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In this paper, thermal transport in bond-disordered harmonic chains is revisited in detail using
a nonequilibrium Green’s function formalism. For strong bond disorder, thermal conductivity is
independent of the system size. However, kinetic temperatures described by the local number of
states coupling to external heat reservoirs are anomalous since they form a nonlinear profile in the
interior of the system. Both results are accounted for in a unified manner in terms of the frequency-
dependent localization length. From this argument, we derive a generic formula describing the
asymptotic profile of local temperatures in a disordered harmonic chain. A linear temperature
profile obeying Fourier’s law is recovered by contact with a self-consistent reservoir of Ohmic type
even in the limit of weak system-reservoir coupling. This verifies that mechanisms leading to local
thermal equilibrium and breaking total momentum conservation are essential for Fourier transport
in low dimensions.

I. INTRODUCTION

Fourier’s law is a celebrated phenomenological law
that relates heat current to a temperature gradient as
J = −κ∇θ, where κ is the material-dependent thermal
conductivity. Because of energy conservation, this law
predicts a linear temperature profile for a small tem-
perature bias ∆θ along the direction of heat flow in the
steady state. It also follows that under a fixed bias, the
heat current varies as J ∝ N−1, where N denotes the
system size. In nonequilibrium statistical physics, it is a
fundamental challenge to derive Fourier’s law from first
principles. This issue remains unresolved despite exten-
sive theoretical studies thus far. From these studies, it is
widely accepted at present that Fourier’s law is genuinely
broken in a low-dimensional lattice system without exter-
nal forces that break total momentum conservation [1–
5]. In particular, anharmonic Fermi-Pasta-Ulam chains
and disordered harmonic chains are the typical examples
showing this anomaly. For these systems, the finite-size
thermal conductivity defined as κN = JN/∆θ diverges
in the thermodynamic limit N → ∞. The predicted
anomalous non-Fourier transport is observed experimen-
tally in carbon and boron-nitride nanotubes [6] and in
single-layer graphene [7]. In experiments, dimensional
crossover of thermal transport is also seen in few-layer
graphene [8].

Harmonic chains with quenched disorders constitute
an integrable model that enables analytical and numeri-
cal treatments in an exact manner. As mentioned above,
the relevant models have been intensively explored over
many decades to elucidate heat transport occurring in
low dimensions [2–4, 9–15]. The previous studies, which
generally assume spatially uncorrelated mass disorder,
support anomalous transport in momentum-conserving
systems. Nonetheless, κN scaling normally with N has
been found in recent years for particular classes of dis-
orders such as correlated mass disorder [16] and uncor-
related bond disorder [17, 18]. The recovery of normal

conductivity despite total momentum conservation seems
to disprove the prevailing conjecture, if the normality is
also verified for local temperatures in the interior of the
system.

The temperature profile in a disordered harmonic chain
has been little studied [2, 4, 19]. The previous studies
in this direction are limited to dealing with a relatively
small system of N ∼ 100. In the presence of quenched
disorder, most of the nonzero frequency modes are expo-
nentially localized and thereby it takes an extremely long
time to reach the nonequilibrium steady state. This fea-
ture tends to disable conventional stochastic approaches
[2, 4]. Thus, the asymptotic profile of local temperatures
remains an open problem for disordered chains.

In this paper, we address the following two issues for
thermal transport in disordered harmonic chains.

First, we examine whether Fourier transport is gen-
uinely reproducible in disordered chains. To this end,
we employ the nonequilibrium Green’s function (NEGF)
formalism [20–22] or equivalently the quantum Langevin
equation (QLE) formalism [3, 4, 23]. Following these
formalisms, stationary heat current flowing in a two-
terminal system subjected to a temperature bias is de-
scribed by the Landauer-Büttiker (LB) formula. In this
nonequilibrium situation, kinetic temperatures are for-
mulated in terms of the local number of states coupling
to external heat reservoirs attached to the system. We
show that the local temperatures are anomalous even in
a system exhibiting normal conductivity. This result is
quantitatively accounted for by a generic formulation of
the asymptotic profile of local temperatures in a disor-
dered harmonic chain.

