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Abstract. We consider the identifiability problem for the parameters of series-parallel
LCR circuit networks. We prove that for networks with only two classes of components
(inductor-capacitor (LC), inductor-resistor (LR), and capacitor-resistor (RC)), the param-
eters are identifiable if and only if the number of non-monic coefficients of the constitutive
equations equals the number of parameters. The notion of the “type” of the constitutive
equations plays a key role in the identifiability of LC, LR, and RC networks. We also in-
vestigate the general series-parallel LCR circuits (with all three classes of components), and
classify the types of constitutive equations that can arise, showing that there are 22 different
types. However, we produce an example that shows that the basic notion of type that works
to classify identifiability of two class networks is not sufficient to classify the identifiability
of general series-parallel LCR circuits.

1. Introduction

LCR circuits, also referred to as LCR systems or models, are electrical circuits consisting of
networks of inductors, capacitors, and resistors, which we call base elements. These circuits
have a wide array of applications, most notably in communications systems, such as filters
and tuners used in television and radio tuning [15]. Also of interest are the circuits generated
by two base element types, for example simple LR circuits can be made into high-pass (or
low-pass) filters which pass high frequencies through the circuit with minimal dampening,
while low frequencies are not able to pass as a result of strong dampening [4].

Each of the base elements in an LCR system has a defining parameter which are referred
to as the inductance (L), capacitance (C), and resistance (R) respectively. The system as
a whole also has measurable state variables called the voltage (V ) and the current (I). A
natural question emerging from the study of LCR systems is whether or not we can determine
the parameter values of each of the base elements given the measurements of the voltage and
current over time over the whole system, and in particular if we can do so uniquely.

Structural identifiability is the study of which parameters of a model can be determined
uniquely from its input and output dynamics. If we are able to determine all of the model’s
parameters uniquely, we say that the model is globally identifiable. If, however, we are
only able to determine uniqueness of the parameters up to a finite number of values (or,
equivalently, in a small neighborhood of the original parameter values), we say that the model
is locally identifiable. If we cannot recover the parameters uniquely up to a finite number of
values, the model is said to be unidentifiable. The study of the structural identifiability of
models has been of interest since the work of Bellman and Åström [1]. Since then, several
different systems ranging from physical to biological have been analyzed for identifiability
using various techniques [2, 6, 9, 14].

In this paper, we study the structural identifiability of LCR circuits where the underlying
network of components is a series-parallel graph. In the cases where there is a series-parallel
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LCR network that only involves two types of components (i.e., inductor-resistor systems,
capacitor-resistor systems, or inductor-capacitor systems) we give a complete characteriza-
tion of when these models are identifiable. In particular, we have the following theorem.

Theorem 1.1. Let N be a series-parallel LCR network that involves only two types of
components. Then the network is locally identifiable if and only if the constitutive equation
of the model has as many non-monic coefficients as the there are parameters.

We also give explicit combinatorial conditions on the series-parallel constructions that
guarantee local identifiability in two component type LCR models, which are summarized in
certain “multiplication tables”. In each case (LC, LR, or RC), there are 4 types of systems
characterized by the shape of the constitutive equation, and identifiability of a series or
parallel combination is completely determined by which pairs of types are joined together.

We also begin the study of general series-parallel LCR circuits. These turn out to be much
more complicated because there are LCR systems where the number of non-monic coefficients
is larger than the number of parameters. As a result, in addition to the identifiability
problem, there are also interesting questions about the constraints on the coefficients that
arise. Our analysis of the structure of the constitutive equations shows that for general
series-parallel LCR systems, there are 22 different types of constitutive equations. With
that being said, it remains an open problem to determine complete identifiability rules of
general series-parallel LCR circuits.

Part of our motivation for pursuing this project comes from past work of Mahdi, Meshkat
and the second author [7], which characterized the identifiability of series-parallel viscoelas-
tic systems whose elements consists of springs and dashpots. The electromechanical analogy,
sometimes called the impedance analogy, shows that this is the same as studying identi-
fiability of the RL systems. We were interested in generalizing those results to the three
component systems whose study we begin in this paper.

The organization of this paper is as follows: Section 2 gives background on LCR systems.
Section 3 defines identifiability and introduces its study in the context of LCR systems.
Section 4 discusses the perspective of projective geometry for studying circuit models, and
uses this to prove a duality result. Section 5 describes results of the two-element systems
containing only resistors and inductors, as well as the two-element systems containing only
resistors and capacitors. Section 6 presents results for the two-element systems containing
only inductors and capacitors. Section 7 describes results of the general LCR systems.
Section 8 introduces the problem of studying the equations that define the vanishing ideal
of an LCR circuit model. Section 9 outlines some paths for future study.

2. LCR Systems

The ideal resistor follows Ohm’s law which describes a relationship between the voltage
(V ) across the resistor, and the current (I). In the case of the resistor, the voltage and current
are proportional with constant of proportionality R which is referred to as the resistance,
which we write as:

(1) V “ RI.

Similarly, the ideal inductor exhibits the following relationship between the voltage and the
derivative with respect to time of the current:

(2) V “ L 9I



IDENTIFIABILITY OF SERIES-PARALLEL LCR SYSTEMS 3

where L is called the inductance. The ideal capacitor is often considered the dual of the
inductor, where the relationship between the time derivative of the voltage and current is
described by

(3) 9V “ CI

where C is the inverse capacitance. Note that we use 9V “ CI instead of the more familiar
C 9V “ I for mathematical convenience. For this reason, C in this paper is the inverse of the
capacitance. This change will not affect results of identifiability.

We call these equations relating the voltage and current of LCR systems constitutive
equations. In general, we can use Kirchhoff’s Current and Voltage Laws to generate a single
constitutive equation of circuits consisting of parallel and series combinations of these three
base elements.

Theorem 2.1 (Kirchhoff’s Current Law). The algebraic sum of the currents entering any
node is zero, i.e. the net current flowing into and out of any node must be zero.

Theorem 2.2 (Kirchhoff’s Voltage Law). The algebraic sum of the voltages around any loop
is zero.

Example 2.3. Consider the series combination of a resistor and an inductor.

L R

By Kirchhoff’s Voltage Law, we get that the voltage over the whole system V must be the
sum of the voltages over each element in the system, i.e.

V “ VL ` VR “ L 9IL `RIR.

Also, by Kirchhoff’s Current Law, we know that the net current of the system must be equal
to the current of each element, i.e. IL “ IR “ I. Therefore, we get that the constitutive
equation describing this circuit is

V “ L 9I `RI.

Example 2.4. Now consider a parallel combination of a resistor and an inductor.

L

R

By Kirchhoff’s voltage law, the sum of the voltage around the parallel loop must be zero,
hence VL “ VR “ V . Also, by Kirchhoff’s current law, the current of the system is the sum
of each of the currents, i.e. I “ IR ` IL.
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Taking the time based derivative of this current sum, along with the time based derivative
of the resistor constitutive equation, we get

9I “ 9IR ` 9IL “
1

R
9VR `

1

L
VL.

Thus, the constitutive equation the system is

9I “
1

R
9V `

1

L
V.

A natural question to ask is how we can generate these constitutive equations for more
complex systems. Suppose S1 and S2 represent two circuits with respective constitutive
equations f1V1 “ f2I1 and f3V2 “ f4I2 where fi are all linear differential operators. We can
write these differential operators as

f1 “ an1

dn1

dtn1
` ¨ ¨ ¨ ` am1

dm1

dtm1

f2 “ bn2

dn2

dtn2
` ¨ ¨ ¨ ` bm2

dm2

dtm2
(4)

f3 “ cn3

dn3

dtn3
` ¨ ¨ ¨ ` cm3

dm3

dtm3

f4 “ dn4

dn4

dtn4
` ¨ ¨ ¨ ` dm4

dm4

dtm4

Now we will consider parallel and series combination of the systems S1 and S2, and derive
the resulting constitutive equation from those of S1 and S2.

Proposition 2.5 (Series Combination). The series combination of two LCR systems S1

and S2 with respective constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2 has constitutive
equation

f1f3V “ pf1f4 ` f2f3qI.

Proof. Let T be the series combination of two LCR systems S1 and S2 with respective
constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2.

S1 S2

P

Note that by Kirchhoff’s Current Law, the node P between the two systems must have
a net zero incoming current. Therefore, the current of either system must be the same and
this current will also be the current of the new system T , i.e. I1 “ I2 “ I. Similarly, by
Kirchhoff’s Voltage Law, the voltage on the loop, which in this case is the whole system,
must sum to the voltage of the system, i.e. V “ V1 ` V2. If f1 and f3 are relatively prime,
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then we get

V “ V1 ` V2

V “
f2
f1
I1 `

f4
f3
I2

pf1f3qV “ pf1f4 ` f2f3qI(5)

Thus, the series combination of the two systems S1 and S2 has constitutive equation of the
form in Equation 5. �

Proposition 2.6 (Parallel Combination). The parallel combination of two LCR systems S1

and S2 with respective constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2 has constitutive
equation

pf1f4 ` f2f3qV “ f2f4I

Proof. Let T be the parallel combination of two LCR systems S1 and S2 with respective
constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2.

S1

S2

P

Again, by Kirchhoff’s Voltage Law, we get that the total voltage around the parallel
combination loop must be net zero, i.e. V1 ´ V2 “ 0. Also the voltage around the entire
system must be net zero, thus V “ V1 “ V2. Kirchhoff’s Current Law states that the node
P must have a net zero incoming current, i.e. I ´ I1 ´ I2 “ 0, hence I “ I1 ` I2. Thus, we
get that the parallel combination of two systems S1 and S2 has constitutive equation

(6) pf1f4 ` f2f3qV “ pf2f4qI.

