arXiv:2107.06487v1 [math.DS] 14 Jul 2021

EMERGENCE OF SYNCHRONIZATION IN KURAMOTO MODEL
WITH GENERAL DIGRAPH

XIONGTAO ZHANG T8 AND TINGTING ZHU ©§~

ABSTRACT. In this paper, we study the complete synchronization of the Kuramoto model
with general network containing a spanning tree, when the initial phases are distributed
in an open half circle. As lack of uniform coercivity in general digraph, in order to capture
the dissipation structure on a general network, we apply the node decomposition criteria
in [22] to yield a hierarchical structure, which leads to the hypo-coercivity. This drives
the phase diameter into a small region after finite time in a large coupling regime, and the
uniform boundedness of the diameter eventually leads to the emergence of exponentially
fast synchronization.

1. INTRODUCTION

Emergent collective behaviors in complex systems are ubiquitous around the world, such
as aggregation of bacteria, flocking of birds, synchronous flashing of fireflies and so forth
[7, 18,19, 27, 31,32, 33, 34], in which self-propelled agents organize themselves into a particular
motion via limited environmental information and simple rules. In order to study the
driven mechanism of the emergence of collective behaviors, various dynamic models have
been proposed in recent years such as Cucker-Smale model [6], Kuraomoto model [24], and
Winfree model [34], etc.. These seminal models have received lots of attention and have
been systematically studied due to their potential applications in biology and engineer, to
name a few, modeling of cell and filament orientation, sensor networks, formation control
of robots and unmanned aerial vehicles [25, 27 28], etc.

In the present paper, we focus on the emergence of synchronization in Kuramoto model
with general interaction network. The terminology synchronization represents the phenom-
ena in which coupled oscillators adjust their rhythms through weak interaction [IJ, 29], and
Kuramoto model is a classical model to study the emergence of synchronization. The
emergent dynamics of the Kuramoto model has been extensively studied in literature
[2, B B, 13, 14, 16, 17, 18, 19 23, 26, B0]. In our work, to fix the idea, we consider a
digraph G = (V, £) consisting of a finite set V = {1,..., N} of vertices and aset £ C V x V
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2 ZHANG AND ZHU

of directed arcs. We assume that Kuramoto oscillators are located at vertices and interact
with each other via the underlying network topology. For each vertex i, we denote the set
of its neighbors by N;, which is the set of vertices that directly influence vertex . Now, let
0; = 0;(t) be the phase of the Kuramoto oscillator at vertex ¢, and define the (0, 1)-adjacency
matrix (x;;) as follows:

_J 1 if the jth oscillator influences the ith oscillator,
X = 0 otherwise.

Then, the set of neighbors of i-th oscillator is actually N; := {j : x;; > 0}. In this setting,
the dynamics of phase 6; is governed by the following ordinary differential system:

0i(t) = Qi+ kY sin(0;(t) — 0:i(t), t>0, i€V,
(1.1) JEN;
0:(0) = .

where £ > 0 is the uniform coupling strength and €2; represents the intrinsic natural fre-
quency of the ith oscillator drawn from some distribution function g = ¢(€2). The motivation
to consider general network is very natural, since the non all-to-all or non-symmetric inter-
actions are common in the real world. For instance, flying birds can make a flocking cluster
via the influence from several neighbors, while the sheep can form a group by following the
leader. Therefore, study on the dynamical system on a general digraph is natural and im-
portant, and gradually attracts a lot of researchers from different areas. We refer the readers
to the following references for more details of the background [4} 10} [T}, 12} [15] 20, 21, 22].

There are few works [10], 12, 2I] on the synchronization of the Kuramoto model on a
general digraph in contrast with the complete graph. More precisely, the authors in [12]
studied the generalized Kuramoto model with directed coupling topology, which is allowed
to be non-symmetric. They showed the frequency synchronization when the initial phases
of oscillators are distributed over the open half circle for a large class of coupling struc-
ture. However, they required any pair of oscillators have one common neighbor, so that the
dissipation structure can be captured by the good property of sine function. In [21], the
authors provided an asymptotic formation of phase-locked states for the ensemble of Ku-
ramoto oscillators with a symmetric and connected network, when the initial configuration
is distributed in a half circle. More precisely, they exploit the gradient structure and use
energy method to derive complete synchronization whereas there is no information about
the convergence rate. In literature [11], the authors studied a network structure containing
a spanning tree (see Definition on the collective behaviors of Kuramoto oscillators.
Actually, they lift the Kuramoto model to second-order system such that the second-order
formulation enjoys several similar mathematical structures as for the Cucker-Smale flocking
model [I0]. But this method only works when initial phases are confined in a quarter circle,
since the cosine function becomes negative if § < 0 < .

So far, if the ensemble distributed in half circle, the dissipation structure of the Kuramoto
model with general digragh is still unclear. The main difficulty is that, when considering the
ensemble in half circle, there is no uniform coercive inequality to yield the dissipation, which
is due to the non-all-to-all and non-symmetric structure. For example, the time derivative
of the diameter may be zero in the general digraph. Therefore, we switch to construct the
hypo-coercivity similar as in [22], which will help us to capture the dissipation structure.
Comparing to [22] which deals with the Cucker-Smale model on a general digraph, the
interactions in Kuramoto model lack the monotonic property since sin(z) is not monotonic
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in half circle. Therefore, we choose more delicate constructions and estimates of the convex
combinations to fit the special structure of Kuramoto model, which eventually yields the
following main theorem.

Theorem 1.1. Suppose that the network topology (x:j) contains a spanning tree, and let 6;
be a solution to (L.1). Moreover, assume that the initial data and the quantity n satisfy

1 2
(1.2) D((0) <a<y<m, 17>max{ , ,a},
sin vy 1—;

where a,7y are constants. Then, we can find a sufficiently small positive constant D <
min {a, g} and a corresponding time t, such that
D(0(t)) < D>, t € (ts, +00),

provided the coupling strength k satisfies

(d+ Da (4c)%é
1.3 1
- o> (1+ 2550ty o=
where d is the number of general nodes which is smaller than N (see Section@) and
NN ARN.) )y DS wACN.)) + Dy
B sin ’ N sin '

Note that Theorem only shows the small and uniform boundedness of the ensemble,
then we can directly apply the methods and results in [22] or [I1] to yield the exponentially
fast emergence of frequency synchronization. Therefore, we will only show the detailed
proof of Theorem

The rest of the paper is organized as follows. In Section [2] we recall some concepts on
the network topology and provide an a priori local-in-time estimate about phase diameter
of the ensemble. In Section [3] we consider a strong connected ensemble for which the initial
phases are distributed in the open half circle. We show that the phase diameter is uniformly
bounded and will be confined in a small region after some finite time in a large coupling
regime. In Section [4] we study the general network with a spanning tree structure. In our
framework, the coupling strength is sufficiently large and the initial data is confined in an
open half circle. We use the inductive argument and show that the phase diameter of the
whole digraph will concentrate into a small region of a quarter circle after some finite time,
which yields the exponential emergence of synchronization. Section [5]is devoted to a brief
summary.

2. PRELIMINARIES

In this section, we introduce some basic concepts such as spanning tree and node decom-
position of a general network (1.1)). Then, we will provide some necessary notations and an
a priori estimate that will be frequently used in later sections.

2.1. Spanning tree. Roughly speaking, spanning tree means we can find an oscillator
which affects all the other oscillators directly or in-directly. In other words, a system without
spanning tree can be separated into two parts without any interactions. Therefore, this is
the most important structure for emergence of collective behavior on a general digraph.
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More precisely, let the network topology be registered by the neighbor set N; which
consists of all neighbors of the ith oscillator. Then, for a given set of {N’Z}f\il in system
(1.1)), we have the following definition.

Definition 2.1. (1) The Kuramoto digraph G = (V,E) associated to (1.1) consists of a
finite set V = {1,2,..., N} of vertices, and a set E CV x V of arcs with ordered pair
(J,1) € Eifj € Ni.

(2) A path in G from iy to iy is a sequence i1,12,...,i such that

is €Nigyy forl<s<k-—1.

If there exists a path from j to i, then vertex i is said to be reachable from vertez j.
(8) The Kuramoto digraph contains a spanning tree if we can find a vertex such that any
other vertex of G is reachable from it.

According to the discussion of spanning tree in the beginning of this part, in order to guar-
antee the emergence of synchronization, we will always assume the existence of a spanning
tree throughout the paper. Now we recall the concepts of root and general root in [22]. Let
l,keNwith1 <[ <k <N,andlet Ci; = (¢, 41, ..,c;) be a vector in RF=+1 guch that

k
¢ >0, [<i<k and Zcizl.
1=l
For an ensembel of N-oscillators with phase {6;} ;, we set LF(C) ) to be a convex combi-
nation of {f;}¥_; with the coefficient Cj :

Clk Zczz

Note that each 6; is a convex combination of itself, and particularly 6y = £N(1) and

6, = L1(1).
Definition 2.2. (Root and general root)

(1) We say 6 is a root if it is not affected by the rest oscillators, i.e., j & Ny for any
Jje{1,2,..., N\ {k}.

(2) We say LF(Cyx) is a general root if L¥(Cy 1) is not affected by the rest oscillators,
.e., for any i € {l,l+1,...,k} and j € {1,2,...,N}\{l,l+1,...,k}, we have
jEN:.

Lemma 2.1. [22] The following assertions hold.

(1) If the network contains a spanning tree, then there is at most one root.
(2) Assume the network contains a spanning tree. If LY (Cy n) is a general Toot, then
L1 (C1,) is not a general root for each l € {1,2,...,k —1}.

2.2. Node decomposition. In this subsection, we will introduce the concept of maximum
node. Then, we can introduce node decomposition to represent the whole graph G (or
say vertex set V) as a disjoint union of a sequence of nodes. The key point is that the
node decomposition shows a hierarchical structure which allows us to apply the induction
principle. Let G = (V,€) and V; C V, a subgraph G; = (V1,&1) is the digraph with vertex
set V1 and arc set & which consists of the arcs in G connecting agents in V;. For convenience,
for a given digraph G = (V, £), we will identify a subgraph G; = (V1, 1) with its vertex set
V1. Now we first introduce the definition of nodes below.
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Definition 2.3. (Node) Let G be a digraph. A subset Gy of vertices is called a node if it is
strongly connected, i.e., for any subset Gy of G1, Ga is affected by Gy \ G2. Moreover, if G
is not affected by G\ G1, we say G is a mazimum node.

Notably, a node can be understood intuitively in a manner that a set of oscillators can
be viewed as a ”"large” oscillator. Next, we can exploit the concept of node to simplify the
structure of the digraph, and this can help us to catch the attraction effect more clearly in
the underlying network topology.

Lemma 2.2. [22] Any digraph G contains at least one mazimum node. A digraph G contains
a unique mazximum node if and only if G has a spanning tree.

Lemma 2.3. [22](Node decomposition) Let G be any digraph. Then we can decompose G
to be a union as G = U?:O(U?izl Qf) such that

(1) gg' are the mazximum nodes of G, where 1 < j < kg.

