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Abstract

We handle divergent ε expansions in different universality classes derived from modified Landau–Wilson
Hamiltonian. Landau–Wilson Hamiltonian can cater for describing critical phenomena on a wide range
of physical systems which differ in symmetry conditions and the associated universality class. Numer-
ically critical parameters are the most interesting physical quantities which characterize the singular
behaviour around the critical point. More precise estimates are obtained for these critical parameters
than previous predictions from Padé based methods and Borel with conformal mapping procedure.
We use simple methods based on continued functions and Borel-Leroy transformation to achieve this.
These accurate results are helpful in strengthening existing conclusions in different φ4 models.
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1. Introduction

The calculation of recent six-loop [1] and seven-loop renormalization functions [2] in O(n)-symmetric
φ4 field theory has lead to significant improvement in results related to universal critical phenomenon
[3, 4], compared to the 25 years old five-loop functions [5, 6]. It has been helpful in solving for accurate
universal parameters and also better understand the decade old discrepancy between theoretical pre-
dictions and experimental value in O(2) φ4 model [7]. This was achieved using Hypergeometric-Meijer
resummation to solve for critical exponents [3, 4]. The issue commonly called as ”λ-point specific heat
experimental anomaly” was also addressed by using a new blended, continued exponential fraction
[8]. We solved for the critical exponents of arbitrary n-component field in different spatial dimensions
with the help of other continued functions such as continued exponential and continued fraction in
the O(n)-vector model. It is a scalar field theory which has an infrared fixed point and around its
vicinity the system occupies symmetries of homogeneous, isotropic and dilation in nature. This makes
it a favourable ground to study different physical systems at phase transitions with similar underlying
behaviour but leading to different universality classes. O(1) φ4 theory can analyse phase transitions
on Ising model, simple fluids and binary mixtures. O(2) φ4 theory deals with superconductivity and
superfluid helium-4 transition. Similarly transitions on Heisenberg ferromagnets (n = 3), some models
of quark-gluon plasma (n = 4), neutron star matter (n = 10) and superfluid helium-3 (n = 18) can be
studied.
Quantities derived from field-theoretical perturbative methods are typically divergent and resummation
procedures are needed to extract meaningful estimates with high precision. Resummation techniques
have been the most common way to handle perturbation series from field theories. With rapid devel-
opment in computational methods the sixth order [1] and seventh order [2] terms in such series were
obtained quite progressively and soon can lead to more orders. This demands the need for accessible
resummation methods which provide accurate results with only lower order information. Traditionally
resummation techniques such as Padé approximants and Padé-Borel-Leroy transformation are used for
the purpose of obtaining convergence by only using the lower order information of the perturbation
series [9, 10, 11]. Continued fractions are equivalent to Padé approximants, while they can be also
related to Shanks transformation which are used to accelerate the convergence nature [12]. The modi-
fied orthogonal hypergeometric approximants used in Hypergeometric-Meijer resummation can also be
represented from a particular form of continued function, namely Gauss’s continued fractions. Such
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continuous iterative functions have been used to tackle divergent series in different ways [13], which
is an old idea developed by Yukalov [14, 15]. Here we implement resummation methods using contin-
ued functions and Shanks transformation on recently derived six-loop ε expansions in different modified
models. Further to improve convergence and remove irregularities we combine continued functions with
Borel-Leroy transformation. Such six-loop perturbative expansions were derived in n-vector model with
cubic anisotropy [9], O(n)×O(m) spin models [10] and weakly disordered Ising model [11], which were
all solved based on the six-loop expansions from O(n)-symmetric model by Kompaniets et al. [1].
Re-estimation of critical parameters in these models using different methods with better accuracy are
helpful in removing contradictions and strengthening existing arguments regarding these theories. Also
in all these cases the exact solutions are not known and the reliability of the extrapolated estimates is
only established when different methods produce comparable results.
The paper is organized as follows: We initially introduce the continued functions and their implemen-
tation through Borel-Leroy transformation in Sec. 2. We then handle the perturbative expansions from
n-vector model with cubic anisotropy, O(n)×O(m) spin models and weakly disordered Ising model in
Sec. 3, 4 and 5 respectively.