�

Example 2.7. Consider the series combination of each of the three base elements of an LCR
system, namely a resistor with resistance R, a capacitor with inverse capacitance C, and an
inductor with inductance L.

L R
C

The constitutive equation for this model is

(7) 9V “ L:I `R 9I ` CI.
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The special structure of series-parallel networks means that it is possible to use notation
purely in equations to represent a series-parallel LCR circuit, rather than necessarily using
a figure. Specifically, we can use the notation M _N to denote the parallel combination of
networks M and N , and M ^ N to denote the series combination. The base elements can
be written using the symbols for their respective parameters. For example, the network in
Example 2.7 can be represented as

L^R ^ C.

Note that the ^ and _ operations are commutative and associative in terms of their relations
for producing new networks, but they do not satisfy a distributive law.

3. Identifiability

In the study of mathematical models, a common question is whether we can estimate the
values of parameters only from the measurable input and output into the system, and more
specifically can they be estimated uniquely. This is the question of structural identifiability.

In the case of LCR systems, we consider the identifiability of the coefficient map c : Rn Ñ

Rm, mapping the parameters to the coefficients of the constitutive equation. Here we make
the standard assumption that it is possible with perfect data to recover the constitutive
equation. For a more precise understanding of the relationship between measured data and
the defining equation of a model, refer to Ovchinnikov et al. [5, 10, 11]. Since this equation
is only determined up to a constant factor, we globally assume that one of the coefficients
is fixed to the value one, which makes the constitutive equation monic. We now formally
define identifiability:

Definition 3.1. Let c be a function c : θ Ñ Rm, where θ Ď Rn is the parameter space. The
model is globally identifiable from c if and only if the map c is one-to-one. The model is
locally identifiable from c if and only if the map c is finite-to-one. The model is unidentifiable
from c if and only if c is infinite-to-one.

Remark 3.2. Suppose that an LCR system M has coefficient map c : Rn Ñ Rm where n
represents the number of parameters, and m represents the number of non-monic, nontrivial
coefficients in the constitutive equation. Note then that if m ă n, that is, there are more
parameters than non-monic, nontrivial coefficients in the constitutive equation, then M must
be unidentifiable, since c is automatically infinite-to-one.

Example 3.3 (Example 2.7 continued). Recall that Example 2.7 has constitutive equation
of the series combination of each of the three base elements of an LCR system shown in
Equation 7, 9V “ L:I `R 9I ` CI. In this case, we get a simple coefficient map of

c : RrL,C,Rs Ñ Rrc2, c1, c0s
tR,L,Cu ÞÑ tL,R,Cu.

Thus, each of the parameters L,R and C are identifiable by the coefficient map.

4. Projective Geometry and Circuit Duality

In this section, we introduce a perspective based on projective geometry. This provides us
a useful framework for discussing identifiability that avoids the use of non-monic coefficients.
It also allows for a straightforward duality results about the interchange of capacitors and
inductors.
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Recall that the projective space PRn is defined as the set of lines through the origin in
Rn`1. Formally, we can take the set Rn`1zt0u and consider the equivalence relation „ that
x „ y if there is a λ P Rzt0u such that x “ λy. Then PRn is equal to the set of equivalence
classes:

PRn
“ pRn`1

zt0uq{ „ .

In this paper, we consider linear differential equations. To this end, the set of all differential
equations with a given shape is naturally considered as a projective space. Indeed, if L1V “
L2I is a differential equation coming from a particular LCR circuit, and λ is any nonzero
constant, then λL1V “ λL2V describes the same dynamics. In particular, it is only possible
to recover the underlying constitutive equation up to a constant. The typical way that this
is dealt with is to talk about non-monic coefficients in the constitutive equation– essentially,
picking one term to be the leading term and dividing through so the coefficient of that term
is equal to one. This is a satisfactory approach in most situations. We find the perspective
from projective geometry can also be useful.

To start with, we consider the constitutive equations of the three basic elements:

V “ RI, V “ L 9I, 9V “ CI.

Thinking about these projectively, we would have the basic constitutive equations:

(8) R0V “ R1I, L0V “ L1
9I, C0

9V “ C1I.

So in projective geometry language, our parameter space for an LCR model, goes from an
Rk (in the case that there are k basic elements), to a pPR1qk.

Example 4.1. Consider the LCR circuit system from Example 3.3, which has three com-
ponents. Using the projective version of the parameters from (8) we get the constitutive
equation

R0L0C0
9V “ R0L1C0

:I `R1L0C0
9I `R0L0C1I.

This shows that the coefficient map is a map from pP1q3 into P3, defined by

prR0 : R1s, rL0 : L1s, rC0 : C1sq ÞÑ pR0L0C0 : R0L1C0 : R1L0C0 : R0L0C1q.

We arrive at the usual constitutive equation by dehomogenizing this one: specifically by the
substitution

R0 “ 1, R1 “ R, L0 “ 1, L1 “ L, C0 “ 1, C1 “ C.

One useful application of the projective perspective is that it makes it possible to derive
a duality result for identifiability of LCR systems. The idea of duality of these systems and
those like it date back to the work of Alexander Russell in 1904 with inspiration from recipro-
cals found in geometry, and the goal of finding “convenient methods of making measurements
or even suggest novel instruments or machines of value in electro-technics” [12].

Definition 4.2. Let M be a series-parallel LCR circuit model, expressed as a formula in
terms of resistors R1, R2, . . ., capacitors C1, C2, . . ., and inductors L1, L2, . . ., using the series
and parallel operations ^ and _. Define the dual system M , to be expressed as a formula
in terms of R1, R2, . . ., C1, C2, . . ., and L1, L2, . . . by the following rules:

(1) Swap each ^ with a _ and vice versa
(2) Each Ri is replaced with a Ri

(3) Each Ci is replaced with a Li, and
(4) Each Li is replaced with a Ci.
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R1
C1

R2 L1

R1 R2

L1
C1

Figure 1. A series-parallel LCR network and its dual network.

Example 4.3. Consider the series-parallel network model M “ pR1^C1q_ pR2^L1q. The
dual network is M “ pR1 _ L1q ^ pR2 _ C1q. The example is illustrated in Figure 1.

There is no formal difference between components of the original system M and the dual
system M , e.g. a resistor R1 and R1 are the same from a modeling standpoint. However,
when we want to talk about the identifiability of these systems, it is useful to distinguish
between the components of the original system and that of the dual system.

Theorem 4.4. Suppose that M is a series-parallel LCR system and let M be the dual LCR
system. Then M is (generically, locally) identifiable if and only if M is.

To prove this, we make direct use of the projective representation of the network. To each
basic component, denoted Ri, Li, Ci, we associated a projective constitutive equation

R0,iV “ RiI, L0,iV “ Li 9I, C0,i
9V “ CiI.

Then on the projective representation, the duality has the effect of swapping V and I and
L and C. So the dual basic constitutive equation in the projective representation becomes

RiV “ R0,iI, CiV “ C0,i
9I, Li 9V “ L0,iI.

Note that affinely this corresponds to Ri “ 1{Ri, Li “ 1{Ci and Ci “ 1{Li.

Proposition 4.5. Suppose that M is a series-parallel LCR system with corresponding pro-
jective parameters R “ pR1, . . . , Rr, R0,1, . . . , R0,rq, L “ pL1, . . . , Ls, L0,1, . . . , L0,sq, and
C “ pC1, . . . , Ct, C0,1, . . . , C0,tq. Let M be the dual LCR system with corresponding dual
projective parameters R “ pR0,1, . . . , R0,r, R1, . . . , Rrq, L “ pL0,1, . . . , L0,s, L1, . . . , Lsq, and
C “ pC0,1, . . . , C0,t, C1, . . . , Ctq. Let

f1pR,C,L,
d
dt
qV “ f2pR,C,L,

d
dt
qI

be the constitutive equation of M . Then

f2pR,L,C,
d
dt
qV “ f1pR,L,C,

d
dt
qI

is the constitutive equation of M .

Proof. The proof is by induction on the number of components. The statement is clearly
true if there is only one component by the definition of the duality operations.

Suppose that M has more than one component. That means it can be broken up as
either a series or parallel combination of two other components. We handle the case of a
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series combination, the case of a parallel combination being analogous. So suppose that
M “M1 ^M2. The corresponding dual LCR system is M “M1 _M2. Let

f1pR,C,L,
d
dt
qV1 “ f2pR,C,L,

d
dt
qI1

f3pR,C,L,
d
dt
qV2 “ f4pR,C,L,

d
dt
qI2

be the constitutive equations of M1 and M2 respectively. Thus the constitutive equation of
M is

pf1f3qpR,C,L,
d
dt
qV “ pf1f4 ` f2f3qpR,C,L,

d
dt
qI

By induction, the constitutive equations of M1 and M2 are

f2pR,L,C,
d
dt
qV1 “ f1pR,L,C,

d
dt
qI1

f4pR,L,C,
d
dt
qV2 “ f3pR,L,C,

d
dt
qI2

Since M is a parallel combination of M1 and M2 its constitutive equation is

pf1f4 ` f2f3qpR,L,C,
d
dt
qV “ pf1f3qpR,L,C,

d
dt
qI.

