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Solving finite-temperature properties of quantum many-body systems is generally challenging to classical
computers due to their high computational complexities. In this article, we present experiments to demonstrate
a hybrid quantum-classical simulation of thermal quantum states. By combining a classical probabilistic model
and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of
Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational
free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical
probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the
approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving
large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.

Investigating quantum statistical mechanics is chal-
lenging for classical computations, due to the exponential
growth of the Hilbert space dimension. Conventional ap-
proaches suffer from the fundamental difficulties in sam-
pling, approximating the density matrix, and computing
the partition function. The recently developed quantum
devices are promising to resolve the difficulties by utiliz-
ing quantum resources. Particularly, the hybrid quantum-
classical algorithms take advantage of both classical al-
gorithms and currently available quantum resources, by
arranging the classically high-cost computational part to
the quantum co-processors. Such approaches are feasible
on near-term noisy intermediate-scale quantum (NISQ)
devices for robustness in the presence of noise and deco-
herence [1, 2], and have been demonstrated for solving
combinatorial optimization problems with quantum ap-
proximate optimization algorithm [3, 4], the variational
quantum time evolution of quantum systems [5, 6], and
studying the ground states in various systems with the
variational quantum eigenstate solver (VQE) [7–13].

In quantum statistical mechanics, both the ground
states and excited states contribute to the Gibbs states in
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thermal equilibrium. Studying the Gibbs state is gen-
erally more difficult than the ground state for a quan-
tum computer that can only provide pure states, as it
is not straightforward to prepare the excited states and
mix them according to the Boltzmann distribution. Re-
cently, some efforts have been made in preparing Gibbs
states [14–25] and excited states [26–29] using quantum
computers, with experimental demonstrations [20, 23].
However, to perform these protocols on the NISQ de-
vices, the existing approaches have applicability and
scalability issues. For example, approaches accessing
thermal Gibbs ensemble by variationally preparing ther-
mal field double states [18, 20] require an approximate
measurement of entropy, which takes more experimen-
tal resources. Quantum imaginary time evolution suffers
from an inefficiency with deep circuits at low tempera-
ture or large system size [22, 23]. Moreover, it is also
challenging to extract physical observables from an ex-
ponential large mixed state in a scalable way [23].

In this article, we present a hardware implementation
of a general variational algorithm for quantum statisti-
cal mechanics problems [24, 25, 30]. In the approach,
the variational thermal state is constructed by generating
a mixture of product states using a classical probability
distribution, as input states to a quantum circuit that per-
form unitary transformations and induce entanglements
in the output states. It can be regarded as a finite temper-
ature generalization of VQE, with initial states sampled
from a classical distribution. Compared with other algo-
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FIG. 1. Thermal vaiational quantum simulaiton on a superconducting quantum processor. a, Feedback loop of the hybrid
quantum-classical variational algorithm in our experiment between the classical process unit (CPU) and the quantum process unit
(QPU). A classical probability distribution pϕ(x) is maintained using classical computational resources, produces bitstring samples
{x} which work as the input product states ∣x⟩ for QPU. The QPU performs several layers of unitary quantum circuits U(θ) with
the input product states and produces the final states by which the energy Eθ(x) is estimated. The energy is forwarded to the CPU
for evaluating the loss function and its gradients for the parameters of pϕ and Uθ . Then a classical optimizer is employed to update
the parameters upon which new bitstring samples are generated for the next loop until the loss function converges. b, False-color
image of our quantum device. There are 5 frequency-tunable transmon qubits lay at the middle of the chip, each of them has a
readout resonator, an XY control line, and a Z control line. All the 5 readout resonators are coupled to a readout transmission line.
See Appendix D for the basic characteristics of qubits (Table I). c, Pulse sequence for the quantum circuit ansatz for a certain input
state (∣x⟩ = ∣10101⟩). The evolution of the global entanglement layer (with the XY couplings) persists 9ns. The amplitude tunable
square pulses of 25ns are used to realize the parameterized Rz(θ). After d-layer evolutions (d = 5 in our experiment), the −X/2,
Y /2, or I gates are applied for each qubit for then energy measurement.

rithms for thermal state preparations [20–23], the clas-
sical representation of the mixture probabilities reduces
the burden of the quantum processor, has an advantage of
efficiently estimating the entropy with small or even no
statistical error, and benefits from the methods and mod-
els rapidly developed in machine learning. Consequently,
the combined approach is scalable and particularly feasi-
ble for NISQ implementations.

Here we report our implementation of this approach
on a 5-qubit superconductor quantum processor. We
prepare Gibbs states and thermal states for quantum
XY chain and XXZ chain using a symmetry-preserved
analog-digital hybrid quantum ansatz. The classical dis-
tribution and quantum circuit are trained to minimize the
variational free energy via a mini-batch gradient descent
algorithm which requires a small number of samples in
each training step. The error of the estimated free en-
ergy is 5% to the exact value. We show that the approach
has a self-verification property [13] and can be scaled up
to a large system. We further evaluate the performance

of our approach using state tomography, where the tar-
get Gibbs state can be constructed with fidelity reaching
92.6%. Moreover, we illustrate that the classical proba-
bility can help us prepare specified eigenstates, of which
the highest-fidelity reaches 98%. Finally, we give a scal-
able approach based on thermodynamics relation to re-
duce statistical error in the calculation of some thermal
variables.

I. THE HYBRID QUANTUM-CLASSICAL
VARIATIONAL APPROACH

In general, the thermal density matrix of a target quan-
tum system can be represented as a classical mixture of
pure states. The pure states can be prepared by applying
a parameterized unitary quantum circuit Ûθ on a set of
input state {∣x⟩}, and the classical mixture can be real-
ized by using probabilistic generative model. This gives
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an hybrid ansatz [24, 25] for the thermal density matrix,

ρ̂ = ∑
x

pϕ(x)Ûθ ∣x⟩ ⟨x∣ Û
†
θ , (1)

where the set {∣x⟩} denotes the computational ba-
sis, pϕ(x) is the parameterized probability distribution
model satisfying ∑x pϕ(x) = 1 and Uθ is the variational
quantum circuit. The variational parameters θ, ϕ are de-
termined by minimizing the distance between ρ̂ and tar-
get density matrix σ̂ = e−βĤ/Z , where Ĥ is the Hamilto-
nian of the target quantum system, β denotes the inverse
temperature β, and Z = Tr(e−βĤ) is the partition func-
tion. The Gibbs-Delbrück-Moliéve variational principle
of quantum statistical mechanics [31] suggests to take the
variational free energy L = 1

β
Tr(ρ̂ ln ρ̂) + Tr(ρ̂Ĥ) as the

loss function, which is lower bounded by the true free
energy with equality holds only when ρ̂ = σ̂.

