY SUBSHIFTS

RONNIE PAVLOV AND SCOTT SCHMIEDING

Abstract. We prove that for any transitive subshift X with word complexity

function cn(X), if lim inf
log(cn(X)/n)
log log logn

= 0, then the quotient group Aut(X, σ)�〈σ〉
of the automorphism group of X by the subgroup generated by the shift σ is
locally finite. We prove that significantly weaker upper bounds on cn(X) im-
ply the same conclusion if the Gap Conjecture from geometric group theory is
true.

Our proofs rely on a general upper bound for the number of automorphisms
of X of range n in terms of word complexity, which may be of independent
interest. As an application, we are also able to prove that for any subshift X,

if
cn(X)

n2(logn)−1 → 0, then Aut(X, σ) is amenable, improving a result of Cyr and

Kra.
In the opposite direction, we show that for any countable infinite locally

finite group G and any unbounded increasing f : N → N, there exists a minimal

subshift X with Aut(X, σ)�〈σ〉 isomorphic to G and
cn(X)
nf(n)

→ 0.

1. Introduction

This work deals with symbolic dynamics, which is the study of symbolically
defined topological dynamical systems called subshifts. A subshift is simply a
closed and shift-invariant subset of AZ for some finite set A. One way of measuring
the size of a subshift X is via its word complexity function cn(X); cn(X) is the
number of different n-letter strings (or words) appearing within points of X .

Another sense of ‘complexity’ for a subshift comes from its group of automor-
phisms; an automorphism of a subshift X is a homeomorphism from X to itself
which commutes with the shift map σ : X → X defined by (σx)(n) = x(n+1). The
set of automorphisms Aut(X, σ) has an obvious group structure from composition,
and turns out to always be countable. By definition, σ itself is always in Aut(X, σ),
and 〈σ〉, the subgroup generated by σ, is always a normal subgroup of Aut(X, σ).
(See Section 2 for more details.)

In this paper, we continue a line of research which has been fruitfully developed
in many recent works ([3], [4], [5], [6], [7], [8], [16], [17]), namely: in what sense
must subshifts with low complexity functions have automorphism groups which are
‘small’ or restricted? Though we do not claim it to be complete, we summarize some
recent results in this area. Some of the following results include the hypothesis of
transitivity/minimality of X ; we postpone definitions to Section 2.1.
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(1) X minimal and lim inf cn(X)
n < ∞ =⇒ Aut(X, σ)�〈σ〉 finite ([3], [7])

(2) X transitive and lim sup cn(X)
n < ∞ =⇒ Aut(X, σ)�〈σ〉 finite ([3])

(3) lim sup cn(X)
n < ∞ =⇒ all f.g. subgroups of Aut(X, σ) are virtually Zd ([3])

(4) cn(X)
n2(logn)−2 → 0 =⇒ Aut(X, σ) amenable ([6])

(5) X transitive and lim inf cn(X)
n2 = 0 =⇒ Aut(X, σ)�〈σ〉 periodic ([5])

(6) lim inf cn(X)
n2 = 0 =⇒ Aut(X, σ) does not contain a free semigroup on two

generators ([6])

(7) X minimal and cn(X)
n3 → 0 =⇒ every f.g. torsion-free subgroup of Aut(X, σ)

is virtually abelian ([4])

(8) X minimal and ∃d ∈ N with cn(X)
nd → 0 =⇒ Aut(X, σ) amenable and every

f.g. torsion-free subgroup of Aut(X, σ) is virtually nilpotent ([4])

(9) X minimal and ∃β < 1/2 with log cn(X)
nβ → 0 =⇒ Aut(X, σ) amenable ([4])

Here, we wish to add some more context to the transition from linear to slightly
greater complexity function; to our knowledge, up to now, there have been no com-
plexity thresholds used between the linear one for (1)-(3) above and o(n2/ log2 n)
from (4). It is reasonable to expect that complexity extremely close to linear should

place restrictions on the group structure of Aut(X, σ)�〈σ〉 which are stronger than

periodicity. Our first main result shows that for transitive subshifts, low enough

complexity in fact implies that Aut(X, σ)�〈σ〉 is locally finite.

Theorem 1.1. If X is an infinite transitive subshift with lim inf log(cn(X)/n)
log log logn = 0,

then Aut(X, σ)�〈σ〉 is locally finite (and countable).

We briefly remark that local finiteness is a strictly stronger property than peri-
odicity (for instance, the Tarski monster groups and Grigorchuk group are periodic
but not locally finite), and so this result has a strictly stronger complexity hypoth-
esis and conclusion than (5) above.

To prove Theorem 1.1, we first achieve some estimates on growth of number
of automorphisms as a function of range by using left- and right-special words
(Corollary 3.1). We then use a theorem of Shalom and Tao (Theorem 2.26) to show

that our growth is so slow as to force finitely generated subgroups of Aut(X, σ)�〈σ〉
to be virtually nilpotent. Finally, we combine this with the fact that Aut(X, σ)�〈σ〉
is known to be periodic under the hypotheses of Theorem 1.1 due to (5) above;

thus all finitely generated subgroups of Aut(X, σ)�〈σ〉 are virtually nilpotent and

periodic, therefore finite.
There is a well-known conjecture in geometric group theory called the Gap Con-

jecture (see [10]), which states that every finitely generated group with growth rate

eo(
√
n) (see Section 2.3 for more details) has polynomial growth. The Gap Conjec-

ture is known to hold for some classes of groups ([9], [10], [19], [20]), but is still
open in general.

Variants of our first main result show that Aut(X, σ)�〈σ〉 is locally finite under

much weaker hypotheses if the Gap Conjecture is true.
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Theorem 1.2. If X is a transitive subshift with lim inf cn(X)
n1.25(logn)−0.5 = 0 and the

Gap Conjecture is true, then Aut(X, σ)�〈σ〉 is locally finite (and countable).

Theorem 1.3. If X is a transitive subshift with cn(X)
n1.5(log n)−1 → 0 and the Gap

Conjecture is true, then Aut(X, σ)�〈σ〉 is locally finite (and countable).

Finally, our techniques allow for a slight improvement to the theorem of Cyr
and Kra referenced as (4) above, where they proved that if (X, σ) is any subshift

satisfying cn(X) = o(n2/(log2 n)), then Aut(X, σ) is amenable.

Theorem 1.4. If X is a subshift with cn(X)
n2(logn)−1 → 0, then Aut(X, σ) is amenable

(and countable).

Our final result is in the opposite direction, showing that no superlinear complex-

ity threshold can impose stronger restrictions on Aut(X, σ)�〈σ〉 than being locally

finite (and countable).

Theorem 1.5. For any countable locally finite group G and any unbounded in-

creasing f : N → R, there exists a minimal subshift X with Aut(X, σ)�〈σ〉 = G and

cn(X)
nf(n) → 0.

In particular, Theorem 1.5 provides examples of minimal subshifts having ar-
bitrarily slow but superlinear complexity function whose automorphism group is
not virtually abelian, demonstrating that the words ‘finitely generated torsion-free’
cannot be omitted in (7) above. For example, if one applies Theorem 1.5 in the
case where G is a countably infinite locally finite simple group, then in this case
Aut(X, σ) can not be virtually abelian.

Remark 1.6. Theorems 1.1 and 1.5 together completely characterize the possi-

ble Aut(X, σ)�〈σ〉 for transitive subshifts X with growth n(log logn)o(1) along a

subsequence: they are exactly the locally finite groups.

Remark 1.7. We would like to mention [2], where they prove several results sim-
ilar in spirit to Theorem 1.5, one of which realizes arbitrary Choquet simplices of
invariant measures for (minimal) Toeplitz subshifts of arbitrarily low superlinear
complexity. In addition to providing a class of examples satisfying our complexity
assumptions in Theorems 1.1-1.4, this also shows that there are subshifts with arbi-

trary (for instance very large) Choquet simplices and Aut(X, σ)�〈σ〉 locally finite.