2. Continued functions and Borel-Leroy transformation

The ε expansions in all the models produce quantities of interest in form of

Q(ε) ≈
N∑
i=0

qiε
i (1)

in a system with d = 4− ε spatial dimensions. As mentioned earlier this quantity is divergent in nature
and hence we convert Q(ε) into continued exponential (CE),

Q(ε) ∼ b0 exp(b1ε exp(b2ε exp(b3ε exp(b4ε exp(b5ε exp(b6ε exp(· · · ))))))) (2)

or a continued exponential fraction (CEF),

Q(ε) ∼ c0 exp


1

1 + c1ε exp

 1

1+c2ε exp

 1

1+c3ε exp( 1
1+···)






for (ε→ 0). (3)

Coefficients {bi} and {ci} can be solved up to arbitary order i from the perturbative coefficients {qi}
by Taylor expansion of CE and CEF as shown previously [8]. These affine transformations generally
enlarge the region of convergence for Q(ε) by a different mapping. And the convergence is obtained by
observing the successive approximants

B1 ≡ b0 exp(b1ε), B2 ≡ b0 exp(b1ε exp(b2ε)), B3 ≡ b0 exp(b1ε exp(b2ε exp(b3ε))), · · · (4)

in case of CE and the sequence

C1 ≡ c0 exp

(
1

1 + c1ε

)
, C2 ≡ c0 exp

 1

1 + c1ε exp
(

1
1+c2ε

)
 ,

C3 ≡ c0 exp


1

1 + c1ε exp

(
1

1+c2ε exp
(

1
1+c3ε

)
)
 , · · · (5)
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in case of CEF. Such a sequence is further converged with aid of Shanks transformation and its iteration
for any sequence {Ai} such as,

S(Ai) =
Ai+1Ai−1 − A2

i

Ai+1 + Ai−1 − 2Ai
and S2(Ai) =

S(Ai+1)S(Ai−1)− S(A2
i )

S(Ai+1) + S(Ai−1)− 2S(Ai)
. (6)

Further the Borel-Leroy (BL) technique we use is derivative of Padé-BL transformation commonly used
[9, 10, 11], where the Padé approximant is replaced with CE. BL transformation uses a shift parameter
l based on which we can optimize the convergence behaviour. Tuning this parameter l we can tame
the factorial growth of coefficients in quantity Q(ε) and refine the estimate of Q(ε) to higher accuracy.
The BL transformation is given by

Q(ε) =

∫ ∞
0

e−ttlF (εt)dt, F (y) =
∞∑
i=0

qi
Γ(i+ l + 1)

yi. (7)

This transformation which implements sequence of CE is given by

D1 ≡
∫ ∞

0

e−ttld0 exp(d1εt)dt, D2 ≡
∫ ∞

0

e−ttld0 exp(d1εt exp(d2εt))dt,

D3 ≡
∫ ∞

0

e−ttld0 exp(d1εt exp(d2εt exp(d3εt)))dt, · · · (8)

where coefficients {di} are obtained similar to {bi} from the series F (y). Similar to previous approaches
the sequence {Di} provides the converged estimate which is further accelerated using Shanks trans-
formation. We observe that implementing CEF with BL transformation does not lead to significant
improvement in the convergence behaviour.
To measure the accuracy of our estimates we calculate error using the relation

(|S(Ai+1)− S(Ai)|+ |S(Ai+1)− S2(Ai)|)/2, (9)