(2) For any p,q where 1 < p < d and 1 < q < ky, G} are the mazimum nodes of

—1 ki
G\ (U= (U;L1 69))-
Remark 2.1. Lemma[2.3 shows a clear hierarchical structure on a general digraph. For the
convenience of later analysis, we give some comments on important notations and properties
to be used throughout the paper.

(1) According to the definition of maximum node, we know G2 and le do not influence
each other for 1 < q # ¢ < ky. Actually, G} will only be affected by Go and G,
where 1 <1 < p—1, 1 < 5 < k;. Therefore without loss of generality, we may
assume k; =1 for all 1 < i < d in the proof of our main theorem (see Theorem|1.1)).
Thus, the decomposition can be expressed by

d
g= U Gi,
=0

where Gy is a mazimum node of G\ (Uf:_ol Gi).

(2) Given an oscillator 01-““ € Gi11, we denote by Ufié ./\/'Z-kﬂ(j) the set of neighbors of
0?"'1, where ./\/Z-]“H'1 (j) represents the neighbors of 95“ in Gj. The node decomposition
and spanning tree structure in G guarantee that U?:o Nf“( 7) # 0.

2.3. Notations and local estimates. In this part, for simplicity, we introduce some
notations, such as the extreme phase, phase diameter of G and the first k41 nodes, frequency
diameter, and cardinality of subdigraph:

Orf = 0.} = gt 0. = min {0.} = mi in {9
M 1g}casXN{ e} 021%1?}?1(%{ it Om 1g11elgnN{ ) oglgdlgg}vi{ it

DO =0t =0 DHO) = 1, 95} - gui 2, ()

s = org?gxdlg?f(vim}}’ b = orgiigdlgisr}vim}}’ DY) = s = O,
k d
Ni=1Gil, Sk=> Ni, 0<k<d, Y N;=N.
i=0 i=0
Finally, we provide an a priori local-in-time estimate on the phase diameter to finish the
section, which shows the diameter of the ensemble remains less than 7 in short time.
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Lemma 2.4. Let 0; be a solution to system (1.1)) and suppose the initial phase diameter
satisfies D(0(0)) < aw <y < w. Then there exists time t such that

(2.1) D) <a, Vtelot),
where o,y are constants and t = %&%0)).

Proof. According to system (|1.1)), we have
Oy =Qu+r Y sin(0; —0y),  Op=Qn+r Y sin(d; — ).
JENNM JENm
When the phase diameter is located in [D(0(0)), o, it is obvious that
Z sin(6; — Oar) <0, Z sin(6; — 0,,) > 0.
JENM JENm
Hence, the dynamics of phase diameter of all nodes can be estimated as follows
d
= a(
That is to say, the growth of phase diameter is less than the linear growth with slope D(£2)
if D(6(t)) € [D(6(0)), . Set t = a=DWO) = Thep according to (2.2)), it can be seen that

_ D
D(6(t)) is less than « before time ¢, i.e.,

DO®) <a, YteloD),

(2:2) D(O(t)) Orr — Om) < D(Q).

3. STRONG CONNECTED CASE

We will first study the special case when the network is strongly connected. Without
loss of generality, we denote the strong connected graph by Gy. According to Definition
Lemma[2.2) and Lemma [2.3] this means the network contains only one maximum node.
Then, we will show the emergence of complete synchronization in the strong connected case.
We now introduce an algorithm to construct a proper convex combination of the oscillators,
which can involve the dissipation from interaction of general network. More precisely, the
algorithm for Gy consists of the following three steps:

Step 1. For any given time ¢, we reorder the oscillator indexes to make the oscillator phases
from minimum to maximum. More specifically, by relabeling the agents at time ¢, we set

(3.1) 09(t) < 05() < ... < O%, (1)

In order to introduce the following steps, we first provide the process of iterations for
/chvo (Ck,n,) and Lll(QLl) as follows:

o(Ay): If E_LVO(C_’;C,NO) is not a general root, then we construct
ar1L3" (Crve) + 07

ap—1 +1 '
o(Ay): If L} (C1,) is not a general root, then we construct

Ql+1§l1(Q1,l) +67)
Gy +1

‘C_I]cvgl (Ck—l,No) =

§l1+1(Q1,l+1) =
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Step 2. According to the strong connectivity of Gy, we immediately know that EiVO(C’L No)
is a general root, and E]kv °(Ck.n,) is not a general root for k > 1. Therefore, we may start
from 0(])\,0 and follow the process Ay to construct E_,]CVO(C_';C, Np) until £ = 1.

Step 3. Similarly, we know that £ (Cy n,) is a general oot and L (Cy,) is not a gen-
eral root for | < Ny. Therefore, we may start from 69 and follow the process As until | = Ng.

We emphasize that the order of the oscillators will change along time t, but at each time
t, the above algorithm works. For convenience, the algorithm from Step 1 to Step 3 will
be referred as Algorithm A. Then, according to Algorithm A, we will show a monotone
property about the function sinx, and provide a priori estimates which will be crucially
used later in the proof of uniform boundness of phase diameter.

Lemma 3.1. Let 0; = {09} be a solution to system (L.1]) with srong connected network Go.
Moreover at time t, for the digraph Go, we also assume that the oscillators are well-ordered
as (3.1)), the phase diameter and the quantity n satisfiy the following condition:

12
Do (6(t -
0(0(2)) <, 77>maX{Sim71:},

where o,y are given in the condition (1.2)). Then at time t, we have

No
(™™ min sin(8? — 6Y)) <sin(@) —6%), k.= min 4, 1<n<N.
zz;z et 0 T jeu A
J<i
n
"~ max sin(0? — 09)) >sin(6? —6Y), k = max i, 1<n<N,.
;(77 jE./\/’iO(O) ( J 1)) = ( k, 1) n jEU?:l./\/;Q(O)] = >
J=i

Proof. We will only prove the first inequality, the second relation can be proved in a similar
manner. In fact, if Ny = 1, i.e., Ny is a (general) root, we are done. Now we consider the
case Ny > 2. Due to the strong connectivity of the digraph Gy, ZiVO(C’L N, ) is a general root
while L_]kVO(C_’hNO) is not a general root for k& > 1.

For any given n € [1, Ng|, we have k, = min  j. Hence, there exists Iy € [n, No|

JEUG,N(0)

such that k, € N (0) due to the fact k, € ulo N9(0). For Iy, since ﬁ_l]zil(ézoﬂ,No) is
not a general root, there exist jo < lp and l; € [lp + 1, Np] such that jy € M? (0). For
l1, as /:f\l[il(C_’llH,NO) is not a general root, there exist j; < Iy and ls € [l; + 1, Ng] such
that j; € /\flg(()) we repeat the process until find some [, = Ny and jp,—1 < l,—; such that

Jp—1 € ./\/}2(0) = N3, (0). Obviously, we have

I
No a
Z(ni_njeljr\lfio%) Sin(gg) —60)) <o Sin(e?p—l - 99\[0) SEA sin(@?pd - 9?”71)
(32) =" j<i

+ 2 ""sin(00  — 00 )4 gl sin(@?1 —07)

JIp—3 lp—2

+ gl sin(HJQO - 0?1) + plo—n sin(@%n — 9?0).
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where we have the following relations
Jk < Ik, lk<l/€+1’ k=0,1,...,p— 1L

In the following, we plan to add all the terms on the right-hand side of (3.2]) together to
yield the desired estimate. We only consider the case v > 7, and the situation v < § can
be similarly dealt with. We first deal with Z; in (3.2). If 6%, — Ggp_l <Z

2
0< 9?\, — 910,,_1 < 09\, — 9?1)_1 < 5 due to jp—1 < lp—1. Hence, according to [,—1 < Ny, the
following assertion can be obtained

we obtain that

(3.3) N0 sin(0) | — %) < nfrt T sin(6) | —6%) < v sin(d]) | —6R),

On the other hand, if § < 09\7 — 0?;,_1
Then according to the strict inequality [,—1 < Ng and 7 >
(3.4)

nNo*n Sin(@?p_l . 0?\/0) < _nNofnflnSin,y < _nNo*nfl < _nlp—lfn < 77119—1771 Sin(@lOIFl B 99\[),

< Dy(0(t)) < . It’s clear that sin(6% — 9?]0_1) > sin 7.

L > 1, we can obtain that
sin 7y

where the last inequality holds due to the fact sinxz > —1. Therefore, combining above

estimates (3.3)) and (3.4)), we obtain that

(3.5) pNo—n sin(@?%l —0%,) < -1 sin(G?ZF1 —0%,)-

Next, we apply (3.5) and the concave property of sinz in half circle to estimate the term
7, as follows:

(3.6) Iy <nlr="sin(6) | —0%) + T msin(0), , — 67 ) <l msin(6) , — 6%).

Finally, we repeat the similar argument in (3.5)) and (3.6)) to obtain that

No
S (" min sin(@) — 69)) < " sin(6), — 6%,) + 70 "sin(6) — 67)
pa— JENP(0)
Jj<i
<ofo s, Ry < sin(, — o8,
where the last inequality holds since Iy > n. Therefore we derive the desired result. U

Based on a priori estimates in Lemma [3.1] we next design a proper convex combination
so that we can capture the dissipation structure. Recall the strongly connected ensemble
Go, and denote by 0? (i=1,2,...,Ny) the members in Gy. Now we assume that at time ¢,
the oscillators in Gy are well-ordered as follows,

0Y(t) < 03(t) < ... <O}, (1)

Then we apply the process A; from 9?\,0 to 60 and the process Ay from 6 to 0?\,0 to
respectively construct

LY (Cr—1,n) With a%, = 0, @y, = n(2No — k +2)(ay + 1), 2 <k <Ny,

(3.7)
LYTNC jyr) with @) =0, afy =n(k+1+ No)(a) +1), 1<k<Np-—1,
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where Ny is the cardinality of Gy and 7 is given in the condition (1.2)). By induction, we
can derive explict expressions about the constructed coefficients:

No—k+1
i = Y. WARNo—k+2.j), 2<k< N,
(3.8) ;Zl
afyy =Y WAK+14No,j), 1<k<Np—L
j=1

Note that d?vo+1_i =al, i=1,2...,Nyg. And we set
(3.9) o = EéVO(C*k,No), 03 = Li(C14), 1< k<N

We define Q° = 0y — 0, where 0y = 09 and 0, = Q?VO. Note that QY(t) is Lipschitz continuous
with respect to t. We then establish the comparison relation between Q° and the phase
diameter Dy(6) of Gy in the following lemma.