2. Definitions/preliminaries

2.1. Symbolic dynamics.

Definition 2.1. For any finite alphabet A, the full shift over A is the set AZ,
which is viewed as a compact topological space with the (discrete) product topology.

Definition 2.2. A word over A is a member w ∈ An for some n ∈ N, which is
referred to as its length and denoted by |w|. We say that a word v is a subword of
a word or biinfinite sequence x if there exists i so that x([i, i+ |w|)) = w. (Here and
throughout, all intervals are assumed to be intersected with Z, e.g. [2, 5) represents
{2, 3, 4}. For such an interval I, we view an element of AI as a word of length |I|
by the obvious identification.)



4 RONNIE PAVLOV AND SCOTT SCHMIEDING

The set of words has an obvious binary operation of concatenation, and whenever
we write expressions like vw or w3 it is with respect to concatenation.

Definition 2.3. The left shift, denoted by σ, is the self-map of the full shift
defined by (σx)(n) = x(n+ 1) for x ∈ AZ and n ∈ Z.

Definition 2.4. A subshift over A is a topological dynamical system (X, σ) where

X is a closed subset of the full shift AZ
d

(endowed with the subspace (product)
topology) which is invariant under σ.

Since there is never ambiguity about the dynamics on X , in this work we refer
to a subshift simply by the space X for ease of notation.

Definition 2.5. A word, one-sided infinite sequence, or bi-infinite sequence x over
A is periodic with period p if x(n) = x(n + p) for all n ∈ Z where both x(n)
and x(n+ p) are defined.

Definition 2.6. The language of a subshift X , denoted by L(X), is the set of all
subwords of sequences in X . For all n, we write Ln(X) = L(X)∩An for the set of
words of length n in L(X).

Definition 2.7. A word w is right-special for a subshift X if there exist a 6= b ∈ A
for which wa,wb ∈ L(X). Similarly, w is left-special for X if there exist c 6= d ∈ A
for which cw, dw ∈ L(X). The sets of n-letter right-special and left-special words
for X are denoted by RSn(X) and LSn(X) respectively.

Definition 2.8. The word complexity sequence of a subshift X is defined by
cn(X) := |Ln(X)|.

The following lemma is routine, but we include a proof for completeness.

Lemma 2.9. For any subshift X and n ∈ N, |LSn(X)| and |RSn(X)| are less than
or equal to cn+1(X)− cn(X).

Proof. We give only the proof for |RSn(X)|, as the other is trivially similar. Fix
any X and n, and consider the map f : Ln+1(X) → Ln(X) removing the final
letter of an n+ 1-letter word. This map is surjective, and it’s clear from definition
that w ∈ Ln(X) is right-special iff its f -preimage has cardinality greater than 1.
From this it’s immediate that |RSn(X)| ≤ cn+1(X)− cn(X). �

Definition 2.10. A subshift X is minimal if for all w ∈ L(X) and x ∈ X , w is a
subword of x.

Definition 2.11. A subshift X is (topologically) transitive if there exists x ∈ X

so that X = {σnx}n∈Z.

We briefly note that an infinite transitive subshift X cannot have isolated peri-

odic points; if X is transitive, then there exists x ∈ X for which X = {σnx}. If
p ∈ X were isolated and periodic, then p ∈ {σnx}, implying that X = {σnp} and
that X is finite by periodicity of p, a contradiction.

Definition 2.12. A (topological) factor map from one subshift X to another
subshift X ′ is a surjective continuous function φ : X → X ′ which commutes with
the shift action (i.e. φ ◦ σ = σ ◦ φ).

By the classical Curtis-Hedlund-Lyndon theorem, factor maps on subshifts have
a very specific form.
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Theorem 2.13. For any factor map φ : X → X ′, there exists N and Φ : A2N+1
X →

AX′ so that for all x ∈ X and n ∈ N, (φx)(n) = Φ(x([n−N,n+N ])).

Definition 2.14. We say that a factor map φ has range N and has inducing block
map Φ if it satisfies the conclusion of Theorem 2.13.

We remark that though every factor φ has some range N and inducing block
map Φ, these need not be unique.

Definition 2.15. An automorphism of a subshift X is a factor map from X to
itself which is bijective.

If φ is an automorphism of X with inducing block map Φ : A2N+1
X → A, then for

every word w ∈ Ln(X) with n ≥ 2N +1, we can let Φ act on w as in the definition
of φ. Formally, let Φ(w) be the word of length n − 2N defined by (Φ(w))(i) =
Φ(w([i −N, i+N ])) for N < i ≤ n−N .

We remark that ranges of automorphisms are additive under composition. In-
deed, by definition, if φ has range N and inducing map Φ and φ′ has range N ′ and
inducing map Φ′, then φ ◦φ′ has range N +N ′ and inducing map Φ ◦Φ′ (where Φ′

acts on words in A2N+2N ′+1
X as defined above.)

2.2. Group theory. We here summarize some basic definitions from group theory.
We will not have need of any advanced group theory in this paper, so we do not go
into great detail. For more information, see [15].

While we often make it explicit in the text, throughout we will assume groups
to be countable and discrete.

Clearly, for any subshift X , the set of automorphisms of X form a group under
the operation of composition, and we denote this group by Aut(X, σ). Since σ
is itself in Aut(X, σ) and all automorphisms commute with σ by definition, the
subgroup of Aut(X, σ) generated by σ is always normal in Aut(X, σ), and so we may

refer to Aut(X, σ)�〈σ〉. We refer to the set (generally not a group) of automorphisms

with range n by Autn(X, σ).

Definition 2.16. For a subset S of a group G, we denote by 〈S〉 the subgroup of
G generated by S. A group G is said to be generated by S ⊂ G if 〈S〉 = G. A
group G is finitely generated if there exists a finite S ⊂ G for which G = 〈S〉.
Definition 2.17. A group G is called locally finite if every finitely generated
subgroup of G is finite.

Any countable and locally finite group may be written as a countable increasing
union of finite subgroups.

Definition 2.18. A group G is called periodic if every element in G has finite
order.

Definition 2.19. A countable group G is amenable if there exists a sequence
Fi ⊂ G of finite subsets of G such that, for every g ∈ G,

lim
i→∞

|Fi∆gFi|
|Fi|

= 0.

Definition 2.20. A group G is nilpotent if there exists a sequence of subgroups

{id} = H0 ⊂ · · · ⊂ Hk−1 ⊂ Hk = G
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such that each Hi is normal in G and Hi+1/Hi is contained in the center of G/Hi

for all i. A group G is virtually nilpotent if it contains a finite index nilpotent
subgroup.

As noted in the introduction, there has been significant recent work on restric-
tions on Aut(X, σ) imposed by the word complexity function of X . We mention
one such result here which we will need in our proofs.

Theorem 2.21 ([5]). If X is a transitive subshift and cn(X)
n2 → 0, then Aut(X, σ)�〈σ〉

is a periodic group.

Remark 2.22. Theorem 2.21 is not necessarily true if one drops the transitivity
assumption on the subshift, even when the complexity function grows linearly (here
by a complexity function growing linearly we mean it is bounded above by some
linear function). For example, if (X1, σ1) and (X2, σ2) are two disjoint infinite
subshifts whose complexity functions grow linearly and (Y, σY ) is the union of
(X1, σ1) and (X2, σ2), then the complexity function for (Y, σY ) also grows linearly,

but Aut(Y, σY )�〈σY 〉 is not a periodic group, since the image of the automorphism

σ1 × id under the quotient map Aut(Y, σY ) → Aut(Y, σY )�〈σY 〉 is of infinite order.

2.3. Geometric group theory. We summarize here some basic results from geo-
metric group theory that we will need. For a more detailed introduction to this
area, see [13].

Definition 2.23. For any group G generated by a finite set S and any n ∈ N,
Bn(S) denotes the set of ‘words of length at most n over S’, i.e.

Bn(S) = {g ∈ G | g = g1 · · · gk for some k ≤ n and gi ∈ S}.
Definition 2.24. A finitely generated group G has polynomial growth if there
exists a finite generating set S and constants C and d so that |Bn(S)| < Cnd for
all n.