This is clearly the desired correct form. This proves the result for series combinations, and
the proof for a parallel combination is similar. �

Proof of Theorem 4.4. By Proposition 4.5 the coefficient map for M and M is the same
except for relabeling parameters and swapping the order of some of the coefficients. The
coefficient maps clearly have the same behavior in both cases in terms of being one-to-one,
generically one-to-one, finite-to-one, etc. �

5. RL/RC System Analysis

In this section, we consider the identifiability of series-parallel circuits consisting of only
two types of base elements: either resistor-inductor (RL) networks or resistor-capacitor (RC)
networks. The electromechanical analogy establishes a bijection between identifiability prob-
lems for RL-networks and identifiability problems for viscoelastic mechanical systems consist-
ing of springs and dashpots. The results of [7] will be used to deduce the main identifiability
result for RL series-parallel networks. Then we use Theorem 4.4 to deduce the analogous
identifiability result for RC series-parallel networks.

First, consider the case of the two-element system generated by parallel and series combi-
nations of inductors and resistors. The electromechanical analogy, specifically the Maxwell
or impedance analogy, yields that a system comprised of series and parallel combinations of
resistors and inductors is analogous to a mechanical system consisting of series and parallel
combinations of springs and dashpots [13]. The spring-dashpot system is commonly referred
to as the viscoelastic model, and has many applications, including modeling various biolog-
ical systems. The problem of identifiability of the spring-dashpot system is well studied,
with the problem of determining local identifiability reduced down to counting the number
of elements in the system, i.e. parameters, and comparing that to the number of coefficients
[7].

Recall that in determining identifiability, an easy way to determine that a model is uniden-
tifiable by the constitutive equation is to see that there are fewer coefficients than parameters,
meaning a necessary condition for identifiability is that there are at least as many coefficients
as parameters. In the case of the viscoelastic system, it was shown in [7] that the number
of coefficients is bounded above by the number of parameters, thus the previous necessary
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condition for identifiability becomes that there must be exactly the same number of param-
eters as coefficients. It is then shown that this equality of the number of coefficients and
parameters is in fact a sufficient condition for local identifiability via the following theorem.

Theorem 5.1 (Theorem 2, [7]). A viscoelastic model represented by a spring-dashpot network
is locally identifiable if and only if the number of non-monic, nontrivial coefficients of the
corresponding constitutive equation equals the total number of its parameters.

Due to the electromechanical analogy, we can deduce the following equivalent statement
in terms of RL systems:

Corollary 5.2. An RL system is locally identifiable if and only if the number of non-monic,
nontrivial coefficients of the corresponding constitutive equation equals the total number of
its parameters.

Via the duality of Theorem 4.4, we also get the following corollary.

Corollary 5.3. An RC system is locally identifiable if and only if the number of non-monic,
nontrivial coefficients of the corresponding constitutive equation equals the total number of
its parameters.

Proof. The duality operation turns an RL system into an RC system and vice versa. Theorem
4.4, shows that the RL system is identifiable if and only if the dual RC system is identifiable.
Since the duality preserves the number of coefficients, this follows from Corollary 5.2. �

In general, the problem of identifiability of a model is much more difficult to answer than
it is for the RC and RL systems. We will see in Section 7 that in the case of LCR systems,
we no longer have a bound on the coefficients by the number of parameters, making finding
identifiability criterion considerably more difficult.

In addition to these results on identifiability and relation to the number of coefficients in
the RC/RL models, it is also possible to import from [7] precise rules for identifiability of
series and parallel combinations of identifiable models. These are encapsulated in the iden-
tifiability multiplications for the types of combinations of constitutive equations of different
shapes. We do not reproduce the identifiability multiplication tables from [7] here, but we
will see analogous results for LC systems in the next section.

6. LC System Analysis

Now we consider the two-element systems which contain parallel and series combinations
of inductors and capacitors, i.e. LC systems. To analyze the identifiability of these LC
systems we first will classify these systems into four types dependent upon the structure of
their constitutive equations. Since the LC systems are specific cases of LCR systems, we
can state several general propositions about the structure of their constitutive equations,
which we prove in the next section. First, we recognize an upper bound on the number of
coefficients on either side of the constitutive equation of an LCR, and thus an LC system.

Proposition 7.1. The maximum order of either side of the constitutive equation of an LCR
system is bounded above by the number of parameters, i.e. base elements, in the model.

Note that the previous proposition yields that the maximum number of non-monic, nonzero
coefficients in the constitutive equation of an LCR system is 2n` 1, where n is the number
of parameters. We can also make a statement relating the lowest and highest orders of the
left-hand and right-hand sides of the constitutive equation of an LCR system.
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Proposition 7.2. In an LCR system, the largest orders on either side of the constitutive
equation must be within one of each other. Similarly, the smallest orders on either side of
the constitutive equation must be within one of each other.

In the case of LC systems, we can actually make a slightly stronger statement.

Corollary 6.1. In an LC system, the absolute difference of the largest order of either side
of the constitutive equation is exactly one. Similarly, the absolute difference of the smallest
order of either side of the constitutive equation of an LC system is exactly one.

Proof. This is true by the exact same argument in the proof of Proposition 7.2, where the
base cases are only the single inductor and single capacitor systems, and replacing any “less
than or equal to” statements with “equal to” statements. �

Now we make a statement about how many of the coefficients on either side of a con-
stitutive equation of an LC system must be zero. We introduce the idea of a constitutive
equation alternating, that is, every coefficient of even or odd order in the equation is zero.

Definition 6.2. We say that a polynomial alternates if all odd degree or all even degree
coefficients are zero. We say a polynomial is saturated if every coefficient between the smallest
and largest degree is nonzero.

Remark 6.3. Note the difference between describing a polynomial as “not alternating”
and “saturated.” In the case of a polynomial not alternating, we could possibly still have
coefficients of zero between the largest and smallest degree, we just do not have that every
other coefficient is zero.

Note that the product of two polynomials, both of which have this alternation prop-
erty, also must alternate. With this in mind, if both sides of two LC systems’ constitutive
equations alternate, we must have that one side of their series or parallel combination also
alternates, namely the side with a single product of two previous differential operators by
Propositions 2.5 and 2.6. With that being said, it is not immediately clear that the side
which consists of a sum of two products of the previous differential operators also alternates.
This is because although each of the products in the sum must alternate, it is possible that
the powers in either alternating product have different parity, so when summed together the
result does not alternate. In the case of LC systems, we show that this parity mismatch
cannot occur.

Proposition 6.4. An LC system must have both sides of its constitutive equation alternate.

Proof. We proceed by induction. Note that by our definition of alternating, the base ele-
ments inductor and capacitor are inherently alternating, since one side of either constitutive
equation has a single odd power, and the other has a single even power in either case.

Suppose two LC systems N1 and N2 have the alternating property on either side of their
constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2 respectively. From Corollary 6.1, we
know that f1 and f2 have difference of highest order of one, hence have different parity,
and similarly f3 and f4 have different parity. Note that because of the remark before the
statement of this proposition, to show that both sides of the constitutive equation of a
combination of two LC systems alternate, we need only show that f1f4 and f2f3 do not have
different parity. However, we know that f1 and f2 have different parity and f3 and f4 have
different parity. Then f1f2f3f4 has to have even parity, so f1f4 and f2f3 have to have the
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same parity. Thus, by induction, both sides of the constitutive equation corresponding to
an LC system, must alternate. �

Note now that we can place an upper bound on the number of nonzero coefficients in an
LC system, similar to the bound in the RC and RL systems.

Theorem 6.5. The number of non-monic, nontrivial coefficients of an LC constitutive equa-
tion is bounded above by the number of base elements.

Proof. First, note that by Proposition 7.1, the maximum order of either side of the con-
stitutive equation of an LC system with n base elements is n. Also, by Corollary 6.1, the
maximum order of the other side of constitutive equation of an LC system is n ´ 1. By
Proposition 6.4, we know that every other coefficient on either side of the constitutive equa-
tion of an LC system must be zero, i.e. if the maximum order on one side is n, then at most
rn`1

2
s coefficients must be nonzero. Thus, if both sides of a constitutive equation have their

maximal orders n and n´ 1, then the total number of nonzero coefficients is bounded above
by

R

n` 1

2

V

`

Qn

2

U

“ n` 1.

Thus, after normalizing, there are at most n non-monic, nontrivial coefficients in the
constitutive equation of an LC system. �

Remark 6.6. Note that to recover all n parameters from an LC system with n base ele-
ments, we need the constitutive equation defining the system to have at least n nontrivial
coefficients. This, coupled with Theorem 6.5 implies that, as in the case of RL and RC
systems, a necessary condition for identifiability of an LC system with n parameters is that
the constitutive equation has n non-monic, nontrivial coefficients. We spend the rest of this
section showing that, in fact, this is also a sufficient condition.

Now we can classify identifiable LC systems into four different “types” depending on the
difference in the largest orders and smallest orders of the left and right-hand sides of their
constitutive equations. We will define the type of the LC system with constitutive equation
f1V “ f2I where

f1 “ an1d
n1{dtn1 ` ¨ ¨ ¨ ` am1d

m1{dtm1

f2 “ bn2d
n2{dtn2 ` ¨ ¨ ¨ ` bm2d

m2{dtm2

by the ordered pair pm1´m2, n1´ n2q. Note that by Corollary 6.1, we know that there are
only four possible such pairs, which we define as the following types:

A :“ p´1,´1q, B :“ p´1, 1q, C :“ p1,´1q, D :“ p1, 1q.