In the two-terminal geometry, a long enough disor-
dered chain is not expected to locally equilibrate since
no energy transfer is allowed between localized and ex-
tended states. This motivates us to consider what role
is played by local equilibration in heat transport. We
address this second issue by attaching a self-consistent
reservoir (SCR) to the system to enforce local equilibra-
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tion [23–30]. We show that a normal temperature pro-
file is recoverable by contact with an Ohmic SCR even
in the limit of weak system-reservoir coupling, verify-
ing that mechanisms leading to local thermal equilibrium
and breaking total momentum conservation are necessary
for Fourier transport in low dimensions.
The paper is organized as follows. In Sec. II, we for-

mulate thermal current and kinetic temperatures in the
two-terminal system. In Sec. III, we elucidate the two
issues given above by using numerical calculations. Fi-
nally, Sec. IV provides a summary.

II. THEORETICAL FORMULATION

Throughout this paper, we shall work in units where
~ = kB = 1. We consider a one-dimensional lattice
with nearest-neighbor harmonic interactions. The lattice
Hamiltonian is written as

H =
1

2
(
∑

j

mj q̇j q̇j +
∑

jj′

Kjj′qjqj′ ),

where qj denotes the displacement of a particle of mass
mj from its equilibrium position. This Hamiltonian al-
lows for random masses {mj} giving rise to diagonal
disorder. In general, the force constant matrix has the
symmetry Kjj′ = Kj′j , and obeys the acoustic sum rule
∑

jKjj′ = 0 because of translational invariance [31]. It
is easy to see that this constraint ensures the conserva-
tion of total momentum as well as the persistence of the
fundamental zero mode. For instance, the sum rule is
maintained for the coupling matrix of the form

Kjj′ = (kj + kj−1)δjj′ − kjδj′,j+1 − kj−1δj′,j−1,

which describes off-diagonal disorder where one regards
bond strengths {kj} as random variables.
To analyze thermal transport, we assume a standard

two-terminal setup, where the central system consisting
of N lattice sites is coupled at both ends to two leads
denoted as L and R, which serve as heat reservoirs sus-
tained at unequal temperatures θL and θR, respectively.
In this setup, the energy flux is described by the LB for-
mula, which can be derived from the NEGF formalism
[20–22] as well as the QLE formalism [3, 4, 23]. In terms
of this formula, heat current flowing in the two-terminal
system is expressed as J = G(θL−θR) for a small enough
temperature bias θL − θR. The thermal conductance is
defined as

G =
1

2π

∫ ∞

0

dω
∂f

∂θ
ωT (ω), (1)

where T = ΓLΓR|g1N |2 is the transmission coefficient,
gjj′ is the retarded Green’s function between sites j and
j′, Γν is the linewidth function for lead ν ∈ {L,R}, and
f = (eω/θ − 1)−1 is the Bose function for phonons. The
finite-size thermal conductivity is given by κN = G(N +
1) for the system of size N .

The velocity-velocity correlation function 〈q̇j q̇j〉 is also
derivable from the NEGF formalism or equivalently the
QLE formalism [23]. The equal-time correlation leads to
the local kinetic temperature formulated as

θ̃j = mj 〈q̇j q̇j〉 =
∑

ν=L,R

∫ ∞

0

dω(fν +
1

2
)ωDjν , (2)

where Djν = mjωΓν |gjν |
2
/π and fν = f(θν). In this

notation, the index ν for gjν is assigned to the internal
site connected to terminal ν, i.e., gjL ≡ gj1 and gjR ≡
gjN . See, Appendix A for the derivation of Eq. (2).
Linearizing Eq. (2), one obtains

Θ̃j =
θ̃j − θ̃

(0)
j

θL − θR
=

∑

ν=L,R

Θν

∫ ∞

0

dω
∂f

∂θ
ωDjν . (3)

Here, Θν = (θν − θ)/(θL − θR) and θ = (θL + θR)/2.
The dimensionless terminal temperature satisfies ΘL =

−ΘR = 1/2. The quantity θ̃
(0)
j denotes the kinetic tem-

perature at zero bias θL = θR = θ.
In the high-temperature limit θ → ∞, the factor ∂f

∂θω
approaches unity irrespective of ω so that Eq. (1) is
reduced to

G =
1

2π

∫ ∞

0

dωT (ω). (4)