when we take S2(Ai) as our final estimate for Q(ε) from the sequence {Ai}. This relation which
is based on successive approximations gives the accuracy of our estimate since the value of Shanks
iteration depends on previous iterations. To find the parameter l in BL transformation, we inspect the
space of l ∈ [0, 50] with ∆l = 0.01 to minimize the error given above. We choose the resummation
tool empirically based on observing the convergence nature of coefficients {qi} and feasibility of finding
parameter l.
We have already checked the applicability of CE and CEF on perturbative ε expansions from O(n)-
symmetric field theory [8]. To test the applicability of CE with BL transformation, we implement it
to calculate the correction-to-scaling exponent ω from O(n)-symmetric theory. Especially in 3d system
for the O(4) φ4 model we previously used continued fraction to obtain the estimate ω = 0.7896(1) [8],
which is only compatible with recent calculations from self-consistent resummation algorithm [16] where
ω = 0.7863(9) was obtained. It is also comparable with estimates from Borel with conformal mapping
(BCM) and conformal bootstrap calculations, ω = 0.794(9) [1] and ω = 0.817(30) [17], respectively.
But there is a mismatch from other recent estimates namely hypergeometric-Meijer resummation [3],
non-perturbative renormalization group [18] and Monte Carlo simulations (MC) [19] predict as ω =
0.7519(13), ω = 0.761(12) and ω = 0.765(30), respectively. We used continued fraction since the ε
expansion for ω is of the form εQ(ε) such as [3]

ω = ε− 0.541667ε2 + 1.15259ε3 − 3.27193ε4 + 10.8016ε5 − 40.5665ε6 + 166.256ε7. (10)

Here we solve for Q(ε) using CE-BL and multiply the estimate with value of ε. In order to obtain
critical exponents for three-dimensional systems we finally equate ε to unity. To introduce the tuning
parameter l we take into consideration Eq. (7) for Q(ε) such as

F (εt) =
1

Γ(l + 1)
− 0.541667εt

Γ(l + 2)
+

1.15259ε2t2

Γ(l + 3)
− 3.27193ε3t3

Γ(l + 4)
+

10.8016ε4t4

Γ(l + 5)
− 40.5665ε5t5

Γ(l + 6)
+

166.256ε6t6

Γ(l + 7)
.

(11)
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Further by implementing CE as in Eq. (8) we find the sequence for εQ(ε) such as

D1 = ε

∫ ∞
0

e−ttl
1

Γ (l + 1)
exp

(
−

0.541667 Γ (l + 1)

Γ (l + 2)
εt

)
dt,

D2 = ε

∫ ∞
0

e−ttl
1

Γ (l + 1)
exp

−0.541667 Γ (l + 1)

Γ (l + 2)
εt exp

1.84615 Γ (l + 2)

(
.00001 Γ (l + 1)

Γ (l + 2)2
−

0.00006

Γ (l + 3)

)
εt


 dt, · · · (12)

Evaluating these integrals we get approximants {Di} and further accelerate their convergence using Shanks
transformed sequence {S(Di)}. We take our final estimate for ω from S2(D4) and estimate the error from
relation (|S(D5) − S(D4)| + |S(D5) − S2(D4)|)/2 as in Eq.(9). By tuning the parameter l we illustrate the
behaviour of estimate in Fig. 1(a) for l ∈ [0.5, 1.2]. We observe that by shifting the parameter l the nonuni-
formity in our approximants can be removed and region of precise estimate can be decided, where the value of
estimate is sensistive to l. Further observing the confined region l ∈ [1, 1.2] in Fig. 1(b) we decide l = 1.097
to get the precise estimate ω = 0.79419 which is most compatible with BCM prediction. We note here that
in BCM procedure it is necessary to know the asymptotic behaviour of perturbative expansions for Green’s
functions whereas our procedure involves only lower order information.

(a) S2(D4) vs l for l ∈ [0.5, 1.2] (b) S2(D4) vs l for l ∈ [1, 1.2]

Figure 1: We plot the estimate of ω derived from S2(D4) vs shift parameter l, with the error bars showing the value of
(|S(D5)− S(D4)|+ |S(D5)− S2(D4)|)/2.

The choices in this CE-BL procedure might be leading to overestimation of accuracy in the estimates obtained.
More stringent test for this procedure would be to calculate correlation length exponent of well known 3d
Ising model which has a general consensus up to third decimal place, νIsing ≈ 0.630 using different theoreti-
cal approaches like renormalization group (RG) [3, 8], Conformal bootstrap [20] and MC [21]. Using CE-BL
resummation of slowly converging ε expansion [3] we obtain the estimate νIsing = 0.63134, which assures the
accuracy of this procedure to at least third decimal place.