Lemma 3.2. Let 0; = {69} be a solution to system (L.1)) with strong connected digraph Go.
Assume that for the group Gy, the coefficients EL% ’s and Qg s satisfy the scheme (3.7). Then
at each time t, we have the following relation

BDo(0(t)) < QU(t) < Do(B(t)), B =1~ 5

where n satisfies the condition (|1.2)).
Proof. From the convex combination structure of fy and 6, we immediately have

Q°(t) = fo — by < 6%, (1) — 62(t) = Do (6(1)).
We now prove the left part of the desired relation. In fact, we have the following estimate
about Q°(t):
(3.10)
Q°(t) = fo(t) — Bo(t) = fo(t) — O, () + O3, (1) — 61(1) + 62(£) — By (1)
0

= 0%, (£) — 09t) + B0 (t) — 0%, (£) + 69(1) — 8, (t)
= 8, (1) — 60(0) + ( iGN NZ ) oy (t))
’ aj +1 fﬁfl(a% Il @ +1)" ’
6% () No, g RUSCI b AP )
00 (1) — —No _ =29 g0y _ lz+1l9()
' ( 1 agy, +1 (e +1) 10 zz; I= z(al +1) 0
1 Mol a?
= 00 (1) = 01(0) + 2~ (O1(0) — O35 (1) Z 0 1l 1l il)w%) N 0)
o () — 6, <t>>+NOZ_1HZ 19 g0y — g0
Q9V0+1 1 No —~ iVoZ(al +1) 1 i )

where we apply the property that the coeflicients sum of convex combmatlon structure of
0o and 0, are respectively equal to 1. According to the design of coefficients ([3.7)) and .,
it is known that

ANy = a, i=1,2...,No.
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Thus, we immediately have

No—i -

Hz z+1al o =1 za?
No+1—

2 (af +1) poH i@ + 1)

Then we combine (3.10) and (3.11))to obtain that

(3.11)

No—1 i— 1CLO
@0<t>ze9vo<t>—9?<t>+a(l)1+1<0?< R0+ 3 5 =00 R 0)
H(a +1)

=1

(09(t) — 0%, (1))

No—1 No—i -0

0 0 =1 Y
(07(t) — 0N0(t)>+; lN01+1 z( )

No—1 i—1 -0 No—1 No—i =

:99\,0(75)*9?(75)7 (_0+1 Z Hl 11 19 )+ Zz; ;vo;ri 1(all+ 1)) (99%(15)*9?(15)),

where we exploit the property of well—ordermg, i.e.,
0 <6) <o6%,, 1<i<No.

_l’_

0+1

From , it is obvious that the value of coefficients _O’S is increasing as the subscript is
decreasmg, in particular,

a >ay,_1 =nNo+2), 1<I1<Ny— L.
Then for 2 < i < Ny — 1, we have the following estimates,

1 1 iy ay 1 1
-0 S ) i _ S —0 <
a+1 = nNo+2)+1" [[_,@+1) ~ a +1 n(No+2)+1’
No—1i
L 01. ay < 1 < 1 .
D@ +1) T a1 T n(No+2)+1
Therefore we immediately obtain that
2(Ng — 1) 2(Ng — 1)
0 0 0 0
t) > 0% (1) —0(t) — ———2— (6% 0 = Do(0(t)) — ——————Dy(0(t)).
QUE) 2 B, (1) = 08(8) = 5 (R () = 08(0) = Dol0(e) — et Do)
Since % < 727%3 = 5, it can be obtained that
2
Q1) = (1= D) Do(6(2)).
thus we derive the desired result. O

In the following, we exploit Algorithm A and Lemma [3.1] to estimate the dynamics of
the constructed quantity QU, i.e., the relative distance between £ °(Cy,n,) and E *(C1.Ny)5
which will be presented in the lemma below.

Lemma 3.3. Let 0; = {9?} be the solution to system with strong connected digraph Go.
Moreover, for a given sufficiently small D* < min {g, a}, assume the following conditions
hold,

(3.12)

1 2

« c
Do(6(0)) < v < v <, n>maX{sm71_3}v > <1+ a—D(G(O))) BD>"
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where a, 7y are constants and

D(Q)(X Ny nf A(2No, ) + 1)y

c= -
sin y

Then, the dynamics of Q°(t) is governed by the following equation
K sin 7y

SN (i A(2No, §)) +1

Q°(t) < D(Q) — Q°(t), tel0,+o0),

and the phase diameter of the graph Go is uniformly bounded by ~y:
Dy(0(t)) <, te]0,+00).
Proof. As the proof is rather lengthy, we put it in Appendix [A] O
Lemma [3.3] states that the phase diameter of the digraph Gy is uniformly bounded and

can be confined in half circle. We next show that there exists some time ¢y after which the
phase diameter of the digraph Gy enters into a small region.

Lemma 3.4. Let 0; = {09} be a solution to system (L.1]), and supose the assumptions of
Lemma [3.3 hold. Then there exists time to such that

Dy(0(t)) < D™, fort € [ty,+00),

where ty can be estimated as below and bounded by t given in Lemma [2.4]
o

sin y D>® — D(Q
“(zﬁ);lnm@zvo,nﬂwﬂ ()

(3.13) to < < t.

Proof. In Lemma we have obtained that the dynamics of quantity Q°(t) is governed by
the following equation

1 siny g
— Q°(t), te][0,+00).
SN i A(2Np, §) +1 Y

In the subsequence, we will find some time tq after which the quantity Q° in (3.14)) is uni-
formly bounded. We consider two cases separately.

(3.14) Q) < D) — K

o Case 1. We first consider the case that Q°(0) > SD>®. When Q°(¢) € [3D>,Q"(0)],
according to (A.15]), we have

sin 7y

() < D(Q) — & .
(3.15) s = (N (7 A(2N, 7)) + 1)7Q )
<D(Q) - & siny e o

N (o (i A(2Ng, §)) + 1)y

This means that when Q°(¢) is located in the interval [3D>, Q°(0)], Q°(t) will keep de-
creasing with a uniform rate. Therefore we can define a stopping time %y as follows,

to =inf{t > 0| Q°(t) < BD>}.

Then, according to the definition of tg, we know that Q° will decrease before to and has the
following property at tg,

(3.16) Q(to) = BD.
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Moerover, according to (3.15)), it is obvious that the stopping time ¢, satisfies the following
upper bound estimate,

Q°(0) — BD*

sin D>® _ D(Q :
H(Zfé’f 177jA(2N0J)+1)’Yﬁ )

Now we study the upper bound of Q° on [tg, +00). Coming back to (3.15]), we can apply
(3.16) and the same argument in (A.16) to derive
(3.18) Q°(t) < BD™, t € [ty, +00).

o Case 2. For another case that Q°(0) < D>. Applying the same analysis in (A.16)), we
get

(3.19) Q(t) < BD>®, t€ [0, +o0).
This allows us to directly set ty = 0.

(3.17) to <

Thus we apply (3.18]), , and Lemma to estimate the upper bound of Dy(6) on
[to, o0) as below
Q°(t)
p

On the other hand, in order to verify (3.13]), we do further estimates on ¢y in (3.20)). It
is known from (3.17)) in Case 1 and ¢y = 0 in Case 2 that

(3.20) Do(6(t)) <

< D%, fort e [tg, +00).

!
(3.21) to < . .
my D> — D(Q
T WjA(QNo,j)-H)’Yﬂ @)
Here, we use the truth that Q°(0) < a. Thus, from the assumption of x in (3.12), i.e.,
e (1. ¢ DO W ARN,j) + 1)y
a—D(6(0)) ) D>’ siny ’
it yields that the time ¢ty has the following estimate,
« a—D(0)) -
(3.22) to < _ = =1
(1 + =500y P(©) — D(Q) D(Q)
Thus, we derive the desired results (3.20]), (3.21]) and (3.22]). O

4. GENERAL NETWORK

Now, we focus on the general network, and provide a proof of Theorem for the
emergence of complete synchronization in Kuramoto model with general network containing
a spanning tree. According to Definition and Lemma the digraph G associated to
system (|1.1)) has a unique maximum node if it contains a spanning tree structure. From
Remark without loss of generality, G can be decomposed into a union as G = U?:o G,
where G, is a maximum node of G \ (Uf:_o1 Gi).

In Section [3] for the situation that d = 0, we showed that the phase diameter of the
digraph Gp is uniformly bounded and can be confined in a quarter circle after some finite
time. However, for the case that d > 0, G’s are not maximum nodes in G for k > 1. Hence,
we can not directly apply the same method in Lemma and Lemma [3.4] for the situation
d = 0. More precisely, the oscillators in G; with ¢ < k perform as an attraction source and
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influence the agents in G,. Thus we can not ignore the information from G; with ¢ < k when
we study the behavior of agents in Gy.
From Remark 2.1 and node decomposition, the graph G can be represented as

d
G=J G IG=Ns

k=0
and we denote the oscillators in G by Hf with 1 < ¢ < Nj. Then we assume that at time
t, the oscillators in each G are well-ordered as below:
(4.1) Or(t) <O5(t) <...< 0% (t), 0<k<d
For each subdigraph G with k£ > 0 which is strongly connected, we follow the process
in Algorithm A; and Ay to construct 3%1(05—1, ~,,) and élﬂ'l(QLl +1) by redesigning the
coefficients df and gf of convex combination as below:

(4.2)

Zl]\ikl(él—l,]\fk) with a]]c\/k = 07 affl = 77(2N -1+ 2)(@;c + 1)7 2<i< N

LANC) 141) with af = 0, afiy =+ 142N = Np)(af +1), 1<I< Ny —1,
By induction principle, we deduce that

Nj—l+1
aj 1= > WARN-1+2,j), 2<1< N,
i=1
(4.3) /
ko Vi :
afpr = WAL+ 142N = Ny, j), 1<1<Ne— 1
j=1
Note that a?\/k—i-l—i = gf, 1 =1,2..., Ni. By simple calculation, we have
Nj—1
(4.4) ar = > (W A@2N,j)), ’fgz WA2N, ), 0<k<d.
=1 =1
And we set the following notations,
(4.5) 0f = LM (Cwy), OF = LY(Cyy), 1<I< Ny, 0<k<d,
(4.6) O ==L (C1n,), O ==L (Cyp,), 0<k<d,
. k = — <k <d.

(4.7) Q" (t) Orilagck{H } 021121 {6;}, 0<k<d

Due to the analyticity of the solution, Q¥ (¢) is Lipschitz continuous. Similar as in Section
in the following, we will first establish the comparison relation between the quantity Qk(t)
and phase diameter Dy (6(t)) of the first k£ + 1 nodes, which plays an important role in the
later analysis.

Lemma 4.1. Let 6; be a solution to system (1.1) and assume that for each subdigraph Gy,
the coefficients EL;“ and gf of convex combination in Algorithm A satisfy the scheme (4.2).
Then at each time t, we have the following relation

BDL(O(1) < Q*(t) < Dy(6(1)), 0<k<d, B=1- f?
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where Dy (0) = OI%&LS%~C 1%2}]{\11{9;} - Oléliiélk lgllgr}vz{ﬁz} and n satisfies the condition (|1.2)).

Proof. Without loss of generality, assume that at time ¢, the oscillators in each subdigraph
Gy, are all well-ordered as below

(4.8) oy <65 <..<0y, 0<k<d

From the definition of the quantity Q*(t) in ([#.7) and the convex combination structure of
0 and 0, in (4.6]), it can be directly derived that

n k k k n : ) : 7
(4.9)  Op<On,, 8 207, Q1) = max{fi} — min {f;} < max {fy,} — min {6;}.

