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ENTROPY OF THE COMPOSITION OF TWO SPHERICAL TWISTS

FEDERICO BARBACOVI AND JONGMYEONG KIM

Abstract. Given a categorical dynamical system, i.e. a triangulated category to-
gether with an endofunctor, one can try to understand the complexity of the system by
computing the entropy of the endofunctor. Computing the entropy of the composition
of two endofunctors is hard, and in general the result doesn’t have to be related to the
entropy of the single pieces.

In this paper we compute the entropy of the composition of two spherical twists
around spherical objects, showing that it depends on the dimension of the graded
vector space of morphisms between them. As a consequence of these computations
we produce new counterexamples to Kikuta–Takahashi’s conjecture. In particular, we
describe the first counterexamples in odd dimension and examples for the d-Calabi–Yau
Ginzburg dg algebra associated to the A2 quiver.
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1. Introduction

In [DHKK14] the authors introduced the notion of a categorical dynamical system: a
couple (T , Φ) of a triangulated category together with an endofunctor Φ : T → T ,
and that of the entropy of an endofunctor: a function ht(Φ) : R → [−∞,+∞).

Since their introduction, these ideas have received a lot of attention and many people
have made contributions to the subject. However, computing explicit examples of en-
tropies of endofunctors is a highly non-trivial task which has been accomplished only in
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2 FEDERICO BARBACOVI AND JONGMYEONG KIM

a few cases, e.g. tensor product with lines bundles [DHKK14], spherical twists around
spherical objects [Ouc20], and P-twist around P-objects [Fan18b].

Recently, in [Kim21] the second author proved a theorem that relates the entropy of
the twist around a spherical functor with that of (a shift of) the cotwist. Such result
potentially allows one to estimate the entropy of any autoequivalence as it is known
that any autoequivalence is the spherical twist around a spherical functor, see [Seg18].
Moreover, as a fixed autoequivalence can be realized as a spherical twist in many different
ways, one can try to make the computations easier by choosing a good representation
as a spherical twist.

In [Bar20] the first author described how to realize the composition of the twists
around two spherical functors as a single twist, and therefore there is a natural candi-
date to which the above result can be applied in order to compute the entropy of the
composition of two autoequivalences.

Even though these ideas seem to be profitable the general case is out of reach for the
moment. For this reason we concentrate on the case of the composition of two spherical
twists around spherical objects, which already shows interesting features.

A detailed statement would require us to consider various different cases and it goes
beyond the scope of this introduction. Hence, we will content ourselves with an imprecise
formulation.

Theorem 1.0.1. If E1 and E2 are two d-spherical objects in a k-linear, proper, dg en-
hanced, triangulated category T with a split-generator and a Serre functor, and V :=
Hom•

T (E2, E1) satisfies HomDb(k)(V, V [d]) = 0, then, we can explicitly compute or “pre-
cisely” bound ht(TE2 ◦ TE1) when dimV = 0, 1, 2.

In contrast to the theory of entropy for dynamical systems from which it draws in-
spiration, the entropy of endofunctors naturally incorporates the dependence on a real
variable t ∈ R. When evaluating the entropy at 0, h0(Φ), we speak of the categorical
entropy of Φ.

Even though we are not able to compute the entropy of TE2 ◦ TE1 for all values of
t ∈ R, we are able to compute its categorical entropy. More precisely, we have

Theorem 1.0.2. With the same notation and assumptions as in Theorem 1.0.1, we
have

h0(TE2◦TE1) =







0 dimV = 0, 1, 2

log

(

(dimV )2 − 2 +
√

(dimV )4 − 4(dimV )2

2

)

> 0 dimV ≥ 3
.

The content of the above two theorems is summed up in Theorem 4.0.1 and Theorem 4.0.4.
In [KT19] the authors proposed a conjecture that relates the categorical entropy of an

autoequivalence with the spectral radius of the induced linear isomorphism on Knum(T ).
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More precisely, if Φ : T → T is an autoequivalence and Knum(T ) is the numerical
Grothendieck group of T , then the conjecture says

h0(Φ) = log ρ([Φ]),

where [Φ] : Knum(T ) → Knum(T ) is the induced map and ρ([Φ]) = max{|λ| : λ eigen-
value of [Φ]}. In [KST20] the authors proved the lower bound ≥, but since then coun-
terexamples have been found, [Fan18a], [Ouc20], [Mat19].

Using the above theorems we are able to give a numerical condition that ensures
when Kikuta–Takahashi’s conjecture holds for the composition of two spherical twists,
see Corollary 5.0.1. In particular, we are able to produce the first counterexamples to
Kikuta–Takahashi in odd dimension (as hypersurfaces in Pn × Pm), see Example 5.0.2,
and examples in the subgroup 〈TS1 , TS2〉 ofD(Γd

2), where Γ
d
2 is the d-Calabi-Yau Ginzburg

dg algebra and Si’s are the two spherical objects supported at the vertices, see Corollary 5.1.1.
The motivation of Fan’s first counterexample to the Kikuta–Takahashi’s conjecture

was to find a mirror counterpart of Thurston’s construction of a map on a surface with
positive topological entropy acting trivially on homology, [Fan18a]. The existence of a
4-dimensional example of such a map was shown recently in [KO20]. In Corollary 5.1.2,
we give an interpretation of the A2 Ginzburg dg algebra example in terms of symplectic
geometry and see that certain compositions of Dehn twists give examples of such a map
in even dimensions, see Remark 5.1.3.