Similarly, Eq. (3) becomes

Θ̃j =
∑

ν=L,R

NjνΘν, (5)

in this limit, where Njν = ∫∞0 dωDjν . For an isolated
system, the local density of states per site is given by
Dj = −2mjω Im gjj/π, and hence Nj = ∫∞0 dωDj de-
notes the local number of states. Following the identity
−2 Im gjj =

∑

νΓν |gjν |
2
, we observe Nj =

∑

νNjν for
the system in contact with leads. Thus, Njν represents
the contribution of lead ν to Nj . In what follows, we re-
fer to Njν as the local number of states coupling to lead
ν, since gjν incorporated in Njν describes the correlation
between j and ν.
At zero bias, the kinetic temperature is calculated from

Eq. (2) to be

θ̃
(0)
j = Njθ, (6)

in the limit of θ → ∞. This yields a compact general
expression

θ̃j =
∑

ν=L,R

Njνθν , (7)

which is valid for an arbitrary small bias including zero
bias. Equations (5)-(7) are a set of simple and novel
formulas relating the kinetic temperatures and the local
number of states. The zero-bias result, Eq. (6), disagrees
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with a näıve expectation that θ̃
(0)
j = θ unless Nj = 1. It

is shown in the literature that the latter is valid only in
the limit of weak system-reservoir coupling [2, 4, 9, 32]
and does not necessarily hold for generic open systems
acting as heat conductors [32, 33]. See, Appendix B for
Nj in the weak-coupling limit.

III. NUMERICAL RESULTS AND DISCUSSION

In this study, random variables X ∈ {mj/m, kj/k} are
assumed to follow uniform distributions over the intervals
X ∈ [0.5, 1.5] for weak disorder and X ∈ (0, 2] for strong
disorder, where m and k denote the expected values of
mj and kj , respectively. Thus, we address four types
of uncorrelated disorders consisting of weak mass disor-
der (WMD), weak bond disorder (WBD), strong mass
disorder (SMD), and strong bond disorder (SBD). In nu-
merical calculations, disorder averaging is performed over
104 random configurations unless stated otherwise. Note
that the uniform distribution describing strong disorder
is equivalent to the power-law distribution P (X) ∝ Xǫ−1

with ǫ = 1, which was employed in the previous study
[17, 18].
The retarded Green’s function of a linear chain consist-

ing of n lattice sites is analyzable in the recursive manner
[4, 21, 29, 34, 35] formulated as

gnn = (s−1
n −Kn,n−1gn−1,n−1Kn−1,n)

−1,

g1n = g1,n−1Kn−1,ngnn,

where sn = (mnω
2 − Knn)

−1 represents the Green’s
function of an isolated site. In the two-terminal geome-
try, the Green’s function g1N joining two ends is com-
puted by adding sites one by one to an isolated lead
until reaching the opposite lead. The lead is assumed
to be a semi-infinite ordered chain with equal particles
of mass m and equal bond strength k, which coincide
with the expected values of mj and kj in the system, re-
spectively. The coupling to leads induces the self-energy
ΣL = ΣR = Σ̄ in the system, which is analytically derived

to be Σ̄ = −ke2i sin
−1 z , where z = ω/2t and t =

√

k/m.
Note that 2t corresponds to the bandwidth of the or-
dered chain. In the recursive Green’s function formalism,
the self-energy is incorporated into g11 and gNN at the
boundary sites. The associated linewidth ΓL = ΓR = Γ̄
is given by Γ̄ = −2 ImΣ̄. Following an analogous proce-
dure, the internal two-point correlations gj1 and gjN are
derived numerically. See, Ref. [35] for more details. The
present model constitutes an infinitely extended chain.
The calculation assumes the free boundary condition to
fulfill the acoustic sum rule in the entire system. Other-
wise, total momentum conservation is violated.
In the following, we elucidate the two issues raised in

Sec. I by means of numerical calculations. All the nu-
merical results shown below are obtained in the high-
temperature limit θ → ∞. The features expected at
finite temperatures are discussed at the end of Sec. III.
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FIG. 1. Transmission coefficient T as a function of frequency
ω. Four panels display the numerical results for (a) WMD,
(b) WBD, (c) SMD and (d) SBD. In each panel, the system
size is varied as N = 10, 100, 1000 and 10000. The thin gray
line shows T in the absence of disorder as a reference.