3. n-vector model with cubic anisotropy

Critical parameters in a realistic cubic crystal with anisotropy were recently studied for n-vector field [9].
In such model there is a competition of RG flows between isotropic Heisenberg and anisotropic cubic modes
which are in different regimes of critical behaviour. This leads to stability of fixed points for this model only in
a particular region of order parameter n. Marginal order parameter dimensionality nc determines the stability,
where in case of n < nc the Heisenberg critical behaviour dominates and for n > nc cubic critical regime is
stable. So for n > nc, a new class of universality for critical behaviour of cubic-anisotropy emerges completely
different from the O(n) class (Heisenberg). Hence studying nc is of physical importance for real ferromagnets
with anisotropies to determine which regime they follow. Initial studies on such models lead to nc > 3 using
RG method [22] and nc = 3 using Monte Carlo simulations (MC) [23]. However later studies based on higher
order resummation of RG perturbative series showed that nc < 3 [24, 25, 26]. The recent six-loop ε expansion
provides the best prediction as nc = 2.915(3) with the Padé-BL technique [9]. This prediction was derived
from six-loop ε expression for nc which was given as

nc = 4− 2ε+ 2.588476ε2 − 5.874312ε3 + 16.82704ε4 − 56.62195ε5 +O(ε6) (13)
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for the physically interesting case of n = 3. We convert this into CE (Eq. 2) and calculate its Shanks to get
the sequence for d = 3 as

B1 = 2.42612, B2 = 3.35454, B3 = 2.63588, B4 = 3.16593, B5 = 2.71339 (14)

and
S(B2) = 2.94945, S(B3) = 2.94093, S(B4) = 2.92181. (15)

As we observe the sequence {Bi} is oscillating between the best prediction given above, while the sequence of
Shanks {S(Bi)} is converging monotonically. To accelerate this convergence behaviour we take BL transfor-
mation of CE (Eq. 8) with l = 0.61 to obtain

D1 = 2.58794, D2 = 3.18263, D3 = 2.94130, D4 = 2.91015, D5 = 2.96437 (16)

and Shanks of the above sequence is given by

S(D2) = 2.96437, S(D3) = 2.91741, S(D4) = 2.91735. (17)

We take the final estimate from S2(D3), nc = 2.91735(3) which is more precise compared to previous estimates
from 3d RG approaches [24, 25, 26], pseudo-ε expansion [27, 28] and most compatible with the recent Padé-BL
estimate (Table 1). We illustrate the behaviour of shift parameter l versus S2(D3) in Fig.2, with the error
bars.

(a) S2(D3) vs l for l ∈ [0.1, 8] (b) S2(D3) vs l for l ∈ [0.4, 0.8]

Figure 2: We plot the value of marginal order parameter dimensionality nc derived from CE-BL estimate S2(D3) vs shift
parameter l, with the error bars showing the value of (|S(D4)− S(D3)|+ |S(D4)− S2(D3)|)/2.

Further we study the critical exponents for this universality class of cubic ferromagnets with anisotropy (n = 3),
which are interesting since they differ from the Heisenberg class. The exponent ν which determines the
behaviour of correlation length was given by expression [9]

1

ν
= 2− 0.44444ε− 0.17513ε2 + 0.13460ε3 − 0.34969ε4 + 0.99461ε5 − 3.48637ε6 +O(ε7). (18)

Similarly we convert this into CE for d = 3 and obtain the oscillating sequence

1/B1 = 0.62442, 1/B2 = 0.72262, 1/B3 = 0.66793, 1/B4 = 0.71540, 1/B5 = 0.68772,

1/B6 = 0.71368. (19)

Consecutively the Shanks iterations provide sequence

S(1/B2) = 0.68749, S(1/B3) = 0.69334, S(1/B4) = 0.69791, S(1/B5) = 0.70112, (20)

and
S2(1/B3) = 0.714305, S2(1/B4) = 0.70858. (21)