We now consider how to build identifiable LC systems from identifiable LC systems. We
do this by considering the shape of each of the differential operators of an identifiable LC
system which we define as the ordered pair ra, bs representing the smallest and largest order
respectively of the differential operator. Note that depending on the parity of the number of
parameters n of an LC system, certain types cannot be identifiable. For example, consider
an LC system of type A, then for the constitutive equation to have enough coefficients to
potentially be identifiable, the shape in V must be r0, n ´ 1s and the shape in I must be
r1, ns, so we know that n must be odd by Proposition 6.4. Similarly, LC systems of type D
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must have an odd number of parameters to potentially be identifiable, while LC systems of
types B and C must have an even number of parameters to potentially be identifiable.

The following two tables give the identifiability results of the series and parallel combina-
tions of all of the identifiable LC system types, with a count of the number of non-monic,
nontrivial coefficients, as well as the resulting type. Note that in the column “Identifiable?”,
if there is a “no” we already can see that this model is unidentifiable, as there are not enough
coefficients as compared to the number of parameters. On the other hand, we still need to
prove that the “yes” entries are actually identifiable. Proving that this is the case will occupy
the rest of the section and complete the proof of Theorem 6.12, which is the main result of
this section.

Type Shape in V Shape in I Non-monic coefficients Identifiable? Type
pA,Aq r0, n1 ` n2 ´ 2s r1, n1 ` n2 ´ 1s n1 ` n2 ´ 1 No A
pA,Bq r0, n1 ` n2 ´ 1s r1, n1 ` n2s n1 ` n2 Yes A
pA,Cq r1, n1 ` n2 ´ 2s r0, n1 ` n2 ´ 1s n1 ` n2 ´ 1 No C
pA,Dq r1, n1 ` n2 ´ 1s r0, n1 ` n2s n1 ` n2 Yes C
pB,Bq r0, n1 ` n2s r1, n1 ` n2 ´ 1s n1 ` n2 Yes B
pB,Cq r1, n1 ` n2 ´ 1s r0, n1 ` n2s n1 ` n2 Yes C
pB,Dq r1, n1 ` n2s r0, n1 ` n2 ´ 1s n1 ` n2 Yes D
pC,Cq r2, n1 ` n2 ´ 2s r1, n1 ` n2 ´ 1s n1 ` n2 ´ 2 No C
pC,Dq r2, n1 ` n2 ´ 1s r1, n1 ` n2s n1 ` n2 ´ 1 No C
pD,Dq r2, n1 ` n2s r1, n1 ` n2 ´ 1s n1 ` n2 ´ 1 No D

Table 1. All identifiable series combinations of the four types of LC systems,
with resulting shapes, number of coefficients, identifiability, and type.

Type Shape in V Shape in I Non-monic coefficients Identifiable? Type
pA,Aq r0, n1 ` n2 ´ 1s r2, n1 ` n2s n1 ` n2 ´ 1 No A
pA,Bq r1, n1 ` n2s r2, n1 ` n2 ´ 1s n1 ` n2 ´ 1 No B
pA,Cq r0, n1 ` n2 ´ 1s r1, n1 ` n2s n1 ` n2 Yes A
pA,Dq r0, n1 ` n2s r1, n1 ` n2 ´ 1s n1 ` n2 Yes B
pB,Bq r1, n1 ` n2 ´ 1s r2, n1 ` n2 ´ 2s n1 ` n2 ´ 2 No B
pB,Cq r0, n1 ` n2s r1, n1 ` n2 ´ 1s n1 ` n2 Yes B
pB,Dq r0, n1 ` n2 ´ 1s r1, n1 ` n2 ´ 2s n1 ` n2 ´ 1 No B
pC,Cq r1, n1 ` n2 ´ 1s r0, n1 ` n2s n1 ` n2 Yes C
pC,Dq r1, n1 ` n2s r0, n1 ` n2 ´ 1s n1 ` n2 Yes D
pD,Dq r1, n1 ` n2 ´ 1s r0, n1 ` n2 ´ 2s n1 ` n2 ´ 2 No D

Table 2. All identifiable parallel combinations of the four types of LC sys-
tems, with resulting shapes, number of coefficients, identifiability, and type.

Remark 6.7. Checking for identifiability of a parallel or series combination of LC systems
can be done in polynomial time via Tables 1 and 2. Similarly, checking for identifiability
of a series or parallel combination of RL, and thus RC, systems can be done in polynomial
time via tables found in [7].
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The Alternating Shape Factorization Problem. We now define the alternating shape
factorization problem, which is analogous to the shape factorization problem as defined in
[7], though this time for alternating polynomials.

Definition 6.8. The alternating shape factorization problem for a quadruple of shapes

Q “ prm1, n1s, rm2, n2s, rm3, n3s, rm4, n4sq

is defined as follows: for a generic pair of alternating polynomials pf, gq with f monic such
that shapepfq “ rm1`m3, n1`n3s and shapepgq “ rminpm1`m4,m2`m3q,maxpn1`n4, n2`

n3qs, do there exist finitely many quadruples of alternating polynomials pf1, f2, f3, f4q with
shape fi “ rmi, nis, f1, f3 monic, and such that f “ f1f3 and g “ f1f4 ` f2f3? A quadruple
of shapes Q is said to be alternating good if the alternating shape factorization problem for
that quadruple has a positive solution.

Proposition 6.9. Let M be the series combination of two LC systems N1 and N2 with
respective constitutive equation f1V1 “ f2I1 and f3V2 “ f4I2 and let fi have shape rmi, nis.
Then the LC system M is locally identifiable if and only if

(i) N1 and N2 are locally identifiable, and
(ii) prm1, n1s, rm2, n2s, rm3, n3s, rm4, n4sq is an alternating good quadruple.

We now work toward necessary and sufficient conditions for the series combination of two
LCR models to yield a good alternating quadruple, inspired by the work done following
Proposition 10 in [7] for the viscoelastic case.

Let h and g be two alternating polynomials, and note that for fixed shapes rm1, n1s and
rm3, n3s, there are at most finitely many factorization h “ f1f3, with alternating f1 and
f3 having shapes rm1, n1s and rm3, n3s respectively. Thus, in fixing one of these finitely
many choices of f1 and f3, the equation g “ f1f4 ` f3f2 is a linear system in the unknown
coefficients of alternating f2 and f4.

For a particular polynomial f “ jnx
n ` ¨ ¨ ¨ ` jmx

m with shape rm,ns, we can denote the
coefficients of f in an n´m` 1 dimensional vector as

rf s :“

¨

˝

jn
...
jm

˛

‚.

Again, if the fi have respective shape rmi, nis, then the vector of coefficients of f1f4 and
f2f3 can be written as the following matrix products:

rf1f4s “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

an1 0 ¨ ¨ ¨ 0
... an1 ¨ ¨ ¨ 0

am1

... ¨ ¨ ¨
...

0 am1 ¨ ¨ ¨ 0
... 0 ¨ ¨ ¨ an1

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ am1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˝

dn4

...
dm4

˛

‚, rf3f2s “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

cn3 0 ¨ ¨ ¨ 0
... cn3 ¨ ¨ ¨ 0

cm3

... ¨ ¨ ¨
...

0 cm3 ¨ ¨ ¨ 0
... 0 ¨ ¨ ¨ cn3

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ cm3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˝

bn2

...
bm2

˛

‚.

We refer to the matrix containing the coefficients of f1 as G2 and the matrix containing
the coefficients of f3 as H2, hence the above matrix products can be represented by G2rf4s



IDENTIFIABILITY OF SERIES-PARALLEL LCR SYSTEMS 15

and H2rf2s respectively. Note that this matrix G2 has dimension n1 ` n4 ´m1 ´m4 ` 1 by
n4 ´m4 ` 1, while H2 has dimension n2 ` n3 ´m2 ´m3 ` 1 by n2 ´m2 ` 1.

We can nearly represent the coefficients of g by adding these two products, however there
could be a difference in the dimension of the largest and smallest orders of f1f4 and f2f3.
Note however that this difference is well understood, as by Corollary 6.1, the difference in
the largest and smallest orders of f1 and f2 must be at exactly one, and likewise for f3 and
f4. Thus, either the largest order of f1f4 is the same as the largest order of f2f3, or it is
exactly two larger or smaller. The same is also true for the smallest orders of f1f4 and f2f3.

Thus, we will let G1 and H 1 represent the matrices G2 and H2 where either has an addi-
tional two rows of zeros added to the top or bottom of their respective matrix, if necessary.
Therefore, we can now represent the coefficients of g as

rgs “ rf1f4 ` f2f3s “ G1rf4s `H
1
rf2s “ pG

1 H 1
q

ˆ

rf4s
rf2s

˙

Note then that this matrix pG1 H 1q has dimension

maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u ` 1 by n2 ´m2 ` n4 ´m4 ` 2.

Now, note that since both f2 and f4 alternate, many of the entries of

ˆ

rf4s
rf2s

˙

are zero.

In fact, every other entry of rf2s and rf4s are zero, hence we can eliminate both these
pn2 ´ m2 ` n4 ´ m4q{2 rows in the vector and the corresponding columns in the matrix
pG1 H 1q, yielding the same information. The resulting matrix which we now call pG Hq has
dimension

maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u ` 1 by
n2 ´m2 ` n4 ´m4

2
` 2.

Note that every other row of the pG Hq matrix will consist of only zeros, since the alter-
nation property of the polynomials f1 and f3 yield every other diagonal of pG1 H 1q consists
of only zeros. Thus, we can eliminate pmaxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3uq{2
rows of pG Hq and retain the same information. We define this final reduced matrix to be
pG Hq, and note that it has dimension:

(9)
maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u

2
` 1 by

n2 ´m2 ` n4 ´m4

2
` 2.