First, we address the validity of Fourier transport in dis-
ordered chains.
Figure 1 summarizes the transmission T (ω) for four

types of disorders. In general, T (ω) is invariable and fixed
at unity in the ω → 0 limit. This indicates that the rele-
vant low-frequency modes are delocalized and immune to
disorder by virtue of the acoustic sum rule. At high fre-
quencies, T (ω) tends to vanish, showing that the relevant
high-frequency modes are localized and no longer carry
heat current across the system. The cutoff frequency sep-
arating these two regimes lowers with increasing the size
of the chain N . For SBD, interference fringes are formed
in the transitional regime. This is due to a boundary
mismatch in the present model, where disorder is absent
in the leads attached to the system. The occurrence of
interference also manifests coherent heat transport.
The finite-size conductivity κN is displayed in Fig.

2(a). As shown in the figure, κN behaves as κN ∝ N0

for SBD and κN ∝ N1/2 for the other types of disorders.
These power-law behaviors correlate to the localization
length ξ(ω) as explained below. For exponential localiza-
tion, the correlation function follows

lim
|j−j′|→∞

|gjj′ (ω)| ∝ e−|j−j′|/ξ(ω), (8)

and hence T (ω) ≈ e−2(N−1)/ξ(ω) in the asymptotic limit
N → ∞. Accordingly, ξ(ω) is numerically derived from

T (ω) via ξ(ω) = − limN→∞
2(N−1)
lnT (ω) . The numerical re-

sults obtained for N ≈ 108 after averaging over 10 dis-
order realizations are shown in Fig. 2(b). As seen in
the figure, ξ(ω) varies as ω−α at low enough frequen-
cies. The power-law exponent is found to be α = 1
for SBD and α = 2 for the other types of disorders. It
may be worth noting that in the second-order Born ap-
proximation, particle mass and bond strength are renor-

malized by disorders such that m → m(1 + i
σ2

m

m2

ω
2t ) and

k → k(1 − i
σ2

k

k2

ω
2t ), where σ2

x refers to the variance of a
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FIG. 2. (a) Finite-size thermal conductivity κN as a function
of system size N and (b) localization length ξ as a function
of frequency ω for WMD, WBD, SMD and SBD.

random variable x. These renormalized parameters lead

to ξ−1(ω) = (
σ2

m

m2 +
σ2

k

k2 )(
ω
2t )

2 in the limit of ω → 0. This
relation agrees with the estimate from a renormalization
group study [36, 37], and accounts for the numerical re-
sults shown in Fig. 2(b) except for SBD. For SBD, α = 1
is shown from a scaling argument in the literature [38].
This prediction coincides with the observation. In terms
of the localization length scaling as ξ(ω) ∝ ω−α, the high-
frequency cutoff amounts to ωN ∝ N−1/α. In the θ → ∞
limit, G = ωN/2π so that we arrive at

κN ∝ N (α−1)/α, (9)

in the asymptotic regime [3, 4]. This explains the numer-
ical results shown in Fig. 2(a).

Figure 3 displays the local kinetic temperature Θ̃j and
the local number of states Nj in the two-terminal system

of size N = 1000. It is clearly seen in the figure that Θ̃j

is nonlinear and Nj is nonuniform for all types of disor-
ders. Recall that Nj =

∑

νNjν and Njν relates to the
correlation function gjν . Therefore, a salient reduction of
Nj observed in the bulk implies that strongly localized
states in the bulk are decoupled from the leads due to
vanishingly weak correlations between them. In view of
this, it is naturally expected that both Θ̃j and Nj tend
to vanish as N → ∞ in the bulk of a disordered chain as
a result of Anderson localization. The expected behavior
is confirmed in Fig. 4, where the numerical results are
shown for various N in the case of SBD. The physical ori-
gin of a few sharp peaks seen in these numerical results
is not entirely clear, although it is likely that they stem
from resonant interference accidentally occurring inside
the system in particular disorder configurations. It has
been found from repeated calculations that they have an
essentially random nature. In view of this, it is expected
that these noise-like peaks disappear after averaging over
infinitely many disorder realizations.
The kinetic temperatures in the bulk of a disordered

chain are more quantitatively analyzable. The approach
to this problem is parallel to that leading to Eq. (9). It
is shown from Eq. (8) that DjL ∝ e−2(j−1)/ξ and DjR ∝
e−2(N−j)/ξ. Hence, one finds that NjL ∝ (j − 1)−1/α