We observe that the final iterated values of Shanks S2(1/B3) and S2(1/B4) provide a good neighbourhood for
the prediction of ν. To obtain a more precise prediction, we convert the expression of ν into CEF (Eq. 3)
whose rapidly convergent sequence is

1/C2 = 0.63725, 1/C3 = 0.77547, 1/C4 = 0.70693, 1/C5 = 0.71451, 1/C6 = 0.71122, (22)
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with corresponding Shanks as

S(1/C3) = 0.72965, S(1/C4) = 0.71376, S(1/C5) = 0.71222, S2(1/C4) = 0.71205. (23)

Our precise CEF estimate for cubic class ν = 0.71205(85) is better than previous Padé-BL value of ν = 0.700(8)
[9]. And it marginally differs from recent seven-loop precise estimates of Heisenberg class using CEF, ν =
0.70787(39) [8] and hypergeometric-Meijer resummation, ν = 0.70906(18) [3]. Similarly using the expression
for γ [9] the critical exponent of susceptibility, we determine its CE estimate using S2(B4) = 1.404(16) and
CEF estimate using S2(C4) = 1.4236(11). Similarly to calculate the correction-to-scaling exponent ω we
take the series which is of the form εQ(ε) [9], solve for Q(ε) using CE and CE-BL and multiply the estimate
with value of ε. Further we compare them all with previous most compatible cubic class estimates and also
with recent estimates from Heisenberg class in Table 1. These precise estimates show that quantitatively the
critical exponents of 3d cubic class and Heisenberg class are numerically close and differ very marginally. This
difference may be refined with help from higher ε expansions.

Table 1: Critical parameters nc, ν, γ, ω for class of n = 3 cubic-anisortropy model in three dimensional systems

Critical parameter Continued function estimates Existing predictions
Existing predictions
(Heisenberg class)

nc
2.956(26) (CE)

2.91735(3) (CE-BL)

2.915(3) [9]
2.89-2.92 [25]
2.89(4) [26]
2.862(5) [27]
2.86(1) [28]

—

ν
0.7085(53) (CE)

0.71205(85) (CEF)

0.700(8) [9]
0.706(6) [24]
0.704(4) [26]

0.70787(39) (CEF) [8]
0.70906(18) [3]

γ
1.404(16) (CE)

1.4236(11) (CEF)

1.368(12) [9]
1.419(6) [26]
1.416(4) [27]

1.3929(46) (CE) [8]
1.385(4) [9]

ω
0.78417(29) (CE)

0.78569(68) (CE-BL)

0.799(4) [9]
0.7833(54) [24]
0.781(4) [26]

0.79083(1) [8]
0.794(4) [16]

4. O(n)× O(m) spin models

The extension of O(n)-symmetric field theory to O(n)×O(m) symmetry is helpful in studying frustrated
spin systems with noncoplanar and noncollinear ordering [10]. Such spin structures can be found in physical sys-
tems such as stacked triangular antiferromagnets (STA) and helical magnets (HM). Such physically interesting
systems can be studied in this case for n = 2, XY and n = 3, Heisenberg frustrated antiferromagnets. For m = 2
the theory corresponds to system with noncollinear but coplanar ordering (such that n ≥ m). Further with
m ≥ 3 we can study the critical behavior of magnets with noncoplanar ordering. Similar to the previous model
based on stability of fixed points in RG flows, we can deduce the existence of an upper marginal order parameter
value n+(m, d) and lower marginal dimensionalities nH(m, d), n−(m, d). This demarcation of order parameter
n is useful to differentiate the different regimes of critical behaviour (where nH(m, d) < n−(m, d) < n+(m, d)).
For n > n+(m, d) the system follows second-order continuous phase transition with ”chiral” universality class
and for n−(m, d) < n < n+(m, d) the transition is first-order. Further for n < nH(m, d) Heisenberg or
O(mn)-symmetric critical behaviour dominates and for nH(m, d) < n < n−(m, d) the system either undergoes
first-order transition or ordering happens with simple unfrustrated sinusoidal spin structure depending on the
coupling constant. Finding these parameters along with critical exponents for such chiral universality class
had given contradictory results in field-theoretical models compared to experiments [29, 30]. Also the results
of different experiments had produced a wide range of unrelated critical exponents and even the order of phase
transition was found to differ for materials with same symmetry [31, 32, 33, 34, 35, 36, 37, 38, 39].
Hence initially getting precise estimates for upper marginal dimensionality n+(m = {2, 3}, 4− ε) is of physical
importance to determine the type of phase transition in real systems. We illustrate the results for determining
n+(m = {2, 3}, 4−ε) which seem to possess the most irregular numerical structure compared to other quantities
of lower marginal dimensionalities [10]. The six-loop ε expansion for n+(2, 4− ε) was obtained as [10]