It is well-known that all virtually nilpotent groups have polynomial growth. A
celebrated theorem of Gromov shows that the converse is also true.

Theorem 2.25 ([11]). If G is a finitely generated group with polynomial growth,
then G is virtually nilpotent.

The following theorem of Shalom and Tao shows that there is an explicit super-
polynomial rate below which growth rates must be polynomial.

Theorem 2.26 ([18], Corollary 1.10). There exists a constant c > 0 so that if
G is a group generated by a finite subset S, and there exists N > c−1 for which
|BN (S)| ≤ N c(log logN)c , then G is virtually nilpotent.

Although Theorem 2.26 is the first result that gives an explicit ‘gap’ in growth
rates for finitely generated groups (i.e. there is no finitely generated group with
growth greater than polynomial but lower than N c(log log n)c), it is conjectured that
this gap is much larger. The Gap Conjecture ([10]) states that if a group has finite

generating set S and |Bn(S)| = eo(
√
n), then in fact G has polynomial growth (and

is therefore virtually nilpotent by Gromov’s Theorem). The Gap Conjecture is still
open, but it is known to hold for some classes of groups ([9], [10], [19], [20]).
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Definition 2.27. A finitely generated group G has subexponential growth if

there exists a generating set S so that log |Bn(S)|
n → 0.

It is well-known that finitely generated groups of subexponential growth must
be amenable (for instance, see [13, Cor. 9.2.4]).

3. Aut(X, σ) in the low complexity setting

In this section, we prove Theorems 1.1-1.4. The main tool for Theorems 1.1-1.3
is Theorem 2.26, combined with the following lemma, which bounds the number of
automorphisms of a given range.

Corollary 3.1. For every infinite transitive subshift X and every n,

|Aut⌊(n−1)/2⌋(X, σ)| ≤ (c1+cn(X)(X))2|A|(cn+1(X)−cn(X)).

This is actually a corollary of the following slightly more general theorem, which
we will need for Theorem 1.4.

For any subshift X , define Aut(FIP )(X, σ) ⊂ Aut(X, σ) to be the subgroup of
automorphisms of X which fix all isolated periodic points in X . (If X has no

isolated periodic points, then Aut(FIP )(X, σ) := Aut(X, σ).) We denote the set of

such automorphisms which have range n by Aut(FIP )
n (X, σ).

Theorem 3.2. Let X be a subshift. Then for every n,

|Aut(FIP )
⌊(n−1)/2⌋(X, σ)| ≤ (c1+cn(X)(X))2|A|(cn+1(X)−cn(X)).

Proof. For any subshift X and any n, define an n-right branch word to be a word
in L(X) beginning with a word in RSn(X), containing no other word in RSn(X),
containing no repeated n-letter subwords, and which is maximal with respect to
subword inclusion subject to these constraints. Similarly, define an n-left branch
word to be a word in L(X) ending with a word in LSn(X), containing no other
word in LSn(X), with no repeated n-letter subwords, and which is maximal with
respect to subword inclusion subject to these constraints. An n-branch word is any
word that is either an n-left or n-right branch word.

The proof relies on the following three facts about n-branch words.

(1) For every n, the number of n-branch words is less than or equal to the
quantity 2|A|(cn+1(X)− cn(X)).

(2) For every n, each n-branch word has length less than n+ cn(X).
(3) Suppose φ1 and φ2 are automorphisms with range ⌊(n− 1)/2⌋ induced by

block codes Φ1,Φ2 respectively such that φ1, φ2 fix all isolated periodic
points, and Φ1(w) = Φ2(w) for all n-branch words w. Then φ1 = φ2.

Proof of (1): Each n-right branch word w is determined completely by its initial
word in RSn(X) and the following letter; then, since w contains no other words in
RSn(X), each n-letter subword determines the next letter, meaning that all of w is
forced. There are obviously at most |A||RSn(X)| choices for this initial word and
following letter, which is less than or equal to |A|(cn+1(X)−cn(X)) by Lemma 2.9.
A similar bound holds for n-left branch words, implying (1).

Proof of (2): Every n-branch word contains no repeated n-letter subwords, and
so contains at most cn(X) n-letter subwords. This clearly implies that such a word
has length less than n+ cn(X).
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Proof of (3): We claim that every w ∈ Ln(X) which is not the subword of any
n-branch word must be a subword of an isolated periodic point of X . To see this,
assume that w ∈ Ln(X) is not a subword of any n-branch word.

Choose any x ∈ X with x([0, n)) = w. Definem to be the minimal integer greater
than n so that there exists n ≤ i < m for which x([i − n, i)) = x([m − n,m)), i.e.
the first place, when moving to the right from x(0), where an n-letter word appears
for the second time. Choose such an i, and suppose i > n. Then x(i − n − 1) 6=
x(m−n− 1), since otherwise x([i−n− 1, i− 1)) = x([m−n− 1,m− 1)), violating
minimality of m. This would imply that x([i − n, i)) is a left-special word, and
by minimality of m, that x([0, i)) is a word ending with a word in LSn(X) with
no repeated n-letter subwords. We could then extend x([0, i)) to the left to create
a maximal such word x([j, i)), which is an n-left branch word by definition. This
n-left branch word would contain w = x([0, n)) as a subword, a contradiction.

Therefore i = n, i.e., x([0,m)) begins and ends with w. If x([0,m)) contained
any words in LSn(X), then just as before we could construct an n-left branch word
containing w, a contradiction. We have then shown that x([0,m)) begins and ends
with w and contains no subwords in LSn(X). Therefore, the right-most occurrence
of w in x([0,m)) forces letters to the left until the left-most occurrence of w, and
this continues indefinitely. In other words, every y ∈ X with y([0,m)) = x([0,m))
in fact has y((−∞,m)) periodic with period m− n.

A similar argument shows that x([0,m)) cannot contain any words in RSn(X)
either; if j ≥ 0 were minimal so that x([j,m)) begins with a word in RSn(X),
then x([j,m)) could be extended to the right to create an n-right branch word
containing x([m − n,m)) = w, a contradiction. So x([0,m)) contains no words in
RSn(X), meaning that the left-most occurrence of w forces letters to the right until
the right-most occurrence. It follows that if y ∈ X satisfies y([0,m)) = x([0,m)),
then y([0,∞)) is periodic with period m− n.

Altogether, what we have shown is that every y ∈ X with y([0,m)) = x([0,m)) is
a periodic point with period m−n coming from biinfinite repetition of x([0,m−n)).
Therefore, x is an isolated periodic point, verifying the claim that every w ∈ Ln(X)
which is not the subword of any n-branch word must be a subword of an isolated
periodic point.

Now, choose any φ1, φ2 ∈ Aut(FIP )(X, σ) with range ⌊(n − 1)/2⌋ and inducing
block maps Φ1 and Φ2, and assume that Φ1(v) = Φ2(v) for all n-branch words v.

Define n′ = 2⌊(n− 1)/2⌋+ 1, so that Φ1 and Φ2 have domain An′

; clearly n′ ≤ n.
Since φ1 and φ2 fix isolated periodic points, for all n′-letter subwords u of such
points, Φ1(u) = Φ2(u). Choose any w ∈ Ln′(X) which is not a subword of such
a point; since n′ ≤ n, by the above it is a subword of an n-branch word v. Now,
since Φ1(v) = Φ2(v), and w is a subword of v, Φ1(w) = Φ2(w). We now know that
Φ1 and Φ2 agree on all words in Ln′(X), so Φ1 = Φ2, meaning that φ1 = φ2.

By (3), the number of automorphisms of range ⌊(n − 1)/2⌋ which fix isolated
periodic points is bounded from above by the number of possible choices for Φ(w)
for all n-branch words w. Each Φ(w) is determined by the length of w (which is
independent of φ) and some word of length |w| − 2⌊(n− 1)/2⌋ ≤ |w| − n + 2. By
(2), the number of such words is less than or equal to c1+cn(X)(X). By (1), the
number of w is bounded by 2|A|(cn+1(X)− cn(X)), completing the proof.

