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Abstract. In this paper, we study the complete synchronization of the Kuramoto model
with general network containing a spanning tree, when the initial phases are distributed
in an open half circle. As lack of uniform coercivity in general digraph, in order to capture
the dissipation structure on a general network, we apply the node decomposition criteria
in [22] to yield a hierarchical structure, which leads to the hypo-coercivity. This drives
the phase diameter into a small region after finite time in a large coupling regime, and the
uniform boundedness of the diameter eventually leads to the emergence of exponentially
fast synchronization.

1. Introduction

Emergent collective behaviors in complex systems are ubiquitous around the world, such
as aggregation of bacteria, flocking of birds, synchronous flashing of fireflies and so forth
[7, 8, 9, 27, 31, 32, 33, 34], in which self-propelled agents organize themselves into a particular
motion via limited environmental information and simple rules. In order to study the
driven mechanism of the emergence of collective behaviors, various dynamic models have
been proposed in recent years such as Cucker-Smale model [6], Kuraomoto model [24], and
Winfree model [34], etc.. These seminal models have received lots of attention and have
been systematically studied due to their potential applications in biology and engineer, to
name a few, modeling of cell and filament orientation, sensor networks, formation control
of robots and unmanned aerial vehicles [25, 27, 28], etc.

In the present paper, we focus on the emergence of synchronization in Kuramoto model
with general interaction network. The terminology synchronization represents the phenom-
ena in which coupled oscillators adjust their rhythms through weak interaction [1, 29], and
Kuramoto model is a classical model to study the emergence of synchronization. The
emergent dynamics of the Kuramoto model has been extensively studied in literature
[2, 3, 5, 13, 14, 16, 17, 18, 19, 23, 26, 30]. In our work, to fix the idea, we consider a
digraph G = (V, E) consisting of a finite set V = {1, . . . , N} of vertices and a set E ⊂ V ×V
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2 ZHANG AND ZHU

of directed arcs. We assume that Kuramoto oscillators are located at vertices and interact
with each other via the underlying network topology. For each vertex i, we denote the set
of its neighbors by Ni, which is the set of vertices that directly influence vertex i. Now, let
θi = θi(t) be the phase of the Kuramoto oscillator at vertex i, and define the (0, 1)-adjacency
matrix (χij) as follows:

χij =

{
1 if the jth oscillator influences the ith oscillator,

0 otherwise.

Then, the set of neighbors of i-th oscillator is actually Ni := {j : χij > 0}. In this setting,
the dynamics of phase θi is governed by the following ordinary differential system:

(1.1)

θ̇i(t) = Ωi + κ
∑
j∈Ni

sin(θj(t)− θi(t)), t > 0, i ∈ V,

θi(0) = θi0.

where κ > 0 is the uniform coupling strength and Ωi represents the intrinsic natural fre-
quency of the ith oscillator drawn from some distribution function g = g(Ω). The motivation
to consider general network is very natural, since the non all-to-all or non-symmetric inter-
actions are common in the real world. For instance, flying birds can make a flocking cluster
via the influence from several neighbors, while the sheep can form a group by following the
leader. Therefore, study on the dynamical system on a general digraph is natural and im-
portant, and gradually attracts a lot of researchers from different areas. We refer the readers
to the following references for more details of the background [4, 10, 11, 12, 15, 20, 21, 22].

There are few works [10, 12, 21] on the synchronization of the Kuramoto model on a
general digraph in contrast with the complete graph. More precisely, the authors in [12]
studied the generalized Kuramoto model with directed coupling topology, which is allowed
to be non-symmetric. They showed the frequency synchronization when the initial phases
of oscillators are distributed over the open half circle for a large class of coupling struc-
ture. However, they required any pair of oscillators have one common neighbor, so that the
dissipation structure can be captured by the good property of sine function. In [21], the
authors provided an asymptotic formation of phase-locked states for the ensemble of Ku-
ramoto oscillators with a symmetric and connected network, when the initial configuration
is distributed in a half circle. More precisely, they exploit the gradient structure and use
energy method to derive complete synchronization whereas there is no information about
the convergence rate. In literature [11], the authors studied a network structure containing
a spanning tree (see Definition 2.1) on the collective behaviors of Kuramoto oscillators.
Actually, they lift the Kuramoto model to second-order system such that the second-order
formulation enjoys several similar mathematical structures as for the Cucker-Smale flocking
model [10]. But this method only works when initial phases are confined in a quarter circle,
since the cosine function becomes negative if π

2 < θ < π.
So far, if the ensemble distributed in half circle, the dissipation structure of the Kuramoto

model with general digragh is still unclear. The main difficulty is that, when considering the
ensemble in half circle, there is no uniform coercive inequality to yield the dissipation, which
is due to the non-all-to-all and non-symmetric structure. For example, the time derivative
of the diameter may be zero in the general digraph. Therefore, we switch to construct the
hypo-coercivity similar as in [22], which will help us to capture the dissipation structure.
Comparing to [22] which deals with the Cucker-Smale model on a general digraph, the
interactions in Kuramoto model lack the monotonic property since sin(x) is not monotonic
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in half circle. Therefore, we choose more delicate constructions and estimates of the convex
combinations to fit the special structure of Kuramoto model, which eventually yields the
following main theorem.

Theorem 1.1. Suppose that the network topology (χij) contains a spanning tree, and let θi
be a solution to (1.1). Moreover, assume that the initial data and the quantity η satisfy

(1.2) D(θ(0)) < α < γ < π, η > max

{
1

sin γ
,

2

1− α
γ

}
,

where α, γ are constants. Then, we can find a sufficiently small positive constant D∞ <
min

{
α, π2

}
and a corresponding time t∗ such that

D(θ(t)) < D∞, t ∈ (t∗,+∞),

provided the coupling strength κ satisfies

(1.3) κ >

(
1 +

(d+ 1)α

α−D(θ(0))

)
(4c)dc̃

βd+1D∞
,

where d is the number of general nodes which is smaller than N (see Section 2) and

c =
(2N + 1)(

∑N−1
j=1 ηjA(2N, j) + 1)γ

sin γ
, c̃ =

D(Ω)(
∑N−1

j=1 ηjA(2N, j) + 1)γ

sin γ
.

Note that Theorem 1.1 only shows the small and uniform boundedness of the ensemble,
then we can directly apply the methods and results in [22] or [11] to yield the exponentially
fast emergence of frequency synchronization. Therefore, we will only show the detailed
proof of Theorem 1.1.

The rest of the paper is organized as follows. In Section 2, we recall some concepts on
the network topology and provide an a priori local-in-time estimate about phase diameter
of the ensemble. In Section 3, we consider a strong connected ensemble for which the initial
phases are distributed in the open half circle. We show that the phase diameter is uniformly
bounded and will be confined in a small region after some finite time in a large coupling
regime. In Section 4, we study the general network with a spanning tree structure. In our
framework, the coupling strength is sufficiently large and the initial data is confined in an
open half circle. We use the inductive argument and show that the phase diameter of the
whole digraph will concentrate into a small region of a quarter circle after some finite time,
which yields the exponential emergence of synchronization. Section 5 is devoted to a brief
summary.

2. Preliminaries

In this section, we introduce some basic concepts such as spanning tree and node decom-
position of a general network (1.1). Then, we will provide some necessary notations and an
a priori estimate that will be frequently used in later sections.

2.1. Spanning tree. Roughly speaking, spanning tree means we can find an oscillator
which affects all the other oscillators directly or in-directly. In other words, a system without
spanning tree can be separated into two parts without any interactions. Therefore, this is
the most important structure for emergence of collective behavior on a general digraph.
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More precisely, let the network topology be registered by the neighbor set Ni which
consists of all neighbors of the ith oscillator. Then, for a given set of {Ni}Ni=1 in system
(1.1), we have the following definition.

Definition 2.1. (1) The Kuramoto digraph G = (V, E) associated to (1.1) consists of a
finite set V = {1, 2, . . . , N} of vertices, and a set E ⊂ V × V of arcs with ordered pair
(j, i) ∈ E if j ∈ Ni.

(2) A path in G from i1 to ik is a sequence i1, i2, . . . , ik such that

is ∈ Nis+1 for 1 ≤ s ≤ k − 1.

If there exists a path from j to i, then vertex i is said to be reachable from vertex j.
(3) The Kuramoto digraph contains a spanning tree if we can find a vertex such that any

other vertex of G is reachable from it.

According to the discussion of spanning tree in the beginning of this part, in order to guar-
antee the emergence of synchronization, we will always assume the existence of a spanning
tree throughout the paper. Now we recall the concepts of root and general root in [22]. Let
l, k ∈ N with 1 ≤ l ≤ k ≤ N , and let Cl,k = (cl, cl+1, . . . , ck) be a vector in Rk−l+1 such that

ci ≥ 0, l ≤ i ≤ k and
k∑
i=l

ci = 1.

For an ensembel of N -oscillators with phase {θi}Ni=1, we set Lkl (Cl,k) to be a convex combi-

nation of {θi}ki=l with the coefficient Cl,k:

Lkl (Cl,k) :=
k∑
i=l

ciθi.

Note that each θi is a convex combination of itself, and particularly θN = LNN (1) and
θ1 = L1

1(1).

Definition 2.2. (Root and general root)

(1) We say θk is a root if it is not affected by the rest oscillators, i.e., j /∈ Nk for any
j ∈ {1, 2, . . . , N} \ {k}.

(2) We say Lkl (Cl,k) is a general root if Lkl (Cl,k) is not affected by the rest oscillators,
i.e., for any i ∈ {l, l + 1, . . . , k} and j ∈ {1, 2, . . . , N} \ {l, l + 1, . . . , k}, we have
j /∈ Ni.

Lemma 2.1. [22] The following assertions hold.

(1) If the network contains a spanning tree, then there is at most one root.
(2) Assume the network contains a spanning tree. If LNk (Ck,N ) is a general root, then

Ll1(C1,l) is not a general root for each l ∈ {1, 2, . . . , k − 1}.
2.2. Node decomposition. In this subsection, we will introduce the concept of maximum
node. Then, we can introduce node decomposition to represent the whole graph G (or
say vertex set V) as a disjoint union of a sequence of nodes. The key point is that the
node decomposition shows a hierarchical structure which allows us to apply the induction
principle. Let G = (V, E) and V1 ⊂ V, a subgraph G1 = (V1, E1) is the digraph with vertex
set V1 and arc set E1 which consists of the arcs in G connecting agents in V1. For convenience,
for a given digraph G = (V, E), we will identify a subgraph G1 = (V1, E1) with its vertex set
V1. Now we first introduce the definition of nodes below.
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Definition 2.3. (Node) Let G be a digraph. A subset G1 of vertices is called a node if it is
strongly connected, i.e., for any subset G2 of G1, G2 is affected by G1 \ G2. Moreover, if G1

is not affected by G \ G1, we say G1 is a maximum node.

Notably, a node can be understood intuitively in a manner that a set of oscillators can
be viewed as a ”large” oscillator. Next, we can exploit the concept of node to simplify the
structure of the digraph, and this can help us to catch the attraction effect more clearly in
the underlying network topology.

Lemma 2.2. [22] Any digraph G contains at least one maximum node. A digraph G contains
a unique maximum node if and only if G has a spanning tree.

Lemma 2.3. [22](Node decomposition) Let G be any digraph. Then we can decompose G
to be a union as G =

⋃d
i=0(

⋃ki
j=1 G

j
i ) such that

(1) Gj0 are the maximum nodes of G, where 1 ≤ j ≤ k0.
(2) For any p, q where 1 ≤ p ≤ d and 1 ≤ q ≤ kp, Gqp are the maximum nodes of

G \ (
⋃p−1
i=0 (

⋃ki
j=1 G

j
i )).

Remark 2.1. Lemma 2.3 shows a clear hierarchical structure on a general digraph. For the
convenience of later analysis, we give some comments on important notations and properties
to be used throughout the paper.

(1) According to the definition of maximum node, we know Gqp and Gq
′
p do not influence

each other for 1 ≤ q 6= q′ ≤ kp. Actually, Gqp will only be affected by G0 and Gji ,
where 1 ≤ i ≤ p − 1, 1 ≤ j ≤ ki. Therefore without loss of generality, we may
assume ki = 1 for all 1 ≤ i ≤ d in the proof of our main theorem (see Theorem 1.1).
Thus, the decomposition can be expressed by

G =

d⋃
i=0

Gi,

where Gp is a maximum node of G \ (
⋃p−1
i=0 Gi).

(2) Given an oscillator θk+1
i ∈ Gk+1, we denote by

⋃k+1
j=0 N

k+1
i (j) the set of neighbors of

θk+1
i , where N k+1

i (j) represents the neighbors of θk+1
i in Gj. The node decomposition

and spanning tree structure in G guarantee that
⋃k
j=0N k+1

p (j) 6= ∅.

2.3. Notations and local estimates. In this part, for simplicity, we introduce some
notations, such as the extreme phase, phase diameter of G and the first k+1 nodes, frequency
diameter, and cardinality of subdigraph:

θM = max
1≤k≤N

{θk} = max
0≤i≤d

max
1≤j≤Ni

{θij}, θm = min
1≤k≤N

{θk} = min
0≤i≤d

min
1≤j≤Ni

{θij},

D(θ) = θM − θm, Dk(θ) = max
0≤i≤k

max
1≤j≤Ni

{θij} − min
0≤i≤k

min
1≤j≤Ni

{θij},

ΩM = max
0≤i≤d

max
1≤j≤Ni

{Ωi
j}, Ωm = min

0≤i≤d
min

1≤j≤Ni
{Ωi

j}, D(Ω) = ΩM − Ωm,

Ni = |Gi|, Sk =
k∑
i=0

Ni, 0 ≤ k ≤ d,
d∑
i=0

Ni = N.