Using the variational ansatz in Eq. (1), the loss func-
tion is written as

L = Ex∼pϕ(x)[
1

β
lnpϕ(x) + ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩], (2)

where we have defined ∣ψθ(x)⟩ = Û(θ)∣x⟩. The
loss function can be separated into the energy term
and the entropy term. The energy evaluation
Ex∼pϕ(x)[⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩] can be performed effi-
ciently with the help of a quantum processor for
preparing ∣ψθ(x)⟩. While for the entropy term
Ex∼pϕ(x)[lnpϕ(x)] which is difficult to estimate using
quantum computer, it now can be evaluated pure clas-
sically based on a proper probabilistic model on binary
variable x. There are two ways to obtain the expecta-
tion in Eq. (2) which corresponds to the thermal average.
When the number of qubits N is small, pϕ(x) can be ex-
actly characterized by storing probabilities for totally 2N

computational basis vectors, and the thermal average is
done using all the basis and corresponding probabilities.
We term this as the full-space method. Apparently, the
computational cost of this approach is exponential in N .
Another scalable way is to represent the probability dis-
tribution by a parameterized generative model and evalu-
ate the thermal observables with sample mean, which we
term as sample method.

Here we use the sample method combined with a
classical gradient-based optimizer to optimize the hy-
brid variational model in a batch gradient descent man-
ner (see Appendix A). At each step of the optimization,
a set of bitstrings {x} are sampled from pϕ(x) gener-
ating initial states ∣x⟩ as inputs to the quantum circuit
Uθ. After applying unitary transformations, the outputs
of the quantum circuit work as final states ∣ψθ(x)⟩, using
which we measure energy Eθ(x) = ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩.
Together with the entropy estimated solely using pϕ(x),

we compute the loss function and its gradients (see
Appendix A), then employ an efficient classical opti-
mizer (Appendix A) to update parameters. The over-
all classical-quantum optimization process is sketched in
Fig. 1a.

II. EXPERIMENTAL REALIZATIONS

We focus on the spin-1/2 XXZ Heisenberg chain in a
magnetic field, which is a prototype model studied exten-
sively in condensed matter physics and has a rich phase
diagram at finite temperature. The Hamiltonian is written
as

ĤT = ∑

i

σ̂xi σ̂
x
i+1 + σ̂

y
i σ̂

y
i+1 +∆σ̂

z
i σ̂

z
i+1 + h∑

i

σ̂zi . (3)

where σ̂x,y,z are Pauli matrices. The model has a global
U(1) symmetry corresponding to the conservation of to-
tal spin on the z direction. In the limit with ∆ = 0, the
model reduces to the XY model, which can be mapped to
the free-fermion model by Jordan-Wigner transformation
thus exactly solvable.

Our experiments build upon a quantum processor with
5 frequency-tunable transmon qubits [32] arranged in a
line with nearest-neighbor couplings, whose false-color
image is presented in Fig.1b. The qubit chain can be
modeled as a one-dimensional spin-1/2 model with XY
interactions, of which the Hamiltonian is expressed as

Ĥ =
N−1
∑

i

gi,i+1(σ̂+i σ̂
−
i+1 + σ̂

−
i σ̂
+
i+1) +

N

∑

i

∆i

2
σ̂zi , (4)

where σ̂± = (σ̂x ± iσ̂y)/2 represent the spin raising and
lowering operators respectively, gi,i+1 is the spin cou-
pling strength. The architecture can easily realize the uni-
tary operations generated directly by the Hamiltonian (4),
as well as single-qubit rotation gates.

With our quantum resource, the variational quantum
circuit in Eq. (1) is set as Ûθ = ∏dk=1 Ûg × û(θ

k
1) × ... ×

û(θkN). It contains d = 5 layers of unitary operations,
each of which is composed of a global entanglement gate
Ûg = exp(−iĤ0τ), where Ĥ0 = ∑

N−1
i gi,i+1(σ̂+i σ̂

−
i+1 +

σ̂−i σ̂
+
i+1) and τ = 9 ns, followed by variational single

qubit Rz gates û(θki ) for preserving the U(1) symme-
try. The circuit structures are shown in Fig. 1a, and the
pulse sequence of the circuit is shown in Fig. 1c.

For the classical ansatz pϕ(x), there are many choices
such as a factorized distribution [33], restricted Boltz-
mann machine [34, 35], or the variational autoregres-
sive model [25, 36–38], building upon recent progress
of unsupervised modeling in machine learning [33]. As
a proof of principle, we take a simple product Bernoulli
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b c

FIG. 2. Experimental results for the quantum XY model with
h = 0.5, β = 0.5. a, the evolution of the loss function Lθ,ϕ

evaluated using samples (Sample) and by enumerating all 25

basis vectors (Full space re-evaluation) during the parameter
learning. The shaded area denotes the standard error of 50 real-
parameter numerical simulation curves using the full-space re-
evaluated method . The black dashed line is the exact value of
free energy. The inset shows that the sample variance of the
loss function decreases during the parameters learning. The op-
timized distribution pϕ∗(x) (b) and energyEθ∗(x) (c) after the
parameter learning are illustrated and compared with the exact
values. The energy values for 25 basis vectors {x} are sorted
by their probabilities in pϕ∗(x). The density plot in c repre-
sents the eigenenergies obtained from 50 numerical simulation
results.

distribution pϕ(x) = ∏i pϕi(xi) in this work (see Ap-
pendix A for more details), which is enough for demon-
strating the scalable feature in computing thermal observ-
ables with a small statistical error.

III. RESULTS

Here we present the experimental results for quantum
XY chain defined in Eq. (3) with ∆ = 0 and h = 0.5.
In our approach, the sample size can be extremely small
when compared to the total Hilbert space dimension. For
a 5-spin chain in the experiments, we could take only
2 samples from pϕ(x) in each learning step as an in-
put product states for the quantum circuit Uθ, and for
computing the loss function and its gradients. The num-
ber of samples is much smaller than the dimension of

the Hilbert space which is 25, thus indicating a possible
exponential reduction of computational complexity. We
confirm this by a numerical study of the computational
complexity and show that the total time cost grows poly-
nomial in qubit number (see Appendix E). It turns out
that such a small sample size already gives an accurate re-
sult and a small variance of the loss function. As a sanity
check, we have also computed the loss function using the
parameters learned with the sampling approach, by enu-
merating all 25 basis vectors in the computational space,
which we term as full-space re-evaluation, for evaluating
the performance of the learning procedure using samples.

Optimization results and self-verification – We present
the optimization trajectory at β = 0.5 in Fig. 2a. The loss
function given in both experiments and real-parameter
numerical simulations decreases from a large initial value
to a value that is about 5% higher than the exact free en-
ergy at the end of learning. Based on our experimental
error model (see Appendix C), the experimental results
agree with the numerical simulation results well. The fi-
nal parameters of the Uθ and pϕ are determined using
the θ∗, ϕ∗ values corresponding to the minimal loss in
the full-space re-evaluation curve. In Fig. 2 (b) and (c)
we present the probability distribution pϕ∗(x) and energy
expectation Eθ∗(x) for each participate states of the op-
timized Gibbs ensemble, which are in coincidence well
with the exact distribution PGibbs(n) = e

−βEn
/Z and the

eigen energies En. For comparison, we also perform an
ideal noiseless simulation with exact quantum gates. The
results are shown Appendix H Fig. 10, where the proba-
bility distribution and the eigen energies match the exact
values very closely, indicating that our quantum circuit
can fully diagonalize the target Hamiltonian in the noise-
less case.