�
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Corollary 3.1 now follows immediately since an infinite transitive subshift X has
no isolated points.

We will also need the following technical lemma, which will allow us to use low
complexity along a subsequence to prove existence of a (possibly sparser) subse-
quence where both complexity and first difference of complexity are small.

Lemma 3.3. For any sequences of positive reals f(n) and g(n) where

lim inf f(n)−
n
∑

i=1

g(i) = −∞,

there exist infinitely many values of n where f(n) <
∑n

i=1 g(i) and f(n)−f(n−1) <
g(n).

Proof. We first note that the hypothesis immediately implies that there exist infin-
itely many n where f(n) − f(n − 1) < g(n); if not, then there would be N where
f(n)− f(n− 1) ≥ g(n) for all n > N , meaning that

f(n) = f(N) +
n
∑

i=N+1

f(i)− f(i− 1) ≥ (f(N)−
N
∑

i=1

g(i)) +
n
∑

i=1

g(i) for all n > N,

a contradiction to the assumption.
We now break into two cases. First, suppose that there exists N so that f(n) <

∑n
i=1 g(i) for n > N . Combining with the previous paragraph then yields the

conclusion of the theorem.
Now, suppose that there exist infinitely many n where f(n) ≥ ∑n

i=1 g(i). The
hypothesis of the theorem implies that there are also infinitely many n where f(n) <
∑n

i=1 g(i). This implies that there are infinitely many n where f(n−1) ≥∑n−1
i=1 g(i)

and f(n) <
∑n

i=1 g(i) (i.e. the sign of the inequality ‘switches infinitely many
times’). But for any such n,

f(n)− f(n− 1) <

n
∑

i=1

g(i)−
n−1
∑

i=1

g(i) = g(n),

completing the proof.
�

We are now prepared to prove Theorems 1.1-1.4. We briefly note that if X is

finite, then Aut(X, σ) and Aut(X, σ)�〈σ〉 are finite, and the conclusions of these

theorems trivially hold. We therefore treat only the case where X is infinite in all
proofs.

Proof of Theorem 1.1. Choose any infinite transitive subshift X with

lim inf log(cn(X)/n)
log log logn = 0, and take ǫ > 0 where 5ǫ is less than the constant c from

Theorem 2.26. We first claim that

(1) lim inf cn(X)−
n
∑

i=2

⌊(log log i)ǫ⌋ = −∞.

To see this, by assumption, there are infinitely many n where cn(X) < n(log logn)ǫ/2,
which is less than (n/3)(log log(n/2))ǫ for large enough n. Also,

∑n
i=2⌊(log log i)ǫ⌋ ≥
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∑n
i=⌈n/2⌉⌊(log log i)ǫ⌋ ≥ (n/2)⌊(log log(n/2))ǫ⌋, and so for infinitely many n, cn(X)−

∑n
i=2⌊(log log i)ǫ⌋ is less than

(n/3)(log log(n/2))ǫ − (n/2)⌊(log log(n/2))ǫ⌋ ≤ n/2− (n/6)(log log(n/2))ǫ,

which approaches −∞, verifying (1). We now apply Lemma 3.3, and see that there
exist infinitely many n for which
(2)

cn(X) <

n
∑

i=2

⌊(log log i)ǫ⌋ < n⌊(log logn)ǫ⌋ and cn(X)− cn−1(X) < ⌊(log logn)ǫ⌋.

Now, by Corollary 3.1, for any n satisfying (2), |Aut⌊(n−1)/2⌋(X, σ)| is bounded
from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (cn⌊(log logn)ǫ⌋(X))2|A|(log logn)ǫ .

By subadditivity,

cn⌊(log logn)ǫ⌋(X) ≤ cn(X)⌊(log logn)ǫ⌋ < ((n log logn)ǫ)(log logn)ǫ

≤
(

n2
)(log logn)ǫ

= n2(log logn)ǫ .

Therefore,

(3) |Aut⌊(n−1)/2⌋(X, σ)| ≤
(

n2(log logn)ǫ
)2|A|(log logn)ǫ

= n4|A|(log logn)2ǫ .

holds for any of the (infinitely many) n satisfying (2).

Now, choose any finite subset S of Aut(X, σ)�〈σ〉 and let S′ be a finite set in

Aut(X, σ) whose image under the quotient map Aut(X, σ) → Aut(X, σ)�〈σ〉 is the
set S. Suppose that k is large enough that all automorphisms in S′ and their inverses
have range k. Then by additivity of ranges of automorphisms under composition,
any composition of m elements of S′ is an automorphism of range km.

Then for any n for which (2) holds, (3) implies that the number B⌊(n−1)/2⌋/k(S
′)

of compositions of at most ⌊(n− 1)/2⌋/k elements of S′ satisfies

|B⌊(n−1)/2⌋/k(S
′)| ≤ n4|A|(log logn)2ǫ .

Since (2) holds for infinitely many n, we may choose such an n greater than ee
3

,

9k2, e2e
(8|A|/5ǫ)ǫ

−1

, and c−2 (here c is as in Theorem 2.26). Then ⌊(n − 1)/2⌋/k >
n/3k >

√
n, and log log

√
n = log logn− log 2 >

√
log logn since log logn > 3, so

|B√
n(S

′)| ≤ n4|A|(log logn)2ǫ ≤
√
n
8|A|(log log

√
n)4ǫ

.

Since n > e2e
(8|A|/5ǫ)ǫ

−1

, then 8|A| < 5ǫ(log log
√
n)ǫ, and so

|B√
n(S

′)| <
√
n
5ǫ(log log

√
n)5ǫ

.

Finally, since
√
n > c−1, by Theorem 2.26, 〈S′〉 is virtually nilpotent.

Therefore, 〈S〉 = 〈S′〉�〈σ〉 is a quotient group of a virtually nilpotent group and

so itself virtually nilpotent. Let H be a finite index nilpotent subgroup of 〈S〉; it is
finitely generated as it is a finite index subgroup of a finitely generated group. By

Theorem 2.21, Aut(X, σ)�〈σ〉 is periodic, so H is also periodic. Altogether we have

that H is finitely generated, periodic, and nilpotent, and therefore finite, implying
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that 〈S〉 is finite as well. Since S was an arbitrary finite subset of Aut(X, σ)�〈σ〉,
we have shown that Aut(X, σ)�〈σ〉 is locally finite.

�

Proof of Theorem 1.2. Assume that the Gap Conjecture holds. We change almost
nothing about the proof of Theorem 1.1, but must simply change our estimates for
the usage of Lemma 3.3.

Choose any infinite transitive subshift X where lim inf cn(X)
n1.25(logn)−0.5 = 0. We

first claim that for any ǫ > 0,

(4) lim inf cn(X)−
n
∑

i=2

⌊ǫi0.25(log i)−0.5⌋ = −∞.

To see this, note that by assumption, there are infinitely many n where cn(X) <
ǫ
3n

1.25(logn)−0.5. Also,
∑n

i=2⌊ǫi0.25(log i)−0.5⌋ ≥∑n
i=⌈n/2⌉⌊ǫi0.25(log i)−0.5⌋ ≥

(n/2)⌊ǫ(n/2)0.25(log n)−0.5⌋ ≥ ǫ
21.25n

1.25(log n)−0.5 − n
2 . So, for infinitely many n,

cn(X)−
n
∑

i=2

⌊ǫi0.25(log i)−0.5⌋ < ǫ

3
n1.25(log(n/2))−0.5− ǫ

21.25
n1.25(log(n/2))−0.5+

n

2
.

Since this last term approaches−∞, we have verified (4). We now apply Lemma 3.3,
and see that there exist infinitely many n for which

(5) cn(X) <

n
∑

i=2

⌊ǫi0.25(log i)−0.5⌋ ≤ n⌊ǫn0.25(logn)−0.5⌋

and cn(X)− cn−1(X) < ⌊ǫn0.25(logn)−0.5⌋.