Finally, we provide an a priori local-in-time estimate on the phase diameter to finish the
section, which shows the diameter of the ensemble remains less than π in short time.
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Lemma 2.4. Let θi be a solution to system (1.1) and suppose the initial phase diameter
satisfies D(θ(0)) < α < γ < π. Then there exists time t̄ such that

(2.1) D(θ(t)) < α, ∀ t ∈ [0, t̄),

where α, γ are constants and t̄ = α−D(θ(0))
D(Ω) .

Proof. According to system (1.1), we have

θ̇M = ΩM + κ
∑
j∈NM

sin(θj − θM ), θ̇m = Ωm + κ
∑
j∈Nm

sin(θj − θm).

When the phase diameter is located in [D(θ(0)), α], it is obvious that∑
j∈NM

sin(θj − θM ) ≤ 0,
∑
j∈Nm

sin(θj − θm) ≥ 0.

Hence, the dynamics of phase diameter of all nodes can be estimated as follows

(2.2) Ḋ(θ(t)) =
d

dt
(θM − θm) ≤ D(Ω).

That is to say, the growth of phase diameter is less than the linear growth with slope D(Ω)

if D(θ(t)) ∈ [D(θ(0)), α]. Set t̄ = α−D(θ(0))
D(Ω) . Then according to (2.2), it can be seen that

D(θ(t)) is less than α before time t̄, i.e.,

D(θ(t)) < α, ∀ t ∈ [0, t̄),

�

3. Strong connected case

We will first study the special case when the network is strongly connected. Without
loss of generality, we denote the strong connected graph by G0. According to Definition
2.3, Lemma 2.2 and Lemma 2.3, this means the network contains only one maximum node.
Then, we will show the emergence of complete synchronization in the strong connected case.
We now introduce an algorithm to construct a proper convex combination of the oscillators,
which can involve the dissipation from interaction of general network. More precisely, the
algorithm for G0 consists of the following three steps:

Step 1. For any given time t, we reorder the oscillator indexes to make the oscillator phases
from minimum to maximum. More specifically, by relabeling the agents at time t, we set

(3.1) θ0
1(t) ≤ θ0

2(t) ≤ . . . ≤ θ0
N0

(t).

In order to introduce the following steps, we first provide the process of iterations for
L̄N0
k (C̄k,N0) and Ll1(C1,l) as follows:

•(A1): If L̄N0
k (C̄k,N0) is not a general root, then we construct

L̄N0
k−1(C̄k−1,N0) =

āk−1L̄N0
k (C̄k,N0) + θ0

k−1

āk−1 + 1
.

•(A2): If Ll1(C1,l) is not a general root, then we construct

Ll+1
1 (C1,l+1) =

al+1Ll1(C1,l) + θ0
l+1

al+1 + 1
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Step 2. According to the strong connectivity of G0, we immediately know that L̄N0
1 (C̄1,N0)

is a general root, and L̄N0
k (C̄k,N0) is not a general root for k > 1. Therefore, we may start

from θ0
N0

and follow the process A1 to construct L̄N0
k (C̄k,N0) until k = 1.

Step 3. Similarly, we know that LN0
1 (C1,N0

) is a general root and Ll1(C1,l) is not a gen-

eral root for l < N0. Therefore, we may start from θ0
1 and follow the process A2 until l = N0.

We emphasize that the order of the oscillators will change along time t, but at each time
t, the above algorithm works. For convenience, the algorithm from Step 1 to Step 3 will
be referred as Algorithm A. Then, according to Algorithm A, we will show a monotone
property about the function sinx, and provide a priori estimates which will be crucially
used later in the proof of uniform boundness of phase diameter.

Lemma 3.1. Let θi = {θ0
i } be a solution to system (1.1) with srong connected network G0.

Moreover at time t, for the digraph G0, we also assume that the oscillators are well-ordered
as (3.1), the phase diameter and the quantity η satisfiy the following condition:

D0(θ(t)) < γ, η > max

{
1

sin γ
,

2

1− α
γ

}
,

where α, γ are given in the condition (1.2). Then at time t, we have

N0∑
i=n

(ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )) ≤ sin(θ0
k̄n
− θ0

N0
), k̄n = min

j∈∪N0
i=nN 0

i (0)

j, 1 ≤ n ≤ N0.

n∑
i=1

(ηn−i max
j∈N 0

i (0)

j≥i

sin(θ0
j − θ0

i )) ≥ sin(θ0
kn
− θ0

1), kn = max
j∈∪ni=1N 0

i (0)
j, 1 ≤ n ≤ N0.

Proof. We will only prove the first inequality, the second relation can be proved in a similar
manner. In fact, if N0 = 1, i.e., N0 is a (general) root, we are done. Now we consider the

case N0 ≥ 2. Due to the strong connectivity of the digraph G0, L̄N0
1 (C̄1,N0) is a general root

while L̄N0
k (C̄k,N0) is not a general root for k > 1.

For any given n ∈ [1, N0], we have k̄n = min
j∈∪N0

i=nN 0
i (0)

j. Hence, there exists l0 ∈ [n,N0]

such that k̄n ∈ N 0
l0

(0) due to the fact k̄n ∈ ∪N0
i=nN 0

i (0). For l0, since L̄N0
l0+1(C̄l0+1,N0) is

not a general root, there exist j0 ≤ l0 and l1 ∈ [l0 + 1, N0] such that j0 ∈ N 0
l1

(0). For

l1, as L̄N0
l1+1(C̄l1+1,N0) is not a general root, there exist j1 ≤ l1 and l2 ∈ [l1 + 1, N0] such

that j1 ∈ N 0
l2

(0). we repeat the process until find some lp = N0 and jp−1 ≤ lp−1 such that

jp−1 ∈ N 0
lp

(0) = N 0
N0

(0). Obviously, we have

(3.2)

N0∑
i=n

(ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )) ≤

I1︷ ︸︸ ︷
ηN0−n sin(θ0

jp−1
− θ0

N0
) + ηlp−1−n sin(θ0

jp−2
− θ0

lp−1
)

+ ηlp−2−n sin(θ0
jp−3
− θ0

lp−2
) + · · ·+ ηl2−n sin(θ0

j1 − θ
0
l2)

+ ηl1−n sin(θ0
j0 − θ

0
l1) + ηl0−n sin(θ0

k̄n
− θ0

l0).
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where we have the following relations

jk ≤ lk, lk < lk+1, k = 0, 1, . . . , p− 1.

In the following, we plan to add all the terms on the right-hand side of (3.2) together to
yield the desired estimate. We only consider the case γ > π

2 , and the situation γ ≤ π
2 can

be similarly dealt with. We first deal with I1 in (3.2). If θ0
N − θ0

jp−1
≤ π

2 , we obtain that

0 < θ0
N − θ0

lp−1
≤ θ0

N − θ0
jp−1
≤ π

2 due to jp−1 ≤ lp−1. Hence, according to lp−1 < N0, the

following assertion can be obtained

(3.3) ηN0−n sin(θ0
jp−1
− θ0

N ) ≤ ηlp−1−n sin(θ0
jp−1
− θ0

N ) ≤ ηlp−1−n sin(θ0
lp−1
− θ0

N ),

On the other hand, if π
2 < θ0

N −θ0
jp−1
≤ D0(θ(t)) < γ. It’s clear that sin(θ0

N −θ0
jp−1

) > sin γ.

Then according to the strict inequality lp−1 < N0 and η > 1
sin γ ≥ 1, we can obtain that

(3.4)

ηN0−n sin(θ0
jp−1
− θ0

N0
) ≤ −ηN0−n−1η sin γ ≤ −ηN0−n−1 ≤ −ηlp−1−n ≤ ηlp−1−n sin(θ0

lp−1
− θ0

N ),

where the last inequality holds due to the fact sinx ≥ −1. Therefore, combining above
estimates (3.3) and (3.4), we obtain that

(3.5) ηN0−n sin(θ0
jp−1
− θ0

N0
) ≤ ηlp−1−n sin(θ0

lp−1
− θ0

N0
).

Next, we apply (3.5) and the concave property of sinx in half circle to estimate the term
I1 as follows:

(3.6) I1 ≤ ηlp−1−n sin(θ0
lp−1
− θ0

N ) + ηlp−1−n sin(θ0
jp−2
− θ0

lp−1
) ≤ ηlp−1−n sin(θ0

jp−2
− θ0

N ).

Finally, we repeat the similar argument in (3.5) and (3.6) to obtain that

N0∑
i=n

(ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )) ≤ ηl0−n sin(θ0
l0 − θ

0
N0

) + ηl0−n sin(θ0
k̄n
− θ0

l0)

≤ ηl0−n sin(θ0
k̄n
− θ0

N0
) ≤ sin(θ0

k̄n
− θ0

N0
),

where the last inequality holds since l0 ≥ n. Therefore we derive the desired result. �

Based on a priori estimates in Lemma 3.1, we next design a proper convex combination
so that we can capture the dissipation structure. Recall the strongly connected ensemble
G0, and denote by θ0

i (i = 1, 2, . . . , N0) the members in G0. Now we assume that at time t,
the oscillators in G0 are well-ordered as follows,

θ0
1(t) ≤ θ0

2(t) ≤ . . . ≤ θ0
N0

(t).

Then we apply the process A1 from θ0
N0

to θ0
1 and the process A2 from θ0

1 to θ0
N0

to
respectively construct

(3.7)
L̄N0
k−1(C̄k−1,N0) with ā0

N0
= 0, ā0

k−1 = η(2N0 − k + 2)(ā0
k + 1), 2 ≤ k ≤ N0,

Lk+1
1 (C1,k+1) with a0

1 = 0, a0
k+1 = η(k + 1 +N0)(a0

k + 1), 1 ≤ k ≤ N0 − 1,
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where N0 is the cardinality of G0 and η is given in the condition (1.2). By induction, we
can derive explict expressions about the constructed coefficients:

(3.8)

ā0
k−1 =

N0−k+1∑
j=1

ηjA(2N0 − k + 2, j), 2 ≤ k ≤ N0,

a0
k+1 =

k∑
j=1

ηjA(k + 1 +N0, j), 1 ≤ k ≤ N0 − 1.

Note that ā0
N0+1−i = a0

i , i = 1, 2 . . . , N0. And we set

(3.9) θ̄0
k := L̄N0

k (C̄k,N0), θ0
k := Lk1(C1,k), 1 ≤ k ≤ N0.

We define Q0 = θ̄0−θ0 where θ̄0 = θ̄0
1 and θ0 = θ0

N0
. Note that Q0(t) is Lipschitz continuous

with respect to t. We then establish the comparison relation between Q0 and the phase
diameter D0(θ) of G0 in the following lemma.

Lemma 3.2. Let θi = {θ0
i } be a solution to system (1.1) with strong connected digraph G0.

Assume that for the group G0, the coefficients ā0
k’s and a0

k’s satisfy the scheme (3.7). Then
at each time t, we have the following relation

βD0(θ(t)) ≤ Q0(t) ≤ D0(θ(t)), β = 1− 2

η
,

where η satisfies the condition (1.2).

Proof. From the convex combination structure of θ̄0 and θ0, we immediately have

Q0(t) = θ̄0 − θ0 ≤ θ0
N0

(t)− θ0
1(t) = D0(θ(t)).

We now prove the left part of the desired relation. In fact, we have the following estimate
about Q0(t):
(3.10)
Q0(t) = θ̄0(t)− θ0(t) = θ̄0(t)− θ0

N0
(t) + θ0

N0
(t)− θ0

1(t) + θ0
1(t)− θ0(t)

= θ0
N0

(t)− θ0
1(t) + θ̄0(t)− θ0

N0
(t) + θ0

1(t)− θ0(t)

= θ0
N0

(t)− θ0
1(t) +

(
θ0

1(t)

ā0
1 + 1

+

∏N0−1
l=1 ā0

l∏N0−1
l=1 (ā0

l + 1)
θ0
N0

(t) +

N0−1∑
i=2

∏i−1
l=1 ā

0
l∏i

l=1(ā0
l + 1)

θ0
i (t)− θ0

N0
(t)

)

+

(
θ0

1(t)−
θ0
N0

(t)

a0
N0

+ 1
−

∏N0
l=2 a

0
l∏N0

l=2(a0
l + 1)

θ0
1(t)−

N0−1∑
i=2

∏N0
l=i+1 a

0
l∏N0

l=i(a
0
l + 1)

θ0
i (t)

)

= θ0
N0

(t)− θ0
1(t) +

1

ā0
1 + 1

(θ0
1(t)− θ0

N0
(t)) +

N0−1∑
i=2

∏i−1
l=1 ā

0
l∏i

l=1(ā0
l + 1)

(θ0
i (t)− θ0

N0
(t))

+
1

a0
N0

+ 1
(θ0

1(t)− θ0
N0

(t)) +

N0−1∑
i=2

∏N0
l=i+1 a

0
l∏N0

l=i(a
0
l + 1)

(θ0
1(t)− θ0

i (t)),

where we apply the property that the coefficients sum of convex combination structure of
θ̄0 and θ0 are respectively equal to 1. According to the design of coefficients (3.7) and (3.8),
it is known that

ā0
N0+1−i = a0

i , i = 1, 2 . . . , N0.
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Thus, we immediately have

(3.11)

∏N0
l=i+1 a

0
l∏N0

l=i(a
0
l + 1)

=

∏N0−i
l=1 ā0

l∏N0+1−i
l=1 (ā0

l + 1)
.