We now demonstrate that the self-verification of the
optimization can be done by the sample variance. It is
shown both in Fig. 2a and Appendix H Fig. 10 that the
variance of the sample curve is larger than that of the full-
space curve and decreasing during the optimization (see
the inset of Fig. 2a). This is because that when the learn-
ing is exact, the variance should be zero. Thus empiri-
cally we can use the sampling variance of the loss func-
tion as a self-verifying indicator on the quality of param-
eter learning. Moreover, this indicator can be accessed
directly by sample method hence avoid extra complex
measurement that needed in the ground state VQE al-
gorithm [13]. In Appendix F, we give a more detailed
analysis of the self-verification using the variance argu-
ment.

Preparation of Gibbs states and excited states – The
learned variational ansatz allows us to prepare the Gibbs
states of ρ̂∗ = ∑x pϕ∗(x)∣ψθ∗(x)⟩⟨ψθ∗(x)∣ by mixing
the component states ∣ψθ∗(x)⟩ and their probabilities
pϕ∗(x). By state tomography, we obtained the varia-
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FIG. 3. Density matrix of the Gibbs states and eigenstates obtained in the experiments for the quantum XY model. a, density
matrix of the obtained Gibbs states ρ̂∗ (upper panel) compared with the exact Gibbs states (lower panel), the fidelity is 92.6%. b,
density matrix ρx of experimentally prepared eigenstates ∣ψθ∗(x)⟩, where the corresponding exact eigenstate ∣n⟩ is identified by
the nth probabilities pϕ∗(x) sorted in a descent order. In all the plots, only the amplitudes of the density matrix are shown, with
diagonal elements and off diagonal elements colored with red and blue respectively.

tional Gibbs states with fidelity 92.6% to the exact Gibbs
state. The obtained density matrix of the Gibbs state in
the eigenbasis {∣n⟩} of target Hamiltonian is shown in
Fig. 3a. Furthermore, since in our approach the proba-
bility of each state can be determined, we can hence dis-
tinguish excited states (up to degenerations) using their
probability values. This allows us to experimentally pre-
pare both the ground state and specified excited states of
the target Hamiltonian, with the optimized diagonaliza-
tion unitary Û(θ∗). More specifically, the exact eigen-
state ∣n⟩ corresponding to ∣ψθ∗(x)⟩ is identified using
the bitstring with n-th largest probability in pϕ∗(x). In
Fig. 3b, the density matrix ρ̂x of several experimentally
prepared excited states in the eigenbasis {∣n⟩}, together
with the corresponding initial basis x are presented. We
observe that each density matrix has the largest amplitude
located at the correct entry in the density matrix, with
high fidelity to the corresponding exact density matri-
ces. The fidelity matrix between the obtained eigenstates
∣ψθ∗(x)⟩ and the exact eigenstates ∣n⟩ are illustrated in
Appendix H Fig. 11.

Thermal observables estimation – In addition to the
free energy, thermal quantities such as the energy and
the entropy can also be estimated using samples ac-
cording to E = Ex∼pϕ(x)[⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩] and S =

Ex∼pϕ(x)[lnpϕ] respectively. These observables gener-
ally have larger statistical variance than the free energy
F and cannot be estimated precisely with a small num-
ber of samples. For the energy estimation , if we still
use a sample number that much smaller than the Hilbert
space dimension as in the optimization process, the sam-
ple variance and statistical error would be quite large, as
illustrated in Fig. 4d. The same situation is also encoun-
tered in other approaches e.g. in [23]. Here we propose to
resolve this issue by utilizing the thermodynamic relation
E = F + 1

β
S , based on the self-verifying feature of F and

the classical estimation of entropy S (see Appendix B).
In this way, the variance of the energy estimation can be
greatly reduced. In Fig. 4a, b, c, we plot the thermal
quantities obtained in experiments where the entropy is
computed using an analytical method with no statistical
error and the free energy is evaluated using 5 samples.
The variance of energy is at the same level as those of
free energy and entropy, which are much smaller than
those obtained in existing methods. From Fig. 4d, the
standard error for internal energy obtained by the sam-
ple method with 200 samples is even larger than that ob-
tained by our improved approach with 5 samples. Thus,
our strategy is efficient for large-scale problems and is
extendable to other thermal quantities which can be ex-
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FIG. 4. Thermal quantities obtained by experiment at dif-
ferent inverse temperature. a, b, the internal energy (a), free
energy (b) derived by three different method: full-space (up tri-
angle) , sample averaged (circle) and thermal relation approach
(down triangle). In the last two methods, the sample size is 5
and the error bars is obtained as the standard error by repeating
the evaluation for 20 times. The entropy (c) is evaluated using
an analytical expression hence contains no statistical error. d,
standard error of experimental derived internal energy and free
energy as a function of sample number. Statistical error of in-
ternal energy with sample averaged method is much larger than
the thermal approach.

pressed as a function of free energy and entropy.

Moreover, Fig. 4 also shows that our approach can
successfully prepare Gibbs states and obtain thermal
quantities in a wide range of temperatures, particularly
when compared with existing approaches. For exam-
ple, the truncated entropy approach [21] is limited to
low-temperature regions due to the series truncation
of entropy, and the quantum imaginary time evolution
method [22, 23] suffers from error accumulation at a low
temperature due to the fast-growing circuit depth resulted
by a long imaginary evolution time, hence has difficul-
ties in reaching an accurate estimate of energy as long as
β ≥ 0.5. In contrast, our algorithm uses a quantum circuit
with a fixed depth, hence is not influenced significantly
by temperature and works all the way down to β = 3.0 as
shown in Fig. 4.

Results for XXZ model. – Finally, to further demon-
strate the performance of our variational approach, we
apply the same method to the spin-1/2 XXZ chain with
h = 0, which is an interaction model and has an additional
Z2 symmetry. We find that our U(1) preserving quantum
circuit also produces reliable results for the XXZ chain
with the model parameters we studied (see Appendix H

Fig. 9), indicating that our method is a general approach
for studying different quantum lattice models.

IV. DISCUSSIONS

We have demonstrated the hybrid quantum-classical
variation approach on a superconducting quantum pro-
cessor for solving quantum statistical mechanics of the
quantum XY and XXZ chains. The method utilizes the
generative probabilistic modeling in machine learning for
maintaining the mixture distribution and estimating the
variational entropy, and the quantum processor for per-
forming unitary transformations and estimating the en-
ergy, thus takes advantage of both classical and quan-
tum resources. The parameters of the generative model
and quantum circuits are learned through a mini-batch
gradient-based method. We have shown that the vari-
ational approach can prepare Gibbs states and excited
states for the XY and XXZ models with high fidelity,
with a self-verifiable feature using the variance of the loss
function, and can estimate thermal quantities with a small
statistical error.