Acknowledgments. The authors would like to thank Kohei Kikuta and Ed Segal for
reading a draft of this preprint and providing many helpful suggestions. F.B. would like
to thank his advisor Ed Segal for many helpful conversations. F.B. was supported by the
European Research Council (ERC) under the European Union Horizon 2020 research
and innovation programme (grant agreement No.725010). J.K. was supported by the
Institute for Basic Science (IBS-R003-D1).

2. Entropy of the spherical twist around a spherical functor

Let T be a k-linear triangulated category. In this paper, we study a categorical
dynamical system, i.e. a triangulated category together with an endofunctor. To study
the complexity of a categorical dynamical system, [DHKK14] introduced the notion of
categorical entropy.

Definition 2.0.1. For E, F ∈ T , the categorical complexity of F with respect to E is
the function δt(E, F ) : R → [0,∞] given by

δt(E, F ) = inf







k∑

i=1

enit

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 ∗ ∗ · · · ∗ F ⊕ F ′

E[n1] E[n2] E[nk]

+1 +1 +1






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if F 6∼= 0, and δt(E, F ) = 0 if F ∼= 0. Here the infimum is taken over all possible cone
decompositions of objects of the form F ⊕ F ′ into E[ni]’s.

An object G ∈ T is called a split-generator if the smallest full triangulated subcate-
gory containing G and closed under taking direct summands coincides with T itself.

Definition 2.0.2. Let G be a split-generator of T . The categorical entropy of an exact
endofunctor Φ : T → T is the function ht(Φ) : R → [−∞,∞) given by

ht(Φ) = lim
n→∞

1

n
log δt(G,Φn(G)).

Remark 2.0.3. The categorical entropy is well-defined, i.e. the limit exists in [−∞,∞)
and does not depend on the choice of a split-generator [DHKK14]. Moreover it can be
also written as

ht(Φ) = lim
n→∞

1

n
log δt(G,Φn(G′))

for any choice of split-generators G,G′ of T , see [Kik17].

Let D ,T be k-linear triangulated categories with dg enhancements.

Definition 2.0.4. An exact functor f : D → T with right and left adjoint functors
fR, fL is called a spherical functor if it satisfies the following conditions:

(1) The twist functor Tf = cone(ffR ε→ IdT ) is an exact autoequivalence of T ,
where ε : ffR → IdT is the counit of the adjoint pair f ⊣ fR.

(2) The cotwist functor Cf = cone(IdD

η→ fRf)[−1] is an exact autoequivalence of
D , where η : IdD → fRf is the unit of the adjoint pair f ⊣ fR.

(3) fR ∼= fLTf [−1].
(4) fR ∼= Cff

L[1].

In [Kim21, Theorem 1.6, 1.7], the second author proved the following theorem which
relates the entropy of the twist with that of the cotwist.

Theorem 2.0.5. Let f : D → T be a spherical functor with right adjoint functor fR.

(1) Assume that the essential image of fR contains a split-generator of D. Then

ht(Cf [2]) ≤ ht(Tf ) ≤
{

0 for every t such that ht(Cf [2]) ≤ 0,

ht(Cf [2]) for every t such that ht(Cf [2]) ≥ 0.

(2) Assume that Ker ffR 6= 0. Then

ht(Tf ) ≥ 0.

Example 2.0.6. This theorem can be considered as a generalization of the computations
of the entropy of the spherical twist [Ouc20] and the P-twist [Fan18b].
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In fact, if E is a d-spherical object (d ≥ 1) in T , the functor f = −⊗kE : Db(k) → T

is spherical and

Tf
∼= TE , Cf

∼= [−1 − d]

where TE denotes the spherical twist around E. Since in Db(k), by [DHKK14, Theorem
2.6], we have ht([m]) = mt for any m ∈ Z , Theorem 2.0.5 implies that

(1− d)t ≤ ht(TE) ≤
{

0 t ≥ 0,

(1− d)t t ≤ 0.

Moreover, it also implies that if E⊥ := {F ∈ T |Hom•
T (E, F ) = 0} 6= 0, then ht(TE) = 0

for all t ≥ 0. This is exactly the main result of [Ouc20].
The main result of [Fan18b] can be obtained similarly using a presentation of a P-

object as a spherical functor [Seg18].

In general, it is not easy to verify the technical conditions of the above theorem.
However, the following lemma from [Kim21] provides a useful sufficient condition for the
condition of part (1) of Theorem 2.0.5.

Lemma 2.0.7. Let f : D → T be a spherical functor with right adjoint functor fR

and G be a split-generator of D. Assume that there is an integer n > 0 such that
HomD(C

n
f (G), G) = 0. Then fRf(G⊕Cf(G)⊕· · ·⊕Cn−1

f (G)) is a split-generator of D.

Proof. Set X1 = fRf(G). It sits in the exact triangle

(1) G fRf(G) Cf(G)[1] G[1]
ηG φ1

defining the cotwist functor Cf . Then, we inductively define a sequence {Xn}∞n=1 of
objects of D by the commutative diagram

Xn−1[−1] Cn−1
f (G) G Xn−1

Xn−1[−1] fRfCn−1
f (G) Xn Xn−1

Cn
f (G)[1] Cn

f (G)[1]

Cn−1
f (G)[1] G[1].

φn−1[−1]

η
C
n−1
f

(G)

φn

obtained by applying the octahedral axiom.
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The assumption implies that the exact triangle

G Xn Cn
f (G)[1] G[1]

splits, and therefore Xn
∼= G⊕Cn

f (G)[1]. The lemma follows since Xn is split-generated

by fRf(G⊕ Cf(G)⊕ · · · ⊕ Cn−1
f (G)) by construction. �

Corollary 2.0.8. Let f : D → T be a spherical functor with right adjoint functor fR. If
there exists a split-generator G of D and an integer n > 0 such that HomD(C

n
f (G), G) =

0, then the essential image of fRf contains a split-generator of D.