Then we combine (3.10) and (3.11)to obtain that

Q0(t) ≥ θ0
N0

(t)− θ0
1(t) +

1

ā0
1 + 1

(θ0
1(t)− θ0

N0
(t)) +

N0−1∑
i=2

∏i−1
l=1 ā

0
l

i∏
l=1

(ā0
l + 1)

(θ0
1(t)− θ0

N0
(t))

+
1

ā0
1 + 1

(θ0
1(t)− θ0

N0
(t)) +

N0−1∑
i=2

∏N0−i
l=1 ā0

l∏N0+1−i
l=1 (ā0

l + 1)
(θ0

1(t)− θ0
N0

(t))

= θ0
N0

(t)− θ0
1(t)−

(
2

ā0
1 + 1

+

N0−1∑
i=2

∏i−1
l=1 ā

0
l∏i

l=1(ā0
l + 1)

+

N0−1∑
i=2

∏N0−i
l=1 ā0

l∏N0+1−i
l=1 (ā0

l + 1)

)
(θ0
N0

(t)− θ0
1(t)),

where we exploit the property of well-ordering, i.e.,

θ0
1 ≤ θ0

i ≤ θ0
N0
, 1 ≤ i ≤ N0.

From (3.7), it is obvious that the value of coefficients ā0
k’s is increasing as the subscript is

decreasing, in particular,

ā0
l ≥ ā0

N0−1 = η(N0 + 2), 1 ≤ l ≤ N0 − 1.

Then for 2 ≤ i ≤ N0 − 1, we have the following estimates,

1

ā0
1 + 1

≤ 1

η(N0 + 2) + 1
,

∏i−1
l=1 ā

0
l∏i

l=1(ā0
l + 1)

≤ 1

ā0
i + 1

≤ 1

η(N0 + 2) + 1
,∏N0−i

l=1 ā0
l∏N0+1−i

l=1 (ā0
l + 1)

≤ 1

ā0
N0+1−i + 1

≤ 1

η(N0 + 2) + 1
.

Therefore we immediately obtain that

Q0(t) ≥ θ0
N0

(t)− θ0
1(t)− 2(N0 − 1)

η(N0 + 2) + 1
(θ0
N0

(t)− θ0
1(t)) = D0(θ(t))− 2(N0 − 1)

η(N0 + 2) + 1
D0(θ(t)).

Since 2(N0−1)
η(N0+2)+1 ≤

2N0
ηN0

= 2
η , it can be obtained that

Q0(t) ≥ (1− 2

η
)D0(θ(t)),

thus we derive the desired result. �

In the following, we exploit Algorithm A and Lemma 3.1 to estimate the dynamics of
the constructed quantity Q0, i.e., the relative distance between L̄N0

1 (C̄1,N0) and LN0
1 (C1,N0

),
which will be presented in the lemma below.

Lemma 3.3. Let θi = {θ0
i } be the solution to system (1.1) with strong connected digraph G0.

Moreover, for a given sufficiently small D∞ < min
{
π
2 , α

}
, assume the following conditions

hold,
(3.12)

D0(θ(0)) < α < γ < π, η > max

{
1

sin γ
,

2

1− α
γ

}
, κ >

(
1 +

α

α−D(θ(0))

)
c̃

βD∞
,



SYNCHRONIZATION IN GENERAL DIGRAPH 11

where α, γ are constants and

c̃ =
D(Ω)(

∑N0−1
j=1 ηjA(2N0, j) + 1)γ

sin γ
.

Then, the dynamics of Q0(t) is governed by the following equation

Q̇0(t) ≤ D(Ω)− κ∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t), t ∈ [0,+∞),

and the phase diameter of the graph G0 is uniformly bounded by γ:

D0(θ(t)) < γ, t ∈ [0,+∞).

Proof. As the proof is rather lengthy, we put it in Appendix A. �

Lemma 3.3 states that the phase diameter of the digraph G0 is uniformly bounded and
can be confined in half circle. We next show that there exists some time t0 after which the
phase diameter of the digraph G0 enters into a small region.

Lemma 3.4. Let θi = {θ0
i } be a solution to system (1.1), and supose the assumptions of

Lemma 3.3 hold. Then there exists time t0 such that

D0(θ(t)) ≤ D∞, for t ∈ [t0,+∞),

where t0 can be estimated as below and bounded by t̄ given in Lemma 2.4

(3.13) t0 <
α

κ sin γ

(
∑N0−1
j=1 ηjA(2N0,j)+1)γ

βD∞ −D(Ω)
< t̄.

Proof. In Lemma 3.3, we have obtained that the dynamics of quantity Q0(t) is governed by
the following equation

(3.14) Q̇0(t) ≤ D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t), t ∈ [0,+∞).

In the subsequence, we will find some time t0 after which the quantity Q0 in (3.14) is uni-
formly bounded. We consider two cases separately.

� Case 1. We first consider the case that Q0(0) > βD∞. When Q0(t) ∈ [βD∞, Q0(0)],
according to (A.15), we have

(3.15)

Q̇0(t) ≤ D(Ω)− κ sin γ

(
∑N0−1

j=1 (ηjA(2N0, j)) + 1)γ
Q0(t)

≤ D(Ω)− κ sin γ

(
∑N0−1

j=1 (ηjA(2N0, j)) + 1)γ
βD∞ < 0.

This means that when Q0(t) is located in the interval [βD∞, Q0(0)], Q0(t) will keep de-
creasing with a uniform rate. Therefore we can define a stopping time t0 as follows,

t0 = inf{t ≥ 0 | Q0(t) ≤ βD∞}.
Then, according to the definition of t0, we know that Q0 will decrease before t0 and has the
following property at t0,

(3.16) Q0(t0) = βD∞.
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Moerover, according to (3.15), it is obvious that the stopping time t0 satisfies the following
upper bound estimate,

(3.17) t0 ≤
Q0(0)− βD∞

κ sin γ

(
∑N0−1
j=1 ηjA(2N0,j)+1)γ

βD∞ −D(Ω)
.

Now we study the upper bound of Q0 on [t0,+∞). Coming back to (3.15), we can apply
(3.16) and the same argument in (A.16) to derive

(3.18) Q0(t) ≤ βD∞, t ∈ [t0,+∞).

� Case 2. For another case that Q0(0) ≤ βD∞. Applying the same analysis in (A.16), we
get

(3.19) Q0(t) ≤ βD∞, t ∈ [0,+∞).

This allows us to directly set t0 = 0.

Thus we apply (3.18), (3.19), and Lemma 3.2 to estimate the upper bound of D0(θ) on
[t0,∞) as below

(3.20) D0(θ(t)) ≤ Q0(t)

β
≤ D∞, for t ∈ [t0,+∞).

On the other hand, in order to verify (3.13), we do further estimates on t0 in (3.20). It
is known from (3.17) in Case 1 and t0 = 0 in Case 2 that

(3.21) t0 <
α

κ sin γ

(
∑N0−1
j=1 ηjA(2N0,j)+1)γ

βD∞ −D(Ω)
.

Here, we use the truth that Q0(0) < α. Thus, from the assumption of κ in (3.12), i.e.,

κ >

(
1 +

α

α−D(θ(0))

)
c̃

βD∞
, c̃ =

D(Ω)(
∑N0−1

j=1 ηjA(2N0, j) + 1)γ

sin γ
.

it yields that the time t0 has the following estimate,

(3.22) t0 <
α

(1 + α
α−D(θ(0)))D(Ω)−D(Ω)

=
α−D(θ(0))

D(Ω)
= t̄.

Thus, we derive the desired results (3.20), (3.21) and (3.22). �

4. General network

Now, we focus on the general network, and provide a proof of Theorem 1.1 for the
emergence of complete synchronization in Kuramoto model with general network containing
a spanning tree. According to Definition 2.3 and Lemma 2.2, the digraph G associated to
system (1.1) has a unique maximum node if it contains a spanning tree structure. From

Remark 2.1, without loss of generality, G can be decomposed into a union as G =
⋃d
i=0 Gi,

where Gp is a maximum node of G \ (
⋃p−1
i=0 Gi).

In Section 3, for the situation that d = 0, we showed that the phase diameter of the
digraph G0 is uniformly bounded and can be confined in a quarter circle after some finite
time. However, for the case that d > 0, Gk’s are not maximum nodes in G for k ≥ 1. Hence,
we can not directly apply the same method in Lemma 3.3 and Lemma 3.4 for the situation
d = 0. More precisely, the oscillators in Gi with i < k perform as an attraction source and
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influence the agents in Gk. Thus we can not ignore the information from Gi with i < k when
we study the behavior of agents in Gk.

From Remark 2.1 and node decomposition, the graph G can be represented as

G =
d⋃

k=0

Gk, |Gk| = Nk,

and we denote the oscillators in Gk by θki with 1 ≤ i ≤ Nk. Then we assume that at time
t, the oscillators in each Gk are well-ordered as below:

(4.1) θk1(t) ≤ θk2(t) ≤ . . . ≤ θkNk(t), 0 ≤ k ≤ d.

For each subdigraph Gk with k ≥ 0 which is strongly connected, we follow the process

in Algorithm A1 and A2 to construct L̄Nkl−1(C̄l−1,Nk) and Ll+1
1 (C1,l+1) by redesigning the

coefficients ākl and akl of convex combination as below:

(4.2){
L̄Nkl−1(C̄l−1,Nk) with ākNk = 0, ākl−1 = η(2N − l + 2)(ākl + 1), 2 ≤ l ≤ Nk,

Ll+1
1 (C1,l+1) with ak1 = 0, akl+1 = η(l + 1 + 2N −Nk)(a

k
l + 1), 1 ≤ l ≤ Nk − 1,

By induction principle, we deduce that

(4.3)


ākl−1 =

Nk−l+1∑
j=1

ηjA(2N − l + 2, j), 2 ≤ l ≤ Nk,

akl+1 =

l∑
j=1

ηjA(l + 1 + 2N −Nk, j), 1 ≤ l ≤ Nk − 1.

Note that ākNk+1−i = aki , i = 1, 2 . . . , Nk. By simple calculation, we have

(4.4) āk1 =

Nk−1∑
j=1

(ηjA(2N, j)), āk1 ≤
N−1∑
j=1

(ηjA(2N, j)), 0 ≤ k ≤ d.

And we set the following notations,

θ̄kl := L̄Nkl (C̄l,Nk), θkl := Ll1(C1,l), 1 ≤ l ≤ Nk, 0 ≤ k ≤ d,(4.5)

θ̄k := L̄Nk1 (C̄1,Nk), θk := LNk1 (C1,Nk
), 0 ≤ k ≤ d,(4.6)

Qk(t) := max
0≤i≤k

{θ̄i} − min
0≤i≤k

{θi}, 0 ≤ k ≤ d.(4.7)

Due to the analyticity of the solution, Qk(t) is Lipschitz continuous. Similar as in Section 3,
in the following, we will first establish the comparison relation between the quantity Qk(t)
and phase diameter Dk(θ(t)) of the first k + 1 nodes, which plays an important role in the
later analysis.

Lemma 4.1. Let θi be a solution to system (1.1) and assume that for each subdigraph Gk,
the coefficients ākl and akl of convex combination in Algorithm A satisfy the scheme (4.2).
Then at each time t, we have the following relation

βDk(θ(t)) ≤ Qk(t) ≤ Dk(θ(t)), 0 ≤ k ≤ d, β = 1− 2

η
,
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where Dk(θ) = max
0≤i≤k

max
1≤j≤Ni

{θij} − min
0≤i≤k

min
1≤j≤Ni

{θij} and η satisfies the condition (1.2).

Proof. Without loss of generality, assume that at time t, the oscillators in each subdigraph
Gk are all well-ordered as below

(4.8) θk1 ≤ θk2 ≤ . . . ≤ θkNk , 0 ≤ k ≤ d.

From the definition of the quantity Qk(t) in (4.7) and the convex combination structure of
θ̄k and θk in (4.6), it can be directly derived that

(4.9) θ̄k ≤ θkNk , θk ≥ θk1 , Qk(t) = max
0≤i≤k

{θ̄i} − min
0≤i≤k

{θi} ≤ max
0≤i≤k

{θiNi} − min
0≤i≤k

{θi1}.

This means that

Qk(t) ≤ Dk(θ(t)) = max
0≤i≤k

max
1≤j≤Ni

{θij} − min
0≤i≤k

min
1≤j≤Ni

{θij}.

Next we will prove the left part of this Lemma. In fact, we denote the extreme phases of
the first k + 1 nodes by

(4.10) θpNp := max
0≤i≤k

max
1≤j≤Ni

{θij}, θq1 := min
0≤i≤k

min
1≤j≤Ni

{θij}, 0 ≤ p ≤ k, 0 ≤ q ≤ k.

It is clear that Dk(θ(t)) = θpNp − θ
q
1. We consider two cases separately.