Our approach is general and flexible for extensions.
The quantum circuits can be readily updated to near-
term quantum devices with a much larger size, and the
classical distribution can be generalized to more repre-
sentative neural network generative models straightfor-
wardly [25, 38]. On the application side, the proposed ap-
proach can be extended immediately to other condensed
matter models such as the Fermion systems using the
Jordan-Wigner transformation. Moreover, with the pre-
pared Gibbs states, we can further investigate the finite-
temperature dynamics on quantum simulators [23]. Last
but not least, the preparation of eigenstates at certain en-
ergy densities also makes it possible to study many-body
localization [39–41] and eigenstates thermalization hy-
pothesis [42, 43] with quantum computers.
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Appendix A: Classical optimization scheme.

As mentioned in the main text, we sample from a vari-
ational distribution and using a few samples in comput-
ing the loss function and observables, rather than consid-
ering the total 2N computational basis vectors. Due to
the large fluctuations of the loss function estimated using
a small number of samples, the gradient-free optimizers
such as the Nelder-Mead simplex method, particle swarm
algorithm, Bayesian optimization [44], and the dividing
rectangles optimizer [13] are not suitable for our task. In
this work, we consider the gradient-based optimization
scheme, with gradients computed as

∇θL = Ex∼pϕ[∇θ⟨x∣Û
†
θHÛθ ∣x⟩], (A1)

∇ϕL = ∇ϕEx∼pϕ [
1

β
lnpϕ(x) + ⟨x∣Û

†
θHÛθ ∣x⟩] , (A2)

In general, one cannot compute directly the gradients
with respect to the model parameters, so we need to use
the score function gradient estimator

∇ϕL = Ex∼pϕ[(R(x) − b)∇ϕ lnpϕ(x)], (A3)

where R(x) = lnpϕ(x)/β + ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩, b de-
notes a base line parameter to reduce the variance [25,
33, 38, 45, 46], and we adopt a common choice that b =
Ex∼ϕR(x). To understand the formulation, in comput-
ing the expectations, each sample x ∼ pϕ(x) is weighted
byR(x), the (negative) reward function, in the sense that
the gradients would be large and the optimization would
try to reduce the probability of generating the sample x
if the corresponding (negative) rewards are large. The al-
gorithm is also known as the REINFORCE algorithm in
machine learning [45, 47].

To estimate the gradients of the energy
∇θ⟨x∣Û

†
θHÛθ ∣x⟩] with respect to parameters of the

quantum circuit θ (which are the parameters of the
single-qubit rotation gates in our set up), we could
employ the parameter shift rule (PSR) [48], which
only requests the loss function values at a forward and
backward shift of π/2 for each parameter. However, it
is inefficient for a quantum circuit containing a large
number of parameterized gates and has limitations when
the variational gates do not satisfy the PSR condition.
Another popular method to estimate the gradients is

the simultaneous perturbation stochastic approximation
(SPSA) algorithm [49]. It approximates the gradients
of the loss function for all parameters simultaneously
by taking only two values of the loss function in a
perturbation way, hence has a constant time complexity
regardless of the number of gates or shape of quantum
circuits. However, in the experiments, we observed that
the computational cost of pure SPSA methods depends
on the number of iteration steps niter to achieve the
desired accuracy, which follows a power-law scaling and
has a high chance of trapping into local minima of the
loss function.

In this work, we use a hybrid gradient descent opti-
mization scheme by combining the SPSA with the adap-
tive moment estimation (Adam) [50] optimizer, denoted
by SPSA-Adam. In the algorithm, the exact gradients in
the Adam optimizer are replaced by the mean of several
SPSA gradient estimations [49]. The hybrid optimizer
combines together the advantages from the compatibil-
ity of the SPSA gradients and the fast convergence in the
noisy environment from the Adam optimizer. In the ex-
periments, we observed that the number of SPSA trails
(for obtaining the average gradients) nSPSA has a polyno-
mial scaling to the number of qubits N (Appendix E).

For the classical distribution, in consideration that the
number of qubits is small, we use a product of Bernoulli
distribution for each qubit

pϕ(x) =∏
i

pϕi(xi) =∏
i

ϕxi

i (1 − ϕi)
1−xi , (A4)

where ϕi ∈ [0,1] is the probability that xi being 1.
Each Bernoulli distribution is further parameterized us-
ing the sigmoid function with a single variable ϕi(x) =
1/(1 + e−x). The gradients for ϕ are then derived “semi-
classically”, where the evaluation of ∇ϕ lnpϕ(x) is done
on classical computer where R(x) and b contain the en-
ergy values measured using the quantum circuit. In the
experiments, we observed that the product distribution al-
ready has enough expressive power for the system with 5
qubits. It is straightforward to replace the product distri-
bution with a more powerful probabilistic model, e.g. the
autoregressive model as adopted in Ref. [25] which has
much more parameters and a better representation power
than the product distribution, by taking advantage of the
deep learning techniques.

Appendix B: Thermal observable calculations

After learning, the thermal observables such as the in-
ternal energy E can be computed as a function of pϕ and
Uθ, using a large number of samples than those in the
learning process. The self-verifying feature implies that
when the obtained variational free energy is close to the

https://github.com/xiaoxiao9689/TVQS
https://github.com/xiaoxiao9689/TVQS


8

exact values, the small variance of the samples allows us
to accurately estimate F using a small number of sam-
ples. Remarkably, since entropy estimation only relies
on the classical distribution using a generative model, ob-
servables such as the entropy which are hard to compute
on quantum computers can be estimated efficiently clas-
sically using pϕ(x). In particular, benefit from the prod-
uct distribution ansatz of pϕ(x) = ∏i pϕi(xi), we are
able to evaluate the entropy with no statistical error using
an analytical expression

S = −∑
i

∑

xi

pϕi(xi) log(pϕi(xi)). (B1)

If the classical distribution is implemented using a more
representative model such as the autoregressive neural
networks [25], one can still use a polynomial algorithm
to generate a large number of samples for estimating the
entropy, resulting in a much smaller statistical error than
that of energy which requires access to a quantum re-
source (see Appendix G). Thus, given the thermal rela-
tion F = E − 1

β
S, we can compute E more accurately

with a much smaller statistical error than estimating it di-
rectly using samples.

Appendix C: The error model for the quantum device.

The Hamiltonian used in Eq. (4) is an approximate
version of the real quantum device Hamiltonian. There
are two intrinsic reasons that make the simulations on
the hardware deviate from the ideal simulation results.
One reason is the extra small couplings between the next-
nearest neighbor qubits. Since our entanglement layer is
realized in an analog way, the numerical simulation re-
sults show that in the presence of next-nearest neighbor
couplings the ansatz has a poorer expression of the tar-
get model. The problem can be resolved by using two-
qubit gates to realize entanglements. Another reason is
the state-leakage error from non-infinite anharmonicity
of the transmon qubit, where our device should be mod-
eled by the Bose-Hubbard model with a large on-site in-
teraction. The state-leakage error not only increases the
measurement error of the observables but also prevents
us from accessing regions with a very high temperature.
The issue comes from the requirements of unitarity of the
quantum circuit Ûθ for evaluating the entropy part in loss
function classically. To extract the spin observable with
a measured 35 dimensional density matrix, we abandon
the probabilities that one or more qubits are excited to
the ∣2⟩ states, leading to an effective non-unitary circuit.
The non-unitary effect causes inaccuracy in the classical
computation of entropy and destroys the variational prin-
ciple. At high temperatures, the effect is more serious
since the entropy plays a more important role in the loss

function. Thus we present the results with β ≥ 0.5, where
the optimizations can proceed effectively.