We now determine when the alternating shape factorization problem has finitely many
solutions.

Proposition 6.10. The quadruple prm1, n1s, rm2, n2s, rm3, n3s, rm4, n4sq for the four alter-
nating polynomials is alternating good if and only the matrix pG Hq is invertible.

Proof. We can write the shape factorization problem of prm1, n1s, rm2, n2s, rm3, n3s, rm4, n4sq

in the matrix factored form G1rf4s `H
1rf2s “ rgs, where every other coefficient will be zero.

Thus, we can actually reduce this factored form to Grf4s ` Hrf2s “ rgs where rf s is the
coefficient vector of the alternating function f with the zeros removed, that is

pG Hq

ˆ

rf4s

rf2s

˙

“ rgs.

This system has a unique solution if and only if pG Hq is invertible for a generic choice of
parameter values, i.e. generically invertible. �
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Note that for the matrix pG Hq to be generically invertible, it needs to be square and
have full rank. Recall that the Sylvester matrix associated to two polynomials fpxq “
anx

n ` an´1x
n´1 ` ¨ ¨ ¨ ` a1x` a0 and gpxq “ bmx

m ` bm´1x
m´1 ` ¨ ¨ ¨ ` b1x` b0 is the n`m

by n`m matrix that has columns of the coefficients of fpxq repeated m times, and columns
of the coefficients of gpxq repeated n times as:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

an 0 ¨ ¨ ¨ 0 bm 0 ¨ ¨ ¨ 0
... an ¨ ¨ ¨ 0

... bm ¨ ¨ ¨ 0

a0
... ¨ ¨ ¨

... b0
... ¨ ¨ ¨

...
0 a0 ¨ ¨ ¨ 0 0 b0 ¨ ¨ ¨ 0
... 0 ¨ ¨ ¨ an

... 0 ¨ ¨ ¨ bm
...

... ¨ ¨ ¨
...

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ a0 0 0 ¨ ¨ ¨ b0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looooooooomooooooooon

m

looooooooomooooooooon

n

The determinant of the Sylvester matrix of two polynomials is zero if and only if the
two polynomials have a common root. Thus for generic polynomials f and g, the Sylvester
matrix is invertible (see Chapter 3 of [3] for relevant background on resultants).

Note that in the case of pG Hq, this matrix is nearly the Sylvester matrix of two polyno-
mials, though not exactly f1 and f3, but it possibly contains extra rows and columns.

The following proposition and proof mirror that of Proposition 13 of [7].

Proposition 6.11. If the matrix pG Hq is square, then it is generically invertible.

Proof. Suppose pG Hq is square. We claim that the columns of pG Hq can be ordered in
such a way that the block form of the matrix is

¨

˝

S 1 0 0
X S Y
0 0 S2

˛

‚

where S is the Sylvester matrix of f̂1 and f̂3 where f̂ for an alternating polynomial f is the
polynomial with lowest degree zero and coefficient vector rf s. That is, f̂ is a polynomial
which does not alternate, with the same coefficients as f (associated to different powers).

We will show that either pG Hq is exactly the Sylvester matrix of generic polynomials f̂1
and f̂3, hence has full rank, or that one or both of S 1 and S2 are 1 by 1 matrices with nonzero
entry, and S is the same Sylvester matrix, meaning that pG Hq continues to have full rank.

Note that the Sylvester matrix S of these two polynomials f̂1 and f̂3 will have dimension
pn1 ´m1 ` n3 ´m3q{2 by pn1 ´m1 ` n3 ´m3q{2. Recall from Equation 9 that pG Hq is a
matrix of dimension

(10)
maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u

2
` 1 by

n2 ´m2 ` n4 ´m4

2
` 2.

Without loss of generality, we assume that maxtn1 ` n4, n2 ` n3u “ n1 ` n4. This occurs
in one of three ways by Corollary 6.1:

(i) n1 “ n2 ` 1 and n4 “ n3 ´ 1, (in which case the two sums are equivalent)
(ii) n1 “ n2 ´ 1 and n4 “ n3 ` 1, (in which case the two sums are equivalent) or

(iii) n1 “ n2 ` 1 and n4 “ n3 ` 1.
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In the first two cases, we do not add any zero rows above either G2 or H2 (described above)
in making the matrices G1 and H 1. In either of these cases, we remove the row and column
involving S 1 from the block matrix.

In the last case, we add exactly two rows of zeros above the H2 matrix to make the matrix
H 1, and add no rows of zeros above G2 to make G1, hence we will have that S 1 will be a 1 by
1 matrix with nonzero entry an1 , and X is the remaining coefficients of f̂1 followed by zeros.

Now we consider the two possible cases of mintm1 `m4,m2 `m3u.
First, suppose mintm1 ` m4,m2 ` m3u “ m1 ` m4. This implies that the dimension of

the pG Hq matrix is pn1 ` n4 ´m1 ´m4q{2` 1 by pn2 ` n4 ´m2 ´m4q{2` 2.
This can occur one of three ways by Corollary 6.1:

(a) m1 “ m2 ` 1 and m4 “ m3 ´ 1, (in which case the two sums are equivalent)
(b) m1 “ m2 ´ 1 and m4 “ m3 ` 1, (in which case the two sums are equivalent) or
(c) m1 “ m2 ´ 1 and m4 “ m3 ´ 1.

In the first two cases, we do not add any zero rows below either G2 or H2 in making the
matrices G1 and H 1. In either of these cases, we remove the row and column involving S2

from the block matrix above.
In the last case, we add exactly two rows of zeros below the H2 matrix to make the matrix

H 1, and add no rows of zeros below G2 to make G1. Thus, we will have that S2 will be a
1 by 1 matrix with nonzero entry am1 , and Y will continue with the other coefficients of f̂1
with zeros above.

Similarly, consider the case when mintm1`m4,m2`m3u “ m2`m3. Here, we have that
the dimension of pG Hq is pn1 ` n4 ´m2 ´m3q{2 ` 1 by pn2 ` n4 ´m2 ´m4q{2 ` 2. This
can occur one of three ways by Corollary 6.1:

(A) m1 “ m2 ` 1 and m4 “ m3 ´ 1, (in which case the two sums are equivalent)
(B) m1 “ m2 ´ 1 and m4 “ m3 ` 1, (in which case the two sums are equivalent) or
(C) m1 “ m2 ` 1 and m4 “ m3 ` 1.

In the first two cases, we do not add any zero rows below either G2 or H2 in making the
matrices G1 and H 1. In either of these cases, we remove the row and column involving S2

from the block matrix above.
In the last case, we add exactly two rows of zeros below the G2 matrix to make the matrix

G1, and add no rows of zeros below H2 to make H 1. Thus, we will have that S2 will be a
1 by 1 matrix with nonzero entry cm3 , and Y will continue with the other coefficients of f̂3
with zeros above.

In any case, we have that S is the Sylvester matrix of two polynomials with generic
coefficients, namely f̂1 and f̂3, hence has full rank, and if S 1 or S2 are in the block matrix,
then they are 1 by 1 matrices with nonzero entries, hence have full rank. Thus the matrix
pG Hq has generic full rank, i.e. is generically invertible. �

Theorem 6.12. An LC system is locally identifiable if and only if the number of non-monic,
nontrivial coefficients in the constitutive equation is equal to the number of parameters.

Proof. Here, we show that if the number of parameters equals the number of non-monic,
nontrivial coefficients, then the pG Hq matrix is square, hence by Propositions 6.9, 6.10, and
6.11 the model is locally identifiable.

Suppose M is an LC system which consists of a series combination of two smaller LC
systems N1 and N2 with respective constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2
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where f1 and f3 are monic. Also, suppose fi has shape rmi, nis. By induction, we suppose
that the number of parameters equals the number of nontrivial, non-monic coefficients in
both systems N1 and N2. This implies that N1 has pn1 ` n2 ´m1 ´m2q{2 ` 1 parameters,
and N2 has pn3 ` n4 ´m3 ´m4q{2` 1 parameters.

Assume the number of parameters equals the number of coefficients in the whole system,
i.e.

n1 ` n2 ` n3 ` n4 ´m1 ´m2 ´m3 ´m4

2
` 2

“
maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u ` n1 ` n3 ´m1 ´m3

2
` 1

Subtracting pn1 ` n3 ´m1 ´m3q{2 from both sides, we get

n2 ` n4 ´m2 ´m4

2
` 2 “

maxtn1 ` n4, n2 ` n3u ´mintm1 `m4,m2 `m3u

2
` 1

This occurs exactly when the matrix pG Hq is square via Equation 9. The argument for
a parallel combination is identical, and omitted. �

7. LCR System Analysis

Now we consider the systems containing series and parallel combinations of all three
base elements, that is LCR systems. We are not able to derive a complete classification
of identifiability of these models, and there already seem to be some significant challenges
to generalizing the results for two element systems to arbitrary LCR. For example, there
are general series-parallel LCR systems where there are more coefficients than the number
of parameters. Thus, there can be nontrivial relations between the coefficients in a general
series-parallel LCR system. We will explore those equations in Section 8. In this section,
we look at basic properties of the general LCR systems, including the numbers of types of
systems in terms of the structure of the constitutive equation. We will show that there are
22 different types.

To begin our study of general LCR systems, we first consider several bounds on the orders
of the constitutive equation.

Proposition 7.1. The maximum order of either side of the constitutive equation of an LCR
system is bounded above by the number of parameters, i.e. base elements, in the model.