• Case 1. If the index satisfy the relation p = q, we have

Qk(t) = max
0≤i≤k

{θ̄i} − min
0≤i≤k

{θi} ≥ θ̄p − θp = θpNp − θ
p
1 + θ̄p − θpNp + θp1 − θp.

In this case, applying the same arguments in Lemma 3.2, we obtain that

Qk(t) ≥ θpNp(t)− θ
p
1(t)− 2(Np − 1)

η(N + 2) + 1
(θpNp(t)− θ

p
1(t)) = Dk(θ(t))−

2(Np − 1)

η(N + 2) + 1
Dk(θ(t))

≥ (1− 2

η
)Dk(θ(t)) = βDk(θ(t)).

Here, in the above estimates, based on the construction of coefficients of convex combination
in (4.2), we used the inequalities

(4.11) ākl ≥ ākNk−1 = η(2N −Nk + 2) ≥ η(N + 2), 0 ≤ k ≤ d, 1 ≤ l ≤ Nk − 1,

and applied the symmetric property

(4.12) ākNk+1−l = akl , 1 ≤ l ≤ Nk, 0 ≤ k ≤ d.
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• Case 2. Consider the case that p 6= q, then we have
(4.13)

Qk(t) = max
0≤i≤k

{θ̄i} − min
0≤i≤k

{θi} ≥ θ̄p − θq = θ̄p(t)− θpNp(t) + θpNp(t)− θ
q
1(t) + θq1(t)− θq(t)

= θpNp(t)− θ
q
1(t) + θ̄p(t)− θpNp(t) + θq1(t)− θq(t)

= θpNp(t)− θ
q
1(t) +

 θp1(t)

āp1 + 1
+

∏Np−1
l=1 āpl∏Np−1

l=1 (āpl + 1)
θpNp(t) +

Np−1∑
i=2

∏i−1
l=1 ā

p
l∏i

l=1(āpl + 1)
θpi (t)− θ

p
Np

(t)


+

θq1(t)−
θqNq(t)

aqNq + 1
−

∏Nq
l=2 a

q
l∏Nq

l=2(aql + 1)
θq1(t)−

Nq−1∑
i=2

∏Nq
l=i+1 a

q
l∏Nq

l=i(a
q
l + 1)

θqi (t)


= θpNp(t)− θ

q
1(t) +

1

āp1 + 1
(θp1(t)− θpNp(t)) +

Np−1∑
i=2

∏i−1
l=1 ā

p
l∏i

l=1(āpl + 1)
(θpi (t)− θ

p
Np

(t))

+
1

aqNq + 1
(θq1(t)− θqNq(t)) +

Nq−1∑
i=2

∏Nq
l=i+1 a

q
l∏Nq

l=i(a
q
l + 1)

(θq1(t)− θqi (t)),

where we apply the property that the coefficients sum of convex combination of θ̄k and θk
with 0 ≤ k ≤ d are respectively equal to 1. Moreover, we know from (4.10) that

θpi ≥ θ
q
1, i = 1, 2, . . . , Np − 1, θqi ≤ θ

p
Np
, i = 2, . . . , Nq − 1, Nq.

This implies that

(4.14) θpi −θ
p
Np
≥ θq1−θ

p
Np
, i = 1, 2, . . . , Np−1, θq1−θ

q
i ≥ θ

q
1−θ

p
Np
, i = 2, . . . , Nq−1, Nq.

Moreover, exlpoiting the symmetric property (4.12), we immediately have

(4.15)

∏Nq
l=i+1 a

q
l∏Nq

l=i(a
q
l + 1)

=

∏Nq−i
l=1 āql∏Nq+1−i

l=1 (āql + 1)
.

Therefore, combining (4.13), (4.14) and (4.15), we obtain that

Qk(t) ≥ θpNp(t)− θ
q
1(t) +

1

āp1 + 1
(θq1(t)− θpNp(t)) +

Np−1∑
i=2

∏i−1
l=1 ā

p
l∏i

l=1(āpl + 1)
(θq1(t)− θpNp(t))

+
1

āq1 + 1
(θq1(t)− θpNp(t)) +

Nq−1∑
i=2

∏Nq−i
l=1 āql∏Nq+1−i

l=1 (āql + 1)
(θq1(t)− θpNp(t))

= θpNp(t)− θ
q
1(t)

−

 1

āp1 + 1
+

Np−1∑
i=2

∏i−1
l=1 ā

p
l∏i

l=1(āpl + 1)
+

1

āq1 + 1
+

Nq−1∑
i=2

∏Nq−i
l=1 āql∏Nq+1−i

l=1 (āql + 1)︸ ︷︷ ︸
 (θpNp(t)− θ

q
1(t)).
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We apply (4.11) and estimate the items in the above brace respectively,

1

āp1 + 1
≤ 1

η(N + 2) + 1
,

1

āq1 + 1
≤ 1

η(N + 2) + 1
,∏i−1

l=1 ā
p
l∏i

l=1(āpl + 1)
≤ 1

āpi + 1
≤ 1

η(N + 2) + 1
, 2 ≤ i ≤ Np − 1,∏Nq−i

l=1 āql∏Nq+1−i
l=1 (āql + 1)

≤ 1

āqNq+1−i + 1
≤ 1

η(N + 2) + 1
, 2 ≤ i ≤ Nq − 1.

Thus, based on the above estimates, we have

Qk(t) ≥ θpNp(t)− θ
q
1(t)− Np +Nq − 2

η(N + 2) + 1
(θpNp(t)− θ

q
1(t)) = Dk(θ(t))−

Np +Nq − 2

η(N + 2) + 1
Dk(θ(t).

Since
Np+Nq−2
η(N+2)+1 ≤

2N
ηN = 2

η and from (4.10), we immediately have

Qk(t) ≥ (1− 2

η
)Dk(θ(t)) = βDk(θ(t)).

Thus combining the above analysis, we derive the desired result. �

Now, we are ready to prove the main Theorem 1.1. We will follow similar arguments
as in Section 3 to finish the proof. Actually, we will study the constructed quantity Qk(t)
which contains the information from Gi with i < k, and then yield the hypo-coercivity of the
diameter. Following similar arguments in Lemma 3.3 and Lemma 3.4, we have the following
estimates for the first maximal node G0.

Lemma 4.2. Suppose that the network topology contains a spanning tree, and let θi be a
solution to (1.1). Moreover, assume that the initial data and the quantity η satisfy

(4.16) D(θ(0)) < α < γ < π, η > max

{
1

sin γ
,

2

1− α
γ

}
,

where α, γ are positive constants. For a given sufficiently small D∞ < min{π2 , α}, if the
coupling strength κ satisfies

(4.17) κ >

(
1 +

(d+ 1)α

α−D(θ(0))

)
(4c)dc̃

βd+1D∞
,

where d is the number of general nodes and

c =
(2N + 1)(

∑N−1
j=1 ηjA(2N, j) + 1)γ

sin γ
, c̃ =

D(Ω)(
∑N−1

j=1 ηjA(2N, j) + 1)γ

sin γ
,

then the following two assertions hold for the maximum node G0:

(1) The dynamics of Q0(t) is governed by the following equation

Q̇0(t) ≤ D(Ω)− κ∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Q0(t), t ∈ [0,+∞),

(2) there exists time t0 such that

D0(θ(t)) ≤ βdD∞

(4c)d
, for t ∈ [t0,+∞),
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where t0 can be estimated as below and bounded by t̄ given in Lemma 2.4

t0 <
α

κ sin γ

(
∑N−1
j=1 ηjA(2N,j)+1)γ

βd+1D∞

(4c)d
−D(Ω)

< t̄.

Since the proof is almost the same as that in Lemma 3.3 and Lemma 3.4, we omit its
details. Inspiring from Lemma 4.2, we make the following reasonable ansatz for Qk(t) for
0 ≤ k ≤ d.

Ansatz:

(1) The dynamics of Qk(t) is governed by the following differential inequality,
(4.18)

Q̇k(t) ≤ D(Ω)− κ∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk(t) + κ(2N + 1)Dk−1(θ(t)), t ∈ [0,+∞),

where we assume D−1(θ(t)) = 0.

(2) There exists a finite time tk such that, the phase diameter Dk(θ) of
⋃k
i=0 Gi is

uniformly bounded after tk, i.e.,

(4.19) Dk(θ(t)) ≤
βd−kD∞

(4c)d−k
, for t ∈ [tk,+∞),

where tk can be estimated as below

(4.20) tk <
(k + 1)α

κ sin γ

(
∑N−1
j=1 ηjA(2N,j)+1)γ

βd+1D∞

(4c)d
−D(Ω)

< t̄ =
α−D(θ(0))

D(Ω)
.

In the following, we will verify the ansatz respectively in two lemmas by induction criteria.
More precisely, suppose the ansatz holds for Qk and Dk(θ) with 0 ≤ k ≤ d − 1, we will
prove that the ansatz also holds for Qk+1 and Dk+1(θ).

Lemma 4.3. Suppose the conditions in Lemma 4.2 are fulfilled, and the ansatz in (4.18),
(4.19) and (4.20) holds for some k with 0 ≤ k ≤ d − 1. Then the ansatz (4.18) holds for
k + 1.

Proof. Similar as before, we will use proof by contradiction criteria to verify the ansatz for
Qk+1. To this end, we first define a set below,

Bk+1 = {T > 0 : Dk+1(θ(t)) < γ, ∀ t ∈ [0, T )}.
From Lemma 2.4, we know that

Dk+1(θ(t)) ≤ D(θ(t)) < α < γ, ∀ t ∈ [0, t̄).

It is clear that t̄ ∈ Bk+1. Thus the set Bk+1 is not empty. We define T ∗ = supBk+1, and
will prove by contradiction that T ∗ = +∞. Suppose not, i.e., T ∗ < +∞. It is obvious that

(4.21) t̄ ≤ T ∗, Dk+1(θ(t)) < γ, ∀ t ∈ [0, T ∗), Dk+1(θ(T ∗)) = γ.

Since the solution to system (1.1) is analytic, in the finite time interval [0, T ∗), θ̄i and
θ̄j either collide finite times or always stay together. Similar to the analysis in Lemma 3.3,
without loss of generality, we only consider the situation that there is no pair of θ̄i and
θ̄j staying together through all period [0, T ∗). That means the order of {θ̄i}k+1

i=0 will only
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exchange finite times in [0, T ∗), so does {θi}k+1
i=0 . Thus, we divide the time interval [0, T ∗)

into a finite union as below

[0, T ∗) =
r⋃
l=1

Jl, Jl = [tl−1, tl).

such that the orders of both {θ̄i}k+1
i=0 and {θi}k+1

i=0 are preseved in each interval Jl. In the
following, we will show the contradiction in two steps.

? Step 1. In this step, we first verify the Claim (4.18) holds for Qk+1 on [0, T ∗), i.e.,
(4.22)

Q̇k+1(t) ≤ D(Ω)−κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t) +κ(2N + 1)Dk(θ(t)), on [0, T ∗).

As the proof is rather lengthy, we put the detailed proof in Appendix B.

? Step 2. In this step, we will study the upper bound of Qk+1 in (4.22) in time interval
[tk, T

∗), where tk is defined in Ansatz (4.19) for Dk(θ). For the sake of discussion, we rewrite
the equation (4.22)
(4.23)

Q̇k+1(t) ≤ −κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
Qk+1(t)− cDk(θ(t))−

c̃

κ

)
, t ∈ [0, T ∗),

where the expressions of c and c̃ are given as below
(4.24)

c =
(2N + 1)(

∑N−1
j=1 (ηjA(2N, j)) + 1)γ

sin γ
and c̃ =

D(Ω)(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

sin γ
.

For the term Dk(θ) in (4.23), by induction principle, we have assumed that the Claim (4.19)
holds for Dk(θ), i.e., there exists time tk such that

(4.25) Dk(θ(t)) ≤
βd−kD∞

(4c)d−k
, t ∈ [tk,+∞), tk < t̄.

For the term c̃
κ in (4.23), from the condition (1.3), it is obvious that

κ >

(
1 +

(d+ 1)α

α−D(θ(0))

)
(4c)dc̃

βd+1D∞
>

(4c)dc̃

βd+1D∞
,

which directly yields that

(4.26)
c̃

κ
<
βd+1D∞

(4c)d
<

βd−kD∞

4d−kcd−k−1
, where 0 ≤ k ≤ d− 1, β < 1, c > 1.

Then we add the esimates of the two terms Dk(θ) and c̃
κ in (4.25) and (4.26) to get

(4.27)

cDk(θ(t)) +
c̃

κ
< c

βd−kD∞

(4c)d−k
+

βd−kD∞

4d−kcd−k−1
<

βd−kD∞

2(4c)d−k−1
<

βd−kD∞

(4c)d−k−1
, t ∈ [tk,+∞).

Since tk < t̄ ≤ T ∗ where t̄ is obtained in Lemma 2.4, it makes sense when we consider the
time interval [tk, T

∗). Now based on the above estiamte (4.27), we apply the differential
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equation (4.23) and study the upper bound of Qk+1 on [tk, T
∗). We claim that

(4.28) Qk+1(t) ≤ max

{
Qk+1(tk),

βd−kD∞

(4c)d−k−1

}
:= Mk+1, t ∈ [tk, T

∗).