There are mainly several possible resources contribut-
ing to the statistical errors in the measurements of ob-
servables. The first one is the measurement error when
using many single-shot measurement results to calculate
observables. The second one is the experimental random
noise that leads to parameters fluctuation such as the idle
frequency drift. The first error can be efficiently simu-
lated while the latter is hard. But they all effectively gen-
erate random noise in observable evaluations. So in the
simulations, we use smaller single-shot measurements to
effectively simulate these two errors.

Another error resource is the decoherence process.
Our circuit is shallow, the total operation time for the
quantum gate is much less than the decoherence time T1
and T2 (see next section), so we neglect the decoherence
effect in the real-parameter simulations.

Q1 Q2 Q3 Q4 Q5

ω0
i /2π (GHz) 5.531 4.968 5.433 4.999 5.502

ωi/2π (GHz) 5.435 4.932 5.378 4.975 5.471

U/2π (MHz) -242 -196 -239 -196 -242

T1,i (µs) 31 35 35 36 54

T∗2,i (µs) 9.14 7.39 7.27 8.74 12.64

g1,2/2π (MHz) 14.60

g2,3/2π (MHz) 14.65

g3,4/2π (MHz) 14.17

g4,5/2π (MHz) 14.26

g1,3/2π (MHz) 1.142

g2,4/2π (MHz) 0.607

g3,5/2π (MHz) 1.207

ωr
i /2π (GHz) 6.612 6.654 6.687 6.7266 6.766

F0,i 0.98 0.97 0.97 0.97 0.99

F1,i 0.91 0.88 0.89 0.89 0.89

TABLE I. Qubit characteristics. ω0
i is the zero flux biased fre-

quency of Qi. ωi is the idle frequency of Qi. ωr
i is the readout

resonator frequency of Qi. T1,i is the energy relaxation time
of Qi at the idle frequency. T∗2,i is the dephasing time of Qi

at the idle frequency. U/2π is the non linearity (f21 − f10) of
Qi measured at the zero flux bias. F1,i (F0,i) is the measured
probability of ∣1⟩ (∣0⟩) when Qi is prepared in ∣1⟩ (∣0⟩). gi,j is
the coupling strength between Qi and Qj .
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FIG. 5. Fluctuation of the qubit idle frequencies. We have mon-
itored the idle frequency of all qubits and found that the fluc-
tuations are in the range [-0.1,0.1] MHz, which is close to the
adjusted precision of our room temperature electronic system.

Appendix D: Experimental details.

(1) Experiment setup. Our quantum device is placed at
10mK in a BlueFors Dilution Refrigerator. It is well
screened from a higher temperature environment with its
own aluminum alloy package box and a magnetic shield.
Outside of which, we have another layer of aluminum al-
loy shield and magnetic shield at 10mK. All these shields
are tightly sealed and well thermally connected to the
10mK plate. The control wires connected to the quantum
device are deeply attenuated and filtered against noise
from the room temperature environment and electronic
setups. For XY control lines [32], we have 3dB attenua-
tion at 40K, 20dB attenuation at 3K, 6dB attenuation at
800mK, and 40dB attenuation at 10mK, plus a 7.5GHz
low pass filter. For Z control lines [32], we use a ca-
pacitance removed Bias-Tee at 10mK to combine the DC
bias and fast Z square pulse. For the fast Z control lines,
we have 3dB attenuation at 40K, 20dB attenuation at
3K, 6dB attenuation at 800mK, and 10dB attenuation at
10mK, plus a 500MHz low pass filter before connected
to the Bias-Tee. We use continuous 0.86mm CuNi coax-
ial cables as our DC bias lines, and apply an RC low-
pass filter at room temperature, where R = 1KΩ, and a
200MHz low-pass RLC filter at 10mK before connected
to the Bias-Tee. For the input line of readout pulses, we
have 3dB attenuation at 40K, 20dB attenuation at 3K,
6dB attenuation at 800mK, and 40dB attenuation plus a
7.5GHz low-pass filter at 10mK. For the output line of
readout pulses, we have a Josephson parametric ampli-
fier (JPA) at 10mK, a HEMT amplifier at 3K, and an-
other microwave amplifier at room temperature. We iso-
late our quantum device from the JPA with a 7.5GHz low-
pass filter and an isolator. We have another isolator be-
tween the JPA and HEMT. Room-temperature electronic

instruments are used to generate stable direct current, mi-
crowave pulses, and current pulses to control and readout
states of qubits. Here, we use Yokogawa GS220 as a DC
voltage source to bias qubits to their idle frequencies, the
output range is set to 1V. Zurich instrument HDAWGs
are used to generate microwave pulses via IQMixers, and
to generate current pulses as fast Z control pulses.

Our quantum device is shown in Fig.1a. and basic
characteristics of qubits are listed in Appendix Table I.
Compared to the previous experiment [51], the idle fre-
quency ωi of each qubit is closer to its sweet point ω0

i .
With this idle frequency setup, the dephasing times T ∗2 at
idle points of 5 qubits can reach 7-12 µs. The average en-
ergy relaxation time T1 at idle points of five qubits is 38.2
µs. While the resonant coupling frequency in this exper-
iment is 4.932GHz. To tune all five qubits from their idle
frequency to 4.932GHz, the output range for Z control
channels of our Zurich instrument HD is set to 2V in-
stead of 800mV from its direct mode. We found that this
change brings little affection to the dephasing time of the
qubits.

Generally speaking, the variational optimization pro-
cess is robust to coherent errors while still be affected
by random interference and noise from the environment.
With this experimental setup, we monitored the fluctua-
tion of idle frequency for days during the experiment and
found that the fluctuation of all 5 qubits is in the range
of [−0.1,0.1] MHz, as shown in Fig.5. This fluctuation
amplitude is close to the adjustable precision of our ex-
periment setup [51].
(2) Preparation of computational basis states. In
the experiments, the input states for the quantum cir-
cuits are chosen from the set of computational basis
{∣00000⟩,⋯, ∣11111⟩}, which are generated with combi-
nations of Xi gates. We use the optimization methods
in reference [52] to reducing the phase error of X , X/2,
and Y /2 gates used in our experiment. Preparing multi
qubits in ∣1⟩ suffers from the unwanted crosstalk affection
induced by multi X gates, and the residual coupling be-
tween qubits. These effects reduce the fidelity of the pre-
pared states. The measured fidelity of all 25 input states
is presented in Fig.6.
(3) Constructing parameterized quantum circuit. The
variational quantum circuit is constructed by layers of
global entanglement gate and single-qubit Rz rotation
gates. To realize the entanglement gate, fast square pulses
are applied to tune all qubits to the same frequency for
≈ 9 ns, corresponding to dimensionless time τ = π/4.
With the measured step response function of each fast Z
control line, we can compensate and correct the distor-
tion of applied square pulses, meanwhile, eliminate the
fluctuations after the square pulses[51]. The programable
single-qubit gates in the experiments are realized using
the Rz gates, by tuning qubit frequency with amplitude
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FIG. 6. Fidelity of the input states. The 25 computational ba-
sis states are prepared using a combination of X gates and the
fidelity of the states are measured. Preparing multi qubits in
∣1⟩ suffers from the unwanted crosstalk affection induced from
multi X gates and the residual coupling between qubits which
reduce the fidelity of the prepared states.