In general, computing the entropy of an endofunctor is a very hard task, and we will
try to tackle this question using Theorem 2.0.5. However, there is a case in which we
can bound the entropy using its value at zero and some asymptotic behaviour.

Proposition 2.0.9 ([FF20, Theorem 2.1.7], [EL21, Proposition 6.13, 6.14]). For any
non-nilpotent endofunctor F of T = D(T )c, T a smooth and compact dg algebra, the
limits

lim
t→±∞

ht(F )

t
= τ±(F )

are finite and we have the inequalities

τ+(F )t ≤ ht(F ) ≤ h0(F ) + τ+(F )t t ≥ 0,

τ−(F )t ≤ ht(F ) ≤ h0(F ) + τ−(F )t t ≤ 0.

3. Upper triangular dg algebras and gluing

Let us consider two dg algebras A, B and an A−B bimodule V . From this data we can
construct a new dg algebra R := B ⊕A⊕ V , where the grading and the differential are
defined componentwise, and the multiplication is (b, a, v) · (b′, a′, v′) = (bb′, aa′, vb′+av′).

This new dg algebra is sometimes denoted

R =

(
A V
0 B

)

,

and is called an upper triangular dg algebra.
In [Bar20] the first author used such a dg algebra to represent the composition of

the spherical twists around two spherical objects as the spherical twist around a single
spherical functor.

Let us briefly recall this construction. Consider T a k-linear, proper, dg enhanced
triangulated category with a split-generator and a Serre functor ST . Take E1 and E2

two d-spherical objects in T , i.e. they satisfy

ST Ei ≃ Ei[d], Hom•
T (Ei, Ei) :=

⊕

n∈Z

HomT (Ei, Ei[n]) ≃ k[t]
/
t2 , deg t = d,
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where the second isomorphism is of graded algebras.
Then, we can construct the autoequivalence

Ti(F ) := cone (Hom•
T (Ei, F )⊗ Ei → F )

called the spherical twist around Ei, see [ST01].
By using a dg enhancement of T we can fix a dg k-moduleW whose associated graded

module H•(W ) is isomorphic to V := Hom•
T (E2, E1). Then, we can define the upper

triangular dg algebra R = k ⊕ k ⊕W and consider E2 ⊕E1 as a left dg module over R.
Here the two copies of k act on the left and on the right on W via the identity of (the dg
lift of) E1 and E2, respectively. Notice however that such an upper triangular dg algebra
is formal because we can write an explicit quasi isomorphism H•(R) → R by choosing
representatives of the cohomology classes of W . In particular, the dg enhancement of
T doesn’t matter in this particular construction, and we directly consider the graded
algebra R := k ⊕ k ⊕ V .

With these remarks in mind, [Bar20, Theorem 3.2.1] can be stated as follows

Theorem 3.0.1. The left R module E2 ⊕ E1 defines a spherical functor

D(R)c T
f :=−

L
⊗R(E2⊕E1)

whose twist is given by Tf ≃ T2◦T1 and whose cotwist is given by Cf ≃ −
L

⊗R R∗[−1−d].

Remark 3.0.2. In [Bar20] the cotwist was described for the dg algebra and not for its
associated graded algebra. The description of the cotwist in the above formulation
follows from the fact that if A → B is a quasi isomorphism of dg algebras, then the dual
map B∗ → A∗ is quasi isomorphism of A−A dg bimodules.

In particular, as R is smooth and proper, we see that the cotwist gives Serre duality
on D(R)c up to a shift, see [Shk07].

3.1. A distinguished triangle. Our aim is now to give sufficient conditions under
which the technical condition of part (1) of Theorem 2.0.5 is verified for the case of the
composition of two spherical twists around spherical objects.

As a consequence of Theorem 3.0.1, we get the distinguished triangle of right R dg
modules

R RHomT (E2 ⊕E1, E2 ⊕ E1) R∗[−d] R[1],

where RHomT (E2 ⊕E1, E2⊕E1) denotes the dg endomorphism algebra of (a dg lift of)
E2 ⊕E1 in some dg enhancement of T . This is triangle (1) for the spherical functor of
Theorem 3.0.1.
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By Lemma 2.0.7 we know that to satisfy the technical condition of Theorem 2.0.5 is
enough to prove

0 = HomD(R)(R
∗[−d], R[1]) ≃ H1+d(R!), R! = RHomD(R−R)(R,R⊗k R).

Recall that V = Hom•
T (E2, E1). We have

Lemma 3.1.1. If

V 1+d = (V ∗)d = (V ⊗k V
∗)d = (V ∗ ⊗k V ⊗k V )d = 0,

then H1+d(R!) = 0.

Proof. For clarity let us denote k1 the copy of k acting on R via idE1 and k2 the one
acting via idE2. Then, by the definition of R we have the distinguished triangle of R−R
bimodules

R ⊗k1 V ⊗k2 R R⊗k1 R⊕R ⊗k2 R R R⊗k1 V ⊗k2 R[1].

Using this distinguished triangle, we see that we have the distinguished triangle

R!
RHomR−R(R⊗k1 R,R⊗k R)

⊕
RHomR−R(R⊗k2 R,R⊗k R)

RHomR−R(R⊗k1 V ⊗k2 R,R⊗k R) R![1].