Suppose not, then there exists some t̃ ∈ (tk, T
∗) such that Qk+1(t̃) > Mk+1. We construct

a set

Ck+1 := {tk ≤ t < t̃ : Qk+1(t) ≤Mk+1}.
Since Qk+1(tk) ≤ Mk+1, the set Ck+1 is not empty. Then we denote t∗ = sup Ck+1. It is
easy to see that

(4.29) t∗ < t̃, Qk+1(t∗) = Mk+1, Qk+1(t) > Mk+1 for t ∈ (t∗, t̃].

According to the construction of Mk+1, (4.27) and (4.29), it is clear that for t ∈ (t∗, t̃]

− κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
Qk+1(t)− cDk(θ(t))−

c̃

κ

)
< −κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
Mk+1 −

βd−kD∞

(4c)d−k−1

)
≤ 0.

Apply the above inequality and integrate on both sides of (4.23) from t∗ to t̃ to get

0 < Qk+1(t̃)−Mk+1 = Qk+1(t̃)−Qk+1(t∗)

≤
∫ t̃

t∗
−κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
Qk+1(t)− cDk(θ(t))−

c̃

κ

)
dt < 0,

which is an obvious contradiction. Thus we complete the proof of (4.28).

? Step 3. In this step, we will construct a contradiction to (4.21). According to (4.28),
Lemma 2.4 and the fact that

βd−kD∞

(4c)d−k−1
< D∞, tk < t̄, Qk+1(tk) ≤ Dk+1(θ(tk)) ≤ D(θ(tk)) < α,

it yields that

Qk+1(t) ≤ max

{
Qk+1(tk),

βd−kD∞

(4c)d−k−1

}
< max{α,D∞} = α, t ∈ [tk, T

∗).

Applying Lemma 4.1 and the condition (1.2), we immediately have

Dk+1(θ(t)) ≤ Qk+1(t)

β
<
α

β
< γ, t ∈ [tk, T

∗).

Due to the continuity of Dk+1(θ(t)), we have

Dk+1(θ(T ∗)) = lim
t→(T ∗)−

Dk+1(θ(t)) ≤ α

β
< γ,

which obviously contradicts to the assumption Dk+1(θ(T ∗)) = γ in (4.21).

Thus, we combine all above analysis to conclude that T ∗ = +∞, that is to say,

(4.30) Dk+1(θ(t)) < γ, ∀ t ∈ [0,+∞).
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Then for any finite time T > 0, according to (4.30), we can repeat the analysis in Step 1
to obtain that the differential inequality (4.18) holds for Qk+1 on [0, T ). This yields the
dynamics of Qk+1 in whole time interval as below:
(4.31)

Q̇k+1(t) ≤ D(Ω)−κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t)+κ(2N+1)Dk(θ(t)), on [0,+∞).

Therefore, we complete the proof of the Claim (4.18) for Qk+1.
�

Lemma 4.4. Suppose the conditions in Lemma 4.2 are fulfilled, and the ansatz in (4.18),
(4.19) and (4.20) holds for some k with 0 ≤ k ≤ d− 1. Then the ansatz (4.19) and (4.20)
holds for k + 1.

Proof. According to Lemma 4.3, we know the dynamic of Qk+1 is governed by (4.31). For
the sake of discussion, we rewrite the differential equation (4.31) and consider it on [tk,+∞),
(4.32)

Q̇k+1(t) ≤ −κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
Qk+1(t)− cDk(θ(t))−

c̃

κ

)
, t ∈ [tk,+∞),

where c and c̃ are given in (4.24). In the following, we will find time tk+1 after which the
quantity Qk+1 in (4.32) is uniformly bounded. There are two cases we need to consider
separately.

• Case 1. We first consider the case that Qk+1(tk) > βd−kD∞

(4c)d−k−1 . In this case, When

Qk+1(t) ∈ [ β
d−kD∞

(4c)d−k−1 , Q
k+1(tk)], according to (4.27) and (4.32), we have

(4.33)

Q̇k+1(t) ≤ −κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

(
βd−kD∞

(4c)d−k−1
− βd−kD∞

2(4c)d−k−1

)
= −κ sin γ

(
∑N−1

j=1 (ηjA(2N, j)) + 1)γ

βd−kD∞

2(4c)d−k−1
< 0.

This means that when Qk+1(t) is located in the interval [ β
d−kD∞

(4c)d−k−1 , Q
k+1(tk)], Q

k+1(t) will

keep decreasing with a uniform rate. Therefore, we can define a stopping time tk+1 as
follows,

tk+1 = inf{t ≥ tk | Qk+1(t) ≤ βd−kD∞

(4c)d−k−1
}.

Then, according to the definition of tk+1, we know that Qk+1 will decrease before tk+1 and
has the following property at tk+1,

(4.34) Qk+1(tk+1) =
βd−kD∞

(4c)d−k−1
.

Moreover, according to (4.33), it is obvious the stopping time tk+1 satisfies the following
upper bound estimate,

(4.35) tk+1 ≤
Qk+1(tk)− βd−kD∞

(4c)d−k−1

κ sin γ

(
∑N−1
j=1 (ηjA(2N,j))+1)γ

βd−kD∞

2(4c)d−k−1

+ tk.
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Now we study the upper bound of Qk+1 on [tk+1,+∞). Coming back to (4.33),we can apply
(4.34) and the same arguments as (4.28) to derive

(4.36) Qk+1(t) ≤ βd−kD∞

(4c)d−k−1
, t ∈ [tk+1,+∞).

On the other hand, in order to verify (4.20), we do further estimates on tk+1 in (4.35).
For the first part on the right-hand side of (4.35), according to Lemma 2.4, tk < t̄ and the
fact that

Qk+1(tk) ≤ Dk+1(θ(tk)) ≤ D(θ(tk)) < α,
βd−kD∞

2(4c)d−k−1
>
βd+1D∞

(4c)d
,

we have the following estimates,

(4.37)
Qk+1(tk)− βd−kD∞

(4c)d−k−1

κ sin γ

(
∑N−1
j=1 (ηjA(2N,j))+1)γ

βd−kD∞

2(4c)d−k−1

<
α

κ sin γ

(
∑N−1
j=1 (ηjA(2N,j))+1)γ

βd+1D∞

(4c)d
−D(Ω)

.

For the term tk in (4.35), based on the assumption (4.20) for tk, we have

(4.38) tk <
(k + 1)α

κ sin γ

(
∑N−1
j=1 ηjA(2N,j)+1)γ

βd+1D∞

(4c)d
−D(Ω)

< t̄ =
α−D(θ(0))

D(Ω)
.

Thus it yields from (4.35), (4.37) and (4.38) that the time tk+1 can be estimated as below

(4.39) tk+1 <
(k + 2)α

κ sin γ

(
∑N−1
j=1 ηjA(2N,j)+1)γ

βd+1D∞

(4c)d
−D(Ω)

.

Moreover, according to (4.17), the coupling strength κ satisfies the following inequality
(4.40)

κ >

(
1 +

(d+ 1)α

α−D(θ(0))

)
(4c)dc̃

βd+1D∞
>

(
1 +

(k + 2)α

α−D(θ(0))

)
(4c)dc̃

βd+1D∞
, 0 ≤ k ≤ d− 1,

thus we combine (4.39) and (4.40) to verify the ansatz (4.20) for k+ 1 in the first case, i.e.,
the time tk+1 has the following estimate,

(4.41) tk+1 < t̄ =
α−D(θ(0))

D(Ω)
.

• Case 2. For another case that Qk+1(tk) ≤ βd−kD∞

(4c)d−k−1 . Similar to the analysis in (4.28), we

apply (4.33) to conclude that

(4.42) Qk+1(t) ≤ βd−kD∞

(4c)d−k−1
, t ∈ [tk,+∞).

This allows us to directly set tk+1 = tk. Then, according to (4.38), we know (4.39) and
(4.41) hold, which finish the verification of the ansatz (4.20) in the second case.

Finally, we are ready to verify the ansatz (4.19) and (4.20) for k + 1. Actually, we can
apply (4.36), (4.42) and Lemma 4.1 to have the upper bound of Dk+1(θ) on [tk+1,+∞) as
below

(4.43) Dk+1(θ(t)) ≤ Qk+1(t)

β
≤ βd−k−1D∞

(4c)d−k−1
, t ∈ [tk+1,+∞),
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Then we combine (4.39), (4.41) and (4.43) in Case 1 and similar analysis in Case 2 to
conclude that the Claim (4.19) and (4.20) are true for Dk+1(θ). �

Proof of Theorem 1.1: Now, we are ready to prove the main theorem. Combining Lemma
4.2, Lemma 4.3 and Lemma 4.4, we apply inductive criteria to conclude that the ansatz
(4.18) –(4.20) hold for all 0 ≤ k ≤ d. Then, we immediately obtain from (4.19) that there
exists time td such that

D(θ(t)) = Dd(θ(t)) ≤ D∞, for t ∈ [td,+∞),

which yields the desired result in Theorem 1.1.

Remark 4.1. In Theorem 1.1, we show that the phase diameter will enter into a small
region after some finite time, which means cosx is positive after the finite time. Therefore,
we can lift (1.1) to the second-order formulation, which enjoys the similar form to Cucker-
Smale model with the interaction function cosx.

More precisely, we can introduce phase velocity ωi(t) := θ̇i(t) for each oscillator, and
directly differentiate (1.1) with respect to time t to derive the equivalent Cucker-Smale type
second order model as below

(4.44)


θ̇i(t) = ωi(t), t > 0, i = 1, 2, . . . , N,

ω̇i(t) = κ
∑
j∈Ni

cos(θj(t)− θi(t))(ωj(t)− ωi(t)),

ωi(0) = θ̇i(0).

Corollary 4.1. Let θi be a solution to system (4.44) and suppose the assumptions in Lemma
4.2 are fulfilled. Moreover, assume that there exists time t∗ > 0 such that

(4.45) D(θ(t)) ≤ D∞, t ∈ [t∗,+∞),

where D∞ < π
2 is a small positive constant. Then there exist positive constants C1 and C2

such that
D(ω(t)) ≤ C1e

−C2(t−t∗), t > t∗,

where D(ω(t)) = max1≤i≤N{ωi(t)} −min1≤i≤N{ωi(t)} is the diameter of phase velocity.

Proof. We can apply Theorem 1.1 and the methods and results in the work of Ha et al.
[22] for Cucker-Smale model to yield the emergence of exponentially fast synchronization
in (1.1) and (4.44). As the proof is almost the same as in [22], we omit the details, and we
refer the readers to [22] for more infomation.

�

5. Summary

In this paper, we presented a sufficient framework for the complete synchronization of the
Kuramoto model with general network containing a spanning tree. To this end, we followed
a node decomposition introduced in [22] to construct new quantities which are equivalent to
phase diameters. In a large coupling strength, when the initial data is confined in an open
half circle, we proved that the phase diameter of the whole ensemble will concentrate into
a small region, thus we can apply the method in [22] or [11] which yielded that the com-
plete synchronization occurs exponentially fast. However, our analytical method restricts
the initial phase configuration to be confined in a half circle. It would be interesting to see
whether the restriction on the initial data can be replaced by a generic one. This interesting
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issue will be further dealt with in our future work.

Appendix A. proof of Lemma 3.3

We will split the proof into six steps. In the first step, we show that the phase diameter
of G0 is bounded by γ in a finite time interval. In the second, third and forth steps, we use
induction criteria to construct the differential inequality of Q0(t) in the finite time interval.
In the last two steps, we exploit the derived differential inequality of Q0(t) to conclude that
phase diameter of G0 is bounded by γ on [0,+∞), and thus the differential inequality of
Q0(t) obtained in second step also holds on [0,+∞).

F Step 1. We first define a set

B0 := {T > 0 : D0(θ(t)) < γ, ∀ t ∈ [0, T )}.

According to Lemma 2.1, the set B0 is non-empty since

D0(θ(t)) < α < γ, t ∈ [0, t̄),

which implies that t̄ ∈ B0. In the following, we set T ∗ = supB0, and prove T ∗ = +∞ to
finish the proof of the lemma. If not, i.e., suppose T ∗ < +∞, then we apply the continuity
of D0(θ(t)) to have

(A.1) D0(θ(t)) < γ, ∀ t ∈ [0, T ∗), D0(θ(T ∗)) = γ.

In particular, we have t̄ ≤ T ∗. According to the standard theory of ordinary differential
equation, the solution to system (1.1) is analytic. Therefore, in the finite time interval
[0, T ∗), any two oscillators either collide finite times or always stay together. If there are
some θi and θj which always stay together in [0, T ∗], we can view them as one oscillator and
thus the total number of oscillators that we need to study can be reduced. For this more
simpler situation, we can deal with it in a similar method. Therefore, we only consider the
case that there is no pair of oscillators staying together in all period [0, T ∗). In this situation,
only finite many collisions occur through [0, T ∗). Thus, we divide the time interval [0, T ∗)
into a finite union as below

[0, T ∗) =
r⋃
l=1

Jl, Jl = [tl−1, tl),

where the end point tl denotes the collision time. It is clear that there is no collision in the
interior of Jl. Then we pick out any time interval Jl and assume that

(A.2) θ0
1(t) ≤ θ0

2(t) ≤ . . . ≤ θ0
N0

(t), t ∈ Jl.