n+(2, 4− ε) = 21.798− 23.431ε+ 7.0882ε2 − 0.0321ε3 + 4.2650ε4 − 8.4436ε5 +O(ε6). (24)
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Constructing CE and consecutive Shanks iteration of this expansion for d = 3 we obtain

B1 = 7.440, B2 = 5.597, B3 = 5.323, B4 = 5.596, B5 = 5.597

and S(B2) = 5.275, S(B3) = 5.450, S(B4) = 5.597, S2(B3) = 5.996. (25)

Similarly constructing CE-BL (l = 3.69, Fig 3.(a)) and consecutive Shanks iteration we obtain

D1 = 8.281, D2 = 6.402, D3 = 5.911, D4 = 6.147, D5 = 6.034

and S(D2) = 5.737, S(D3) = 6.07, S(D4) = 6.07, S2(D3) = 6.07. (26)

We observe our estimates from CE, n+(2, 3) = 5.99(27) and CE-BL, n+(2, 3) = 6.07 are compatible with recent
inverse biased Padé-BL prediction n+(2, 3) = 6.1(1) and BCM prediction n+(2, 3) = 6.0(6) [10]. Similarly the
six-loop ε expansion for n+(3, 4− ε) was obtained as [10]

n+(3, 4− ε) = 32.492− 33.719ε+ 11.100ε2 − 2.1440ε3 + 5.2756ε4 − 8.4830ε5 +O(ε6). (27)

Constructing CE and consecutively Shanks iteration of this expansion for d = 3 we obtain

B1 = 11.5102, B2 = 9.267, B3 = 8.408, B4 = 9.177, B5 = 9.109

and S(B2) = 7.876, S(B3) = 8.814, S(B4) = 9.115, S2(B3) = 9.257. (28)

Constructing CE-BL (l = 5.27, Fig 3.(b)) and consecutively Shanks iteration we obtain

D1 = 12.437, D2 = 9.989, D3 = 9.084, D4 = 9.532, D5 = 9.310

and S(D2) = 8.554, S(D3) = 9.384, S(D4) = 9.384, S2(D3) = 9.384. (29)

We observe our estimates from CE, n+(3, 3) = 9.25(22) and CE-BL, n+(3, 3) = 9.384 are compatible with the
inverse biased Padé-BL prediction n+(3, 3) = 9.7(1.0) and BCM prediction n+(3, 3) = 9.3(4) [10]. Similarly
using the CE and CE-BL methods we compute estimates of other physically interesting values of upper marginal
order parameter n+(m = {4, 5, 6}, 4− ε) and lower marginal dimensionalities n−(m = {2, ..., 6}, 4− ε), nH(m =
{2, ..., 6}, 4−ε) [10]. We observe that all our estimates are compatible with Padé-BL and BCM predictions from
six-loop expansion [10], five-loop expansion [40] and pseudo-ε expansion [40] (Table 2). Further it is interesting
to compute critical exponents of chiral universality class for m = 2 with n ≥ 6 since we obtain n+(2, 3) ≈ 6.
We compute ν, η and γ [10] using CE. CEF or CE-BL could not provide better accuracy. The series for η takes
the form ε2Q(ε) which we handle similar to the way of ω. We compute correction-to-scaling exponents ω1 and
ω2 [10] using CE. ω1 and ω2 are interesting in physical point of view since they determine the stability of fixed
points in RG flows. We tabulate all the estimates for chiral critical exponents in Table 3 to compare them with
recent predictions from Padé based resummation of six-loop expansion [10] and five-loop expansion [40]. We
observe that all our estimates have improved precision compared to the Padé-BL and BCM predictions except
for values of n−(6, 3) and ω2 for n = 32.