and NjR ∝ (N − j)−1/α for ξ(ω) ∝ ω−α. Then, Eq. (7)
results in

θ̃j ∝ (j − 1)−1/αθL + (N − j)−1/αθR, (10)
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FIG. 3. Kinetic temperature Θ̃j and local number of states
Nj for N = 1000. Four panels display the numerical results
for (a) WMD, (b) WBD, (c) SMD and (d) SBD. The reference
point j0 = (N + 1)/2 is used to symmetrize these plots. The
thin gray line shows the temperature profile obeying Fourier’s
law as a reference.
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FIG. 4. Kinetic temperature Θ̃j and local number of states
Nj for SBD. Four panels display the numerical results for (a)
N = 10, (b) 100, (c) 1000 and (d) 10000. The reference point
j0 = (N + 1)/2 is used to symmetrize these plots. The thin
gray line shows the temperature profile obeying Fourier’s law
as a reference.

which describes the asymptotic profile of local tempera-
tures. It is easy to see that the normalized temperature
obeys Θ̃j ∝ (j − 1)−1/α − (N − j)−1/α in terms of Eq.
(5). Equation (10) is a main result of the present study.

Note that θ̃j and Njν discussed here are relevant to the
subsystem consisting of delocalized states which partic-
ipate in heat transport. It can be seen from Eq. (10)

that the equality θ̃
(0)
j = θ no longer holds in the present

model. Figure 5 shows NjL computed for various N in
the case of SBD. The local number of states coupling to
lead L exhibits a power-law decay as j−1 in the range
1 ≪ j < N/2. This corroborates the above argument
since α = 1 for SBD. For the other types of disorders,
numerical results do not contradict α = 2 (not shown).
On the other hand, NjL rapidly decreases in the vicin-
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FIG. 5. Local number of states NjL coupling to lead L for
SBD. The system size is varied as N = 10, 100, 1000 and
10000.

ity of the opposite boundary at j = N . It is presumed
that this phenomenon can be ascribed to the mismatched
boundary, although the associated mechanism is not fully
clear at the present stage of investigation.

In stationary situations, heat current should be con-
stant throughout a disordered chain owing to energy con-
servation. In the present model, the expected unifor-
mity has been verified by computing local bond currents
Jjj′ = ReKjj′ 〈q̇jqj′〉 [23, 30]. Nevertheless, the pro-
files of kinetic temperatures are strongly nonlinear in the
asymptotic regime for all types of disorders. In view of
this, Fourier’s law is broken in the thermodynamic limit
even in the system exhibiting normal conductivity.
In this paper, we restrict our attention to uncorrelated

disorders. It is shown in the literature [16] that a long-
range spatial correlation of random masses leads to a
localization length with a power-law exponent α = 1 +
δ and hence the finite-size conductivity scales as κN ∝
N δ/(1+δ). The factor δ is positive, but arbitrarily small,
so that normal scaling is recoverable for the correlated
disorder in the limit of δ → 0. However, the present
theory predicts a nonlinear profile of kinetic temperatures
even in this case. Therefore, the conclusion stated above
is not altered.
Next, we consider the SCR model to clarify the second

issue. In this model, the system is in contact with fic-
titious stochastic reservoirs, which bring about decoher-
ence in the system following the fluctuation-dissipation
theorem. The self-energy due to the inner reservoir is de-

scribable by Σ(ω) = −imγ sgn(ω)|ω|β, where β is an ar-
bitrary positive real. Note that this form satisfies the re-
ality condition Σ(ω) = Σ∗(−ω). The SCR model usually
arranges such fictitious reservoirs at all sites of the system
[23–30]. In this study, we employ a simpler model consist-
ing only of a single reservoir that contacts only a single
site j. Local equilibration between the system and the
inner reservoir coupling to the site j is attained under the
self-consistent condition that no net energy current flows
into the reservoir held at a certain temperature θj . This
adiabatic condition is expressed as

∑

νGjν(θj − θν) = 0
in the multiterminal LB formalism. Here, the internal
conductance Gjν is defined similarly as the two-terminal
conductanceG, i.e., Gjν = 1

2π ∫∞0 dωTjν(ω) in the θ → ∞

limit, where Tjν = ΓΓν |gjν |
2
and Γ = −2 ImΣ. In terms

of Gjν , the local temperature θj probed in our SCR setup
is simply formulated as