tunable square pulses of duration 25 ns. The Rz gates are
calibrated using the Ramsey-like experiments. We insert
an Rz gate between two π

2
pulses. For a given amplitude

of the Rz gate, the phase of second π
2

pulse is verified to
determine the rotation angle, which results in a function
of the rotation angle and pulse amplitude, using which
we can set the required rotation angle of Rz(θ) in our
experiments. The crosstalk between the Z control lines
are experimentally determined and compensated so that
the Rz gates for different qubits have no affection to each
other [51].
(4) Energy expectation determination. The energy expec-
tation ⟨H⟩ of the objective Hamiltonian H is determined
by measuring and summing all terms ⟨σixσ

i+1
x ⟩, ⟨σ

i
yσ

i+1
y ⟩,

⟨σizσ
i+1
z ⟩, ⟨σ

i
z⟩. For the ⟨σixσ

i+1
x ⟩ and ⟨σiyσ

i+1
y ⟩ terms,

single-qubit rotations X/2 (Y /2) are performed before
readout. In the experiments, we measure all qubits si-
multaneously by rotating all qubits before a joint read-
out. Thus, in each measurement of energy expectation we
only need to rerun the circuit for three times in order to
compute {⟨σixσ

i+1
x ⟩}, {⟨σ

i
yσ

i+1
y ⟩}, and {⟨σizσ

i+1
z ⟩, ⟨σ

i
z⟩}.

For the input states with more than one qubit in an
excited state, the implementation of a global entangle-
ment gate can induce the state leakage to ∣2⟩, as described
in the last section. To reduce the state-leakage error,
we measure all qubits simultaneously under the qutrit
computational basis. Thus, the dimension of measured
Hilbert space is 35, i.e. from ∣00000⟩ to ∣22222⟩. Then,
we reduce and normalize the measured Hilbert space to
25 under the qubit computational basis, by discarding
the results of one or more qubits in ∣2⟩. It should be
pointed out that such state-leakage error induced in reso-
nant interaction-based entanglement gates could be effec-

tively reduced by using non-resonant interaction-based
entanglement gate schemes, such as conditional-phase
gates based on tunable ZZ-interactions [53].

Appendix E: Numerical results on scalability

In this section, we present an analysis of the compu-
tational complexity of the variational algorithm in nu-
merical simulations with qubit number N ranging from
4 to 10. As mentioned in Appendix A, there are sev-
eral classical optimization schemes depending on which
gradients it uses, e.g. the sampling method or the SPSA
gradients. The optimizers have different hyperparameters
giving different performance and resource costs. We de-
termine the hyperparameters and corresponding resource
cost for a given precision starting from the algorithm con-
taining a minimum number of hyperparameters. First,
by using the full-space approach and the precise gradi-
ents derived by parameter shift, denoted as the full-space
PSR-Adam optimizer, we determine the scaling of circuit
depth nlayer with respect to qubit number N . Next, by se-
lecting the value of nlayer on the contour line of a certain
precision, we employ the sampling version of PSR-Adam
to determine the scaling of cost with different sample
sizes nbatch. Finally, with nlayer and nbatch determined in
the above steps, the scaling behavior of sampling SPSA-
Adam scheme is studied, where an additional hyperpa-
rameter nSPSA, denoting the average number of SPSA
gradient evaluation, is considered. The final cost of the
optimization scheme shows a polynomial growth, which
means that our approach is scalable for large systems.
Although the results are obtained under a target model of
the XY chain, the experimental and numerical results for
the XXZ model (see Appendix H Fig. 9) confirm that
the scaling is the property of the optimization algorithm
rather than the target model, hence we expect that the
scaling is universal for other complex models. Here we
present details of the scaling analysis on the XY model
where both h and β are set to be 0.5. To save computa-
tional resources in both time and space, we did not con-
sider noises in the numerical simulation.

1. Full-space PSR-Adam

The most important hyper-parameter is the number of
layer nlayer which is critical to the expressibility and en-
tangling capability of the quantum circuits. Using the
full-space PSR-Adam optimizer, we study the relation-
ship between the obtained loss function as a function of
the layer number nlayer ranging from 3 to 10 in the simu-
lations. The number of iteration niter is set to 150, which
is beyond the iteration steps required for convergence in
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the case of the full-space scheme. We plot the relative
errors ϵ = ∣F−Fexact

Fexact
∣ for different layer number nlayer

and qubit number N in Fig. 7a. We chose a precision
threshold that the relative error is within 0.5%. Under
the criterion, the scaling of the circuit depth nlayer is ap-
proximately linear indicated by the dashed line in Fig. 7a.
In the experiments, in order to balance the expressibility
with the noise and decoherence error, we set nlayer = 5 in
the quantum circuits.

2. Sampling PSR-Adam

The computational cost for each specific optimizer
mainly comes from the evaluation of the gradient
(Eq.(A1) and Eq.(A2)) of the loss function with respect to
the parameter θ′s. For the PSR-Adam scheme, the cost is
proportional to the number of parameters npara. With the
sampling scheme and Eq.(A1), the gradient with respect
to θ takes the following form

∇θL = ∇θ

⎡
⎢
⎢
⎢
⎣

nbatch

∑

[β ⟨x∣U †
θHUθ ∣x⟩]

nbatch

⎤
⎥
⎥
⎥
⎦

. (E1)

A small constant nbatch with respect to the increasing sys-
tem size gives an exponential reduction to the complexity
of the variational algorithm for each iteration since the
full-space scheme would require 2N terms in the sum of
Eq. (A1). However, the sampling scheme would require
a larger number of iterations. We consider the total cost
for PSR-Adam optimizer with sampling scheme as:

Cost = niter × nbatch × npara

= niter × nbatch ×N × nlayer
(E2)

with nlayer set according to the contour in Fig. 7a. Given a
fixed nlayer and nbatch, we record the number of iterations
niter required to reach the precision ϵ < 1.0%. Taking into
account the randomness that comes from the random ini-
tial parameters θ and the stochastic optimization process,
we have used 20 trials for the same N and nbatch and cal-
culate the statistical average of the converging runs, i.e.
niter < 1000. The maximal iteration steps 1000 is con-
sidered to be large enough since only 1 trial is labeled as
’divergent’ among 420 trials in total.