Now notice that1

k1R ≃ k1 ⊕ V k2R ≃ k2 Rk1 ≃ k1 Rk2 ≃ V ⊕ k2.

Using these isomorphisms of bimodules we can simplify the above distinguished triangle
and get

R! k ⊕ k ⊕ V ⊕ V V ∗ ⊕ V ∗ ⊗ V ⊕ V ∗ ⊗ V ⊕ V ∗ ⊗ V ⊗ V R![1].

Then, the statement follows from taking the long exact sequence induced by the above
distinguished triangle. �

We now wish to show that all of the conditions of Lemma 3.1.1 can be achieved if V
satisfies2 HomDb(k)(V, V [d]) = 0.

Indeed, if we call max V and minV the maximum and the minimum degree respec-
tively of a non zero element of V , then maxV ≤ d implies V 1+d = 0, max V < −d
implies (V ∗)d = 0, and 2maxV −minV < d implies (V ∗ ⊗k V ⊗k V )d = 0. Now notice
that if we exchange E1 with E1[n] the spherical twist doesn’t change: TE1[n] ≃ T1, but
the degrees in which Vn = Hom•

T (E2, E1[n]) lives do. More precisely, we have

max Vn = maxV − n 2maxVn −minVn = 2maxV −minV − n.

1Here the subscript means that we are restring the action via the inclusion ki →֒ R.↑
2Notice that V is bounded by construction as T is proper.↑
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In particular, if we take n >> 0 the three inequalities above can always be achieved, and
the only remaining vanishing required by Lemma 3.1.1 is (V ∗⊗kV )d = HomDb(k)(V, V [d]) =
0.

Hence we get

Lemma 3.1.2. Let E1 and E2 be two d-spherical objects in T a k-linear, proper, dg
enhanced triangulated category with a split-generator and a Serre functor. Set V :=
Hom•

T (E2, E1).
If HomDb(k)(V, V [d]) = 0, then, up to replacing E1 with E1[n] and V with V [n] for

n >> 0, the assumption of part (1) of Theorem 2.0.5 are satisfied for the spherical
functor

D(R)c T .
f :=−

L
⊗R(E2⊕E1)

Let us remark that we don’t know whether the condition HomDb(k)(V, V [d]) = 0 is
really needed or whether it can be removed by a more thorough study of the map
R∗[−d] → R[1].

Remark 3.1.3. In principle what we did in this section can be done for any upper trian-
gular dg algebra, and hence one could try to find sufficient conditions under which the
hypothesis of part (1) of Theorem 2.0.5 is satisfied for any couple of spherical functors.

Unfortunately, the problem is that the terms involved are now RHom’s between dg
bimodules over the dg algebras A and B from which the upper triangular dg algebra
R is constructed. Hence, homs can go in any direction regardless of the cohomological
bounds we impose.

However, it is worthy to point out that in the case of the dg algebra arising from
[Bar20, Theorem 4.1.2] for the composition of many spherical twists around spherical
objects, it is still possible to give sufficient conditions based on cohomological bounds
(because we can bring all the RHom back at the vertices of the dg algebra).

3.2. Categorical entropy of the Serre functor. Theorem 3.0.1 and Lemma 3.1.1
tell us that if HomDb(k)(V, V [d]) = 0, V = Hom•

T (E2, E1), then the entropy of T2 ◦ T1

can be computed using the entropy of the Serre functor for D(R)c, R = k ⊕ k ⊕ V (up
to shift V , but we won’t care about this because shifting V won’t affect the final result,
as it ought to be).

Even though our motivation for computing the entropy of the Serre functor of D(R)c

is computing the entropy of T2 ◦ T1, the result of this section apply for any upper
triangular dg algebra of the form k⊕k⊕W where W is a graded vector space. Hence, in
the following A will denote any upper triangular dg algebra of the form A = k⊕ k⊕W .

We know by [Shk07] that the Serre functor for D(A)c is given by SA := −
L

⊗A A∗, so
the only thing we have to do is to compute ht(SA).
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Unfortunately, this is not an easy task for a general t ∈ R. However, using the results
of [Ela20], we will be able to compute the categorical entropy of SA, i.e. h0(SA).

Remark 3.2.1. In [DHKK14, pag. 32] the authors state the value of the entropy of the
Serre functor for the derived category of the Kronecker quiver with m ≥ 3 arrows. Our
computations will recover that value when W lives only in degree 0, and they will show
that the grading on W doesn’t affect h0(SA).

Assume from now on dimW ≥ 2. As our category is of the form D(A)c, by [DHKK14,
Theorem 2.6] we know that computing h0(SA) amounts to computing

lim
m→+∞

1

m
log

(
∑

n∈Z

dimHn
(
(A∗)⊗Am

)

)

.

Thanks to3 [Ela20, Lemma 8.2], we know that
∑

n∈Z

dimHn
(
(A∗)⊗Am

)
= d2m−2 + d2m−3 + d2m−1 + d2m−2,

where dm satisfies the relations

(2)

dm+2 + dm = dm+1 · dimW ∀ m ≥ −1

d1 = dimW

d0 = 1

d−1 = 0.

Set N = dimW . To solve this recurrence relation we use the characteristic equation

Nσ−1 − σ−2 = 1 ⇐⇒ σ± =
N ±

√
N2 − 4

2
.

We see that we have to distinguish between two cases.
If N = 2 the the solution to the recurrence equation is given by

dm = m+ 1.

If N ≥ 3 then the solution is given by

dm = ασm
− + βσm

+ , α =
1

2
− N

2
√
N2 − 4

, β =
1

2
+

N

2
√
N2 − 4

.