θj =

∑

ν=L,R

Gjνθν

∑

ν=L,R

Gjν
. (11)

The probe temperature can be rewritten as

Θj =
θj − θ

θL − θR
=

∑

ν=L,R

GjνΘν

∑

ν=L,R

Gjν
, (12)

in the dimensionless fashion. Note that θ
(0)
j = θ at zero

bias θL = θR = θ. This property is distinct from that

for the kinetic temperature θ̃
(0)
j derived in the absence

of SCR. Equations (11) and (12) are valid even in the
weak-coupling limit γ → 0. In this limit, Gjν is linear in
γ so that θj is independent of γ. It is easy to see that the
effective two-terminal conductance is expressed as G +
GjLGjR/(GjL + GjR) for the present SCR model. The
second term related to SCR is linear in γ and vanishes
in the weak-coupling limit, implying that scattering and
dephasing due to SCR are negligible in this limit. It
should be emphasized that even in this limit, we consider
an extremely small but nonzero γ to retain the coupling
to SCR.
Figure 6 shows the numerical results obtained for SBD

in the weak-coupling limit. As seen in the figure, the
probe temperature Θj does not coincide with the kinetic

temperature Θ̃j . The discrepancy relates to the presence
or absence of local equilibration processes. It is also no-
ticed that Θj appreciably depends on the reservoir spec-
trum specified by β. These phenomena are thought to be
an observer effect in that an act of observation necessarily
changes the physical situations of the object, and the re-
sult of observation depends on the manner of observation.
For an Ohmic reservoir with β = 1, Θj shows an almost
linear profile, signaling that Fourier’s law is recovered
in this case. However, this does not contradict the pre-
vailing conjecture, since total momentum conservation
is violated for β = 1, as implied from previous studies
[29, 30]. It is worth noting that the recovery of Fourier’s
law is nontrivial since heat current under a given bias
is unaffected by SCR in the weak-coupling limit. For
the other types of disorders, the temperature profiles are
nonlinear regardless of β, indicating the breakdown of
Fourier’s law (not shown). To summarize, local temper-
atures are anomalous in a disordered chain in the absence
of SCR, whereas a normal temperature profile is recov-
ered for SBD by contact with an Ohmic SCR even in
the weak-coupling limit. This confirms that mechanisms
leading to local thermal equilibrium and breaking total
momentum conservation are essential for normal trans-
port.
To corroborate the arguments in this paper, it may

be instructive to consider a theoretical expression for an
Ohmic reservoir with β = 1. In this case, it is easy to find
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FIG. 6. Probe temperature Θj in the weak-coupling limit for
β = 1, 2 and 3 in comparison with kinetic temperature Θ̃j in
the absence of SCR for the system with SBD of size N = 1000.
The reference point j0 = (N + 1)/2 is used to symmetrize
these plots. The thin gray line shows the temperature profile
obeying Fourier’s law as a reference.

that mjGjν = mγNjν and thereby the kinetic and probe

temperatures are simply interrelated by θ̃j = Njθj in the
θ → ∞ limit. Combining this relation and Eq. (10),
the asymptotic profile of probe temperatures is explicitly
expressed as

θj = θL −
j − 1

N − 1
(θL − θR),

for α = 1, giving a quantitative explanation of the linear
profile shown in Fig. 6.
Finally, we explain heat transport in disordered chains

expected at finite temperatures. The integrands in Eqs.
(1) and (3) contain a temperature-dependent factor η ≡
∂f
∂θω, which satisfies limω→0 η = 1 and monotonically de-
creases with ω at finite temperatures. The relevant ther-
mal cutoff is evaluated to be 3θ. Therefore, the conclu-
sions derived in the θ → ∞ limit are reasonably justi-
fiable even at finite temperatures as long as ωN ≪ 3θ.
Note that this criterion is necessarily fulfilled in the
asymptotic limit N → ∞.