Now, by Corollary 3.1, if n satisfies (5), |Aut⌊(n−1)/2⌋(X, σ)| is bounded from
above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (cn⌊ǫn0.25(logn)−0.5⌋(X))2|A|ǫn0.25(logn)−0.5

.

By subadditivity,

cn⌊ǫn0.25(logn)−0.5⌋(X) ≤ cn(X)⌊ǫn
0.25(logn)−0.5⌋

≤ (n1.25)ǫn
0.25(logn)−0.5

< n2ǫn0.25(log n)−0.5

.

Therefore, |Aut⌊(n−1)/2⌋(X, σ)| is bounded from above by

(

n2ǫn0.25(logn)−0.5
)2|A|ǫn0.25(logn)−0.5

= n4|A|ǫ2n0.5(logn)−1

= e4|A|ǫ2√n.

Now, exactly as in the end of Theorem 1.1, any finitely generated subgroup H of
Aut(X, σ)�〈σ〉 has growth less than e4|A|ǫ2√n. Since ǫ > 0 was arbitrary, by the Gap

Conjecture H must be virtually nilpotent. Exactly as in the proof of Theorem 1.1,

this implies that Aut(X, σ)�〈σ〉 is locally finite.

�

Proof of Theorem 1.3. Assume that the Gap Conjecture holds, and choose any in-

finite transitive subshift X where cn(X)
n1.5(logn)−1 → 0. We first claim that for any
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ǫ > 0,

(6) lim inf cn(X)−
n
∑

i=2

⌊ǫi0.5(log i)−1⌋ = −∞.

Again, by assumption, there are infinitely many n where cn(X) < ǫ
3n

1.5(logn)−1.

Also,
∑n

i=2⌊ǫi0.5(log i)−1⌋ ≥
∑n

i=⌈n/2⌉⌊ǫi0.5(log i)−1⌋ ≥ (n/2)⌊ǫ(n/2)0.5(logn)−1⌋ ≥
ǫ

21.5n
1.5(log n)−1 − n

2 . So, for infinitely many n,

cn(X)−
n
∑

i=2

ǫ
√
n(logn)−1 <

ǫ

3
n1.5(logn)−1 − ǫ

21.5
n1.5(logn)−1 +

n

2
.

Since this last term approaches−∞, we have verified (6). We now apply Lemma 3.3,
and see that there exist infinitely many n for which

(7) cn(X)− cn−1(X) < ⌊ǫn0.5(logn)−1⌋.
Rather than using Lemma 3.3 to bound cn(X), we simply recall that by assumption,
there exists N so that

(8) cn(X) < ⌊n1.5⌋
for all n > N . This clearly implies that c1+cn(X)(X) ≤ (n1.5)1.5 = n2.25 for any
n > N . By Corollary 3.1, for any of the infinitely many n > N satisfying (7) and
(8), |Aut⌊(n−1)/2⌋(X, σ)| is bounded from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (n2.25)2|A|ǫn0.5(logn)−1

= e4.5|A|ǫ√n.

Now, exactly as in the end of Theorem 1.1, any finitely generated subgroup H

of Aut(X, σ)�〈σ〉 has growth less than e4.5|A|ǫ√n. Since ǫ > 0 was arbitrary, by

the Gap Conjecture H must be virtually nilpotent. Exactly as in the proof of

Theorem 1.1, this implies that Aut(X, σ)�〈σ〉 is locally finite.

�

Proof of Theorem 1.4. Choose any subshiftX where cn(X)
n2(logn)−1 → 0, and any ǫ > 0.

We claim that

(9) lim inf cn(X)−
n
∑

i=2

⌊ǫi(log i)−1⌋ = −∞.

Again, by assumption, there are infinitely many n where cn(X) < ǫ
5n

2(logn)−1.
Also,
n
∑

i=2

⌊ǫi(log i)−1⌋ ≥
n
∑

i=⌈n/2⌉
⌊ǫi(log i)−1⌋ ≥ (n/2)⌊(ǫn/2)(logn)−1⌋ ≥ ǫ

4
n2(logn)−1−n

2
.

So, for infinitely many n,

cn(X)−
n
∑

i=2

⌊i(log i)−1⌋ < ǫ

5
n2(logn)−1 − ǫ

4
n2(logn)−1 +

n

2
.

Since this last term approaches−∞, we have verified (9). We now apply Lemma 3.3,
and see that there exist infinitely many n for which

(10) cn(X)− cn−1(X) < ⌊ǫn(logn)−1⌋.
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Rather than using Lemma 3.3 to bound cn(X), we simply recall that by assumption,
there exists N so that

(11) cn(X) < n2

for all n > N . This clearly implies that c1+cn(X)(X) ≤ (n2)2 = n4 for any n > N .
Now, by Theorem 3.2, for any of the infinitely many n > N satisfying (10) and

(11),
∣

∣

∣
Aut

(FIP )
⌊(n−1)/2⌋(X, σ)

∣

∣

∣
is bounded from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (n4)2|A|ǫn(logn)−1

= e8|A|ǫn.

By compactness, the set of isolated periodic points of X is finite; denote this
set by P . It is straightforward to check that the set P is invariant under any
automorphism of (X, σ), and we may consider the homomorphism

πP : Aut(X, σ) → Aut(P , σ|P )
πP : φ 7→ φ|P .

By definition we have Aut(FIP )(X, σ) = ker(πP ). Now, exactly as in the end of

Theorem 1.1, any finitely generated subgroup H of Aut(FIP )(X, σ) has growth less
than e8|A|ǫn. Since ǫ was arbitrary, this implies that H has subexponential growth,

and so is amenable. Then, every finitely generated subgroup of Aut(FIP )(X, σ) is

amenable, implying that Aut(FIP )(X, σ) is amenable. Since P is finite, Aut(P , σ|P)
is a finite group, and hence Aut(FIP )(X, σ) is of finite index in Aut(X, σ). Since

Aut(FIP )(X, σ) is amenable, this implies Aut(X, σ) is amenable.
�

4. Realizing locally finite groups as Aut(X, σ)�〈σ〉 for low
complexity

In this section, we prove Theorem 1.5. We first outline the general block con-
catenation construction of subshifts; for an introduction, see ([12], [14]). It is simple
to guarantee that such a subshift be minimal. The difficult part will be to engineer

our subshift to have low complexity and prescribed Aut(X, σ)�〈σ〉.
A block concatenation subshift is defined by an alphabet A, sequences (nk)

of positive integers, and sets Ak ⊂ Ank with the following property: for every
k, every w ∈ Ak+1 is a concatenation of Ak-words. (This of course implies that
nk|nk+1 for all k.) We will always take n1 = 1 and A1 = A. Given such A, (nk),
and (Ak), X consists of all ‘limits’ of Ak-words (as k → ∞); more formally, x ∈ X if
and only if for all n, there exists k so that x([−n, n]) is a subword of some Ak-word.

We first prove some general lemmas about block concatenation subshifts. The
following is well-known ([12]), but we will give a short proof for completeness.

Lemma 4.1. If every Ak+1-word, written as a concatenation of Ak-words, contains
each Ak-word at least once, then X is minimal.

Proof. For every w ∈ L(X), there exists k so that w is a subword of some Ak-word.
But then w is a subword of every Ak+1-word. For every x ∈ X , x contains an
Ak+1-word, so contains w. Since x and w were arbitrary, X is minimal. �

By definition, for every x ∈ X and k ∈ N, x can be written as a bi-infinite
concatenation of Ak-words. We say that X is uniquely decomposable if this
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decomposition is unique for all x ∈ X . This can also be achieved through a simple
assumption about repetitions of Ak-words.

Lemma 4.2. If (dk) is an integer sequence where each Ak+1-word, written as a
concatenation of Ak-words, begins with dk+1 repetitions of the same Ak-word, ends
with dk+1 repetitions of the same Ak-word, and does not elsewhere contain dk+1

repetitions of the same Ak-word, then X is uniquely decomposable.