Hence we get

Lemma 3.2.2. We have

h0(SA) =







0 dimW = 2

log

(

(dimW )2 − 2 +
√

(dimW )4 − 4(dimW )2

2

)

> 0 dimW ≥ 3
.

3What we denote dm is dimψm(W ) in ibidem.↑



ENTROPY OF THE COMPOSITION OF TWO SPHERICAL TWISTS 11

Proof. Notice that by the recurrence relations (2) we have
∑

n∈Z

dimHn
(
(A∗)⊗Am

)
= (2 + dimW )d2m−2.

Hence we have

h0(SA) = lim
m→+∞

1

m
log(d2m−2).

If N = 2 we have

h0(SA) = lim
m→+∞

1

m
log(2m− 1) = 0.

If N ≥ 3 have

h0(SA) = lim
m→+∞

1

m
log(ασ2m−2

− + βσ2m−2
+ )

= lim
m→+∞

1

m
(2m− 2) log(σ+) = log(σ2

+),

where in the second line we used that σ+ > σ− and β 6= 0. �

4. Composition of two spherical twists around spherical objects

Now that we have introduced all the pieces that we need, we can move on to com-
pute the categorical entropy of the composition of two spherical twists around spherical
objects, and in some cases the entropy itself.

Let us recall the setting. We have T a k-linear, proper, dg enhanced triangulated
category with a split-generator and a Serre functor. Moreover, we have two d-spherical
objects E1, E2 ∈ T , and we want to compute the entropy of T2 ◦ T1, where Ti = TEi

.

By Theorem 3.0.1 we know that for f = −
L

⊗R (E2 ⊕ E1) : D(R)c → T , where
R = k idE2 ⊕ k idE1 ⊕ Hom•

T (E2, E1), we have T2 ◦ T1 ≃ Tf , Cf ≃ SR[−1 − d].
Moreover, by Lemma 3.1.2 we know that if HomDb(k)(V, V [d]) = 0, V = Hom•

T (E2, E1),
then we can compute the entropy of T2 ◦ T1 using Theorem 2.0.5.

Finally, by Lemma 3.2.2 we know the exact value h0(SR) when dimV ≥ 2.
Let us put together all these pieces to get the following results.

Theorem 4.0.1. Assume HomDb(k)(V, V [d]) = 0, then the categorical entropy of T2 ◦T1

is given by

h0(T2 ◦ T1) =







0 dimV = 0, 1, 2

log

(

(dimV )2 − 2 +
√

(dimV )4 − 4(dimV )2

2

)

> 0 dimV ≥ 3
.



12 FEDERICO BARBACOVI AND JONGMYEONG KIM

Moreover, if dimV = 0 we have

ht(T2 ◦ T1) =

{
(1− d)t t ≤ 0
≤ 0 otherwise

,

while if dimV = 1 we have

ht(T2 ◦ T1) =







(
4

3
− d

)

t ∀t :
(
4

3
− d

)

t ≥ 0

≤ 0 otherwise

.

In all cases, if E⊥
1 ∩E⊥

2 6= 0, then ht(T2 ◦T1) ≥ 0, and in particular it is identically zero
as soon as it is non-positive.

Proof. The first statement is a rephrasing of Lemma 3.2.2 taking into account Cf =
SR[1− d].

If dimV = 0 we have R = k⊕ k and SR = id⊕ id on D(R)c ≃ D(k)c⊕D(k)c. Hence,
using [DHKK14, Theorem 2.6] to compute ht(SR), we have

ht(T2 ◦ T1) = ht(SR)
︸ ︷︷ ︸

=0

+(1− d)t = (1− d)t ∀t : (1− d)t ≥ 0

and ht(T2 ◦ T1) ≤ 0 otherwise.
If dimV = 1 we can always shift V so that R is the path algebra of the Dynkin quiver

A2. Hence, D(R)c is fractional Calabi–Yau of dimension 1/3, see [Kel08], [CDIM20]. For
any d ≥ 1 Lemma 3.1.2 applies (without shifting V ), and therefore, using once again
[DHKK14, Theorem 2.6], we get

ht(T2 ◦ T1) = ht(SR) + (1− d)t =

(
4

3
− d

)

t ∀t :
(
4

3
− d

)

t ≥ 0

and ht(T2 ◦ T1) ≤ 0 otherwise. The statement about the case in which the common
orthogonal is not zero follows from Theorem 2.0.5. �

Remark 4.0.2. When dimV = 0 the twists T2 and T1 commute with each other. In this
case the result we obtained can also be proved using the same strategy used in [Ouc20,
Theorem 3.1].

Remark 4.0.3. It was noticed in [Ouc18, Theorem 3.1] and [Mat19, Remark 3.5] that
the composition of many spherical twists can have positive categorical entropy, but the
value of the entropy was not computed. The above theorem gives the precise value of
the entropy of the composition of two spherical twists and tells us when it is positive.