This means that

k) < — i mi - i
Q(t) < Dy (6(1)) 0123;3“%%%{9]} Oglgklgg}vi{ﬁj}

Next we will prove the left part of this Lemma. In fact, we denote the extreme phases of
the first £ + 1 nodes by

. P o= L 9.= mj i i <p< <q<k.
(410) Oy, o%?é‘m?}%’&{aﬂ}’ Gk Oglgklglgr;w{ﬂj}j 0<p<k, 0<qg<k

It is clear that Dy (0(t)) = 0, — 0. We consider two cases separately.

e Case 1. If the index satisfy the relation p = ¢, we have

Q"(t) = max {6;} — min {0;} > 0, — 0, = 0% — 07 +0, — 0§ +07 0,

In this case, applying the same arguments in Lemma [3.2], we obtain that

2(N, — 1)
(N +2)+1

> (1- i)Dk(G(t)) = BDy(0(t))-

2(Np — 1)

QN(t) = 0, (1) — 07(t) TN+ 241

(O, (1) — 07(1)) = Di(6(1)) D (6(2))

Here, in the above estimates, based on the construction of coefficients of convex combination
in (4.2)), we used the inequalities

(411) @ >an_ 1 =n@2N =N +2)2n(N+2), 0<k<d, 1<I<N—1,
and applied the symmetric property

(4.12) a1 =af, 1<I< N, 0<k<d
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e Case 2. Consider the case that p # ¢, then we have

(4.13)
Q’“()—Orgagk{e}—orglgk{ﬁ}>0 — 0, = 0p(t) — OF (1) + 0%, () — 01(t) +01(t) — 0,(t)
zggﬂvpo_e;f()wp(t)—ep()+9’1() 0,(t)
. AOTIN S R § e I
=0, (0 =010+ | Z 7+ T, 1(l+1 Z T ei(t) On, (1)
0%, () Ny g8 RCEC b
94 o q B =29 97 - “7—*-19{1
+ | 61t) pa Hhxg+401@) ;; Nl im0
1 Np 1 1—1
_ gD _pa D 1= 1al D1\ _ P
=0, (1) — 01(t) + Tl T (07(2) Z [T (af )(0i<t> o, (t))
b (6() — O (t)>+Ni1M(9q(t)—6‘?<t>)
dy, T S ey

where we apply the property that the coefficients sum of convex combination of §; and 6,
with 0 < k < d are respectively equal to 1. Moreover, we know from (4.10) that

67 > 061, i=1,2,...,N, — 1, 61 ge{(,p, i=2,...,N;—1,N,.
This implies that
(4.14) 07 608, > 00— 6% i=12... N,~1, 6—6!>01—0% i=2.. N,—1N,
Moreover, exlpoiting the symmetric property (4.12), we immediately have

Ng q Ng—t _q
IT,2 i1 I=1 az
Nq
—i(af +1) =1

Therefore, combining (4.13)), (4.14) and (4.15), we obtain that

(4.15)

Np—1 i—1 —

QM) = 85, (1)~ 010) + - (61(0) 0 ZHJ“”WM—%W
1 q D R qu1 la? q »
+ a1 1 CHOES eNp(t)) + ; ;Eili%al 1) (01(t) — eNp(t))
— %, (1) - 641

) Np—1 lla 1 Ng—1 Ng— zaq
=1 =1 1 Y4 q
— | = - + — + = (O () —01(t)).
Tt S Ty a2 e |
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We apply (4.11]) and estimate the items in the above brace respectively,

1 1 1 1
< <
al+1 " np(N+2)+1 al+1 - np(N+2)+1
i—1 _p
Hoa 1 L aci<n, -1,
[ (@ +1) a+1 nN+2)+1
Ng—i _q
OIS L aci<n, -1
S al+1) T Ayt nN+2)+1
Thus, based on the above estimates, we have
N,+ N, —2 N,+ N, —2
k D q P q D q P q
t) >0y (t)—0{(t) — —————(0% (t) — 07(t)) = Dr(0(t)) — ————Dp(6(t).
QHE) 2 03, (1) — 0111) — RS (05, () — 01(0) = Dy(ot) — T S SDe(0()

Since % < % = % and from (4.10)), we immediately have

2
QF(t) > (1 - E)Dk(O(t)) = BDk(0(1)).
Thus combining the above analysis, we derive the desired result. ([l

Now, we are ready to prove the main Theorem We will follow similar arguments
as in Section |3| to finish the proof. Actually, we will study the constructed quantity Qk(t)
which contains the information from G; with i < k, and then yield the hypo-coercivity of the
diameter. Following similar arguments in Lemma [3.3]and Lemma[3.4] we have the following
estimates for the first maximal node Gg.

Lemma 4.2. Suppose that the network topology contains a spanning tree, and let 6; be a
solution to (1.1). Moreover, assume that the initial data and the quantity n satisfy

1 2
(4.16) D) <a<y<m n>maX{Sinv’1—:}’

where o, are positive constants. For a given sufficiently small D> < min{Z,a}, if the
coupling strength x satisfies

(d+1)a (4c)%é
(4.17) R><1+a—D(9(O)) a1 P
where d is the number of general nodes and
A D5 W ARN, §) + 1)y . DQ)(X5 AN, 5) + 1)y

sin vy sin vy
then the following two assertions hold for the mazximum node Gy:
(1) The dynamics of Q°(t) is governed by the following equation
. K siny g
Q°(t) < D(Q) — =y=1— ; Q"(t), te€[0,+00),
S PARN, ) +1

(2) there exists time to such that

/BdDoo

Do(o(t) < g

for t € [ty, +00),
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where tg can be estimated as below and bounded by t given in Lemma
o

sin~y BitiDe
FErmaeny iy o~ P

< t.

to <

Since the proof is almost the same as that in Lemma [3.3] and Lemma [3.4] we omit its
details. Inspiring from Lemma we make the following reasonable ansatz for Q¥(t) for
0<k<d.

Ansatz:
(1) The dynamics of Q*(t) is governed by the following differential inequality,
(4.18)

. K sin 7y
Q) < D) - =y
Sy P ARN, ) 17
where we assume D_;(60(t)) = 0.
(2) There exists a finite time ¢; such that, the phase diameter Dy(0) of Uf:o g; is

uniformly bounded after tg, i.e.,

QF(t) + k(2N + 1)Dy_1(A(t)), t € [0,+00),

ﬁdkaoo
where t;, can be estimated as below
(k+ 1o _«a—D(0(0))
(4.20) tr < _ — <t=—"77——-°-
K siny 8D _ D(Q) D(9)

(N I ARN ) +1)y (4o)?

In the following, we will verify the ansatz respectively in two lemmas by induction criteria.
More precisely, suppose the ansatz holds for Q% and D(f) with 0 < k < d — 1, we will
prove that the ansatz also holds for Q**! and Dy 1(0).

Lemma 4.3. Suppose the conditions in Lemma are fulfilled, and the ansatz in (4.18)),

(4.19) and (4.20)) holds for some k with 0 < k < d — 1. Then the ansatz (4.18) holds for
k+1.

Proof. Similar as before, we will use proof by contradiction criteria to verify the ansatz for
Q**1. To this end, we first define a set below,
Bii1=4{T >0 : Dp1(0(t)) <~, Vtel[0,T)}.
From Lemma we know that
Dy41(0(2) < D(0(t) <a <7, Vtel0,1).

It is clear that ¢ € Bii1. Thus the set By, is not empty. We define T* = sup By 1, and
will prove by contradiction that 7% = +o0o. Suppose not, i.e., T* < +oo. It is obvious that

(4.21) E<T* Dpa(0(t) <v, VtE[0,T%), Dy ((T*)) = 1.

~ Since the solution to system ([L.1)) is analytic, in the finite time interval [0,7™), 6; and
0; either collide finite times or always stay together. Similar to the analysis in Lemma
without loss of generality, we only consider the situation that there is no pair of 6; and

f; staying together through all period [0,7*). That means the order of {6 fiol will only
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exchange finite times in [0, 7%), so does {8;}*74 . Thus, we divide the time interval [0, 7*)
into a finite union as below

[0,T) UJZ, Ji = [ti_1,ty).

such that the orders of both {6;}**} and {6,}*¥ are preseved in each interval J;. In the
following, we will show the contradiction in two steps.

x Step 1. In this step, we first verify the Claim (4.18) holds for Q¥*' on [0, T*), i.e
(4.22)

Q1(t) < D) — ! o

SN IARN, ) +1 7

As the proof is rather lengthy, we put the detailed proof in Appendix

QML (t) + k(2N +1)Dy(A(t)), on [0,T7).

x Step 2. In this step, we will study the upper bound of Q**! in ([4.22) in time interval
[tk, T™), where tj, is defined in Ansatz (4.19)) for Dy (). For the sake of discussion, we rewrite

the equation (4.22))

(4.23) ' )
Y41 —k sin 7y S PR _ ¢ *
A e (@10 - enu00) - £) . re )

where the expressions of ¢ and ¢ are given as below

(4.24)

. 2N + D)X (P ARN, §)) + 1)y d o D) (7 A@RN, j)) + 1)y
sin 7y sin 7y ‘

For the term Dy (0) in (4.23)), by induction principle, we have assumed that the Claim (4.19)
holds for Dy(0), i.e., there exists time ¢ such that

ﬁd—k:Doo
(4C)dfk ’

For the term £ in (4.23), from the condition (I.3), it is obvious that

(d+1)a (4c)%é (4c)%é
K > (1 + a — D(Q(O))) 5d+1Doo > ﬁd+1Doo’

(4.25) Dy(0(t)) < € [tp, +o0), ty <.

which directly yields that

¢ 5d+1Doo Bd_kDOO
(4.26) ;< (402 <4dikcdik71, where 0 <k<d-1, g<1, c¢>1.
Then we add the esimates of the two terms Dy (6) and % in and (| - ) to get

(4.27)
é Bdkaoo 6dkaoo l@dkaoo Bdkaoo
D (0(t —
cDy(0(1)) + L ¢ (d4c)d—F T qdkd—h—1 < 2(4c)d—k—1 < (4c)dF—1°

Since t, < t < T* where t is obtained in Lemma it makes sense when we consider the
time interval [tx, T*). Now based on the above estiamte (4.27]), we apply the differential

€ [tg, +00).
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equation (4.23) and study the upper bound of Q*+! on [ty, T*). We claim that
Bd—kDoo
(4c)d—k:—1

Suppose not, then there exists some ¢ € (¢, T*) such that Q**1(#) > M, 1. We construct
a set

(4.28) Q"1(t) < max {Qk“(tk), } = Myy1, tE [ty,T).

Cry1 = {ty <t <t: Q" (t) < My}

Since Q**1(ty) < My, 1, the set Cryq is not empty. Then we denote t* = supCp,q. It is
easy to see that

(4.29) t*<t, QFFL(t*) = My, QNt)> My, forte (1]
According to the construction of My 1, ([£.27) and ([4.29), it is clear that for ¢ € (t*, ]
sin~y < ftl ¢
Y Q10 - cu(o(0) - £
(55 (W ARN, ) + 1)y E
sin d=k poo
N S T (Mk+1_6d—k—1)§0'
(05 (WA@RN, 1) + 1)y (4c)

Apply the above inequality and integrate on both sides of ([4.23) from t* to £ to get
0 < Q"() = My = Q"1 (D) — Q1 (")
t sin 7y < &
< / —K — . Q () — cDy(0(1)) — ) dt <0,
= (SIS AN, ) + 1)y K
which is an obvious contradiction. Thus we complete the proof of (4.28)).