Proof. We prove by induction on k. The base case k = 1 simply says that locations
of A1-words are uniquely determined for such subshifts, which is trivial since we
always take A1 to be the alphabet A. For the inductive step, assume for some
k that for every x ∈ X , x can be uniquely decomposed into Ak-words. Given
this decomposition, one simply searches for 2dk+1-fold concatenations of the form
vdk+1wdk+1 (with v, w ∈ Ak possibly equal), which can only occur with midpoint at
the border between Ak+1-words. This implies that x can be written in a unique way
as a concatenation of Ak+1-words, completing the inductive step and the proof. �

Suppose X is uniquely decomposable, let k ∈ N, and let τ : Ak → Ak be a per-
mutation of the Ak-words. Associated to τ is a continuous shift-commuting map
ατ : X →

(

AZ, σ
)

defined as follows: given x ∈ X , decompose x as a concatena-
tion of Ak-words, and apply τ to each Ak-word appearing in X . (Note that this
map is only well-defined because (X, σ) was assumed uniquely decomposable; shift-
commuting and continuity are then nearly immediate from the definition.) Written
symbolically, if we have

x = . . . w−1w0w1 . . . , wi ∈ Ak

then

(12) ατ (x) = . . . τ(w−1)τ(w0)τ(w1) . . . .

Note that depending on τ , ατ may or may not map X back into X ; if it does,
then ατ is an automorphism of (X, σ).

We are now prepared to define the block concatenation subshifts which will prove
Theorem 1.5.

Proof of Theorem 1.5. Choose any unbounded increasing f and countable locally
finite group G; G can be written, by definition, as the union of an increasing chain
of finite subgroups, i.e. there exist finite groups Hk so that Hk is a proper subgroup
of Hk+1 for all n, and G is the union of the Hk. Choose an increasing sequence (bk)

of integers greater than 1 with the property that f(bk) > k(|Hk|5|Hk+1|+2|Hk|2) for
all k.

Our technique is somewhat similar to that of [1], where a subshift X was con-
structed for which the additive group of rationals embeds into Aut(X, σ), in that
we will construct, for every k, automorphisms defined by their action on the set Ak,
and then show that every automorphism of X can be realized in this way. Specifi-
cally, for each k, we will define a group of permutations of the words in Ak which is
isomorphic to Hk. We will then show that for any k, each Ak-permutation induces
an Ak+1-permutation by coordinatewise application to Ak-words, in a manner that
is compatible with the containment of Hk as a subgroup of Hk+1.

We begin with some notation. For every k, fix an ordering {h(k)
i }|Hk|

i=1 of the

elements of Hk with h
(k)
1 = {id}. Write qk = |Hk|/|Hk−1|, and choose any set
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{r(k)i }qki=1 of representatives for right cosets of Hk−1 in Hk, i.e.

Hk =

qk
⋃

i=1

Hk−1r
(k)
i .

Without loss of generality, we will always take r
(k)
1 = {id}, the identity element of

G (and of all Hk). We will now recursively define the sets Ak and lengths nk. In
our construction, |Ak| = |Hk| for every k.

The k = 1 case is simple; for every g ∈ H1, define a symbol w
(1)
g , and define the

alphabet A1 = {w(1)
g : g ∈ H1}; clearly |A1| = |H1|.

We now define Ak+1 for k ≥ 1, assuming that Ak = {w(k)
g : g ∈ Hk} has

been defined already. Informally, the idea is that we will define w
(k+1)
g for every

g ∈ Hk+1 by assigning a different ‘template’ concatenation of Ak-words to each

coset representative r
(k+1)
i , and then permuting the Ak-words {w(k)

g }g∈Hk
in those

templates by multiplying on the left by a properly chosen g′ in the subscripts.

More formally, for every g ∈ Hk+1, we first write g = g′r
(k+1)
i for some g′ ∈ Hk

and 1 ≤ i ≤ qk+1. We then define

w(k+1)
g = w

(k+1)

g′r
(k+1)
i

=
(

w
(k)

g′h
(k)
2

)2bk+1qk+1

(

(

w
(k)

g′h
(k)
1

)bk+1
(

w
(k)

g′h
(k)
2

)bk+1
∣

∣

∣
. . .
∣

∣

∣

(

w
(k)

g′h
(k)

|Hk|−1

)bk+1
(

w
(1)

g′h
(1)

|Hk|

)bk+1
)

(

w
(k)

g′h
(k)
1

)ibk+1
(

w
(k)

g′h
(k)
2

)bk+1(3qk+1−i)

.

Here, the concatenation inside the largest parentheses is a list of all pairs of the

form
(

w
(k)

g′h
(k)
a

)bk+1
(

w
(k)

g′h
(k)
b

)bk+1

, with pairs (a, b) listed in lexicographic order. We

then define Ak+1 = {w(k+1)
g : g ∈ Hk+1}, and note that all Ak+1-words begin

and end with 2bk+1qk+1-fold repetitions of an Ak-word, and contain no other such
repetitions. Note that the length of all Ak+1-words is

(13) nk+1 = bk+1nk(2|Ak|2 + 5qk+1) > bk+1qk+1.

Recursively, this defines nk and Ak for all k, and so an associated block con-
catenation subshift X . We here note a few properties of X which will be useful
later.

• X is minimal by Lemma 4.1
• X is uniquely decomposable by Lemma 4.2 (with dk = 2bkqk)
• Concatenations of the form uvw with u, v, w ∈ Ak, u 6= v, and v 6= w never
appear in points of X , and that every other concatenation uvw with u = v
or v = w appears within every Ak+1-word.

We now wish to bound the complexity of X from above to show that cn(X)
nf(n) → 0.

Choose any length n; there exists k so that nk ≤ n < nk+1. We first treat the
case where n ∈ [nk, bk+1nk). All points of X are concatenations of Ak-words, and
by definition of Ak+1, each Ak-word is repeated some number of times which is a
multiple of bk+1. Therefore, since n < bk+1nk, any word w ∈ Ln(X) is of the form
sqq . . . qqrr . . . rrp, where q, r are Ak-words, s is a suffix of q, and p is a prefix of
r. Then w is determined completely by the location at which the transition from
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q to r occurs, and the choices of q and r. (The case where w has no transition
is still included here by just taking q = r.) So, cn(X) ≤ n|Ak|2 = n|Hk|2. Since
|Hk|2 < f(bk)/k < f(nk)/k and n ≥ nk, we have cn(X) ≤ nf(nk)/k ≤ nf(n)/k.

Now consider the case where n ∈ [bk+1nk, nk+1). Any word w ∈ Ln(X) must

be of the form su
bk+1

1 u
bk+1

2 . . . u
bk+1

j−1 p, where u1, . . . uj−1 ∈ Ak, s is a suffix of some

word u
bk+1

0 for u0 ∈ Ak, and p is a prefix of some word u
bk+1

j for uj ∈ Ak. By

(13), nk+1

bk+1nk
< 5qk+1 + 2|Ak|2, and so j < 5|Hk+1| + 2|Hk|2. Clearly, w is deter-

mined by the words u0, . . . , uj and the length of s, so cn(X) ≤ bk+1nk|Ak|j+1 =
bk+1nk|Hk|j+1. Since j < 5|Hk+1|+ 2|Hk|2,

|Hk|j+1 ≤ |Hk|5|Hk+1|+2|Hk|2 < f(bk)/k < f(bk+1nk)/k.

Since n ≥ bk+1nk, this implies that cn(X) ≤ nf(bk+1nk)/k ≤ nf(n)/k.

We’ve shown that for all n ≥ nk, cn(X) ≤ nf(n)/k, and so cn(X)
nf(n) → 0. It

remains only to show that Aut(X, σ)�〈σ〉 is isomorphic to G.

For any k and h ∈ Hk, define the permutation πk,h of the set {w(k)
g } of Ak-words

by left multiplication of the subscript, i.e. πk,h(w
(k)
g ) = w

(k)
hg . In a slight abuse of

notation, we also define πk,h to act on concatenations of Ak-words by ‘coordinate-
wise’ application, i.e. if w1, . . . , wm ∈ Ak, πk,h(w1 . . . wm) := πk,h(w1) . . . πk,h(wm).