IV. SUMMARY

In this paper, we have revisited thermal transport in
disordered harmonic chains in detail. For SBD, the finite-
size thermal conductivity scales normally with the system
size. However, kinetic temperatures described by the lo-
cal number of states coupling to external heat reservoirs
are anomalous since they exhibit a nonlinear profile in the
interior of the system. Both results are consistently ex-
plained in terms of the localization length at low frequen-
cies. The associated argument derives a generic formula
describing the asymptotic profile of local temperatures in
a disordered harmonic chain. A linear temperature pro-
file following Fourier’s law is recovered by contact with
an Ohmic SCR even in the weak-coupling limit. This
verifies that mechanisms leading to local thermal equi-
librium and breaking total momentum conservation are
necessary for Fourier transport in low dimensions.

Appendix A: Correlation Functions

In this Appendix, we derive Eq. (2) by introducing
two NEGFs [20–22] defined as

g>jj′ (t, t
′) = −i 〈qj(t)qj′ (t

′)〉 ,

g+jj′ (t, t
′) = −i 〈[qj(t), qj′ (t

′)]〉 θ(t− t′),

where t denotes the time variable, and θ(t) is the Heav-
iside step function. In stationary situations, these two-
time correlation functions depend only on the time dif-
ference τ = t − t′, and are Fourier transformed into
g>,+
jj′ (ω) =

∫∞

−∞
dτeiωτ g>,+

jj′ (τ). The retarded Green’s

function g+jj′ (ω) in Fourier space is expressed as

g+(ω) =
1

Mω2 −K − Σ+(ω)
,

in matrix notation, where Mjj′ = mjδjj′ is the mass
matrix, Kjj′ is the force constant matrix, and Σ+(ω) =
∑

ν Σ
+
ν (ω) is the retarded self-energy matrix. In the two-

terminal geometry, the self-energy stems from lead ν ∈
{L,R} so that the matrix element (Σ+

ν )jj′ is nonzero only
for j = j′ = ν. The greater Green’s function g>jj′ (ω)
obeys the Keldysh equation

g>(ω) = g+(ω)Σ>(ω)g−(ω),

where g−(ω) = [g+(ω)]∗ is the advanced Green’s func-
tion, and Σ>(ω) =

∑

ν Σ
>
ν (ω) is the greater self-energy.

The self-energy Σ>
ν (ω) is explicitly given by

Σ>
ν (ω) = −i[fν(ω) + 1]Γν(ω),

and relates to the linewidth function Γν(ω) =
−2 ImΣ+

ν (ω). Following the NEGF formalism summa-
rized above, we formulate the equal-time velocity-velocity
correlation as

〈q̇j(t)q̇j(t)〉 = i lim
t′→t

∂2

∂t∂t′
g>jj(t, t

′)

=
i

2π

∫ ∞

−∞

dωω2g>jj(ω)

=
1

2π

∑

ν

∫ ∞

−∞

dω(fν + 1)ω2Γν

∣

∣g+jν
∣

∣

2

=
1

π

∑

ν

∫ ∞

0

dω(fν +
1

2
)ω2Γν

∣

∣g+jν
∣

∣

2
.

Here, we use the symmetry relations; fν(ω) = −fν(−ω)−
1, Γν(ω) = −Γν(−ω), and g±(ω) = [g±(ω)]t = g∓(−ω),
where At denotes the transpose of A. In the last two
lines, Γν represents the diagonal element (Γν)νν . It is
easy to see that the derived formula accounts for Eq. (2),
in which g+(ω) is written simply as g(ω) by omitting the
superscript +.
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FIG. 7. Local number of states Nj for an ordered chain of
size N = 10 coupling to Ohmic reservoirs at both ends. The
coupling strength is varied as γ/t = 0.01, 0.1, 1, 10 and 100.
The reference point j0 = (N + 1)/2 is used to symmetrize
these plots. In the calculation, the reservoir bandwidth is
taken as 2t.

Appendix B: Weak-Coupling Limit

To demonstrate how the system-reservoir coupling af-
fects the local number of states Nj in the two-terminal
geometry, we consider an ordered harmonic chain in con-
tact with Ohmic reservoirs at both ends. Figure 7 sum-
marizes Nj calculated for various coupling strengths γ.
As clearly seen in the figure, Nj tends to vanish in the
vicinity of the boundaries as γ → ∞. On the other hand,
Nj is uniform and fixed at unity for a small enough γ. In

terms of Eq. (6), this observation implies that θ̃
(0)
j = θ in

the weak-coupling limit, and does not contradict the pre-
vious results [2, 4, 9, 32]. It should be noted that in this
limit, no heat current flows across the system regardless
of a temperature bias.
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