* Step 3. In this step, we will construct a contradiction to (4.21]). According to (4.28)),
Lemma 2.4] and the fact that

/Bd—kDoo
(4C)dfk71
it yields that

<D®, tp<t, QFl(ty) < Drpi1(0(tr)) < D(O(ty)) < a,

d—kDoo
QkJrl(t) < max{QkH(tk), (lic)d_k_l

Applying Lemma and the condition ([1.2)), we immediately have

} <max{a,D*} =«, te€tg,T7).

k+1 t a
Do) < L <8 <oy ven).
Due to the continuity of Dy 1(6(t)), we have
a
Dea(0(T*) = Tim Dy (0(t) < 2 <+,
k+1(0(T7)) t_}(le{})f k+1(0(t)) < 3 Y

which obviously contradicts to the assumption Dy1(0(T*)) =~ in (4.21)).

Thus, we combine all above analysis to conclude that T* = +oo, that is to say,

(4.30) Di1(0(t)) <, Yte]|0,+00).
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Then for any finite time 7" > 0, according to (4.30]), we can repeat the analysis in Step 1
to obtain that the differential inequality (4.18)) holds for @*+1 on [0,7). This yields the

dynamics of Q*t! in whole time interval as below:
(4.31)

Qk+1(t)§D(Q)— 1 sin vy

Ay, v :
>im1 MA(RN,j))+1 7
Therefore, we complete the proof of the Claim ([#.18)) for Q1.

QM 1)+ k(2N +1)Dy(0(t)), on [0, +00).

0

Lemma 4.4. Suppose the conditions in Lemma are fulfilled, and the ansatz in (4.18)),
(4.19) and (4.20) holds for some k with 0 < k < d — 1. Then the ansatz (4.19) and (4.20))
holds for k + 1.

Proof. According to Lemma we know the dynamic of Q¥ is governed by (4.31)). For
the sake of discussion, we rewrite the differential equation (4.31]) and consider it on [t, +00),

(4.32)
Qk—i—l (t) < —K

Cc

- (Q’““(t) — eDy(O(1) - ) L te [t +00),

K

sin 7y
(35 (W ARN. 1) +1)
where ¢ and ¢ are given in (4.24). In the following, we will find time tx,1 after which the

quantity Q¥+ in (£.32)) is uniformly bounded. There are two cases we need to consider
separately.

e Case 1. We first consider the case that Q*+1(ty) > BUID™  In this case, When

(4C)d—k— 1-
QFHL(t) € [AsrBr, Q5 (1)), according to (£27) and (£32), we have

Qk-i-l(t) < sin vy ( Bdkaoo Bdfchoo >

(CN (0 A@N, ) + 1)y \([de)?F1 - 2(de)d-F1
sin Bk poe

(350 (P AN, ) + 1)y 2(4e) 1
This means that when Q*+1(¢) is located in the interval [(fiz;ik%, QML (t1)], QFFL(t) will
keep decreasing with a uniform rate. Therefore, we can define a stopping time ;1 as
follows,

(4.33)

= —K < 0.

il 5dkaoo

Then, according to the definition of 3,1, we know that Q**! will decrease before t;,; and
has the following property at tj11,

6dkaoo
(4c)d—k—1 :

Moreover, according to (4.33)), it is obvious the stopping time ¢y satisfies the following
upper bound estimate,

(4.34) Q" (thar) =

d—k oo
QM (tr) — (ic)d%
(4.35) Tyl <

siny Bd—kpee + tk-

T ARN.j)+1)y 2040) TR
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Now we study the upper bound of Q*+! on [t 1, +00). Coming back to ([4.33),we can apply
(4.34) and the same arguments as (4.28) to derive

il ,Bd_kDOO
(4.36) Q1) < (i

On the other hand, in order to verify (4.20), we do further estimates on ¢ in (4.35)).
For the first part on the right-hand side of (4.35)), according to Lemma tr <t and the

fact that

te [thrlu +OO)

d—k yoo d+1 oo
B "D D

Q" (ty) < Dy (0(tr)) < D(0(tr)) < a, 2(4c) 1 7 (de)

we have the following estimates,

k‘+1 . 5d_kD°°
(4 37) Q (tk) (4c)d—F—T1 < o
’ sin y Bi—Fk D> siny Bit+ipoe D(Q) ’

N W ARN ) 1)y 27T NENT AN ) 1)y (d0)?
For the term ¢ in (4.35)), based on the assumption (4.20)) for ¢, we have

k+1 _ — D(0(0
(4.38) t < , (k + )O; - <t= ai(())
K — (D) D(9)
(CNSTIARN G+ (o)
Thus it yields from (4.35)), (4.37)) and (4.38) that the time ¢;41 can be estimated as below
(k+2)a
(439) tk+1 < Sy G D= D(Q) .

NENTWARN )+, o7

Moreover, according to (4.17)), the coupling strength « satisfies the following inequality
(4.40)

(d+ 1)« (4c)dé (k+2)a (4c)%e
<> (4 25 Tray) ine > (1 = ooty iper OSkd1

thus we combine (4.39) and (4.40) to verify the ansatz (4.20]) for k£ + 1 in the first case, i.e.,
the time t;1 has the following estimate,

a— D(6(0))
D()
e Case 2. For another case that Q¥T1(t;) < (ii)_:%. Similar to the analysis in (4.28)), we
apply (4.33)) to conclude that
d—kDoo
4.42 k(g < P2 D%
(1.4 Q) < i

This allows us to directly set tx11 = tx. Then, according to (4.38)), we know (4.39) and
(4.41]) hold, which finish the verification of the ansatz (4.20]) in the second case.

(4.41) thpr <=

te [tk, —f—OO).

Finally, we are ready to verify the ansatz (4.19)) and (4.20) for k£ + 1. Actually, we can

apply (4.36]), (4.42) and Lemma [4.1| to have the upper bound of Dy1(0) on [tg+1,+00) as
below

Qk+1(t) Bd—k—lDoo

(443) Dk+1<9(t)> < 3 < (4C)d_k_1 )

t e [tk+1, +OO),
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Then we combine (4.39), (4.41) and (4.43) in Case 1 and similar analysis in Case 2 to
conclude that the Claim (£.19) and ([£.20) are true for D*+1(9). O

Proof of Theorem Now, we are ready to prove the main theorem. Combining Lemma
[4.2] Lemma [4.3] and Lemma [£.4] we apply inductive criteria to conclude that the ansatz
(4.18) —([4.20) hold for all 0 < k < d. Then, we immediately obtain from (4.19) that there
exists time tg4 such that

D(0(t)) = Dq(0(t)) < D*°, fort € [tq, +0),
which yields the desired result in Theorem

Remark 4.1. In Theorem |1.1, we show that the phase diameter will enter into a small
region after some finite time, which means cos x s positive after the finite time. Therefore,
we can lift to the second-order formulation, which enjoys the similar form to Cucker-
Smale model with the interaction function cosx.

More precisely, we can introduce phase velocity w;(t) := Hz(t) for each oscillator, and
directly differentiate with respect to time t to derive the equivalent Cucker-Smale type
second order model as below

0;(t) = wi(t), t>0, i=1,2,...,N,
(4.44) Qit) =k Y cos(0(t) — ;1)) (w; () — wilh)),
JEN;
wi(O) = 92(0)

Corollary 4.1. Let 0; be a solution to system (4.44) and suppose the assumptions in Lemma
[£.3 are fulfilled. Moreover, assume that there exists time t. > 0 such that

(4.45) D(O(t)) < D™, t € [t.,4+0),

where D> < 5 is a small positive constant. Then there exist positive constants Cy and Co
such that
D(w(t)) < Cre @20t ¢ > ¢

where D(w(t)) = maxj<j<y{wi(t)} — minj<;<n{wi(t)} is the diameter of phase velocity.

Proof. We can apply Theorem and the methods and results in the work of Ha et al.
[22] for Cucker-Smale model to yield the emergence of exponentially fast synchronization
in and . As the proof is almost the same as in [22], we omit the details, and we
refer the readers to [22] for more infomation.

O

5. SUMMARY

In this paper, we presented a sufficient framework for the complete synchronization of the
Kuramoto model with general network containing a spanning tree. To this end, we followed
a node decomposition introduced in [22] to construct new quantities which are equivalent to
phase diameters. In a large coupling strength, when the initial data is confined in an open
half circle, we proved that the phase diameter of the whole ensemble will concentrate into
a small region, thus we can apply the method in [22] or [I1] which yielded that the com-
plete synchronization occurs exponentially fast. However, our analytical method restricts
the initial phase configuration to be confined in a half circle. It would be interesting to see
whether the restriction on the initial data can be replaced by a generic one. This interesting
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issue will be further dealt with in our future work.

APPENDIX A. PROOF OF LEMMA [3.3

We will split the proof into six steps. In the first step, we show that the phase diameter
of Gy is bounded by < in a finite time interval. In the second, third and forth steps, we use
induction criteria to construct the differential inequality of Q°(¢) in the finite time interval.
In the last two steps, we exploit the derived differential inequality of Q°(t) to conclude that
phase diameter of Gy is bounded by 7 on [0,+00), and thus the differential inequality of
Q"(t) obtained in second step also holds on [0, +c0).

% Step 1. We first define a set
By:={T >0: Dy(0(t)) <~, Vte[0,T)}.
According to Lemma the set By is non-empty since
Do(0(t)) < a <7, te[0,1),

which implies that ¢ € By. In the following, we set T* = sup By, and prove T* = 400 to
finish the proof of the lemma. If not, i.e., suppose T < 400, then we apply the continuity
of Dy(6(t)) to have

(A1) Do(6(t) <7, Vte[0,T%), Do(8(T*)) =~.