Theorem 4.0.4. Assume HomDb(k)(V, V [d]) = 0 and set w = maxV −minV . If w = 0,
then

ht(T2 ◦ T1) =

{
(2− d)t if (2− d)t ≥ 0
≤ 0 otherwise

.
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Futhermore, if T = D(T )c for a smooth, compact dg algebra T and dimV = 2, then
we have the following:

(1) if d+ w ≥ 2 and d− w > 2, then

ht(T2 ◦ T1) =

{
(2− (d+ w))t t ≤ 0

≤ 0 t ≥ 0
;

(2) if d+ w ≥ 2 and d− w ≤ 2, then

ht(T2 ◦ T1) =

{
(2− (d+ w))t t ≤ 0
(2− (d− w))t t ≥ 0

;

(3) if d+ w < 2 and d− w > 2, then

ht(T2 ◦ T1) ≤ 0 ∀t ∈ R;

(4) if d+ w < 2 and d− w ≤ 2, then

ht(T2 ◦ T1) =

{
≤ 0 t ≤ 0

(2− (d− w))t t ≥ 0
;

In all cases, if E⊥
1 ∩E⊥

2 6= 0, then ht(T2 ◦T1) ≥ 0, and in particular it is identically zero
as soon as it is non-positive.

Proof. For the statement about w = 0 notice that in such case we can always shift V
so that R is the endomorphism algebra of the tilting bundle O ⊕ O(−1) on P1. In
particular, we get D(R)c ≃ Db(P1), and the entropy of the Serre functor is t. In this
case, Lemma 3.1.2 applies for any d ≥ 1.

When w 6= 0 we will need to appeal to Proposition 2.0.9 and continuity of entropy,
see [FF20, Theorem 2.1.6], and for this reason we need to restrict to T = D(T )c for T
a compact and smooth dg algebra.

All the statements follow easily from Lemma 3.2.2, Proposition 2.0.9, and Lemma 4.0.5
below. �

Lemma 4.0.5. If T = D(T )c for a compact, smooth dg algebra, dimV ≥ 2, and
HomDb(k)(V, V [d]) = 0, we have

lim
t→−∞

ht(T2 ◦ T1)

t
= 2− (d+ w) if d+ w ≥ 2,

lim
t→+∞

ht(T2 ◦ T1)

t
= 2− (d− w) if d− w ≤ 2,

and they are ≥ 0 and ≤ 0 otherwise. Here we set w = maxV −minV .

Proof. The assumptions, together with Theorem 2.0.5 and Lemma 3.1.2, imply that4

ht(T2 ◦ T1) = ht(SR) + (1− d)t

4Here R depends on how much we shift E1, but the limit won’t, so we drop the dependence on n.↑
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as long as the right hand side is bigger or equal than 0, and ht(T2 ◦ T1) ≤ 0 otherwise.
Dividing the right hand side by t and passing to the limit for t → −∞, by [Ela20,
Proposition 8.4] we see that the right hand side tends to 2 − (d + w). If d + w ≥ 2
by continuity of the entropy of an endofunctor we get that there exists an N < 0 such
that the right hand side above is positive in (−∞, N). Hence, the equality holds in this
interval, and the statement follows dividing by t and passing to the limits. If d+w < 2
then in (−∞, N) the right hand side is negative and we only get the inequality.

Similarly one proves the statement for t → +∞. �

5. Counterexamples to Kikuta–Takahashi

In this section, using Theorem 4.0.1, we will produce new counterexamples to Kikuta–
Takahashi’s conjecture, [KT19]. In particular, we will produce the first counterxamples
in odd dimension.

Let T be a k-linear, proper, dg enhanced triangulated category with a Serre functor
and a split generator, and let K(T ) be its Grothendieck group. The Euler form χ :
K(T )×K(T ) → Z is defined by

χ([E], [F ]) =
∑

i∈Z

(−1)i dimHomT (E, F [i]).

We define the numerical Grothendieck group Knum(T ) as5

Knum(T ) = K(T )/〈[E] ∈ K(T ) |χ([E],−) = 0〉.
Note that the induced Euler form χ : Knum(T ) × Knum(T ) → Z is non-degenerate.
In this section, we only consider triangulated categories whose numerical Grothendieck
groups are of finite rank.

Corollary 5.0.1. Let E1, E2 ∈ T be d-spherical objects and V = Hom•
T (E2, E1). Sup-

pose [E1], [E2] are non-zero and linearly independent in Knum(T ), that HomDb(k)(V, V [d]) =
0, and that χ([E2], [E1]) 6= ±2 if d is even, χ([E2], [E1]) 6= 0 if d is odd. If dim V = 0, 1, 2,
then

h0(T2 ◦ T1) = log ρ([T2 ◦ T1]) = 0,

and if dimV ≥ 3, then
h0(T2 ◦ T1) ≥ log ρ([T2 ◦ T1]),

where the equality holds if and only if χ([E2], [E1]) = ± dim V .

Proof. First of all, notice that as [E1], [E2] are assumed to be non-zero and linearly
independent the subspace W := k{[E1], [E2]} is two dimensional. Moreover, the fact
that [E1], [E2] are d-spherical implies W⊥ = ⊥W .

5Notice that the existence of a Serre functor implies that the right and left radical of χ agree, so
there is no ambiguity in the definition of Knum(T ).↑
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The assumptions on χ([E2], [E1]) imply that the restriction of χ to this subspace is
non-degenerate. Hence, by what we said above, we get a basis of Knum(T ) by taking
[E1],[E2] and a basis of k{[E1], [E2]}⊥.

By definition, we have

[Ti](v) = v − χ([Ei], v)[Ei] v ∈ Knum(T ).

Denote λ = χ([E2], [E1]). Then, with respect to the previously chosen basis,

[T2 ◦ T1] =

(
A 0
0 Id

)

where

A = (−1)1−d

(
1 λ
−λ 1− λ2

)

.