F Step 2. According to the notations in (3.9), we follow the process A1 and A2 to construct
θ̄0
n and θ0

n, 1 ≤ n ≤ N0, respecively. We first consider the dynamics of θ̄0
N0

= θ0
N0

,

(A.3) θ̇0
N0

(t) = Ω0
N0

+ κ
∑

j∈N 0
N0

(0)

sin(θ0
j − θ0

N0
) ≤ ΩM + κ min

j∈N 0
N0

(0)
sin(θ0

j − θ0
N0

).

The last inequality above holds because of the negative sign of sin(θ0
j (t) − θ0

N0
(t)) due to

the well-ordered assumption (A.2). For the dynamics of θ̄0
N0−1, according to the process A1
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and ā0
N0−1 = η(N0 + 2) in (3.7), we have estimates for the derivative of θ̄0

N0−1 as follows,

˙̄θ0
N0−1 =

d

dt

(
ā0
N0−1θ

0
N0

+ θ0
N0−1

ā0
N0−1 + 1

)
=

ā0
N0−1

ā0
N0−1 + 1

θ̇0
N0

+
1

ā0
N0−1 + 1

θ̇0
N0−1

≤
ā0
N0−1

ā0
N0−1 + 1

(
ΩM + κ min

j∈N 0
N0

(0)
sin(θ0

j − θ0
N0

)

)

+
1

ā0
N0−1 + 1

Ω0
N0−1 + κ

∑
j∈N 0

N0−1(0)

sin(θ0
j − θ0

N0−1)


≤ ΩM + κ

η(N0 + 2)

ā0
N0−1 + 1

min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
)(A.4)

+ κ
1

ā0
N0−1 + 1

sin(θ0
N0
− θ0

N0−1) +
∑

j∈N 0
N0−1(0)

j≤N0−1

sin(θ0
j − θ0

N0
)


≤ ΩM + κ

η

ā0
N0−1 + 1

min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
) + κ

1

ā0
N0−1 + 1

min
j∈N 0

N0−1(0)

j≤N0−1

sin(θ0
j − θ0

N0−1)

+ κ
1

ā0
N0−1 + 1

(
η min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
) + sin(θ0

N0
− θ0

N0−1)

)
︸ ︷︷ ︸

I2

.

We now show the term I2 is non-positive. We will only consider the situation γ > π
2 , and

the situation γ ≤ π
2 can be similarly dealt with. It is obvious that

min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
) ≤ sin(θ0

k̄N0
− θ0

N0
), k̄N0 = min

j∈N 0
N0

(0)
j.

Note that k̄N0 ≤ N0 − 1 since L̄N0
N0

(C̄N0,N0) is not a general root. Therefore, if 0 ≤ θ0
N0

(t)−
θ0
k̄N0

(t) ≤ π
2 , we immediately obtain that

0 ≤ θ0
N0

(t)− θ0
N0−1(t) ≤ θ0

N0
(t)− θ0

k̄N0
(t) ≤ π

2
,

which implies that

I2 ≤ η sin(θ0
k̄N0
− θ0

N0
) + sin(θ0

N0
− θ0

N0−1) ≤ sin(θ0
k̄N0
− θ0

N0
) + sin(θ0

N0
− θ0

N0−1) ≤ 0.

On the other hand, if π
2 < θ0

N0
(t)− θ0

k̄N0

(t) < γ, we use the fact

η >
1

sin γ
and sin(θ0

N0
(t)− θ0

k̄N0
(t)) > sin γ,

to conclude that η sin(θ0
k̄N0

− θ0
N0

) ≤ −1. Hence, in this case, we still obtain that

I2 ≤ η sin(θ0
k̄N0
− θ0

N0
) + sin(θ0

N0
− θ0

N0−1) ≤ −1 + 1 ≤ 0.
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Thus, for t ∈ Jl, we combine above analysis to conclude that

(A.5) I2 = η min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
) + sin(θ0

N0
− θ0

N0−1) ≤ 0.

Then combining (A.4) and (A.5), we derive that

(A.6) ˙̄θ0
N0−1 ≤ ΩM +κ

1

ā0
N0−1 + 1

η min
j∈N 0

N0
(0)

sin(θ0
j − θ0

N0
) + min

j∈N 0
N0−1(0)

j≤N0−1

sin(θ0
j − θ0

N0−1)

 .

F Step 3. Now we apply the induction principle to cope with θ̄0
n in (3.9), which are

construced in the iteration process A1. We will prove for 1 ≤ n ≤ N0 that,

(A.7) ˙̄θ0
n(t) ≤ ΩM + κ

1

ā0
n + 1

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j (t)− θ0

i (t))

 .

In fact, (A.7) already holds for n = N0, N0 − 1 from (A.3) and (A.6). Then, suppose that
for n ≤ l ≤ N0 where 2 ≤ n ≤ N0, we have

(A.8) ˙̄θ0
l (t) ≤ ΩM + κ

1

ā0
l + 1

N0∑
i=l

ηi−l min
j∈N 0

i (0)

j≤i

sin(θ0
j (t)− θ0

i (t))

 ,

we next verify that (A.7) still holds for l = n − 1. According to the Algorithm A1 and
(A.8), the dynamics of the quantity θ̄0

n−1(t) has following estimates,

˙̄θ0
n−1 =

d

dt

(
ā0
n−1θ̄

0
n + θ0

n−1

ā0
n−1 + 1

)
=

ā0
n−1

ā0
n−1 + 1

˙̄θ0
n +

1

ā0
n−1 + 1

θ̇0
n−1

≤
ā0
n−1

ā0
n−1 + 1

ΩM + κ
1

ā0
n + 1

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )




+
1

ā0
n−1 + 1

Ω0
n−1 + κ

∑
j∈N 0

n−1(0)

sin(θ0
j − θ0

n−1)



≤ ΩM + κ
η(2N0 − n+ 2)

ā0
n−1 + 1

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )



+ κ
1

ā0
n−1 + 1

 ∑
j∈N 0

n−1(0)

j≤n−1

sin(θ0
j − θ0

n−1) +
∑

j∈N 0
n−1(0)

j>n−1

sin(θ0
j − θ0

n−1)


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≤ ΩM + κ
ηN0

ā0
n−1 + 1

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )


︸ ︷︷ ︸

I3

(A.9)

+ κ
η

ā0
n−1 + 1

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )

+ κ
1

ā0
n−1 + 1

min
j∈N 0

n−1(0)

j≤n−1

sin(θ0
j − θ0

n−1)

+
κ

ā0
n−1 + 1


η(N0 − n+ 1)

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )

+
∑

j∈N 0
n−1(0)

j>n−1

sin(θ0
j − θ0

n−1)

︸ ︷︷ ︸
I4


.

In above estimates, we used the fact that

ā0
n−1 = η(2N0 − n+ 2)(ā0

n + 1),
∑

j∈N 0
n−1(0)

j≤n−1

sin(θ0
j − θ0

n−1) ≤ min
j∈N 0

n−1(0)

j≤n−1

sin(θ0
j − θ0

n−1).

It is obvious that I3 ≤ 0, and thus we can neglect it. In the subsequence, we will deal with
I4 and prove that

(A.10) I4 ≤ 0.

In fact, according to Lemma 3.1, we directly have

(A.11)

N0∑
i=n

ηi−n min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )

 ≤ sin(θ0
k̄n
− θ0

N0
), k̄n = min

j∈
⋃N0
i=nN 0

i (0)

j.

Similar to the analysis in (A.5), we only deal with I4 under the situation γ > π
2 . Now we

consider two cases according to the relation of size between θ0
N0
− θ0

k̄n
and π

2 .

� For the case that 0 ≤ θ0
N0

(t)−θ0
k̄n

(t) ≤ π
2 , we immediately obtain that for j ∈ N 0

n−1(0), j >
n− 1,

0 ≤ θ0
j (t)− θ0

n−1(t) ≤ θ0
N0

(t)− θ0
n−1(t) ≤ θ0

N0
(t)− θ0

k̄n
(t) ≤ π

2
,

where we use the fact that k̄n ≤ n−1 as L̄N0
n (C̄n,N0) is not a general root. Then, we combine

(A.11) to have

I4 ≤ η(N0 − n+ 1) sin(θ0
k̄n
− θ0

N0
) +

∑
j∈N 0

n−1(0)

j>n−1

sin(θ0
j − θ0

n−1)

≤ (N0 − n+ 1) sin(θ0
k̄n
− θ0

N0
) + (N0 − n+ 1) sin(θ0

N0
(t)− θ0

n−1(t)) ≤ 0,
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where we apply the fact η > 1 and the monotone property of sine function in [0, π2 ].

�For another case that π
2 < θ0

N0
(t)− θ0

k̄n
(t) < γ, it is known that

η >
1

sin γ
and sin(θ0

N0
(t)− θ0

k̄n
(t)) > sin γ,

which means η sin(θ0
k̄n
− θ0

N0
) ≤ −1. Thus we obtain that

I4 ≤ η(N0 − n+ 1) sin(θ0
k̄n
− θ0

N0
) +

∑
j∈N 0

n−1(0)

j>n−1

sin(θ0
j − θ0

n−1)

≤ −(N0 − n+ 1) + (N0 − n+ 1) = 0.

Therefore, (A.10) holds at time t ∈ Jl. Now we combine (A.9) and (A.10) to get

˙̄θ0
n−1 ≤ ΩM + κ

1

ā0
n−1 + 1

 N0∑
i=n

ηi−(n−1) min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )

+ min
j∈N 0

n−1(0)

j≤n−1

sin(θ0
j − θ0

n−1)



= ΩM + κ
1

ā0
n−1 + 1

N0∑
i=n−1

ηi−(n−1) min
j∈N 0

i (0)

j≤i

sin(θ0
j − θ0

i )

 .

So far, we complete the proof of the claim (A.7).

F Step 4. Now, we set n = 1 in (A.7) and apply Lemma 3.1 to have

(A.12)

˙̄θ0
1(t) ≤ ΩM + κ

1

ā0
1 + 1

N0∑
i=1

ηi−1 min
j∈N 0

i (0)

j≤i

sin(θ0
j (t)− θ0

i (t))


≤ ΩM + κ

1

ā0
1 + 1

sin(θ0
k̄1
− θ0

N0
) = ΩM + κ

1

ā0
1 + 1

sin(θ0
1 − θ0

N0
),

where k̄1 = min
j∈

⋃N0
i=1N 0

i (0)
j = 1 due to the strong connectivity of G0. Similarly, we can

follow the process A2 to construct θ0
k in (3.9) until k = N0. Then, we can apply the similar

argument as before to obtain that,

(A.13)

d

dt
θ0
N0

(t) ≥ Ωm + κ
1

a0
N0

+ 1

N0∑
i=1

ηN0−i max
j∈N 0

i (0)

j≥i

sin(θ0
j (t)− θ0

i (t))


≥ Ωm + κ

1

a0
N0

+ 1
sin(θ0

kN0
− θ0

1) = Ωm + κ
1

ā0
1 + 1

sin(θ0
N0
− θ0

1),

where we use the strong connectivity and the fact that kN0
= max

j∈
⋃N0
i=1N 0

i (0)
j = N0 and

a0
N0

= ā0
1. Then we recall the notations θ̄0 = θ̄0

1 and θ0 = θ0
N0

, and combine (A.12) and
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(A.13) to obtain that

Q̇0(t) =
d

dt
(θ̄0 − θ0) ≤ D(Ω)− κ 2

ā0
1 + 1

sin(θ0
N0
− θ0

1)

≤ D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin(θ0
N0
− θ0

1),

In the above estimates, we use the property

ā0
1 =

N0−1∑
j=1

(ηjA(2N0, j)).

Since the function sinx
x is monotonically decreasing in (0, π], we apply (A.1) to obtain that

sin(θ0
N0
− θ0

1) ≥ sin γ

γ
(θ0
N0
− θ0

1).

Moreover, due to the formula Q0(t) ≤ θ0
N0

(t)− θ0
1(t), we have

(A.14)

Q̇0(t) ≤ D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
(θ0
N0
− θ0

1)

≤ D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t), t ∈ Jl.

Note that the constructed quantity Q0(t) = θ̄0(t)− θ0(t) is Lipschitz continuous on [0, T ∗).
Moreover, the above analysis does not depend on the time interval Jl, l = 1, 2, . . . , r, thus
the differential inequality (A.14) holds almost everywhere on [0, T ∗).

F Step 5. For a given sufficiently small D∞ < min{π2 , α}, based on the assumption of the
coupling strength in (3.12), we have

(A.15) κ >

(
1 +

α

α−D(θ(0))

)
c̃

βD∞
>

1

βD∞
D(Ω)(

∑N0−1
j=1 ηjA(2N0, j) + 1)γ

sin γ

where

c̃ =
D(Ω)(

∑N0−1
j=1 ηjA(2N0, j) + 1)γ

sin γ
.

Next we study the upper bound of Q0(t) in the period [0, T ∗). Define

M0 = max
{
Q0(0), βD∞

}
.

We claim that

(A.16) Q0(t) ≤M0 for all t ∈ [0, T ∗).

Suppose not, then there exists some t̃ ∈ [0, T ∗) such that Q0(t̃) > M0. We construct a set

C0 := {t < t̃ | Q0(t) ≤M0}.