We present the results for different nbatch in Fig 7b. For
the precision threshold and qubit number we considered
here, it seems that nbatch can be any integer larger than
one. This is because the increasing computation com-
plexity in the nbatch sector can be converted to the com-
putation complexity manifested in the larger niter value,
while maintaining the value of nbatch. Thus, it appears to
be a trade off between nbatch and the number of iterations
niter. A larger nbatch, in general, render a smaller niter for

the lost function to reach a fixed precision. However, we
found that the complexity spared by a smaller niter could
not balance out the extra cost from larger nbatch. As a
result, it turned out to be the most efficient choice to set
nbatch = 2 in both numerical and experiment implementa-
tion.

In the inset of the Fig. 7b, we show the scaling of the
total cost with respect to N for nbatch = 2. We fit the
data with power-law Cost∝ N bA , which is plotted in the
lnN − lnCost coordinate. We observe that the slope in
the lnN − lnCost scatter plot follows a straight line with
slope bA = 2.51, indicating a polynomial scaling.

3. Sampling SPSA-Adam

Here we consider the case of the SPSA-Adam opti-
mizer, where the evaluations of the gradient with respect
to all parameters are replaced by simultaneous shifts in
all parameters averaged over nSPSA times. Thus the cost
is proportional to nSPSA and can be estimated as

Cost = niter × nbatch × nSPSA (E3)

We set the mini-batch size nbatch to 2, as determined
in the last subsection, and investigate the scaling of com-
putational cost via N . The SPSA average number nSPSA
is selected from {1,3,5,7,9,11,13} and each set of hyper-
parameters was trialed 20 times. We record the averaged
number of iterations niter required for each value of N to
reach the precision ϵ < 3.0%. The maximum niter is set
to 1500. Any trial with niter exceeded the maximal niter
is considered divergent, and the corresponding parameter
nSPSA is considered to be too small for the corresponding
N.

Similar to the relation between nbatch and niter, there
appears to be a trade off where niter tends to decrease
as nSPSA increases. The parameter nSPSA, however, does
have a different scaling behavior from nbatch, where we
found that nbatch = 2 is always the most efficient op-
tion. Starting from N = 6 with nSPSA = 1, N = 9 with
nSPSA = 3, and N = 10 with nSPSA = 5, there are cases
where the value of niter surpassed the maximum itera-
tion limit niter = 1500. As a consequence, those data
were not calculated and missing in Fig. 8, as we con-
sider those value of nSPSA are below the minimum thresh-
old for the corresponding qubit number. The scaling of
computational cost is shown in Fig. 8, where the dashed
line represents the minimum cost required for each N
with ϵ < 3.0%. The scaling of the minimum cost is
also plotted in a lnN -ln cost in the inset. It again illus-
trates a power-law behavior cost ∝ N bS with bS = 3.26.
As shown in Fig. 7b and Fig. 8, the SPSA-Adam opti-
mizer has a scaling of higher-order compared with the
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FIG. 7. Determining the optimal layer number nlayer and the mini-batch size nbatch for the PSR-Adam optimizer. a, relative
error ϵ with N and nlayer ranging from 3 to 10 after 150 iterations of the full-space PSR-Adam optimization steps. Each point is
averaged over 10 trials. The dashed line indicates the minimum value of nlayer that has an averaged error below 0.5%. The minimum
nlayer has a approximately linear scaling in the qubit number. The optimal layer number is determined as nlayer = 5 for N = 5
in the experiments, as the circuit representation ability is powerful enough while the circuit is not so deep in order to reduce the
decoherence effects. b, computational cost of the sampling PSR-Adam optimization as a function of N with nbatch = 2, 6, 10 with ϵ
less that 1.0%. The results are averaged over converging runs (iteration steps niter < 1000) from 20 trials. The slope bA corresponds
to the exponent of the growth if the growth was assumed to be polynomial, i.e. cost∝ NbA . In the inset of b, the lnN - ln cost plot
is close to a straight line. This indicates that the growth of computational cost follows a polynomial scaling instead of a exponential
one, and nbatch = 2 is the most economic choice for the mini-batch size.
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FIG. 8. Scaling of the computational cost for the
SPSA-Adam optimizer with an increasing qubit number
N. Computational cost with increasing N for nSPSA =

1, 3, 5, 7, 9, 11, 13 with ϵ less than 3.0%. Given a fixed pre-
cision, there is a threshold for nSPSA for each N and therefore
the curves corresponding to different nSPSA terminate at certain
values of N . The dashed lines indicate the minimal cost sim-
ulated for each N . The results are averaged over converging
runs (iteration steps niter < 1500) from 20 trials. In the inset,
the lnN-ln cost plot of the minimum cost is close to a straight
line and the slope, i.e. bS = 3.26 corresponds to the exponent
of the growth if the growth was assumed to be polynomial, i.e.
cost ∝ NbS . This indicates that the growth of computational
cost follows a polynomial scaling instead of a exponential one.

PSR-ADAM optimizer even with lower precision. The
result agrees with theoretical analysis that the zero’s or-
der or gradient approximating methods have higher-order
scaling in terms of both increasing qubit number and
precision, compared with optimizations using analytic

gradient measurements [54]. We therefore only investi-
gated the scaling result of SPSA-Adam optimization for
ϵ < 3.0% but not for higher precision due to limited com-
putational resources.

However, the SPSA-Adam optimizer is shown to be
more efficient than the PSR-Adam optimizer in this ex-
periment as the former only takes a few (in this exper-
iments nSPSA = 10) averages compared with npara = 25
parameters for PSR-Adams optimizer. Moreover, the
SPSA-Adam optimizer will always hold the advantage
when certain symmetry, e.g. parity or translation sym-
metry, is implemented in the circuit, as the same param-
eter applies to different quantum gates. The parameter
shift method would not benefit much from symmetry im-
plementation whereas the SPSA method for calculating
the gradient would reduce a considerable amount of cost
in such cases. On top of that, parameter shift rules have
their limitations especially when dealing with gates that
do not square to a constant time the identity, while the
SPSA method will not be limited by the choice of quan-
tum circuits ansatz, thus has an advantage over the PSR-
Adam optimizer.

Appendix F: Variance and the self-verifiable feature

The loss function used in the optimization is the varia-
tional free energy

L = Ex∼pϕ(x)[lnpϕ(x)/β + ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩], (F1)
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which is evaluated as a mean value over the variational
distribution. Its variance usually offers additional infor-
mation about the confidence of optimizations. This is
based on the fact that the variance is zero when the learn-
ing is exact. To illustrate this, suppose the optimization
is perfect such that L equals the exact free energy F and
pϕ(x) characterizes exactly the level statistic P (x), with

P (x) =
e−Eθ(x)

e−βF
,

with energy computed as

Eθ(x) = ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩.