Proof. We will prove this statement inductively. As the base case, note that the statement is
true for each of our one element systems containing either a resistor, capacitor, or inductor.

Suppose that for LCR systems with less than k base elements, the resulting constitutive
equation has largest power less than or equal to the number of base elements.

Now consider some LCR system M with k base elements, which is a series combination of
two smaller (in number of base elements) models which have m and n parameters respectively
where m ` n “ k. By the inductive hypothesis, we know that the largest order of either
side of the constitutive equations of the two smaller models are m and n respectively, i.e. if
f1V1 “ f2I1 and f3V2 “ f4I2 are the constitutive equations of the two models respectively,
then degpf1q, degpf2q ď n and degpf3q, degpf4q ď m.

Recall by Proposition 2.5 that the series combination of two systems with constitutive
equations f1V1 “ f2I1 and f3V2 “ f4I2 yields constitutive equation:

f1f3V “ pf1f4 ` f2f3qI.
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Therefore, the largest power of either side of the constitutive equation is n `m “ k. By
duality, we also have the result when M is a parallel combination. �

Proposition 7.2. In an LCR system, the largest orders on either side of the constitutive
equation must be within one of each other. Similarly, the smallest orders on either side of
the constitutive equation must be within one of each other.

Proof. We prove the proposition using induction on the number of base elements in the
system. As the base case, note that in both the inductor, and the capacitor base element,
the difference in the largest power between the two sides of the constitutive equation is one.
Similarly, since the smallest power is the largest power, that difference is also one. In the
case of a single resistor, both sides have a single element of order zero.

Suppose then that the statement of the proposition is true for LCR systems with less than
k base elements. Then suppose that M is an LCR system with k elements which is generated
by, without loss of generality, a series combination of two strictly smaller (in terms of number
of base elements) systems N1 and N2. Suppose that N1 and N2 have respective constitutive
equations f1V1 “ f2I1 and f3V2 “ f4I2 where each fi is defined just as in Equation 4.

By the inductive hypothesis, since N1 andN2 have less than k base elements, then we know
that |n1 ´ n2| ď 1, |m1 ´m2| ď 1, |n3 ´ n4| ď 1, and |m3 ´m4| ď 1. Note that by Equation
5, the constitutive equation of the system M generated by combining N1 and N2 in series is

(11) f1f3V “ pf1f4 ` f2f3qI.

Thus, we have that the maximal order of the left-hand side of the Equation 11 is n1` n3,
while the maximal order of the right-hand side is maxtn1 ` n4, n2 ` n3u. Therefore, the
difference in the largest order of either side of the constitutive equation of M is

|n1 ` n3 ´maxtn1 ` n4, n2 ` n3u| “ |mintn1 ` n3 ´ n1 ´ n4, n1 ` n3 ´ n2 ´ n3u|

“ |mintn3 ´ n4, n1 ´ n2u|

Note that in either case, we have that |n1 ´ n2| ď 1 and |n3 ´ n4| ď 1, thus the difference of
the maximal order of either side of the constitutive equation of M is at most one.

The bound for the minimal order is similar (with maximums and minimums swapped) and
is omitted. The bounds also follow for parallel combinations by circuit duality.

Thus, by induction, LCR systems have the difference of the largest order of either side of
their constitutive equations at most one, and the difference of the smallest order of either
side of their constitutive equations at most one. �

Remark 7.3. The main difference between all of the two element systems and the three
element system is that we no longer have a bound on the number of coefficients of the
constitutive equation by the number of parameters. In fact, by the previous two propositions,
we can have up to 2n` 1 nonzero, non-monic coefficients in the constitutive equation of an
LCR system with n base elements. As a result of this lack of a bound, we could have
systems with more coefficients than base elements which are locally identifiable. This is
not entirely surprising, however the existence of systems with more base elements than
coefficients which are not locally identifiable leads us to believe that to find a sufficient
condition for the identifiability of an LCR system, we need to look beyond comparing the
number of coefficients to the number of parameters.

Example 7.4. Consider the LCR system depicted in Figure 2.
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L1

R

C1

C2

L2

Figure 2. An LCR system L1 _ pR ^ pC1 _ pL2 _ C2qqqq.

This system has constitutive equation:

pC1L1L2 ` C2L1L2qV
p3q
` pC1L2R ` C2L2Rq:V ` pC1C2L1 ` C1C2L2q 9V ` C1C2RV

“ pC1L1L2R ` C2L1L2RqI
p3q
` C1C2L1L2

:I ` C1C2L1R 9I.

Note that this LCR system has five parameters and after normalization has six non-monic,
nonzero coefficients in its constitutive equation. If we consider the Jacobian matrix of the
map from the space of parameters to the space of coefficients of the constitutive equation
corresponding to this example, we see that the rank of the Jacobian is non-maximal, meaning
the system is not identifiable. This example first shows that the number of coefficients in
a constitutive equation of an LCR system is not bounded by the number of parameters,
and moreover having at least as many coefficients as parameters in an LCR system is not a
sufficient condition for local identifiability.

We now introduce a similar notion of types as in the LC systems to more general LCR
systems.

Definition 7.5. Let M be an LCR system with constitutive equation f1V “ f2I where
f1 “ an1x

n1 ` ¨ ¨ ¨ ` am1x
m1 and f2 “ bn2x

n2 ` ¨ ¨ ¨ ` bm2x
m2 . Then we define the type of M

as the quadruple pm1 ´m2, n1 ´ n2, c, dq where c, d “ 1 if f1 and f2 have the alternating
property respectively, and are 0 otherwise.

Example 7.6. The three base elements can be characterized by type, where because there
is only a single nonzero coefficient on either side of the constitutive equation, each side of
all three constitutive equations are defined as alternating. More explicitly, by Equations 1,
2, and 3, we have that the resistor, inductor, and capacitor have respective types p0, 0, 1, 1q,
p´1,´1, 1, 1q and p1, 1, 1, 1q.

Remark 7.7. The four types, A,B,C,D of LC systems described in Section 6 can be
generalized as A “ p´1,´1, 1, 1q, B “ p´1, 1, 1, 1q, C “ p1,´1, 1, 1q and D “ p1, 1, 1, 1q as
LCR types.
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Note that there are certain restrictions on what this type quadruple can look like. For
example we know that because of Proposition 7.2, the first two entries of the type must both
be in the set t´1, 0, 1u. We have not yet shown that for an LCR system that the left and
right-hand sides of the constitutive equation must strictly have the alternating property or
the saturated property. More precisely, it is not obvious that a differential operator in the
constitutive equation of an LCR system cannot skip an order without having the alternating
property, i.e. have an order with zero coefficient, but not have the remaining even or odd
orders also have zero coefficients. We now prove that this is in fact the case, and conclude
that all LCR systems fall into one of these types. To do this, we first need the following
Lemma.

Lemma 7.8. No LCR system can have constitutive equation of type p˚,´1, 0, 1q for any
entry of ˚.

Proof. Suppose M is an n base element LCR system with type of the form p˚,´1, 0, 1q, and
constitutive equation f1V “ f2I. Note that f2 must alternate since the fourth entry of the
type quadruple is 1, and also f2 must have largest order one larger than f1 since the second
entry of the type quadruple is ´1. Similarly, f1 must not alternate since the third entry of
the quadruple is 0.

Recall that the three base elements, the resistor, inductor, and capacitor, have respective
types p0, 0, 1, 1q, p´1,´1, 1, 1q and p1, 1, 1, 1q, hence M cannot be a base element, i.e. n ě 1.
Therefore, M must be made of some series or parallel combination of two systems with
strictly fewer elements, say A1 and A2. Let A1 and A2 have constitutive equations g1V1 “ g2I1
and g3V2 “ g4I2 respectively.

First, if we suppose M is a series combination of A1 and A2, then we have that f1 “ g1g3
and f2 “ g1g4`g2g3. Note that since f2 must alternate, then all four of g1, g2, g3 and g4 must
alternate (and have some parity conditions), however f1 must not alternate meaning that
one of g1 or g3 cannot alternate, a contradiction. Thus, an LCR system of type p˚,´1, 0, 1q
cannot be constructed via a series combination of other systems with fewer elements.

Now suppose M is a parallel combination of A1 and A2. In this case, we have that
f1 “ g1g4`g2g3 and f2 “ g2g4. Since f2 must have one higher largest order than f1, we must
have that degpg1q ă degpg2q and degpg3q ă degpg4q. Thus, by Proposition 7.2, we have that
degpg2q “ degpg1q ` 1 and degpg4q “ degpg3q ` 1, meaning that A1 and A2 have respective
types with second entry both being ´1.

Given that f2 is alternating, we must have that both g2 and g4 are alternating, i.e. both A1

and A2 have a 1 in the last entry of their types. Similarly, given that f1 is not alternating, we
must have either g1 or g3 not alternating, or that g1g4 and g2g3 have opposite parity (the sum
zips together). Note though that g1g4 and g2g3 must have the same parity, since the pairs
g1, g2 and g3, g4 must have different parity (because their maximal orders have a difference
of exactly one from above), meaning g1g4 has even (odd) parity if and only if g2g3 has even
(odd) parity. Thus, A1 and A2 must have types of the form p˚,´1, r1, 1q and p˚,´1, r2, 1q
where at least one of r1 or r2 is equal to 0.

Therefore, the only way to generate a system of type p˚,´1, 0, 1q is by a parallel combina-
tion of two systems, one of which has type p˚,´1, 0, 1q, but since none of the base elements
have this type, then this type must not exist.