In particular, we have t < T*. According to the standard theory of ordinary differential
equation, the solution to system is analytic. Therefore, in the finite time interval
[0,T*), any two oscillators either collide finite times or always stay together. If there are
some 6; and 6; which always stay together in [0, 7], we can view them as one oscillator and
thus the total number of oscillators that we need to study can be reduced. For this more
simpler situation, we can deal with it in a similar method. Therefore, we only consider the
case that there is no pair of oscillators staying together in all period [0, 7). In this situation,
only finite many collisions occur through [0,7%). Thus, we divide the time interval [0,7™)
into a finite union as below

0,7 =J 7, Ji=[tie1,t),
=1

where the end point ¢; denotes the collision time. It is clear that there is no collision in the
interior of J;. Then we pick out any time interval J; and assume that

(A.2) 00(t) < O5(t) <...< O (1), ted.
% Step 2. According to the notations in (3.9)), we follow the process A; and Aj to construct
60 and Qg, 1 < n < Ny, respecively. We first consider the dynamics of 99\,0 = 9?\,0,

(A.3) O (t) =%, +5 > sin(0) —0%,) < Qu+x min sin(0) — 6%,).
FENR, (0) TN ©)
0

The last inequality above holds because of the negative sign of sin(@?(t) - 09\,0 (t)) due to
the well-ordered assumption ((A.2)). For the dynamics of 0_?%_1, according to the process A;
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and ZL?VO_I =1n(Np + 2) in (3.7), we have estimates for the derivative of é?vo—l as follows,

d (ag)vo].e?vo +9]OVO].) _ aS]VO*]-

0 30
% 0 — -0 19No + 5 19No—1

Byr =
o—1 —
ap,—1 T1 Any—1 Any—1

-0
ANG—1 . < 20 0
< —— | Qy+k min sin(d; —6y)

a(])Vo—l 1 ( jeN]QIO(O) J 0

1 .
el SR > s — o)
No—1 FENG, -1 (0)
Ny +2
(Ad) < Qu+ (G R sin(69 — 6%,)

apy—1 T 1 jeny (0

1 . .
+ Fig 7 Sln(@?vo - 99\;0,1) + Z Sln(@? - 09\[0)

-1 F JENGy—1(0)
J<No—1
U] . .0 A0 1 . 0 a0
<Oy +k—F——— min sin(f; — 0y )+ Kk———— min sin(6; — Oy _
a,_ +1 JENT, (0) (05 — On,) @Bt + LieAy 0 (05 — Onp—1)
Jj<No—1
1

+ Kk min  sin(69 — 6% ) +sin(6%, — 6% _ .

d?voil +1 (77]6/\[1%0(0) ( ] N0> ( NO No 1)

1,
We now show the term 7 is non-positive. We will only consider the situation v > 7, and
the situation v < § can be similarly dealt with. It is obvious that

min  sin(8? — 0% ) <sin(@2  —6% ), ky,= min j.
jE./\/-]%O(O) ( 7 NQ) — ( kNO No) 0 'E./\/-]%O(D)j

Note that ky, < Np — 1 since L_%g (Cny.N,) is not a general root. Therefore, if 0 < (9?\,0 (t) —
HI%NO (t) < 5, we immediately obtain that
7r
0 < 0% (£) = g1 (1) < O, () = O () < 5,

which implies that

I, < nsm(e,%NO — 0%,) +sin(0%, — 0%, _1) < sin(egNO —0%,) +sin(0%, — 0%,_1) <0

On the other hand, if § < 99\,0 (t) — GlgN (t) <, we use the fact
0

in(69% 0 :
n> sin~ and 51n(91v0 (t) — QENO (t)) > sin~,
to conclude that nsin(&I%N —0%,) < —1. Hence, in this case, we still obtain that
0

Ty < nsin(agNO —6%,) +sin(8}, —0%,_1) < —1+1<0.
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Thus, for t € J;, we combine above analysis to conclude that

(A.5) I, = nje%n(o) sin (67 — 6%;,) + sin(6%, — 6%, 1) < 0.
No

Then combining (A.4) and (A.5), we derive that

- 1
(A6) 0% | <Qu+r—=——|n min sin?—-6%)+ min sin@? 6% ;)
o1 A+ 1| et o 7 T ey o 7 T
J<No—1

% Step 3. Now we apply the induction principle to cope with 6% in (3.9)), which are
construced in the iteration process A;. We will prove for 1 < n < Ny that,

. NO
A7 Ot) < Qu + = min  sin(09(t) — 09(t
( ) n()— M Ka%—l—l; n jerjr\l/iQI(IO)SIH(]() z())
j<i

In fact, (A.7) already holds for n = Ny, Ny — 1 from (A.3) and (A.6). Then, suppose that
for n <1 < Ny where 2 < n < Ny, we have

No

- 1 .
A 0 <0 i—1 . . 0 _ g0
(A8) o) < Oty S i s~ ) |
J<i

we next verify that (A.7) still holds for [ = n — 1. According to the Algorithm A; and
(A-g8), the dynamics of the quantity 62 () has following estimates,

n—1

n—1 = dt

j0 d (agleg + 921) _ dp_y 9o 4 1
ap_y+1 ap o +17" ay o +1
al JRACAY
Qu + K Z 7'~ min sin(H? — 6%

n—1
ap_y +1 a +1 JEND(0)
j<i

IN

i=n

QA 4k Z sin(H? —6°_ )

n(2No —n +2) i . .00 0
K "™ min sin(8; — 0;
> | n i (69 —67)

j<i

1
+ kG Z sin(@? -0 )+ Z sin(@? -6 )
B JEN L 1(0) JENR_1(0)
j<n—1 j>n—1
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(A.9)
No
< Qum+ 0 =" min  sin(6Y — 69
M+ ZZ: T jens) 0 —6)
J<i
I3
N 1
+ " min sin(@? —6Y) | + k=——— min sin(6Y — 6°_
n1t1 ZZ T e @ : a1+ 1jen? () (5 = fn-a)
J<i j<n—1
K Mo
i . . 0 0 : 0 0
n P 1(No —n + 1)2 i njerjr\lfior(lo) sin(0; — 0;) | + | zo: sin(0; — 0,,_1)
=n j<’i ]eanl(O)
- j>n—1
Iy
In above estimates, we used the fact that
ad_; =n(2Ny —n +2)(@ + 1), Z sin(H? —0° )<  min sin(@? -6 ).
! j<7;;—11 jen—1

It is obvious that Z3 < 0, and thus we can neglect it. In the subsequence, we will deal with
74 and prove that

(A.10) 7, <0.
In fact, according to Lemma [3.1] we directly have
No A
(A.11) 77" min sin(6? — 6%) | <sin(6? —6%), k.= min  j.
; jento) fr RO e a(0)
J<i

Similar to the analysis in (A.5), we only deal with Z4 under the situation v > 7. Now we
consider two cases according to the relation of size between 9?\,0 — 0]% and 5.
o For the case that 0 < 99\,0 (t)—ﬁgn (t) < %, we immediately obtain that for j € N_,(0), j >
n—1,
v
0 < 67(t) — Oy (t) < O, (1) — O (1) < O, (1) — 6 () < 5

where we use the fact that &k, < n—1as £°(C,_n,) is not a general root. Then, we combine

(A.11) to have

Ty <n(Nog—n+1) Sin(@%n — 09\70) + Z sin(@? — 02,1)
FEND_1(0)
j>n—1

< (No—n+1)sin(0) —0%,) + (No —n + 1) sin(6}, () — 05— (t)) <0,

n—1
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where we apply the fact n > 1 and the monotone property of sine function in [0, T].

2
oFor another case that § < 09\,0 (t) — ngn (t) <, it is known that
> d sin(6%, (t) — 62 () > si
1> o and (R () 68, (1) > sinn,
which means nsin(@% - 9?\,0) < —1. Thus we obtain that
Zy <n(Nog —mn+1) sin(@%n —0%,) + Z sin(ﬁ? -6 )
FENT1(0)
j>n—1
—(No—n+1)+(No—n+1)=0.
Therefore, ) holds at time t € J;. Now we combine ) and m to get
. 1 No
0P <O+ == min sin(0? — 69) | + min sin(A? —6°_
n—1 > Y¢M @n_1+1 ; n ]E/\/O() ( ) jENS,l(O) (] n 1)
J<i j<n—1
ORI
= Q4+ K= == min sm(@ — 6
no1 1.5~ JEN?(0)
71<i

So far, we complete the proof of the claim (A.7]).

% Step 4. Now, we set n =1 in (A.7) and apply Lemma to have

No
1 ,
07(t) < Qur + K5 n"~! min Sln(ﬁo( t) —0%(t))
1 0
(A.12) a + 1o Jej\i ©
1 . 0 0 . 190 0
< Qn + /fa(lj 1 sin(0;, — On,) = Qu + na? 1 sin(0] — Oy, ),

where k; = min j = 1 due to the strong connectivity of Gy. Similarly, we can

€Uy NP (0)
follow the process As to construct 6% in (3.9) until & = Ny. Then, we can apply the similar
argument as before to obtain that,

No
d 1 ;
—0% (1) > QU + h——— No=i ‘max sin 90 —09(¢
@63, 1) T |7 @0 - 00)
(A13) j>t

1 1
> Q + h———sin(f)  —6)) =Q sin(6%, — 69,
gy S = 00) = O+ sin(0R, — oD
where we use the strong connectivity and the fact that ky, = max_ eUM A0 (0 ¥ j = Ny and
1=1

g?vo = a). Then we recall the notations 0y = 69 and 6, = 6% No» and combine (A.12)) and
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(A.13) to obtain that
) d -
0 .90 0
Q°(t) = a(Qo —6y) < D(Q) - /{(_L(l) 1 Sln(QN0 —07)
1
<D(Q) - x sin(0%, — 69),

ZNO 1(77]A(2N07 )) +1

In the above estimates, we use the property

No—1
aj = Y (P ANy, j)).
j=1
Since the function % is monotonically decreasing in (0, 7], we apply (A.1]) to obtain that
) sin 7y
sin(0%, — 69) > — (6%, — &Y).
Moreover, due to the formula Q°(t) < 6% (1) — 69(t), we have
. 1 sinvy, g 0
Q(t) < D(Q) — & (0N, —01)
S W ARNe ) +1
(A.14) 1 sin
< D(Q) - TQ), te .

> iy v | .
23:1 (M A(2No,j)) +1 7

Note that the constructed quantity Q°(¢) = 8o (t) — 0(t) is Lipschitz continuous on [0, T*).
Moreover, the above analysis does not depend on the time interval J;, [ =1,2,... r, thus
the differential inequality (A.14) holds almost everywhere on [0, 7).

* Step 5. For a given sufficiently small D> < min{Z, a}, based on the assumption of the
coupling strength in (3.12)), we have

<1 - a > g 1 D) 0 A(2No, §) + 1)y

(A-15) D)) ) BD> ~ BD> sin~y

where '
D(Q)(3527 W A2No, ) + 1)y
sin 7y '
Next we study the upper bound of Q°(¢) in the period [0, 7). Define
My = max {QO(O),ﬁDOO} .

c=

We claim that

(A.16) Q°(t) < My for all t € [0,T%).

Suppose not, then there exists some ¢ € [0, T*) such that Q°(#) > My. We construct a set
Co:={t <t]|Q°¢t) < My}.

Since 0 € Cy, the set Cy is not empty. Then we denote t* = sup Cy, and immediately obtain
that

(A.17) tr<t, Q(t") =My, Q°t)> M, forte (t*1.



SYNCHRONIZATION IN GENERAL DIGRAPH 29

According to the construction of My, (A.15) and (A.17) , it is known the following estimates
hold for t € (t*, ],

1 siny
D(Q) — y
W TR T ARN ) +1 7 T

1 sin vy
YN P A2No,§)) + 1 Y

Then, we apply the above inequality and integrate on the both sides of (A.14) from t* to £
to get

<D) -k BD> < 0.

0<@B-Mo =) < / (D(Q)_szol(nmtz]vo J)+1 Snvw
& j=1 ;

which is an obvious contradiction. Thus we complete the proof of (A.16]).

Q(t))dt <0,

* Step 6. Now, we are ready to show the contradiction to (A.1]), and thus it implies that
T* = +o0. In fact, due to the fact that 8 < 1, D® < o and Q°(0) < Dy(6(0)) < «, we have
Q°(t) < My = max {Q"(0), BD*} <, t€[0,T").