Then we can see that

lnpϕ(x)/β + ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩ = F,

which is independent of x, indicating that the variance of
⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩ is zero. However, when we encoun-
tered a zero-variance during learning which produces the
zero gradients of the loss funciton with respect to the
model parameters, it does not indicate that the learning
is exact. To see this, suppose

lnpϕ(x)/β + ⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩ = C,

with C denoting a constant, one has

pϕ(x) = e
βCe−β⟨ψθ(x)∣Ĥ ∣ψθ(x)⟩. (F2)

This means that when the zero-variance condition is
reached, the learned distribution is a Boltzmann distri-
bution. However notice that eβC does not necessarily
be eβF , resulting in a Boltzmann distribution that devi-
ates from the true distribution. This is usually due to the
model collapse effect that the variational ansatz can only
explore part of the configuration space.

Nevertheless, in practice, the amount of variance can
be used to justify and verify the quality of learning. Em-
pirically, a small variance usually indicates a small vari-
ability of model prediction, yielding a small gap between
the variational free energy and the exact free energy, e.g.
in the β-VQE [25] algorithm and its classical counter
part [38].

Appendix G: Computing entropy of the classical
distribution

The advantage of our variational framework is that the
entropy can be computed efficiently with a polynomial
computational complexity in the number of variables, by

designing the classical distribution. In this work, we have
employed the ansatz of the product distribution

pϕ(x) =∏
i

pϕi(xi) =∏
i

ϕxi

i (1 − ϕi)
1−xi . (G1)

its entropy can be estimated analytically

S = −∑
i

∑

xi

pϕi(xi) log(pϕi(xi)). (G2)

which does not introduce statistical error. The ansatz can
be extended to a more expressive distribution with en-
tropy computed using samples. For example, one could
parameterize the joint distribution as a product of condi-
tional probabilities

pϕ(x) =∏
i

p(xi∣x1,⋯, xi−1). (G3)

Here we need to pre-determine an order for the variables
x. This is actually the chain rule of probabilities, also
known as the autoregressive model [33]. As a simple
example, let us consider a simple example with 4 binary
variables

pϕ(x1, x2, x3, x4)

= p(x4∣x1, x2, x3)p(x1, x2, x3)

= p(x4∣x1, x2, x3)p(x3∣x1, x2)p(x1, x2)

= p(x4∣x1, x2, x3)p(x3∣x1, x2)p(x2∣x1)p(x1). (G4)

At the first glance, some of the conditional probabilities
are still difficult to express due to an exponential number
of parameters to the number of variables in it. In practice,
one can adopt an efficient model such as neural networks
with a polynomial number of parameters to the number of
variables for parameterizing the conditional probability.
There are two essential properties of this representation,
the ability to compute normalized probability pϕ(x) for
any configuration x, and a fast sampling algorithm. The
first property is obvious because each conditional proba-
bility is normalized, as

∑

xi

p(xi∣x1,⋯, xi−1) = 1, (G5)

which means that pϕ(x) is naturally normalized. The
second property is known as ancestral sampling [55],
which samples variables one by one given that we have
stored every normalized conditional probability. Again
taking the example with 4 variables, we can first toss
a coin to fix a configuration for x1 according to p(x1),
then toss a coin to fix a configuration for x2 according to
p(x2∣x1), and configurations for x3 and x4 in turn. More-
over, a large number of unbiased samples can be drawn
in this way parallelly.
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Equipped with the properties, one can easily make an
accurate estimate of entropy using

S = −∑
x

Pϕ(x) log(Pϕ(x)) (G6)

= −Ex∼Pϕ
log(Pϕ(x))

≈ −

1

m

m

∑

µ=1
log(Pϕ(xµ)), (G7)

where in the last equation we have used m samples to
approximately estimate the expectation value.

Appendix H: Additional experimental and numerical
results

In this Appendix we present the experimental opti-
mization results for XXZ models (Fig. 9), ideal numerical
simulation results for XY and XXZ models (Fig. 10) and
experimental obtained fidelity matrix for XY and XXZ
models (Fig. 11).
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d ea

b c

FIG. 9. Experimental optimization results for quantum XXZ model with h = 0, ∆ = 0.3, and β = 0.5. a, optimization
trajectory (light blue) and full-space re-evaluation results (blue) of the loss function with the sampling scheme and the SPSA-Adam
optimizer. The shaded area denotes the standard error of 50 full-space re-evaluations with the mean (teal) at the center. The black
dashed line is the exact value of free energy. The inset shows a self-verify indicator by tracking the sample variance of the loss
function. b and c, optimized probability distribution pϕ∗(x) (b) of the Gibbs ensemble and eigenenergy Eθ∗(x) (c) of the target
Hamiltonian with parameters θ∗, ϕ∗ corresponding to the iterative step marked by the star in a. The energy expectation are sorted
by probabilities. The density plot of eigen energies in c are obtained from 50 numerical simulations. d and e, density matrix of the
Gibbs states and eigenstates obtained experimentally for the quantum XXZ model. d, the density matrix of the optimized Gibbs
states ρ̂∗ (upper panel) compared with the exact Gibbs states (lower panel). e, density matrix ρx of prepared specified eigenstates
∣ψθ∗(x)⟩, where the corresponding exact eigenstate ∣n⟩ is identified by nth probabilities pϕ∗(x) sorted in a descending order. In
all plots, only the amplitudes of the density matrix are shown. The diagonal elements and the off diagonal elements are colored red
and blue respectively.



16

a

b c

d

e f

FIG. 10. Ideal numerical optimization results. a, b, and c, results for the quantum XY model with h = 0.5, β = 0.5. a,
optimization trajectory (shallow blue) and full-space re-evaluation results (blue) of the loss function with the sampling scheme and
the SPSA-Adam optimizer. The shaded area denotes the standard error of 50 ideal numerical trials of the full-space re-evaluated
optimizations, with the mean (teal) at the center. The black dashed line is the exact value of the free energy. The inset shows a
self-verify indicator by tracking the sample variance of the loss function. b and c, optimized probability distribution pϕ∗(x) (b) of
the Gibbs ensemble and the eigen energyEθ∗(x) (c) of the target Hamiltonian with parameters θ∗, ϕ∗ corresponding to the iterative
step marked by the star in a. The energy expectations are sorted by probabilities and show a one-to-one correspondence with the
exact value. The density plot of the eigen energies in c are obtained from 50 ideal trails. d, e, and f, results for the quantum XXZ
model with h = 0, ∆ = 0.3, and β = 0.5. Due to the limited expressive power of our variational ansatz for the XXZ model, some
eigen energies identified by probabilities deviate from the exact values, which are also shown in Fig. 11
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d

ba

c

FIG. 11. The fidelity matrix between the optimized eigen-
states ∣ψθ∗(x)⟩ and the exact eigenstates ∣n⟩. a and b, the
fidelity matrix for the quantum XY and XXZ model obtained
in experiments. The matrix elements are concentrated near
the diagonal entries, indicating that the eigenstates of the tar-
get Hamiltonian are prepared accurately in the experiments. c
and d, The fidelity matrix from the ideal simulations for the
quantum XY and XXZ model respectively. In the XY case,
most matrix elements are exactly diagonal-located while the
off-diagonal elements represent the degeneracy of the target en-
ergy spectrum. For the XXZ model, the elements that deviated
from the diagonal entries are given by both the degeneracies and
the in-exact correspondence between the probability-identified
eigen energy and the exact eigen energy.
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