�
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Proposition 7.9 (Skipping but not alternating). Let M be a series-parallel LCR system.
Then each side of the constitutive equation must either be alternating or saturated.

Proof. We prove this statement by induction on the number of base elements in the system.
As the base case, note that in each of the one-element systems, the statement is certainly
true, as each side only has a single nonzero coefficient.

Now, suppose the statement is true for LCR systems with less than k base elements, that
is, either side of the constitutive equation for LCR systems with less than k base elements
cannot skip an order without having that side alternate. Also, suppose M is an LCR system
with k base elements, which is generated by a series combination of two smaller systems N1

and N2 with strictly less than k base elements. Let N1 and N2 have constitutive equations
f1V1 “ f2I1 and f3V2 “ f4I2 respectively, and note by the inductive hypothesis, f1, f2, f3
and f4 cannot skip a coefficient without alternating. Therefore, each of N1 and N2 can be
characterized by a type as described in Definition 7.5. Let us define each polynomial f1, f2, f3
and f4 as in Equation 4.

By Proposition 7.2, we know that the first two entries of each Ni system’s type is either
´1, 0 or 1.

Also, we have that the constitutive equation of M is f1f3V “ pf1f4 ` f2f3qI. Note that
for each of the three products of two fi, if both polynomials in the product alternate, then
the resulting product alternates. Also, if at least one of the polynomials in the product is
saturated, then by Lemma 7.10, we know that the resulting product is saturated. Thus,
we immediately have that the left-hand side of the constitutive equation, i.e. the product
f1f3, cannot skip without alternating. We also know that each element of the sum of the
right-hand side cannot skip without alternating, hence to finish the proof we need only show
that their sum cannot skip without alternating.

Note that by Proposition 7.2, we know that the absolute difference in the largest orders,
and the absolute difference of the smallest orders of f1f4 and f2f3 are both at most two.

Thus, the only way that the right-hand side of the constitutive equation for M could skip
an order without alternating is if one of the elements of the sum had maximal (or minimal)
order two larger (smaller) than the other, and the one with larger maximal order alternates
while the other is saturated. This would result in skipping the second largest (smallest)
order of the sum, but the rest of the sum having nonzero coefficients.

Suppose without loss of generality that f1f4 has largest order two larger than f2f3 and
suppose f1 and f4 alternate, while at least one of f2 and f3 is saturated. Thus, the third
entry of the type of N1 and the fourth entry of the type of N2 must be 1. Also, either the
fourth entry of the type of N1 or the third entry of the type of N2 must be zero. Without
loss of generality we suppose that it is f3 that is saturated. Note that for f1f4 to have largest
order two larger than f2f3, we must have that n1 “ n2 ` 1 and n4 “ n3 ` 1, i.e. f1 and
f4 have largest order one larger than f2 and f3 respectively by Proposition 7.2. Thus, the
second entry in the type of N1 must be a 1, while the second entry in the type of N2 must
be a ´1. Therefore, N1 must have type p˚, 1, 1, ˚q and N2 must have type p˚,´1, 0, 1q where
the ˚ represents any possible entry.

Since the only way to have a constitutive equation which skips but does not alternate is to
have an element of type p˚,´1, 0, 1q which does not exist by Lemma 7.8, then there cannot
be a constitutive equation which skips but does not alternate with k base elements. Thus,
by induction, no LCR system can skip but not alternate.

The case of a parallel combination follows from circuit duality. �
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Lemma 7.10. If f and g are polynomials with non-negative coefficients such that f is
saturated and g is alternating, then the product fg is saturated.

Proof. Suppose f is saturated, and g is alternating, such that they have form

f “ anx
n
` an´1x

n´1
` ¨ ¨ ¨ ` am`1x

m`1
` amx

m

g “ bvx
v
` bv´2x

v´2
` ¨ ¨ ¨ ` bu`2x

u`2
` bux

u

Note that the product of f and g has form

fg “
n`v
ÿ

k“m`u

˜

ÿ

i`j“k

aibj

¸

xk.

Thus, to show the statement of the Lemma is true, we need only show that for each k,
there is some nonzero combination of coefficients from g and f with corresponding degree
adding to k. Given that g alternates and f is saturated, and all coefficients are non-negative,
this problem equates to the following: Given the sets of non-negative integers F “ tn, n ´
1, . . . ,m` 1,mu and G “ tv, v´ 2, . . . , u` 2, uu, for every integer k with m`u ď k ď n` v,
can we find a sum of an element i P F and an element j P G such that i` j “ k? The answer
to this question is yes, as we can generate every number from m` u to n` v as

m`u, pm`1q`u,m`pu`2q, pm`1q`pu`2q, . . . , pn´1q`pv´2q, n`pv´2q, pn´1q`v, n`v.

Thus, for each k there is some ai and bj such that aibj ‰ 0 and i ` j “ k, hence fg is
saturated, as desired. �

Corollary 7.11. Every LCR system has one of the types as defined in Definition 7.5.

Proof. The only way that we could not classify an LCR system with a type would be if it had
a constitutive equation which did not alternate, but also was not saturated by our definition,
i.e. that skipped without alternating. By Proposition 7.9, this cannot happen. Thus, every
LCR system can be characterized by a type. �

We can now make several more statements about the type characterization we propose for
LCR systems.

Proposition 7.12. We can characterize the type of a series combination of two LCR systems
of types pa, b, c, dq and pe, f, g, hq respectively as

(12) pa, b, c, dq d pe, f, g, hq “ pmaxta, eu, mintb, fu, cg, cdghp1´ ||a| ´ |e||qq .

Proof. Suppose M is generated by a series combination of two smaller LCR systems N1 and
N2 with respective constitutive equations f1V1 “ f2I1 and f3V2 “ f4I2. Note then that the
constitutive equation of M is f1f3V “ pf1f4 ` f2f3qI.

Let us define each polynomial f1, f2, f3, and f4 just as in Equation 4.
Note that the first entry in the type of M is the difference in the smallest orders of both

sides of its constitutive equation, i.e.

pm1 `m3q ´mintm1 `m4, m2 `m3u “ maxtm1 `m3 ´m1 ´m4, m1 `m3 ´m2 ´m3u

“ maxtm3 ´m4, m1 ´m2u

“ maxte, au.
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Similarly, the second entry in the type of M is the difference in the largest orders of both
sides of its constitutive equation, i.e.

pn1 ` n3q ´maxtn1 ` n4, n2 ` n3u “ mintn1 ` n3 ´ n1 ´ n4, n1 ` n3 ´ n2 ´ n3u

“ mintn3 ´ n4, n1 ´ n2u

“ mintf, bu.

Also, f1f3 alternates if and only if f1 and f3 both alternate, i.e. the third entry of the type
of M is 1 if and only if both third entries of the types of N1 and N2 are 1. This is true
exactly when c “ g “ 1, equivalently if and only if cg “ 1.

Finally, the right hand side of the constitutive equation of M alternates if and only if all
four of the fi alternate, and f1f4 has the same parity as f2f3. Note that these two products
have the same parity if and only if either all fi have the same parity, or if f1 and f2 have
different parity and f3 and f4 have different parity. More explicitly, we can consider the
smallest order of all of the alternating fi and note that these two products have the same
parity if and only if either each of a “ e “ 0, or |a| “ |e| “ 1. Thus, the fourth entry of
the type of M is 1 if and only if all of the third and fourth entries of N1 and N2 are 1 and
||a| ´ |e|| “ 0, i.e. 1´ ||a| ´ |e|| “ 1. �

By circuit duality, we also get a similar formula for parallel combinations.

Proposition 7.13. We can characterize the type of a parallel combination of two LCR
systems of types pa, b, c, dq and pe, f, g, hq respectively as

(13) pa, b, c, dq ‘ pe, f, g, hq “ pminta, eu, maxtb, fu, cdghp1´ ||a| ´ |e||q, dhq .

Given our type characterization and the restrictions imposed on the type by Propositions
7.2 and 7.9, there are 36 possible types of the form pt´1, 0, 1u, t´1, 0, 1u, t0, 1u, t0, 1uq.
Note however that not all 36 of these quadruples correspond to types of LCR systems which
are generated by series and parallel combinations of the three base elements. We can gener-
ate all possible types by implementing a recursive algorithm starting with a generating set
consisting of the three base element types p0, 0, 1, 1q, p´1,´1, 1, 1q, and p1, 1, 1, 1q, generating
every possible combination of these types, and adding these combinations to the generating
set. Repeating this process until no new quadruples are added to the generating set, we then
have all possible types.

Proposition 7.14. The following 22 quadruples are the only possible LCR types:

p1, 0, 0, 0q, p´1, 0, 0, 0q, p0, 0, 1, 1q, p1,´1, 1, 0q, p0, 1, 0, 1q, p0,´1, 0, 0q,
p1, 1, 0, 0q, p´1, 1, 1, 1q, p1, 1, 1, 1q, p0, 0, 0, 1q, p0, 0, 1, 0q, p´1,´1, 0, 0q,
p1,´1, 0, 0q, p0, 1, 0, 0q, p´1, 1, 0, 1q, p0,´1, 1, 0q, p0, 0, 0, 0q, p´1,´1, 1, 1q,

p1,´1, 1, 1q, p1, 0, 1, 0q, p´1, 0, 0, 1q, p´1, 1, 0, 0q.

To conclude this section, we give an example that shows that type analysis, as was per-
formed to analyze the two component systems, is not sufficient to characterize the identifia-
bility of general series-parallel LCR systems.