Then we apply the relation BDg(0(t)) < Q°(t) given in Lemma and the assumption
n > 2= in (3.12) to obtain that

Y
Q)  « 2

< =<7, te€[0,T*) where 3=1-— —.
5 <5 <7 [0,T7) ;

As Dy(6(t)) is continuous, we have

Do(0(t)) <

Do(0(1)) = lim  Do(0(1)) < % <7,

which contradicts to the situation that Dy(0(7™)) = v in (A.1). Therefore, we derive that
T* = +o00, which yields that

(A.18) Dy(0(t)) <, forallte[0,+00).

Then for any finite time 7" > 0, we apply (A.18)) and repeat the same argument in the

second, third, forth steps to obtain the dynamics of Q°(t) in (A.14)) holds on [0,7). This
yields the following differential inequality of QY on the whole time interval:

: 1 siny g
Q°(t) < D(Q) — k== — : Q°(t), te0,+00).
SN AN, ) + 1
Thus, we complete the proof of this Lemma. ]

APPENDIX B. PROOF OF STEP 1 IN LEMMA (4.3

We will show the detailed proof of Step 1 in Lemma, Now we pick out any interval J;
with 1 <1 < 7, where the orders of both {6;}*¥} and {,}"74 are preseved and the order of
oscillators in each subdigraph G; with 0 < ¢ < k + 1 will not change in each time interval.
Then, we consider four cases according to the possibility of relative position between U?:o g
and Ggy1.



30 ZHANG AND ZHU

B.1. Case 1. Consider the case that

otmax {0} = max {0},  min {0;}= min {6;} inJi.

The comparison relation in this case is showed in Figure [I| In this case, Q**1(t) = Q*(t),

D) <y<n

min  min {#!} min {8, g, ax {0, max max {0}
ng,gkvng,g.\',{/}n«\,q»{*‘} By 11 Or+1 [,',",‘L‘A{” 0<isht 1SN, )

F1GURE 1. The comparison relation in Case 1

by the assumption of induction principle and from (4.18]), we obviously have

d d
ZQM(1) = ZQM®), te ., |
. K sm’y k o
< D(Q) ST TAGN )T Q¥ (1) + k(2N + 1) Dy (0(1))
< D(Q) - . TRYQM(t) + k(2N + 1) Dy (6(1)),

ST A@RN ) +1 Y

where we use Dy_1(0(t)) < Dy (A(t)). Thus we obtain the dynamics for Q*+1(¢) in (4.18))
on J;.

B.2. Case 2. Consider the case that
Ogrlng,g;l{@} = Ok+1, 0§?2£+1{Qi} =01 in J.

The comparison relation in this case is presented in Figure For this case, we assume

Din(B) <v<m

min  min {68!} @, min {6, } max {f;} ] max  max {0
[)ﬁrshﬂlg;g\]{ i O (2B 0<i<k' O (5N m\:.\,{ i

FIGURE 2. The comparison relation in Case 2
that
k+1 k+1 k+1
077 < b, §-~-§0Nk+l, on Jj.

% Step 1. Similar to formula (A.7), we claim that for 1 < n < Ngyi, the following
inequalities hold

d -
%Qﬁ"‘l(t) < Qu + wSEDy(60(1))
(B.1) 1 N1
+ Kk E = min  sin(@¥(¢) — 95“ t ,
antt+1 & T et ) ;) )

J<i
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where S, = ko N;. In the subsequence, we will prove the claim (B.1]) by induction.
i=0 q ) p y

% Step 1.1. As an initial step, we first verify that (B.1)) holds for n = Ny1. In fact, the
dynamics of gﬁ,:il is given by

d g1 _ 4 et k1 okl _ gkl
%QNIC+1 - %91\%“ - QNk-H Tk Z Sm(gj - 0Nk+1)
JENNT L, (et1)

(B2) "

o Estimates on Z; in (B.2). We know that va':il is the largest phase among Gi11, and

all the oscillators in Ufiol g; stay in half circle before T*. Therefore, it is clear that

sin(0 7! — 031 ) <0, for j e N (k+1).

Then we have

(B.3) Z sin(05T — 95! ) < min  sin(05T — 95! ).
J k+1 jG/\/k+1 (k+1) J k+1
je/\/ﬁ:il(kﬂ) Ngq1

o Estimates on Z3 in (B.2)). For 0; which is the neighbor of 9%:11 in G with 0 <[ <k,
i.e., j € N1 (), there are two possible orderings between 6% and 0% -
J N1 J Nyt
If Hé. < 9%“ , we immediately have
k+1

sin(0; — 031 ) <0.

If Hé. > 9%“ , according to the fact that
k+1

(B.4) O, >0;>0,>0], 0<i<d,
we immediately obtain
KEL > 0pg = h;} > 9;} > min {6,} > mi in {6%}.
B Oy 2 e = o {0} > gpax 6} > pip (6} > Join, | 20, 163
Thus we use the property of sinz < z, x > 0 and (B.5] to get
ol k1 I pk+1 ! . . ;
(B.6) sin(0; — HN'ZH) <60;— QN'ZH <0;— oDin, 151131}\71{9;} < D(6(t)).

Therefore, combining the above discussion, (B.2)) and (B.3]), we obtain that

d -
—gktl < i in(prtl — ghil S, D (0(1)).
AL S i 5L D00

Thus we have that (B.1]) holds for n = Ny1.
% Step 1.2. Next, we will apply inductive criteria. We assume that (B.1)) holds for n with

2 <n < Niy1, and we will show that (B.1]) holds for n — 1. According to the process Aj,
we have
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(B.7)
_k+1 gk k+1 k1
gt — @ [ n D00 n+1 gert 1 gt
ay’] R k k
< —— | Qu+Kr—F— ™™ min  sin(@¥TH(t) — 08T (1)
dﬁﬂ +1 artl 41 Zz; FENFH (k1) J !
j<i
gkt
+ 7:%5ka(9( ))
)
an+1 +1

1
+ | O 4k Z sm(t9kJrl ol +I€Z Z sin(fL — 9% 1)
Ap—1

—k+1
1 FENF T (k+1) =0 jeNFr )
Ng11
77(2N Nit1 — Sk) in - okl k+1
<Qu+k n min  sin(077(¢) — 077 (¢))
j<i
T11
n(N —n+2—|—S plas
+r ’““_,M k) 3 min  sin(0¥ () — 051 (1))
Gp—1 i=n EAGHJ(k+1)
j<i
1
Sy p— sin(05 — 081y + sin(@h+1 — gkl
&kfi—i-l . kzl: (] nl) ‘ kzl: (j nl)
" FJENFE (k+1) JENFTH(k41)
ji<n—1 j>n—1
Tia Tis
7,6“ Z > sin(0h - 05F )+ak+17+1ﬁSka(0( ),
Nk+1() n—1
114

where we use the fact

att =n2N —n+2)@* +1), 2N —n+2=(Npy1 —n+2+S;) + 2N — Npyi — Si.
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o Estimates on Z7; in (B.7)). We apply the strong connectivity of Gx11 and Lemma
to obtain that

Ni41
(B.8) Z n'" 'ENﬁilI(lk—&-l) sin(@?“(t) — 05t @) | < Sin(elz‘::l - 9?\/—;&1),
i=n J i
J<i

where k, = min

geuﬁjl/\fi’““(kﬂ)j <n—1. And it is obvious that Z1; < 0.

o Estimates on 712 in (B.7)). For the term Z;5, we apply direct calculation to obtain that

(B.9) Ty = E sin(&é‘fdrl — gkl < ililln sin(@échl — gkt
: jEN, 1 (k+1)
N+ (i I -1
! j?rzl—(l ! gen=1

¢ Estimates on 773 in (B.7)). For the term Z;3, the estimate is almost the same as (|A.10)).
Without loss of generality, we only deal with 713 under the situation v > 7. According to

(B.8)), we consider two cases depending on comparison between Gf\fzil — 9%“ and 7.
n

i) For the first case that 0 < 651 — @51 < T we immediately obtain that for j €
. Nit1 kn 2
Nnjll(k + 1)a j >n— ]-a

s
(B.10) 0 < OFFH(t) — 0,75 (1) < ORTL(0) — 01 (0) < ORTL () — 5T () <

Then it is known from (B.8g]), (B.10) and n > 2 that

N1
i . . okt1 k+1
N(Nkr1 —n+1) n'™"  min  sin(07(¢) —677(¢)) | +Zus
; je/\ffﬂ(k—l—l) J 7
J<i
. k k : k
< N(Ng1 —n+1) Sm(efc:l - eNﬁl) + Z Sln(ejﬂ — 6t
JENFH (k41)
j>n—1
. k k . k k+1
< (Ngy1—n+1) sm(&l-c:l — QNJI:L) + (Ngp1 —n+1) sm(@Nt}rl -0t
<0.

(ii) For the second case that § < 05“\[:41_1 - 9£+1 < 7, it is known that

. k41 k+1 .
(B.11) n > = and surl(@]\fl:+1 — 01?;: ) > sinvy,
which yields 77sin(0]’-:'H — G?V:il) < —1. Thus we immediately derive that
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Ng41
N(Nky1 —n+1) Z 7™  min sin(@f“(t) — 05 | + s
= FENFT (k+1)
J<i
<(Nepr —n+Dsin(@F =0y )+ > sin(0]F - 051
JENFT (k+1)

j>n—1

Therefore, we combine the above arguments in (i) and (ii) to obtain

Nkt
i—n . ookl gkl
(B.12) N(Ngp1 —n+1) Z n jeN,’rvEllI(lkH)Sm(ej —0;7) | +Zi3<0.
=n T
Jj<i

o Estimates on 714 in (B.7). For the term Zj4, there are three possible comparison be-
tween 6! with 0 <1<k and 657}

(i) If 6! < 071}, we immediately have sin(6} — 651) < 0.
(i) If 0% < Qé < vatil, we consider two cases separately:

(a) For the case that 0 < vaﬂ — 051 < T it is clear that
k+1 kn 2

I pk+l k+1 _ pk+1 k+1 _ pkt1 - T
0 <6; anlgeNkH anlgeNkH ‘91’% §2.

Thus from the above inequality and (B.8)), we have

Ni41
n Z nm min Sin(ﬂf“(t) — 05 | + Sin(@é- — gkt
—n JENFT (k+1)
j<i

< sin(0F — 0N ) +sin(6) — 051))

<sin(0F — Oy ) +sin(Oy -0t = 0.

(b) For another case that § < A GEH < 7, it is known from (B.11) that

Ng11

Ni41
- : okl k+1 gl gkl
n n'™"  min  sin(07(¢) — 677(¢) | +sin(0; — 0"
3l PR GO RT Al Lo gty
J<i

< psin(@F T — R )+ sin(6) — 6571
<

Ni41
—14+1=0
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Hence, combining the above arguments in (a) and (b), we obtain that

Niq1
- . . k k : ! k
n Z a njej\/gillr(lkﬂ) Sln(gjﬂ(t) — 7)) | + sin(¢; — Op 1) < 0.
i=n g
J<i

(iii) If 9; > vatil, we exploit the concave property of sine function in [0, 7] to get
I k+1 .ol k+1 . (pkt1 k+1
(B.13) sin(0; — 05t < sin(0; — GNJ,:H) + sm(HNJ]:Jrl —0:11).