Since 0 ∈ C0, the set C0 is not empty. Then we denote t∗ = sup C0, and immediately obtain
that

(A.17) t∗ < t̃, Q0(t∗) = M0, Q0(t) > M0 for t ∈ (t∗, t̃].
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According to the construction of M0, (A.15) and (A.17) , it is known the following estimates
hold for t ∈ (t∗, t̃],

D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t)

< D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
βD∞ < 0.

Then, we apply the above inequality and integrate on the both sides of (A.14) from t∗ to t̃
to get

0 < Q0(t̃)−M0 = Q0(t̃)−Q0(t∗) ≤
∫ t̃

t∗
(D(Ω)−κ 1∑N0−1

j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t))dt < 0,

which is an obvious contradiction. Thus we complete the proof of (A.16).

F Step 6. Now, we are ready to show the contradiction to (A.1), and thus it implies that
T ∗ = +∞. In fact, due to the fact that β < 1, D∞ < α and Q0(0) ≤ D0(θ(0)) < α, we have

Q0(t) ≤M0 = max
{
Q0(0), βD∞

}
< α, t ∈ [0, T ∗).

Then we apply the relation βD0(θ(t)) ≤ Q0(t) given in Lemma 3.2 and the assumption
η > 2

1−α
γ

in (3.12) to obtain that

D0(θ(t)) ≤ Q0(t)

β
<
α

β
< γ, t ∈ [0, T ∗) where β = 1− 2

η
.

As D0(θ(t)) is continuous, we have

D0(θ(T ∗)) = lim
t→(T ∗)−

D0(θ(t)) ≤ α

β
< γ,

which contradicts to the situation that D0(θ(T ∗)) = γ in (A.1). Therefore, we derive that
T ∗ = +∞, which yields that

(A.18) D0(θ(t)) < γ, for all t ∈ [0,+∞).

Then for any finite time T > 0, we apply (A.18) and repeat the same argument in the
second, third, forth steps to obtain the dynamics of Q0(t) in (A.14) holds on [0, T ). This
yields the following differential inequality of Q0 on the whole time interval:

Q̇0(t) ≤ D(Ω)− κ 1∑N0−1
j=1 (ηjA(2N0, j)) + 1

sin γ

γ
Q0(t), t ∈ [0,+∞).

Thus, we complete the proof of this Lemma. �

Appendix B. proof of step 1 in lemma 4.3

We will show the detailed proof of Step 1 in Lemma 4.3. Now we pick out any interval Jl
with 1 ≤ l ≤ r, where the orders of both {θ̄i}k+1

i=0 and {θi}k+1
i=0 are preseved and the order of

oscillators in each subdigraph Gi with 0 ≤ i ≤ k + 1 will not change in each time interval.

Then, we consider four cases according to the possibility of relative position between
⋃k
i=0 G

and Gk+1.
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B.1. Case 1. Consider the case that

max
0≤i≤k+1

{θ̄i} = max
0≤i≤k

{θ̄i}, min
0≤i≤k+1

{θi} = min
0≤i≤k

{θi} in Jl.

The comparison relation in this case is showed in Figure 1. In this case, Qk+1(t) = Qk(t),

Figure 1. The comparison relation in Case 1

by the assumption of induction principle and from (4.18), we obviously have

d

dt
Qk+1(t) =

d

dt
Qk(t), t ∈ Jl,

≤ D(Ω)− κ∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk(t) + κ(2N + 1)Dk−1(θ(t))

≤ D(Ω)− κ∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t) + κ(2N + 1)Dk(θ(t)),

where we use Dk−1(θ(t)) ≤ Dk(θ(t)). Thus we obtain the dynamics for Qk+1(t) in (4.18)
on Jl.

B.2. Case 2. Consider the case that

max
0≤i≤k+1

{θ̄i} = θ̄k+1, min
0≤i≤k+1

{θi} = θk+1 in Jl.

The comparison relation in this case is presented in Figure 2. For this case, we assume

Figure 2. The comparison relation in Case 2

that

θk+1
1 ≤ θk+1

2 ≤ · · · ≤ θk+1
Nk+1

, on Jl.

F Step 1. Similar to formula (A.7), we claim that for 1 ≤ n ≤ Nk+1, the following
inequalities hold

(B.1)

d

dt
θ̄k+1
n (t) ≤ ΩM + κSkDk(θ(t))

+ κ
1

āk+1
n + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

 ,
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where Sk =
∑k

i=0Ni. In the subsequence, we will prove the claim (B.1) by induction.

F Step 1.1. As an initial step, we first verify that (B.1) holds for n = Nk+1. In fact, the

dynamics of θ̄k+1
Nk+1

is given by

(B.2)

d

dt
θ̄k+1
Nk+1

=
d

dt
θk+1
Nk+1

= Ωk+1
Nk+1

+ κ
∑

j∈N k+1
Nk+1

(k+1)

sin(θk+1
j − θk+1

Nk+1
)

︸ ︷︷ ︸
I1

+ κ
k∑
l=0

∑
j∈N k+1

Nk+1
(l)

sin(θlj − θk+1
Nk+1

)

︸ ︷︷ ︸
I2

.

� Estimates on I1 in (B.2). We know that θk+1
Nk+1

is the largest phase among Gk+1, and

all the oscillators in
⋃k+1
i=0 Gi stay in half circle before T ∗. Therefore, it is clear that

sin(θk+1
j − θk+1

Nk+1
) ≤ 0, for j ∈ N k+1

Nk+1
(k + 1).

Then we have

(B.3)
∑

j∈N k+1
Nk+1

(k+1)

sin(θk+1
j − θk+1

Nk+1
) ≤ min

j∈N k+1
Nk+1

(k+1)
sin(θk+1

j − θk+1
Nk+1

).

� Estimates on I2 in (B.2). For θlj which is the neighbor of θk+1
Nk+1

in Gl with 0 ≤ l ≤ k,

i.e., j ∈ N k+1
Nk+1

(l), there are two possible orderings between θlj and θk+1
Nk+1

:

If θlj ≤ θ
k+1
Nk+1

, we immediately have

sin(θlj − θk+1
Nk+1

) ≤ 0.

If θlj > θk+1
Nk+1

, according to the fact that

(B.4) θiNi ≥ θ̄i ≥ θi ≥ θ
i
1, 0 ≤ i ≤ d,

we immediately obtain

(B.5) θk+1
Nk+1

≥ θ̄k+1 = max
0≤i≤k+1

{θ̄i} ≥ max
0≤i≤k

{θ̄i} ≥ min
0≤i≤k

{θi} ≥ min
0≤i≤k

min
1≤j≤Ni

{θij}.

Thus we use the property of sinx ≤ x, x ≥ 0 and (B.5) to get

(B.6) sin(θlj − θk+1
Nk+1

) ≤ θlj − θk+1
Nk+1

≤ θlj − min
0≤i≤k

min
1≤j≤Ni

{θij} ≤ Dk(θ(t)).

Therefore, combining the above discussion, (B.2) and (B.3), we obtain that

d

dt
θ̄k+1
Nk+1

≤ ΩM + κ min
j∈N k+1

Nk+1
(k+1)

sin(θk+1
j − θk+1

Nk+1
) + κSkDk(θ(t)).

Thus we have that (B.1) holds for n = Nk+1.

F Step 1.2. Next, we will apply inductive criteria. We assume that (B.1) holds for n with
2 ≤ n ≤ Nk+1, and we will show that (B.1) holds for n − 1. According to the process A1,
we have
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(B.7)

˙̄θk+1
n−1 =

d

dt

(
āk+1
n−1θ̄

k+1
n + θk+1

n−1

āk+1
n−1 + 1

)
=

āk+1
n−1

āk+1
n−1 + 1

˙̄θk+1
n +

1

āk+1
n−1 + 1

θ̇k+1
n−1

≤
āk+1
n−1

āk+1
n−1 + 1

ΩM + κ
1

āk+1
n + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))




+
āk+1
n−1

āk+1
n−1 + 1

κSkDk(θ(t))

+
1

āk+1
n−1 + 1

Ωk+1
n−1 + κ

∑
j∈N k+1

n−1 (k+1)

sin(θk+1
j − θk+1

n−1) + κ
k∑
l=0

∑
j∈N k+1

n−1 (l)

sin(θlj − θk+1
n−1)



≤ ΩM + κ
η(2N −Nk+1 − Sk)

āk+1
n−1 + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))


︸ ︷︷ ︸

I11

+ κ
η(Nk+1 − n+ 2 + Sk)

āk+1
n−1 + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))



+ κ
1

āk+1
n−1 + 1


∑

j∈N k+1
n−1 (k+1)

j≤n−1

sin(θk+1
j − θk+1

n−1)

︸ ︷︷ ︸
I12

+
∑

j∈N k+1
n−1 (k+1)

j>n−1

sin(θk+1
j − θk+1

n−1)

︸ ︷︷ ︸
I13


+ κ

1

āk+1
n−1 + 1

k∑
l=0

∑
j∈N k+1

n−1 (l)

sin(θlj − θk+1
n−1)

︸ ︷︷ ︸
I14

+
āk+1
n−1

āk+1
n−1 + 1

κSkDk(θ(t)),

where we use the fact

āk+1
n−1 = η(2N − n+ 2)(āk+1

n + 1), 2N − n+ 2 = (Nk+1 − n+ 2 + Sk) + 2N −Nk+1 − Sk.
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� Estimates on I11 in (B.7). We apply the strong connectivity of Gk+1 and Lemma 3.1
to obtain that

(B.8)

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

 ≤ sin(θk+1
k̄n
− θk+1

Nk+1
),

where k̄n = min
j∈

⋃Nk+1
i=n N k+1

i (k+1)
j ≤ n− 1. And it is obvious that I11 ≤ 0.

� Estimates on I12 in (B.7). For the term I12, we apply direct calculation to obtain that

(B.9) I12 =
∑

j∈N k+1
n−1 (k+1)

j≤n−1

sin(θk+1
j − θk+1

n−1) ≤ min
j∈N k+1

n−1 (k+1)

j≤n−1

sin(θk+1
j − θk+1

n−1).

� Estimates on I13 in (B.7). For the term I13, the estimate is almost the same as (A.10).
Without loss of generality, we only deal with I13 under the situation γ > π

2 . According to

(B.8), we consider two cases depending on comparison between θk+1
Nk+1

− θk+1
k̄n

and π
2 .

(i) For the first case that 0 ≤ θk+1
Nk+1

− θk+1
k̄n
≤ π

2 , we immediately obtain that for j ∈
N k+1
n−1 (k + 1), j > n− 1,

(B.10) 0 ≤ θk+1
j (t)− θk+1

n−1(t) ≤ θk+1
Nk+1

(t)− θk+1
n−1(t) ≤ θk+1

Nk+1
(t)− θk+1

k̄n
(t) ≤ π

2
.

Then it is known from (B.8), (B.10) and η > 2 that

η(Nk+1 − n+ 1)

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ I13

≤ η(Nk+1 − n+ 1) sin(θk+1
k̄n
− θk+1

Nk+1
) +

∑
j∈N k+1

n−1 (k+1)

j>n−1

sin(θk+1
j − θk+1

n−1)

≤ (Nk+1 − n+ 1) sin(θk+1
k̄n
− θk+1

Nk+1
) + (Nk+1 − n+ 1) sin(θk+1

Nk+1
− θk+1

n−1)

≤ 0.

(ii) For the second case that π
2 < θk+1

Nk+1
− θk+1

k̄n
< γ, it is known that

(B.11) η >
1

sin γ
and sin(θk+1

Nk+1
− θk+1

k̄n
) > sin γ,

which yields η sin(θk+1
k̄n
− θk+1

Nk+1
) ≤ −1. Thus we immediately derive that
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η(Nk+1 − n+ 1)

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ I13

≤ η(Nk+1 − n+ 1) sin(θk+1
k̄n
− θk+1

Nk+1
) +

∑
j∈N k+1

n−1 (k+1)

j>n−1

sin(θk+1
j − θk+1

n−1)

≤ −(Nk+1 − n+ 1) + (Nk+1 − n+ 1) = 0.

Therefore, we combine the above arguments in (i) and (ii) to obtain

(B.12) η(Nk+1 − n+ 1)

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )

+ I13 ≤ 0.

� Estimates on I14 in (B.7). For the term I14, there are three possible comparison be-

tween θlj with 0 ≤ l ≤ k and θk+1
n−1:

(i) If θlj ≤ θ
k+1
n−1, we immediately have sin(θlj − θ

k+1
n−1) ≤ 0.

(ii) If θk+1
n−1 < θlj ≤ θ

k+1
Nk+1

, we consider two cases separately:

(a) For the case that 0 ≤ θk+1
Nk+1

− θk+1
k̄n
≤ π

2 , it is clear that

0 ≤ θlj − θk+1
n−1 ≤ θ

k+1
Nk+1

− θk+1
n−1 ≤ θ

k+1
Nk+1

− θk+1
k̄n
≤ π

2
.

Thus from the above inequality and (B.8), we have

η

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ sin(θlj − θk+1
n−1)

≤ η sin(θk+1
k̄n
− θk+1

Nk+1
) + sin(θlj − θk+1

n−1)

≤ sin(θk+1
k̄n
− θk+1

Nk+1
) + sin(θk+1

Nk+1
− θk+1

k̄n
) = 0.