The eigenvalues are

λ2 − 2±
√
λ4 − 4λ2

2
,

and then logarithm of the spectral radius is

log ρ([T2 ◦ T1]) = log

∣
∣
∣
∣

λ2 − 2 +
√
λ4 − 4λ2

2

∣
∣
∣
∣

By Theorem 4.0.1, we have6

h0(T2 ◦ T1) = log

∣
∣
∣
∣
∣

(dimV )2 − 2 +
√

(dimV )4 − 4(dimV )2

2

∣
∣
∣
∣
∣
.

This shows the statement for dimV = 0, 1, 2. As the function

x 7→ log

(
x− 2 +

√
x2 − 4x

2

)

is injective on x ≥ 4, we also get the statement for dimV ≥ 3. �

Example 5.0.2. Consider Pn × Pm with either

(1) n ≥ 3, n odd, m ≥ 2, m even;
(2) n,m ≥ 2, n,m even.

Take X to be the zero locus of a section of OPn×Pm(n+ 1, m+ 1). Then, from the exact
sequence

OPn×Pm(−n− 1,−m− 1) OPn×Pm OX

we see that X is a true Calabi–Yau manifold of dimension m+n− 1. In particular, line
bundles on X are d := m+ n− 1 spherical objects.

6Notice that here we are taking the absolute value of (possibly) a complex number.↑
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Consider L = OX(n + 1, 0). Then, from the above exact sequence we see that

RΓ(L) ≃ kN ⊕ k[−m+ 1] N =

(
2n+ 1
n + 1

)

In particular, if we set V = RHomX(OX ,L), we have: dimV = N + 1, λ = N − 1 > 2
in case (1) (m is even and n ≥ 3), and λ = N − 1 > 0 in case (2) (m is even and n ≥ 2).
Moreover, we have maxV −minV = m− 1 < d, and therefore V doesn’t have a gap of
d.

As the line bundlesOX and L have linearly independent Mukai vectors,7 Corollary 5.0.1
applies. In particular, we get

log
(
ρ(TH

OX
◦ TH

L )
)
= log

(

(N − 1)2 − 2 +
√

(N − 1)4 − 4(N − 1)2

2

)

< log

(

(N + 1)2 − 2 +
√

(N + 1)4 − 4(N + 1)2

2

)

= h0 (TOX
◦ TL) ,

thus contradicting Kikuta–Takahashi’s conjecture.

5.1. A2 Ginzburg dg algebra. The d-Calabi–Yau Ginzburg dg algebra Γd
2 associated

to the A2 quiver is defined as follows. First, as a graded algebra, it is the path algebra
of the graded quiver with two vertices {1, 2} and four arrows: a : 1 → 2 in degree 0,
a∗ : 2 → 1 in degree 2 − d and ti : i → i (i = 1, 2) in degree 1 − d. The differential is
given by da = da∗ = 0, dt1 = aa∗ and dt2 = −a∗a.

Let Dd
2 be the derived category of dg Γd

2-modules with finite dimensional cohomology.
It is known that Dd

2 is d-Calabi–Yau category and the simple modules S1, S2 are spherical
objects such that V = Hom•(S2, S1) = C[1 − d]. Denote by T1, T2 the spherical twists
around them; we obtain a braid group action via Br3 = 〈σ1, σ2〉 ∋ σi 7→ Ti. We call an
object a reachable spherical object if it is isomorphic to an object σSi for some σ ∈ Br3
and i = 1, 2. For two reachable spherical objects E1, E2, the Poincaré polynomial of
Hom•

Dd
2
(E2, E1), i.e.

p(E2, E1) =
∑

n∈Z

dimHomDd
2
(E2, E1[n])q

n

coincides with a weighted intersection number of some arcs on the disk with 3 marked
points, [KS02]. Let us recall the precise statement.

Let (D,∆) be the unit disk D with 3 marked points ∆ = {p1, p2, p3} ⊂ D. A closed
arc in (D,∆) is an embedding c : [0, 1] → D such that c−1(∆) = {0, 1}. Define P =
P(T (D\∆)) to be the real projectivization of the tangent bundle ofD\∆. By considering
an oriented trivialization of D, we can identify P with RP

1 × (D \∆). For each pi, take

7They are line bundles with different first Chern class.↑
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a small loop λi winding pi positively once. Then [pt×λi] and [RP1 × pt] form a basis of
H1(P,Z). Define α ∈ H1(P,Z2) by α([pt×λi]) = (−2, 1) and α([RP1×pt]) = (1, 0). Let
P̃ be the covering space with covering group Z determined by α. A bigraded closed arc
(c, c̃) (or c̃ for short) in (D,∆) is a closed arc c in (D,∆) together with a lift c̃ : (0, 1) → P̃
of the section sc : (0, 1) → P given by sc(t) = Tc(t)c.

Let c̃0, c̃1 be bigraded closed arcs having minimal intersection in the sense that they
intersect transversely and do not bound a disk. We shall define a bigrading of an
intersection point z ∈ c0∩ c1. Take a small loop l around z and an arc a : [0, 1] → l ⊂ D
which moves clockwise along l and a−1(ci) = {i} for i = 0, 1. Let us also take a
path π : [0, 1] → P such that π(t) ∈ Pa(t) for all t, π(i) = Ta(i)ci for i = 0, 1 and

π(t) 6= Ta(t)l for all t. Let π̃ : [0, 1] → P̃ be the lift of π with π̃(0) = c̃0(a(0)). Then
we have c̃1(a(1)) = (µ1, µ2) · π̃(1) for a unique (µ1, µ2) ∈ Z2 which acts as a covering
transformation. In this case, we denote (µ1(z), µ2(z)) = (µ1, µ2) and define the bigraded
intersection number of c̃0 and c̃1 to be

I(c̃0, c̃1) = (1 + q−1
1 q2)

∑

z∈(c0∩c1)\∆

q
µ1(z)
1 q

µ2(z)
2 +

∑

z∈c0∩c1∩∆

q
µ1(z)
1 q

µ2(z)
2 ∈ Z[q±1

1 , q±1
2 ].