For the second part on the right-hand side of above inequality (B.13|), we apply the same
analysis in (ii) to obtain

Ni41
i—n : gkl _ gkl gkl gkl
nz n je/\/.’r“r‘*l'llr(lk+1)81n(9j 0;7") | +sin(0y,,, —0,71) <0.

For the first part on the right-hand side of (B.13)), the calculation is the same as the formula
, thus we have

il gkl I _ pk ! . . ;
sin(0; — HNJ]:H) <0;— HN':L <0;— [, 15115}\[2{9]} < Di(0(1)).

Therefore, we combine the above estimates to obtain

Ng41
NSk 77" min  sin(@8TL(t) — 0P () | + T
Zz; JENF ky1) T ‘
J<i

(B.14)

k
: k+1 k . l k+1
< nSk sm(@,—czr - QN—:L) + E E sin(0; — 05 t)
1=0 ;e Ark+1
JEanl(Z)

< Sk Di(0(1)).
Then combining (B.9)), (B.12)), (B.14)) and coming back to (B.7)), we obtain that

Nk
d - n .
OFl < Qu+ v ™" min  sin(@FTL — gF Y
e arty+1 Zz; JENFT (k+1) '
j<i
1 k+1 k+1
+Kk———— min  sin(@5" -5 ])
af Tl + Ljen (k) "
j<n—1

1
Gp—1 1

+ ———=kS.DL(0(t)) + ———rSLDr(0(¢
1+1’1k k(0(t)) +1’“ch k(0(1))

—k —k+1
an—tl ap_1
Nk
1 A
=Qu+k i=(n=1) min sin(0F T — 05ty | + kS DL(0(1)).
1,2 [T i ST 0 | RSD0()

J<i
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This means that the claim (B.1]) does hold for n — 1. Therefore, we apply the inductive
criteria to complete the proof of the claim (B.1)).

* Step 2. Now we are ready to prove (4.18) on J; for Case 2. In fact, we apply Lemma
.1 and the strong connectivity of Gy41 to have

Ni41
i—1 . gkl okt okl gkl
n' min  sin(07 —677) | <sin(67" —0 )
; JENF  ky1y Y ' ' Nt
J<i
From the notations in (4.5)) and (4.6)), it is known that
pk+1 _ § k41
07 =01, O =000,
Thus, we exploit the above inequality and set n = 1 in (B.1]) to obtain
(B.15)
d - d -
il — 79k‘+1
dt T de !
Ngt1
<Oy +Krk—F/—7— 7t min  sin(@8T — 08T | 4+ kSLDR(A(1))
c‘z’f+1 +1 ; FENFTL (k41) / !
Jj<i
gkl okt
< Qu + kSEDE(0(1)) + sin(07"" — Oy, )

o
aktt 41

We further apply the similar arguments in obtaining the dynamics of ;.1 in (B.15)) to
derive the differential inequality of 8, as below

d
(B.16) 012 O+ 5 sin(O1 — 081 — kS Dy(6(1)).

a’f“ +1 Net1
Due to the monotone decreasing property of 22 in (0, 7] and from (4.21)), it is obvious that

sin 7y (9k+1 k+1)‘

Nit1 1

Then we combine the above inequality, (B.15)), (B.16|) and (4.4) to get

i d - 2 .
Q" (1) = £(9k+1 —0,11) < D(Q) - e Sm(gﬁc\/ﬁl — 01Y) + 265, Dy (6(1))
1

. k+1 k+1
SIH(GN—:H — gkt >

1 Siny pi1 k+1
<D(Q)— FGW S (Oxrr, — O + 268k Dy (6(1))
1 siny ;.1
< D) — k5 —LQ" () + 2651 Dy (0(t
Q) T (t) kDr(0(t))
. .
< D(Q) — ST OFL(1) 1+ k(2N + 1)Dy(0(t)), t € Jy,

heN=—1, .
Zj:l (n?A(2N,j))+1 7

where we use the fact that Q+1(t) < 051 (+) — 05+1(¢). Thus we obtain the dynamics for

N1
QH1(¢) in (ETS) on Ji
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B.3. Case 3. Consider the case that

0;} =40 0} = 0, J,
0<I?<a1§{+1{ i} = Ortr, o<n21?+1{ it = mm{ it on i

The comparison relation in this case is presented in Figure [3] For this case, without loss

Dr1(0) <y <m

0'} min { max {0 7] max - max [
0< ““&1&"31 {3} u/,q{”} [ Hv:m{ i} Ok itk {J}

F1GURE 3. The comparison relation in Case 3

of generality, we set

= <q<
0,= Orglgk{e} where 0 < ¢ < k.

We further assume

Oyt <o3tt <. <R, <oy <.. <6y i

It is obvious that §, = ming<i<4{f;}. Thus we apply the same arguments in Case 2 to
obtain

d |
(B.17) o —0,> Qp + Fg T4 Sln(@?vq —01) — kSy—1Dy—1(6(1)).

In the subsequence, we prove on J; in two sub-cases depending on the comparison

between #7! and max max {01}
0<i<k 1<j<N; = 7
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e Case 3.1. If 08! < max max {9;}, then we combine (4.21)), (B.15) and (B.17) to get

T 0Kk 1SN

. d -
Q" (t) = 77 O+ = 0g)

< D(Q) + kSpDr(0(t)) — b sin(@f\,‘gl — gkt
a; " +1
kg (8, = 00 + K5, Dy 600)
< D(2) — kmin ! ! (sim(@l€+1 — 0% 4 sin(0%, — Gq))

+ K(Sk + Sg—1)Dr(0(1))

1 1 i
< D() — kmin { } il <0k+1 — 07T+ Q?Vq - 9(11)

attyral +1[ oy \Nen
+ 1Sk + Sy 1) De(0(1)) ' 1 1 (siny (07} — o
Aok T 2g-1) 5k o attr1al+1( v 0Lick 125N, I Nq

. 1 1 sin vy i q
min { abtty1al+1 } v <013?<}3€ 225 05— O,

< D(Q) — xmin { ! L } S”;'V (ohr", = 01) + K(Sk + Sy ) Di(6(1))

drarf o e
1 1 sin y
+ Kk min , = D (0(t
{a’f+1+1a?+1} y D)
1 sin 7y

iy v .
> o1 (AQRN,j))+1 7

< D(Q) — QML (t) + k(2N + 1)Dr(8(t)),  in Jj.

In above estimates, we apply (4.4), (B.4]) and the fact that

- 1 1 sin 7y
k41 o k+1 q 3
t)=260 -0 <@ -0 d m ; <1
QY (t) = Opt1 — 0, <Oy, — 0 an m{a'f“ﬂ ai“rl} v T
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e Case 3.2. If 0k+1 > max max {01} similar to Case 2, we can apply the induction
0<i<k 1<j<N;

principle to prove that for 1 < n < N1,

N1
d 1 ,
—F < Q4+ 77" min  sin(@Ftt — gFF!
de " an't 41 Z‘: FENT T (k1) | o
J<i
k+1
(B.18) 7k+1 Z Z sin(6 —9 )
= 0 jeNz (1)
Niy1 Hz L okl
r=n %r k+1
S I DD SR
i=n-+1 r=n =0 ENk'H()

Since the proof of (B.18]) is similar to that of (B.1]), we omit its details. In particular, we
set n =1 in the above inequality (B.18) and apply Lemma to get
(B.19)

d - d 1 .
—Opp1 = O < QM+/£T sin(OF 1 — 9%211) _k+1 Z Z sin(gh — g8+
dt dt ! +1 * +1 et
=0 jeNT + )
Ni+1 Hz 1 ckt1
D ol [ L L S SRR
iz \ =@

=0 ENIC+1()

Due to the situation that 0k+1 > max max {0 }, it is known that for 0 < < k, the term
0<i<k 1<j<N;

s1n(9§ — 051 in (B19) is non-positive. And according to the spanning tree structure, the
neighbors set of Gi1 in Uf:o G; is non-empty,

N1 k
U UM*o #0
=1 [=0

this means that there must exist some 6!, belonging to Uf:o G, and 65! such that 6, €
NEFL(1). Moreover, from ([4.2)), it is clear that for the coefficients in the last term in (B.19)
satisfy

[T} k! T2} aktt i—1

r= — r=1% ) .
oG D) i@y LN —r D> with 20 < Ny,
" " r=10r4 r=1
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Then we combine the above estimates to have

(B.20)
d - 1 )
GOkt S Ot A sin(677 - O ) + —k+1 . Z > sin(6— 61"
ap -+ 179 FENFFL(1)
1 Nit1 z 1 k+1
kt1
+“dk+1+1 Z T k+1 Z Z sin(f; —6;7")
1 =2 = 2 l 0 eNk+1()
1
< Qy + K—————sin Ol _ghtl y Lo~ in(p! 9k+1
a’f+1+1 ( 1 Nk+1) C—Lllf+1 +1 (6 )
Loosiny (e gkt Loosiny /e g
<Oy — b (9+ —0+)—/<57 <9+—9)
a1y e T Aty v U n
L osiny (i k1 | phtl i
S e (‘)Nm‘el FOT - x| ma {6}

1 siny (g1
M %w+17(Nm e 22, 10} )

where we exploit the property

orFt — 9l > ¥ — max max {9 }.
0<i<k 1<j<N;

Then we combine (B.17)) and (B.20]) to obtain that

. 1 sin 7y

< D(Q) — kmin ! ! siny 0%l — max max {9 + 9’1 — 6!
- aktt417af +1 ol Nit1 0<i<k 1<j<N,

1 1 sin y
— kmi 0y — 6%,
F"mm{a’f“+1’a‘{+1} v <013?<Xk1§}3}z{v{ ! >

1 1 i
+ /ﬂnin{ » = } it} <max max {6} — 6%, > + KkSg—1Dg—1(0(t))

a1 af +1 v \0<i<k1<5<N;
. 1 1 SNy (i1
< D(Q) — , (9+ —GQ) ON + 1) Dy (0(t
< D(Q) Kmm{a’f“+1 a‘{+1} 5 New1 Y1 + k(2N + 1) Dr(0(t))
1 sin 7y

= D) - "SI WARN, ) +1 3

QM (t) + k(2N + 1)Dy(0(t)),  in J.

B.4. Case 4. Consider the case that

o2 100 = e (O auip, 0} =0y in

The comparison relation in this case is showed in Figure 4} For this case, the analysis is
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Dpa(0) <y <

i i i min {6 7] max {6, max max {§'
[)<Iylilzl+1|(lil,l£“\"(”J} et ”/"‘\k{ it Oret1 nmﬂ{ i n<.ik+|u,it',\,{ )

FI1GURE 4. The comparison relation in Case 4

similar to that in Case 3. Therefore, we omit the details of discussion.

B.5. Conclusion. Since all analysis above do not depend on interval J; with 1 <[ < r,
thus we combine all analysis in Case 1, Case 2, Case 3, and Case 4 to derive that

Q"(t) < D(Q)—+

1 sin 7y
SN AERN, ) +1 Y

Q* (1) +r(2N+1)Di(6(t)),  in[0,T%).
O
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