(b) For another case that π
2 < θk+1

Nk+1
− θk+1

k̄n
< γ, it is known from (B.11) that

η

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ sin(θlj − θk+1
n−1)

≤ η sin(θk+1
k̄n
− θk+1

Nk+1
) + sin(θlj − θk+1

n−1)

≤ −1 + 1 = 0
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Hence, combining the above arguments in (a) and (b), we obtain that

η

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ sin(θlj − θk+1
n−1) ≤ 0.

(iii) If θlj > θk+1
Nk+1

, we exploit the concave property of sine function in [0, π] to get

(B.13) sin(θlj − θk+1
n−1) ≤ sin(θlj − θk+1

Nk+1
) + sin(θk+1

Nk+1
− θk+1

n−1).

For the second part on the right-hand side of above inequality (B.13), we apply the same
analysis in (ii) to obtain

η

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )

+ sin(θk+1
Nk+1

− θk+1
n−1) ≤ 0.

For the first part on the right-hand side of (B.13), the calculation is the same as the formula
(B.6), thus we have

sin(θlj − θk+1
Nk+1

) ≤ θlj − θk+1
Nk+1

≤ θlj − min
0≤i≤k

min
1≤j≤Ni

{θij} ≤ Dk(θ(t)).

Therefore, we combine the above estimates to obtain

(B.14)

ηSk

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j (t)− θk+1

i (t))

+ I14

≤ ηSk sin(θk+1
k̄n
− θk+1

Nk+1
) +

k∑
l=0

∑
j∈N k+1

n−1 (l)

sin(θlj − θk+1
n−1)

≤ SkDk(θ(t)).

Then combining (B.9), (B.12), (B.14) and coming back to (B.7), we obtain that

d

dt
θ̄k+1
n−1 ≤ ΩM + κ

η

āk+1
n−1 + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )


+ κ

1

āk+1
n−1 + 1

min
j∈N k+1

n−1 (k+1)

j≤n−1

sin(θk+1
j − θk+1

n−1)

+
āk+1
n−1

āk+1
n−1 + 1

κSkDk(θ(t)) +
1

āk+1
n−1 + 1

κSkDk(θ(t))

= ΩM + κ
1

āk+1
n−1 + 1

Nk+1∑
i=n−1

ηi−(n−1) min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )

+ κSkDk(θ(t)).
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This means that the claim (B.1) does hold for n − 1. Therefore, we apply the inductive
criteria to complete the proof of the claim (B.1).

F Step 2. Now we are ready to prove (4.18) on Jl for Case 2. In fact, we apply Lemma
3.1 and the strong connectivity of Gk+1 to have

Nk+1∑
i=1

ηi−1 min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )

 ≤ sin(θk+1
1 − θk+1

Nk+1
)

From the notations in (4.5) and (4.6), it is known that

θ̄k+1
1 = θ̄k+1, θk+1

Nk+1
= θk+1.

Thus, we exploit the above inequality and set n = 1 in (B.1) to obtain
(B.15)

d

dt
θ̄k+1 =

d

dt
θ̄k+1

1

≤ ΩM + κ
1

āk+1
1 + 1

Nk+1∑
i=1

ηi−1 min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )

+ κSkDk(θ(t))

≤ ΩM + κSkDk(θ(t)) + κ
1

āk+1
1 + 1

sin(θk+1
1 − θk+1

Nk+1
)

We further apply the similar arguments in obtaining the dynamics of θ̄k+1 in (B.15) to
derive the differential inequality of θk+1 as below

(B.16)
d

dt
θk+1 ≥ Ωm + κ

1

āk+1
1 + 1

sin(θk+1
Nk+1

− θk+1
1 )− κSkDk(θ(t)).

Due to the monotone decreasing property of sinx
x in (0, π] and from (4.21), it is obvious that

sin(θk+1
Nk+1

− θk+1
1 ) ≥ sin γ

γ
(θk+1
Nk+1

− θk+1
1 ).

Then we combine the above inequality, (B.15), (B.16) and (4.4) to get

Q̇k+1(t) =
d

dt
(θ̄k+1 − θk+1) ≤ D(Ω)− κ 2

āk+1
1 + 1

sin(θk+1
Nk+1

− θk+1
1 ) + 2κSkDk(θ(t))

≤ D(Ω)− κ 1

āk+1
1 + 1

sin γ

γ
(θk+1
Nk+1

− θk+1
1 ) + 2κSkDk(θ(t))

≤ D(Ω)− κ 1

āk+1
1 + 1

sin γ

γ
Qk+1(t) + 2κSkDk(θ(t))

≤ D(Ω)− κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t) + κ(2N + 1)Dk(θ(t)), t ∈ Jl,

where we use the fact that Qk+1(t) ≤ θk+1
Nk+1

(t)− θk+1
1 (t). Thus we obtain the dynamics for

Qk+1(t) in (4.18) on Jl.
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B.3. Case 3. Consider the case that

max
0≤i≤k+1

{θ̄i} = θ̄k+1, min
0≤i≤k+1

{θi} = min
0≤i≤k

{θi} on Jl.

The comparison relation in this case is presented in Figure 3. For this case, without loss

Figure 3. The comparison relation in Case 3

of generality, we set

θq = min
0≤i≤k

{θi} where 0 ≤ q ≤ k.

We further assume

θk+1
1 ≤ θk+1

2 ≤ . . . ≤ θk+1
Nk+1

, θq1 ≤ θ
q
2 ≤ . . . ≤ θ

q
Nq

in Jl.

It is obvious that θq = min0≤i≤q{θi}. Thus we apply the same arguments in Case 2 to
obtain

(B.17)
d

dt
θq ≥ Ωm + κ

1

āq1 + 1
sin(θqNq − θ

q
1)− κSq−1Dq−1(θ(t)).

In the subsequence, we prove (4.18) on Jl in two sub-cases depending on the comparison

between θk+1
1 and max

0≤i≤k
max

1≤j≤Ni
{θij}.
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• Case 3.1. If θk+1
1 ≤ max

0≤i≤k
max

1≤j≤Ni
{θij}, then we combine (4.21), (B.15) and (B.17) to get

Q̇k+1(t) =
d

dt
(θ̄k+1 − θq)

≤ D(Ω) + κSkDk(θ(t))− κ
1

āk+1
1 + 1

sin(θk+1
Nk+1

− θk+1
1 )

− κ 1

āq1 + 1
sin(θqNq − θ

q
1) + κSq−1Dq−1(θ(t))

≤ D(Ω)− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}(
sin(θk+1

Nk+1
− θk+1

1 ) + sin(θqNq − θ
q
1)
)

+ κ(Sk + Sq−1)Dk(θ(t))

≤ D(Ω)− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
θk+1
Nk+1

− θk+1
1 + θqNq − θ

q
1

)
+ κ(Sk + Sq−1)Dk(θ(t))− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
max
0≤i≤k

max
1≤j≤Ni

{θij} − θ
q
Nq

)

+ κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
max
0≤i≤k

max
1≤j≤Ni

{θij} − θ
q
Nq

)

≤ D(Ω)− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
θk+1
Nk+1

− θq1
)

+ κ(Sk + Sq−1)Dk(θ(t))

+ κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ
Dk(θ(t))

≤ D(Ω)− κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t) + κ(2N + 1)Dk(θ(t)), in Jl.

In above estimates, we apply (4.4), (B.4) and the fact that

Qk+1(t) = θ̄k+1 − θq ≤ θk+1
Nk+1

− θq1 and min

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ
≤ 1.
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• Case 3.2. If θk+1
1 > max

0≤i≤k
max

1≤j≤Ni
{θij}, similar to Case 2, we can apply the induction

principle to prove that for 1 ≤ n ≤ Nk+1,

(B.18)

d

dt
θ̄k+1
n ≤ ΩM + κ

1

āk+1
n + 1

Nk+1∑
i=n

ηi−n min
j∈N k+1

i (k+1)

j≤i

sin(θk+1
j − θk+1

i )


+ κ

1

āk+1
n + 1

k∑
l=0

∑
j∈N k+1

n (l)

sin(θlj − θk+1
n )

+ κ

Nk+1∑
i=n+1

 ∏i−1
r=n ā

k+1
r∏i

r=n(āk+1
r + 1)

k∑
l=0

∑
j∈N k+1

i (l)

sin(θlj − θk+1
i )

 .

Since the proof of (B.18) is similar to that of (B.1), we omit its details. In particular, we
set n = 1 in the above inequality (B.18) and apply Lemma 3.1 to get
(B.19)

d

dt
θ̄k+1 =

d

dt
θ̄k+1

1 ≤ ΩM + κ
1

āk+1
1 + 1

sin(θk+1
1 − θk+1

Nk+1
) + κ

1

āk+1
1 + 1

k∑
l=0

∑
j∈N k+1

1 (l)

sin(θlj − θk+1
1 )

+ κ

Nk+1∑
i=2

 ∏i−1
r=1 ā

k+1
r∏i

r=1(āk+1
r + 1)

k∑
l=0

∑
j∈N k+1

i (l)

sin(θlj − θk+1
i )



Due to the situation that θk+1
1 > max

0≤i≤k
max

1≤j≤Ni
{θij}, it is known that for 0 ≤ l ≤ k, the term

sin(θlj − θ
k+1
i ) in (B.19) is non-positive. And according to the spanning tree structure, the

neighbors set of Gk+1 in
⋃k
l=0 Gl is non-empty,

Nk+1⋃
i=1

k⋃
l=0

N k+1
i (l) 6= ∅,

this means that there must exist some θln belonging to
⋃k
l=0 Gl and θk+1

m such that θln ∈
N k+1
m (l). Moreover, from (4.2), it is clear that for the coefficients in the last term in (B.19)

satisfy

∏i−1
r=1 ā

k+1
r∏i

r=2(āk+1
r + 1)

=

∏i−1
r=1 ā

k+1
r∏i−1

r=1(āk+1
r+1 + 1)

=
i−1∏
r=1

η(2N − r + 1) > 1 with 2 ≤ i ≤ Nk+1.
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Then we combine the above estimates to have
(B.20)

d

dt
θ̄k+1 ≤ ΩM + κ

1

āk+1
1 + 1

sin(θk+1
1 − θk+1

Nk+1
) + κ

1

āk+1
1 + 1

k∑
l=0

∑
j∈N k+1

1 (l)

sin(θlj − θk+1
1 )

+ κ
1

āk+1
1 + 1

Nk+1∑
i=2

 ∏i−1
l=1 ā

k+1
l∏i

l=2(āk+1
l + 1)

k∑
l=0

∑
j∈N k+1

i (l)

sin(θlj − θk+1
i )


≤ ΩM + κ

1

āk+1
1 + 1

sin(θk+1
1 − θk+1

Nk+1
) + κ

1

āk+1
1 + 1

sin(θln − θk+1
m )

≤ ΩM − κ
1

āk+1
1 + 1

sin γ

γ

(
θk+1
Nk+1

− θk+1
1

)
− κ 1

āk+1
1 + 1

sin γ

γ

(
θk+1
m − θln

)
≤ ΩM − κ

1

āk+1
1 + 1

sin γ

γ

(
θk+1
Nk+1

− θk+1
1 + θk+1

1 − max
0≤i≤k

max
1≤j≤Ni

{θij}
)

= ΩM − κ
1

āk+1
1 + 1

sin γ

γ

(
θk+1
Nk+1

− max
0≤i≤k

max
1≤j≤Ni

{θij}
)
,

where we exploit the property

θk+1
m − θln ≥ θk+1

1 − max
0≤i≤k

max
1≤j≤Ni

{θij}.

Then we combine (B.17) and (B.20) to obtain that

Q̇k+1(t) ≤ D(Ω)− κ 1

āk+1
1 + 1

sin γ

γ

(
θk+1
Nk+1

− max
0≤i≤k

max
1≤j≤Ni

{θij}
)

− κ 1

āq1 + 1
sin(θqNq − θ

q
1) + κSq−1Dq−1(θ(t))

≤ D(Ω)− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
θk+1
Nk+1

− max
0≤i≤k

max
1≤j≤Ni

{θij}+ θqNq − θ
q
1

)

− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
max
0≤i≤k

max
1≤j≤Ni

{θij} − θ
q
Nq

)

+ κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
max
0≤i≤k

max
1≤j≤Ni

{θij} − θ
q
Nq

)
+ κSq−1Dq−1(θ(t))

≤ D(Ω)− κmin

{
1

āk+1
1 + 1

,
1

āq1 + 1

}
sin γ

γ

(
θk+1
Nk+1

− θq1
)

+ κ(2N + 1)Dk(θ(t))

≤ D(Ω)− κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t) + κ(2N + 1)Dk(θ(t)), in Jl.

B.4. Case 4. Consider the case that

max
0≤i≤k+1

{θ̄i} = max
0≤i≤k

{θ̄i}, min
0≤i≤k+1

{θi} = θk+1 in Jl.

The comparison relation in this case is showed in Figure 4. For this case, the analysis is
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Figure 4. The comparison relation in Case 4

similar to that in Case 3. Therefore, we omit the details of discussion.

B.5. Conclusion. Since all analysis above do not depend on interval Jl with 1 ≤ l ≤ r,
thus we combine all analysis in Case 1, Case 2, Case 3, and Case 4 to derive that

Q̇k+1(t) ≤ D(Ω)−κ 1∑N−1
j=1 (ηjA(2N, j)) + 1

sin γ

γ
Qk+1(t)+κ(2N+1)Dk(θ(t)), in [0, T ∗).

�
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