Lemma 4.3. For any k ≥ 1, h ∈ Hk, and w ∈ Ak+1, πk,h(w) = πk+1,h(w).

Proof. This comes from the definition of Ak+1. Informally, it’s due to the fact that

a left multiplication by any h ∈ Hk in the subscript of an Ak+1-word w
(k+1)

g′r
(k+1)
i

passes through to left multiplications of all subscripts of the component Ak-words.
More formally, choose any k ≥ 1, h ∈ Hk and g ∈ Hk+1; we can write g =

g′r(k+1)
i for some g′ ∈ Hk and 1 ≤ i ≤ qk+1. Then,

πk,h

(

w(k+1)
g

)

= πk,h

(

w
(k+1)

g′r
(k+1)
i

)

= πk,h

(

(

w
(k)

g′h
(k)
2

)2bk+1qk+1

(

(

w
(k)

g′h
(k)
1

)bk+1
(

w
(k)

g′h
(k)
2

)bk+1
∣

∣

∣
. . .
∣

∣

∣

(

w
(k)

g′h
(k)
sk−1

)bk+1
(

w
(1)

g′h
(1)
sk

)bk+1
)

(

w
(k)

g′h
(k)
1

)ibk+1
(

w
(k)

g′h
(k)
2

)bk+1(3qk+1−i)
)

=
(

w
(k)

hg′h
(k)
2

)2bk+1qk+1

(

(

w
(k)

hg′h
(k)
1

)bk+1
(

w
(k)

hg′h
(k)
2

)bk+1
∣

∣

∣
. . .
∣

∣

∣

(

w
(k)

hg′h
(k)
sk−1

)bk+1
(

w
(1)

hg′h
(1)
sk

)bk+1
)

(

w
(k)

hg′h
(k)
1

)ibk+1
(

w
(k)

hg′h
(k)
2

)bk+1(3qk+1−i)

= w
(k+1)

hg′r
(k+1)
i

= πk+1,h

(

w
(k+1)

g′r
(k+1)
i

)

= πk+1,h

(

w(k+1)
g

)

.

�

In particular, by induction, Lemma 4.3 implies that for any k < m, πk,h induces
the permutation πm,h of Am-words by coordinatewise action. By passing to limits,
we see that in fact πk,h induces a self-bijection of X , which we denote by φk,h.
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Since X is uniquely decomposable, φk,h is continuous and shift-commuting (in fact
it is one of the maps ατ defined in (12)), and so is in Aut(X, σ).

For every k, the group {φk,h}h∈Hk
is clearly isomorphic to Hk itself (since φk,h ◦

φk,h′ = φk,hh′). The collection {φk,h}k∈N,h∈Hk
then forms a subgroup of Aut(X, σ),

which we denote by Gφ, and it follows from the above that Gφ is isomorphic to G.
We now claim that even after quotienting out by the subgroup generated by the
shift, this is still true.

Lemma 4.4. Let ρ : Aut(X, σ) → Aut(X, σ)�〈σ〉 denote the quotient map. Then

ρ(Gφ) is isomorphic to G.

Proof. It’s enough to show that Gφ ∩ ker ρ = id. Thus it’s enough to show that if
φk,h = σm for some k, h,m, then m = 0. Suppose then that σm = φk,h. Choose
k′ ≥ k so that |m| < nk′ . Then, by Lemma 4.3, φk,h = φk′,h, and hence σm = φk′,h.
Finally, we note that for any x ∈ X , φk′,h(x) has Ak′ -words in the same locations
as x. Since σm(x) = φk′,h(x) and |m| < nk′ , the only way for this to happen is if
m = 0, completing the proof. �

Finally, we must show that under the quotient map ρ : Aut(X, σ) → Aut(X, σ)�〈σ〉,
the image of Gφ is all of Aut(X, σ)�〈σ〉; in other words, that every automorphism

of X can be written as σjφk,h for some j ∈ Z, k ∈ N, and h ∈ Hk.

We need a technical definition; we say that φ ∈ Aut(X, σ) preserves locations
of Ak-words if, for all x ∈ X and m < n, if x([m,m + nk)) is an Ak-word, then
(φx)([m,m + nk)) is an Ak-word. (Note that preserving locations of Ak-words
clearly implies preserving locations of Aj-words for any j < k.) We say that φ
simply preserves locations if it preserves locations of Ak-words for all k.

It’s clear that for every φ ∈ Aut(X, σ) of range nk and every x ∈ X , there exists
a shift i with |i| ≤ nk/2 so that (φ◦σi)(x) has Ak-words at the same locations as x.
In theory though, this is weaker than preserving locations of Ak-words, as i could
depend on x. For our examples, we can show that this is not possible as long as k
is large enough.

Lemma 4.5. If φ ∈ Aut(X, σ) has range nk, and for some x ∈ X, φx has Ak-words
at the same locations as x, then φ preserves locations of Ak-words.

Proof. Choose any k, φ with range nk and inducing block map Φ, x ∈ X , and
suppose that φx has Ak-words at the same locations as x. By shifting x, we may
assume without loss of generality that x([0, nk+1)) ∈ Ak+1. Then x([0, nk+1)), as
an Ak+1-word, contains all concatenations of three Ak-words which are in L(X),
i.e., for all u, v, w ∈ Ak such that uvw ∈ L(X) (i.e. u = v or v = w), there
exists nk ≤ i < nk+1 − 2nk so that x([i − nk, i + 2nk)) = uvw. This implies that
Φ(uvw) = (φx)([i, i + nk)) ∈ Ak.

For any y ∈ X and j ∈ Z, if y([j, j + nk)) ∈ Ak, then y([j − nk, j + 2nk)) = uvw
for some u, v, w ∈ Ak, implying that (φy)([j, j + nk)) = Φ(uvw) ∈ Ak. Since y was
arbitrary, φ preserves locations of Ak-words.

�

We now wish to show that all automorphisms of X preserve locations up to a
shift.
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Lemma 4.6. For every φ ∈ Aut(X, σ), there exists i so that σi ◦ φ preserves
locations.

Proof. Choose any φ ∈ Aut(X, σ), and choose k so that both φ and φ−1 have range
nk/2. Choose any x ∈ X with x([0, nk+1)) ∈ Ak+1. There clearly exists i with
|i| < nk/2 so that (φ ◦ σix)([mnk, (m+ 1)nk)) ∈ Ak for all m. Write φ′ := φ ◦ σi.
By additivity of ranges under composition, φ′ and φ′−1 have range nk, and by
Lemma 4.5, φ′ preserves locations of Ak-words.

Now, consider any x ∈ X for which x([−nk+1, 0)) and x([0, nk+1)) are both
in Ak+1, and x([−nk+1, 0)) ends with the same 2bk+1ck+1-fold repetition of an
Ak-word that x([0, nk+1)) begins with. Then x([−2bk+1ck+1nk, 2bk+1ck+1nk)) =
w4bk+1ck+1 for some w ∈ Ak. Since φ preserves locations of Ak-words and has
range less than nk, (φ

′x)([(−2bk+1ck+1 + 1)nk, (2bk+1ck+1 − 1)nk)) = v4bk+1ck+1−2

for some v ∈ Ak. However, the only (4bk+1ck+1 − 2)-fold repetitions of Ak-words
within points of x are within the (4bk+1ck+1)-fold repetitions occurring across the
boundary of some pairs of Ak+1-words. Therefore, there exists some j ∈ {0,±nk}
for which ((φ′ ◦ σj)x)([−2bk+1ck+1nk, 2bk+1ck+1nk]) = v4bk+1ck+1 , which implies
that ((φ′ ◦σj)x)([−nk+1, 0)) and ((φ′ ◦σj)x)([0, nk+1)) are Ak+1-words, and so that
(φ′ ◦ σj)x has Ak+1-words in the same locations as x. Define φ′′ := φ′ ◦ σj ; since
φ′, φ′−1 had range nk and |j| ≤ nk, φ

′′ and φ′′−1 have range 2nk by additivity of
ranges under composition. Since 2nk < nk+1, Lemma 4.5 implies that φ′′ preserves
locations of Ak+1-words. We claim that in fact φ′′ preserves locations for all Am-
words for m > k, which will complete the proof since φ′′ = φ ◦ σi+j . We prove by
induction on m. The base case m = k + 1 is completed, so we assume that m > k
and that φ′′ preserves locations of Am-words.