It was shown in [KS02] that the behavior of reachable spherical objects of Dd
2 can

be read off from the topology of bigraded closed arcs in (D,∆). More precisely, there

are some bigraded closed arcs b̃1, b̃2 and a braid group action Br3 = 〈σ1, σ2〉 ∋ σi 7→ ti,
where ti is the half twist around bi, satisfying

p(σSi, τSj) = I(σb̃i, τ b̃j)|q1=q,q2=qd
8

for any σ, τ ∈ Br3 and i, j = 1, 2.

Corollary 5.1.1. Let E1, E2 be reachable spherical objects which are non-isomorphic to
each other. Then self extensions of V = Hom•

Dd
2
(E2, E1) have degree of the form k(d−1)

for some k ≥ 0. In particular, we have

h0(T2 ◦ T1) = log

∣
∣
∣
∣
∣

(dimV )2 − 2 +
√

(dimV )4 − 4(dimV )2

2

∣
∣
∣
∣
∣
.

Moreover,
h0(T2 ◦ T1) = log ρ([T2 ◦ T1])

holds if and only if dim V = 1, 2 or dimV ≥ 3 and d is odd.

Proof. For simplicity, we assume that the marked points on the disk are p1 = (−1
2
, 0), p2 =

(0, 0), p3 = (1
2
, 0). Without loss of generality, we can assume that E2 = S2 and a bi-

graded closed arc b̃2 corresponding to it is the straight arc connecting p2 and p3. Let c̃
be a bigraded closed arc correponding to E1. By twisting around b2, we can assume c

8We only need the existence of such bigraded closed arcs, for their explicit description see [KS02].↑
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Figure 1. δ1 is d− 1 (top left), 2(d− 1) (top right), −2(d− 1) (bottom
left) and −3(d− 1) (bottom right) respectively.

has p2 as one of its end points. Denote the intersection points of b2 and c by zi = (ai, 0)
where 0 = a1 < a2 < · · · < an ≤ 1

2
.

To prove the first claim, it is enough to prove that

δi = µ1(zi+1) + dµ2(zi+1)− (µ1(zi) + dµ2(zi)) = k(d− 1)

for some k ∈ Z and for all i. Here, we shall only show it for the case i = 1 as the other
cases can be shown similarly. Up to twisting around b2,

9 we have four possibilities in that
case which are depicted in Figure 1. For each of four cases, δ1 is d−1, 2(d−1),−2(d−1)
and −3(d− 1) respectively.

The second claim can be seen by noticing that χ([E2], [E1]) = dimV when d is odd
while χ([E2], [E1]) = 1, 2 when d is even.10 �

This example has the following symplecto-geometric interpretation. Let Xd
2 be the

Milnor fiber of A2-singularity of dimension 2d > 2 and L1, L2 be the vanishing cycles
(equipped with suitable grading structures). It is known that L1, L2 split-generate the
(split-closed) derived Fukaya category DπF(Xd

2 ). Since S1, S2 also split-generate the
finite-dimensional derived category Dd

2 and the graded algebra

2⊕

i,j=1

Hom•
DπF(Xd

2 )
(Li, Lj) ∼=

2⊕

i,j=1

Hom•
Dd

2
(Si, Sj)

is intrinsically formal (see [ST01, Lemma 4.21]), we have an exact equivalence

DπF(Xd
2 ) ≃ D

d
2 .

9Note that twisting around b2 doesn’t change δi.↑
10When d is even, the absolute value of χ([E2], [E1]) is exactly the number of common end points of

the closed arcs corresponding to E1, E2.↑
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In particular, under this equivalence, Li corresponds to Si and the Dehn twist τi around
Li corresponds to the spherical twist Ti around Si. Therefore, Corollary 5.1.1 can be
stated in terms of symplectic geometry.

Corollary 5.1.2. Let L1, L2 be reachable Lagrangian spheres in Xd
2 . Then we have

h0(τ2 ◦ τ1) = log

∣
∣
∣
∣

m2 − 2 +
√
m4 − 4m2

2

∣
∣
∣
∣

where m = dimHF •(L2, L1).

Remark 5.1.3. Let d be even and b̃1, b̃2 be the bigraded closed arcs corresponding to
L1, L2 respectively. Suppose b̃1 and b̃2 share only one end point. Then, p(L1, L2) =

I(b̃1, b̃2)|q1=1,q2=qd implies that λ = χ(L1, L2) = ±1. Thus, by the Picard–Lefschetz
formula, (τ2 ◦ τ1)3 acts on Hd(X

d
2 ,Z) = 〈[L1], [L2]〉 as

(
−1 ∓1
±1 0

)3

=

(
1 0
0 1

)

,

i.e. it is in the symplectic Torelli group of Xd
2 . As we have seen, the categorical entropy

of τ2 ◦ τ1 (and also (τ2 ◦ τ1)3) is positive whenever dimHF •(L2, L1) ≥ 3. Therefore, in
such a case, (τ2 ◦ τ1)3 gives a higher-dimensional counterexample to Kikuta–Takahashi’s
conjecture coming from an element in the symplectic Torelli group having positive cate-
gorical entropy. This answers a question in [KO20, Problem 1.2] about the existence of
such an autoequivalence for higher-dimensions.
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