Example 7.15. Consider the model M “ pR1_Cq^ pR2_Lq. This model has constitutive
equation

R1L:V ` pCL`R1R2q 9V ` CR2V “ LR1R2
:I ` pLCR1 ` LCR2q 9I ` CR1R2I.
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This model is saturated on both sides, and the shapes of the differential operators are r0, 2s
and r0, 2s. Since the constitutive equation has the same highest and lowest order on both
sides, this model has type p0, 0, 0, 0q.

Now consider the model N “ M ^ R3 obtained by joining M in series to a new resistor
R3. The model of a single resistor has type p0, 0, 1, 1q, so the model N will also have type
p0, 0, 0, 0q d p0, 0, 1, 1q “ p0, 0, 0, 0q, and the differential operators also have shapes r0, 2s and
r0, 2s. In this case there are five parameters and five non-monic coefficients, and a direct
calculation shows that the model is locally identifiable.

Finally, consider the new model N 1 “ N ^ R4 obtained by joining N in series to a new
resistor R4. Again this model N 1 will have type p0, 0, 0, 0q d p0, 0, 1, 1q “ p0, 0, 0, 0q and
the differential operators also have shapes r0, 2s and r0, 2s. But now the model cannot be
identifiable because there are six parameters and there continue to be only five non-monic
coefficients. This shows that the combinations of types p0, 0, 0, 0q d p0, 0, 1, 1q may or may
not be identifiable depending on the structure of the underlying model.

8. Equations Defining LCR Models

General LCR models can have more non-monic coefficients than the number of parameters.
Hence, the set of constitutive equations consistent with a particular model M will be a subset
of all possible differential equations of a given type. Understanding the algebra and geometry
of these sets of constitutive equations is an interesting problem, and might be useful for
addressing identifiability questions for general LCR circuit systems.

Example 8.1. Consider the LCR system M “ pR _ Cq ^ L. The constitutive equation in
this case is

R 9V ` V “ RL:I ` L 9I `RCI.

Note that there are three parameters and four non-monic coefficients. Hence, not every
constitutive equation of shape

c1 9V ` c0V “ d2 :I ` d1 9I ` d0I

with positive coefficients can arise from some choice of R,C, L. To describe the relations
that arise, we find it useful to work in the projective representation, as this will produce
homogeneous equations. In this case, the projective version of the constitutive equation is

L0C0R1
9V ` L0C0R0V “ L1C0R1

:I ` L1C0R0
9I ` L0C1R1I.

Note that these coefficients satisfy the relation: c1d1 “ c0d2.

Example 8.2. Consider the four element model M “ pR1^Cq_pR2^Lq. The constitutive
equation is

R1L:V ` pCL`R1R2q 9V ` CR2V “ R1R2L:I ` pCR2L` CR1Lq 9I `R1R2CI.

There are six coefficients and four parameters. In the projective version, we expect a single
homogeneous equation that defines the relations on the coefficients. It is

c20d
2
2 ´ c1c0d2d1 ` c2c0d

2
1 ` 2c2c0d2d0 ´ c2c1d1d0 ` c

2
2d

2
0 “ 0.

This polynomial is remarkably similar looking to the resultant of the two quadratic polyno-
mials c2x

2` c1x` c0 and d2x
2`d1x`d0. However, the sign of the underlined term is wrong.

It is unclear if this polynomial can be expressed as the resultant of related polynomials. We



26 BORTNER AND SULLIVANT

also do not know if every 6-tuple pc2, c1, c0, d2, d1, d0q of positive numbers that satisfies this
equation can come from some choice of positive values for C,L,R1, and R2.

Examples 8.1 and 8.2 just give a small taste of the types of equations that can arise. We
do not have a general theory of what those equations should look like, but we can try to
derive properties of the ideals in the hopes of understanding their structure.

In general, associated to any series-parallel model M is a homogeneous ideal

IM Ď Rrc,ds “ Rrc0, c1, . . . , cm, d0, d1, . . . , dms.
For example, in Example 8.1, we get that IM “ xc1d1 ´ c0d2y. In fact, beyond being just an
ordinary homogeneous ideal, IM satisfies some other homogeneities as well.

Call a polynomial ppc, dq P Rrc,ds bihomogeneous, if it is homogeneous in each set of
variables, that is ppλc, δdq “ λmδnppc, dq for some m and n. The pair pm,nq is called the
bidegree of p. An ideal I P Rrc,ds is bihomogeneous if it has a generating set consisting of
bihomogeneous polynomials. The notion of bihomogeneity of ideals also can be interpreted
naturally in terms of the corresponding variety, at least when I is radical. Let V “ V pIq Ď
R2n`2 be the corresponding variety of pairs pc,dq coming from the model. Bihomogeneity of
the radical ideal I Ď Rrc,ds is equivalent to the following condition on the variety V “ V pIq:
for any pair pc,dq P V and any nonzero λ, δ P C, pλc, δdq is also in V .

Proposition 8.3. For any series-parallel circuit network M , the vanishing ideal IM is bi-
homogeneous in c and d.

Proof. We proceed by induction on the number of components in the network. The statement
is clearly true if the networks have just one component, since the vanishing ideal is the zero
ideal in that case.

By symmetry, we can suppose that the model is a series combination M “M1 ^M2. By
induction, we can suppose that M1 and M2 satisfy the bihomogeneity assumption. For two
sequences c “ pc0, c1, c2, . . .q and d “ pd0, d1, d2, . . .q let c ˚ d denote the convolution

c ˚ d “ pc0d0, c1d0 ` c0d1, c2d0 ` c1d1 ` c0d2, . . .q.

Then, with this operation defined, we have that

M “ tpc ˚ c1, c ˚ d1 ` c1 ˚ dq : pc,dq PM1, pc
1,d1q PM2u.

So, we need to show that if pc ˚c1, c ˚d1`c1 ˚dq PM and if λ, δ P C˚ then pλpc ˚c1q, δpc ˚d1`
c1 ˚ dqq P M . But by the inductive hypothesis, we know that if pc,dq P M1, pc

1,d1q P M2,
and λ, δ, λ1, δ1 are nonzero then

pλλ1c ˚ c1, λδ1c ˚ d1 ` λ1δc1 ˚ dq PM.

Taking λ “ λ, λ1 “ 1, δ “ δ and δ1 “ δ{λ gives the desired result. �

A second type of homogeneity also holds for the vanishing ideals of circuit models. We
introduce a grading on the polynomial ring Rrc,ds by setting degpciq “ degpdiq “ i. The
degree of a monomial degpcαdβq is the sum of the degrees of all variables in the monomial,
counted with multiplicity. So, for example,

degpc21c3d0d4q “ 1` 1` 3` 0` 4 “ 9.

A polynomial in Rrc,ds in the degree grading is called homogeneous if every monomial
appearing has the same degree. An ideal IM is degree homogeneous if it has a generat-
ing set consisting of degree homogeneous polynomials. The notion of degree homogeneity
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can also be interpreted in terms of the corresponding variety, at least when the ideal is
radical. Degree homogeneity of the radical ideal I Ď Rrc,ds is equivalent to the follow-
ing condition on the variety V “ V pIq: for any pair pc,dq P V and any nonzero λ P C,
pλ0c0, λ

1c1, λ
2c2, . . . , λ

0d0, λ
1d1, λ

2d2, q is also in V . Denote the operation of applying λ to
pc,dq in this way by λ ¨ pc,dq “ pλ ¨ c, λ ¨ dq.

Proposition 8.4. For any series-parallel circuit network M , the vanishing ideal IM is degree
homogeneous in c and d.

Proof. We proceed by induction on the number of components in the network. The statement
is clearly true if the networks have just one component, since the vanishing ideal is the zero
ideal in that case.

By symmetry, we can suppose that the model is a series combination M “M1 ^M2. By
induction, we can suppose that M1 and M2 satisfy the degree homogeneity assumption. As
in the proof of Proposition 8.3, we need to show that if pc ˚ c1, c ˚d1` c1 ˚dq PM and λ P C˚
then pλ ¨ pc ˚ c1q, λ ¨ pc ˚ d1 ` c1 ˚ dq PM . Note that ¨ and ˚ interact in the following way:

pλ ¨ cq ˚ pλ ¨ c1q “ λ ¨ pc ˚ c1q

with similar expressions holding for other combinations of c,d, c1,d1. Since λ ¨ pc,dq “
pλ ¨ c, λ ¨ dq PM1 and λ ¨ pc1,d1q “ pλ ¨ c1, λ ¨ d1q PM2 we get that

ppλ ¨ cq ˚ pλ ¨ c1q, pλ ¨ cq ˚ pλ ¨ d1q ` pλ ¨ c1q ˚ pλ ¨ dqq “ pλ ¨ pc ˚ c1q, λ ¨ pc ˚ d1 ` c1 ˚ dq PM

which is the desired result. �

9. Future Work and Discussion

In general, determining local identifiability of LCR systems appears to require novel tech-
niques as compared to those of the two base element subsystems. Due to the lack of an
upper bound on the number of coefficients of the constitutive equation by the number of
parameters, it seems that the problem of determining identifiability of LCR systems must
extend past the counting of parameters and coefficients.

Another approach to studying identifiability via a single constitutive equation is to consider
the generation of the coefficients themselves, and consider the Jacobian of the map from the
parameter space to these coefficients [8]. In the case of the LCR system, this initially seems
difficult due to the lack of an obvious pattern in the coefficients based on the graph structure,
though more study could be done on this subject. Perhaps the electromechanical analogy
of the LCR system into a mechanical system could lead to a more natural study of the
coefficients of the related constitutive equation.
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