(a) n+(2, 3) vs l for l ∈ [1, 5] (b) n+(3, 3) vs l for l ∈ [4, 8]

Figure 3: We plot the value of upper marginal order parameter n+ derived from CE-BL estimate S2(D3) vs shift parameter
l, with the error bars showing the value of (|S(D4)− S(D3)|+ |S(D4)− S2(D3)|)/2.
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Table 2: Marginal dimensionalities n+, n− and nH for class of O(n) × O(m) symmetric model for physically relevant
three dimensional systems. CE-BL estimates are denoted by superscript*.

Critical parameter m = 2 m = 3 m = 4 m = 5 m = 6

n+(m, 3)

5.99(27) (CE)
6.07* (l = 3.69)

6.22(12) [40]
6.1(6) [40]

5.96(19) [10]

9.25(22) (CE)
9.384* (l = 5.27)

9.9(3) [40]
9.5(5) [40]

9.32(19) [10]

12.19(21) (CE)
12.363* (l = 6.44)

13.2(6) [40]
12.7(7) [40]
12.3(3) [10]

15.04(22) (CE)
15.215* (l = 7.47)

16.3(1.3) [40]
15.7(1.0) [40]
15.0(3) [10]

17.83(23) (CE)
18.003* (l = 8.43)

18.0(5) (BCM) [10]
17.8(3) [10]

n−(m, 3)
1.964(3) (CE)

1.968(5)* (l = 19.25)
1.970(3) [10]

1.403 (CE)
1.406(1)* (l = 6.55)

1.408(4) [10]

1.182(2) (CE)
1.182* (l = 21.32)

1.182(6) [10]

1.082(61) (CE)
–

1.089(9) [10]

1.325(5) (CE)
–

1.066(12) [10]

nH(m, 3)
1.478(13) (CE)
1.459* (l = 0.6)
1.462(13) [10]

0.985(9) (CE)
0.972* (l = 0.61)

0.973(11) [10]

0.739(6) (CE)
0.729* (l = 0.6)
0.733(10) [10]

0.591(5) (CE)
0.583* (l = 0.61)

0.587(8) [10]

0.493(4) (CE)
0.486* (l = 0.6)

0.488(7) [10]

Table 3: Critical exponents ν, η, γ, ω1 and ω2 for m = 2 chiral universality class in physically relevant three dimensional
systems with noncollinear but coplanar ordering.

Critical exponent n = 6 n = 7 n = 8 n = 16 n = 32

ν
0.6516(21) (CE)

0.65(2) [10]

0.7117(5) (CE)
0.71(4) [40]
0.713(8) [10]

0.73398 (CE)
0.75(4) [40]

0.745(11) [10]

0.899(10) (CE)
0.89(4) [40]

0.850(16)? [10]

0.9368(33) (CE)
0.94(2) [40]

0.940(17) [10]

η
0.04716(36) (CE)

0.047(3) [10]
0.04436(69) (CE)

0.045(3) [10]
0.04144(99) (CE)

0.042(2) [10]
0.026156(29) (CE)

0.0261(7) [10]
0.01609 (CE)
0.014(3) [10]

γ
1.29561 (CE)
1.27(3) [10]

1.39603(40) (CE)
1.39(6) [40]

1.396(14) [10]

1.45054 (CE)
1.45(6) [40]

1.461(17) [10]

1.795(35) (CE)
1.75(4) [40]

1.70(5)? [10]

1.8565(55) (CE)
1.87(4) [40]
1.87(4) [10]

ω1
0.6516(21) (CE)

0.65(2) [10]

0.7117(5) (CE)
0.71(4) [40]
0.713(8) [10]