Choose two Am-words y, z which are not equal, but agree on their first and

last 2nm letters (for instance, w
(m)
id and w

(m)

r
(m)
2

would work.) Choose x ∈ X so

that x([−nm+1, 0)) and x([0, nm+1)) are both in Am+1, x([−nm+1, 0)) ends with
y2bm+1cm+1, and x([0, nm+1)) begins with z2bm+1cm+1 .

Since φ′′ preserves locations of Am-words, all words (φ′′x)([inm, (i + 1)nm)) for
−2bm+1cm+1 ≤ i < 2bm+1cm+1 are Am-words. Since φ′′ has range 2nk, each
(φ′′x)([inm, (i + 1)nm)) depends only on x(inm − 2nk, (i + 1)nm + 2nk)). Since y
and z agree on their first and last 2nm ≥ 2nk letters and

x([−2bm+1cm+1nm, 2bm+1cm+1nm)) = y2bm+1cm+1z2bm+1cm+1 ,

(φ′′x)([inm, (i+1)nm)) is the same for −2bm+1cm+1 < i < 0 (call this Am-word a)
and for 0 ≤ i < 2bm+1cm+1 − 1 (call this Am-word b).

If a = b, then since φ′′−1 has range 2nk < nm, it would have to be the
case that y = z (formally, if Ψ is an inducing block map for φ′′−1, then since
a = (φ′′x)([−2nm − 2nk,−nm + 2nk) = (φ′′x)([nm − 2nk, 2nm + 2nk) = b, it
must be the case that y = Ψ(a) = x([−2nm,−nm) = x([nm, 2nm) = Ψ(b) = z.)
This is a contradiction, so a 6= b. Now, we know that (φ′′x)([(−2bm+1cm+1 +
1)nm, (2bm+1cm+1 − 1)nm)) = a2bm+1cm+1−1b2bm+1cm+1−1 for a 6= b ∈ Am, and
the only occurrence of such a word is with midpoint at the border between Am+1-
words. Therefore, (φ′′x)([−nm+1, 0)) and (φ′′x)([0, nm+1)) are Am+1-words, and so
φ′′x has Am+1-words at the same locations as x. Since φ′′ has range 2nk < nm+1,
φ′′ preserves locations of Am+1-words by Lemma 4.5. This completes the induction
and the proof.

�
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The following lemma now completes the proof of Theorem 1.5.

Lemma 4.7. If φ ∈ Aut(X, σ) preserves locations, then there exist k ∈ N and
h ∈ Hk so that φ = φk,h.

Proof. Assume that φ ∈ Aut(X, σ) preserves locations, fix k so that φ has range nk,
and let Φ be an inducing block map for φ. Choose any x ∈ X with x([0, nk)) ∈ Ak.
Then x([ink, (i+1)nk)) ∈ Ak for all i, and by assumption, (φx)([ink, (i+1)nk)) ∈ Ak

for all i as well. Then, exactly as in the proof of Lemma 4.5, for all u, v, w ∈ Ak

with u = v or v = w, Φ(uvw) ∈ Ak. We will prove that φ is equal to some φk,h

in two steps. First, we will show that Φ(uvw) depends only on v, implying that φ
is induced by a permutation of Ak-words in the sense of (12). Then, we show that
the only such permutations which send Ak+1-words to Ak+1-words are of the form
πk,h.

To see that Φ(uvw) depends only on v, choose any (u, v, w) 6= (u′, v, w′) ∈ S.

By its definition, the Ak+1-word w
(k+1)
id contains both uvw and u′vw′ somewhere

in its first (2bk+1ck+1 + bk+1|Ak|2) concatenated Ak-words, say that w
(k+1)
id ([(p −

1)nk, (p+ 2)nk)) = uvw and w
(k+1)
id ([(q − 1)nk, (q+ 2)nk)) = u′vw′ for some p, q ≤

2bk+1ck+1 + bk+1|Ak|2.
Choose any x ∈ X with x([0, nk+1)) = w

(k+1)
id . Since φ preserves locations of

Ak+1-words, (φx)([0, nk+1)) is some Ak+1-word w
(k+1)

hr
(k+1)
i

= πk,hw
(k+1)

r
(k+1)
i

with h ∈ Hk

and 1 ≤ i ≤ qk+1. Note that w
(k+1)

r
(k+1)
i

begins with the same initial 2bk+1ck+1 +

bk+1|Ak|2 concatenated Ak-words as w
(k+1)
id , and so contains v starting at locations

pnk and qnk. But πk,h is just a permutation of Ak-words, and so w
(k+1)

hr
(k+1)
i

contains

the same Ak-word πk,h(v) at those locations. Therefore, Φ(uvw) = Φ(u′vw′) =
πk,h(v). Since (u, v, w) and (u′, v, w′) were arbitrary, we’ve shown that Φ(uvw)
depends only on v, i.e. there is a permutation τ of Ak-words so that φ = ατ as in
(12).

Consider the image of the Ak+1-word w
(k+1)
id under (coordinatewise application

of) φ = ατ . It must be another Ak+1-word since φ preserves locations, call it

w
(k+1)

hr
(k+1)
i

for h ∈ Hk and 1 ≤ i ≤ qk+1. We note that w
(k)

h
(k)
2

occurs bk+1(5qk+1 +

|Ak|−1) times in the decomposition of w
(k+1)
id into Ak-words, and so some Ak-word

must appear this many times in w
(k+1)

hr
(k+1)
i

. It is not hard to check that this implies

i = 1 (the maximum number of times an Ak-word appears becomes smaller if

i > 1, since then the final self-concatenation in the definition of w
(k+1)

hr
(k+1)
i

is shorter).

Therefore, Φ(w
(k+1)
id ) = w

(k+1)

hr
(k+1)
1

= w
(k+1)
h for some h ∈ Hk.

Recall that w
(k+1)
id contains every Ak-word, and so since φ = ατ and πk,h map

w
(k+1)
id to the same word w

(k+1)
h , it must be the case that τ = πk,h. Therefore,

φ = φk,h, and since φ was arbitrary, we are done.
�

By Lemmas 4.6 and 4.7, every φ ∈ Aut(X, σ) can be written as σjφk,h for some

j ∈ Z, k ∈ N, and h ∈ Hk, and so Aut(X, σ)�〈σ〉 is isomorphic to G, completing

the proof.
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�

Remark 4.8. We can in fact say a little more about Aut(X, σ) for this construction:
Aut(X, σ) is isomorphic to Z×G, with the Z corresponding to σ. To see this, recall
that G is isomorphic to Gφ, and then consider the map α : Gφ × Z → Aut(X, σ)
defined by α(φh,k, n) = φh,kσ

n. It is easy to check that since σ is in the center of
Aut(X, σ), α is a homomorphism. Lemmas 4.6 and 4.7 imply that α is surjective,
and it is straightforward to check that α is also injective, and hence an isomorphism.

Remark 4.9. It is natural to wonder whether the somewhat complex block con-
catenation subshifts could be replaced by the simpler subclass of Toeplitz subshifts
in our constructions. In general this is not possible, since the automorphism group
of a Toeplitz subshift is always abelian (see [8]).

Remark 4.10. In Example 3.9 from [1], they construct a minimal subshift X
where the additive group of rationals Q embeds into Aut(X, σ) (and outline alter-

ations which would make this embedding an isomorphism). Since Q�Z is count-
able and locally finite, Theorem 1.5 provides a different minimal subshift X with
Aut(X, σ)�〈σ〉 = Q�Z.
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