0.73398 (CE)
0.75(4) [40]

0.745(11) [10]

0.899(10) (CE)
0.89(4) [40]

0.850(16)? [10]

0.9368(33) (CE)
0.94(2) [40]

0.940(17) [10]

ω2

0.07327(42) (CE)
[0.071,0.167] (BCM) [10]

[0.069,0.171] [10]

0.3431(13) (CE)
0.33(10) [40]
0.34(2) [10]

0.4557(14) (CE)
0.45(8) [40]

0.447(15) [10]

0.77572(36) (CE)
0.77(2) [40]
0.771(6) [10]

0.891(27) (CE)
0.90(1) [40]
0.904(8) [10]

5. Randomly diluted Ising model

Randomly diluted Ising model (RIM) for systems with ”frozen” impurities have different universality class
of critical exponents derived from that of pure Ising model [41, 42]. Studying this model using RG approach is
interesting since other disordered systems such as randomly site-diluted Ising model [43, 44], randomly bond-
diluted Ising model [45, 46] and ±J Ising model [47, 48] fall under the same category of RIM universality class.
Experimentally the critical behaviours are studied in crystalline mixture of two compounds such as ordering
in an anisotropic uniaxial antiferromagnet of FeF2 or MnF2 with ZnF2 as impurity.
Initial RG studies on RIM model has led to conclusion that critical exponents have to be in the powers of√
ε instead of ε [49, 50]. However the most recent studies show that resummation of critical exponents in√
ε expansion do not give reliable estimates in comparison with predictions from other theoretical approaches

[51, 11]. For instance the recent six-loop
√
ε expansions derived for ν and γ are in the form of [11]

ν√ε = 0.5 + 0.0841158ε1/2 − 0.016632ε+ 0.0477535ε3/2 + 0.272584ε2 + 0.223298ε5/2 +O(ε3) (30)

and
γ√ε = 1 + 0.168232ε1/2 − 0.0285471ε+ 0.0788288ε3/2 + 0.564505ε2 + 0.440615ε5/2 +O(ε3). (31)

We construct CEF sequences such as in Eq. (5) for variable t with a change in variable ε→ εt2 for d = 3 and
finally equate t to unity. We get CEF estimates ν√ε = 0.57956(16) and γ√ε = 1.16108(19) which are more
precise than the recent Padé-BL predictions ν√ε = 0.577(31) and γ√ε = 1.172(55) [11]. However we come
to the same conclusion that these values of critical exponents obtained from resummation of

√
ε expansions

are in contradiction from theoretical and experimental results, further confirming that these series are not re-
summable. One can further try resummation of the RG functions directly through continued functions instead
of
√
ε expansions to obtain critical exponents as tried previously [51, 11].
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6. Conclusion

Simple methods using continued functions were utilised to derive precise critical parameters and critical
exponents from six-loop RG perturbative expansions of n-vector model with cubic anisotropy, O(n) × O(m)
spin models and weakly disordered Ising model. This is useful in better defining the nature of continuous
phase transitions in their corresponding physical systems. To summarise there is an interesting quote in the
recent work of Kompaniets and Panzer regarding resummation methods [1] : In work on resummation, there is
always an undeclared parameter: the number of methods tried and rejected before the paper was written, which
was followed by their comment ”We stopped counting”. Taking into consideration the essence of this problem,
we have devised resummation methods with ease of use and less computations, which provide estimates with
better accuracy than Padé based methods. Also Padé methods are typically riddled with spurious poles, where
a thorough inspection is required to remove them when finding a reliable estimate. However in our approach
one has to further rigorously study which strategic method using CE, CEF or CE-BL provides best accuracy
and reliable convergence based on the numerical structure of the perturbation series. Also in all our cases
we have handled only physically relevant systems with d = 3(ε = 1), further trying to study d = 2(ε = 2)
systems can cause trivial problems to emerge from the structure of continued functions we have considered.
Such problems can perhaps be removed by implementing long-order asymptotic behaviour of the coefficients
in the perturbation series if available.
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