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POINCARÉ MAPS AND SUSPENSION FLOWS: A

CATEGORICAL REMARK

TOMOHARU SUDA

Abstract. Poincaré maps and suspension flows are examples of fun-
damental constructions in the study of dynamical systems. This study
aimed to show that these constructions define an adjoint pair of functors
if categories of dynamical systems are suitably set. First, we consider
the construction of Poincaré maps in the category of flows on topological
manifolds, which are not necessarily smooth. We show that well-known
results can be generalized and the construction of Poincaré maps is func-
torial, if a category of flows with global Poincaré sections is adequately
defined. Next, we consider the construction of suspension flows and its
functoriality. Finally, we consider the adjointness of the constructions
of Poincaré maps and suspension flows. By considering the naturality,
we can conclude that the concepts of topological equivalence or topolog-
ical conjugacy of flows are not sufficient to describe the correspondence
between map dynamical systems and flows with global Poincaré sec-
tions. We define another category of flows with global Poincaré sections
and show that the suspension functor and the Poincaré map functor
form an adjoint equivalence if these categories are considered. Hence, a
categorical correspondence between map dynamical systems and flows
with global Poincaré sections is obtained. This will enable us to better
understand the connection between map dynamical systems and flows.

1. Introduction

Poincaré map and suspension flow constructions are fundamental tools
employed in the study of dynamical systems. They are used to reduce a
problem concerning continuous-time systems to one of discrete-time systems
or vice versa, thereby connecting the two major types of dynamical systems
[6, 8, 13].

Results on their relationship are scattered across the literature, and sys-
tematic treatments are scarce. However, by collecting these results, we can
easily observe that a categorical relationship may exist between them. For
example, the following properties are known:

• If two diffeomorphisms are topologically conjugate, then their sus-
pensions are topologically conjugate (Proposition 5.38 in [7]).

• A flow with a Poincaré section is locally topologically equivalent to
the suspension of its Poincaré map (Theorem 5.40 in [7]).
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2 TOMOHARU SUDA

• Every diffeomorphism on a compact manifold is topologically con-
jugate with the Poincaré map of its suspension (Proposition 3.7 in
[10]).

In the case of flows with global sections, stronger properties hold because
Poincaré maps can be defined globally:

• Topological equivalence of two flows can be determined in terms of
Poincaré maps (Theorem 1 in [1], Proposition 1.11 in [14]).

• A flow with a global section is topologically equivalent to the sus-
pension of its Poincare map (Theorem 3.1 in [15]).

In loose terms, these results can be summarized as follows: isomorphisms are
preserved under the constructions of Poincaré maps and suspension flows,
and a Poincaré map of a suspension or a suspension of a Poincaré map can
be identified with the original map or flow. These statements suggest the
existence of categorical equivalence between a category of map dynamical
systems and one of flows .

Some categorical aspects of these constructions have been considered in
the case of isomorphisms with topological conjugacy [5]. However, their re-
lation remains unclear because it depends on the choice of categories. For
example, some of the results mentioned above are not true if one uses topo-
logical conjugacy instead of topological equivalence to define isomorphisms.

This study aimed to perform a categorical treatment of the constructions
of Poincaré maps and suspension flows in order to describe the exact rela-
tionship between them. This will enable us to unify the known results listed
above and also “prove” the folklore correspondence of various notions be-
tween discrete-time and continuous-time systems, such as that of topological
conjugacy and topological equivalence.

The rest of this paper is organized as follows. In Section 2, we define
several categories of dynamical systems. In Section 3, we first introduce
the notion of topological transversality for topological manifolds and con-
tinuous flows. We show that Poincaré maps can be defined analogously to
the smooth case. Then, we define categories of flows with global Poincaré
sections to show that the construction of Poincaré maps is functorial. In
Section 4, we study the categorical relationship between Poincaré maps and
suspension flows. We show that these two form a pair of adjoint equivalence
if the categories are selected properly. Finally, in Section 5, we present some
concluding remarks.

2. Categories of dynamical systems

In this section, we define various categories of dynamical systems to set
up for the discussion later.

In what follows, topological manifolds are assumed to be second count-
able and Hausdorff. For the definitions of the concepts and basic results of
category theory, we refer to [9, 4, 12].
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Definition 2.1. A map dynamical system is a pair (f,X) of a topological
manifold (without boundary) X and a homeomorphism f : X → X. A mor-

phism h : (f,X) → (g, Y ) between map dynamical systems is a continuous
map h : X → Y such that h ◦ f = g ◦ h.

Definition 2.2. A flow is a pair (Φ,X) of a topological manifold (without
boundary) X and a continuous map Φ : X × R → X such that

(1) For each x ∈ X, Φ(x, 0) = x.
(2) For each x ∈ X and s, t ∈ R, Φ(Φ(x, t), s) = Φ(x, t+ s).

A morphism h : (Φ,X) → (Ψ, Y ) between flows is a continuous map h :
X → Y such that h (Φ(x, t)) = Φ(h(x), t) for all x ∈ X and t ∈ R.

A weak morphism (h, τ) : (Φ,X) → (Ψ, Y ) between flows is a pair of a
continuous map h : X → Y and a map τ : X × R → R such that

(1) h (Φ(x, t)) = Ψ(h(x), τ(x, t)) for all x ∈ X and t ∈ R.
(2) For all x ∈ X, τ(x,−) : R → R is an increasing homeomorphism

with τ(x, 0) = 0.

Lemma 2.3. Each of the following forms a category if the composition of

morphisms is defined by the composition of maps.

(1) Map dynamical systems and their morphisms.

(2) Flows and their morphisms.

(3) Flows and weak morphisms.

Proof. The proof is obvious for (1) and (2). For (3), we need to verify
that the ”time-part” composition of the morphism satisfies the conditions of
weak morphism. Let (h1, τ1) : (Φ1,X1) → (Φ2,X2) and (h2, τ2) : (Φ2,X2) →
(Φ3,X3) be morphisms and define τ2◦τ1(x, t) := τ2(h1(x), τ1(x, t)). Then, for
all x ∈ X1, τ2 ◦ τ1(x, 0) = τ2(h1(x), 0) = 0 and τ2 ◦ τ1(x,−) is a composition
of homeomorphisms. �

We call the above a category of map dynamical systems Map, a category of

flows Flow, and a category of flows with weak morphisms WFlow,, respec-
tively. We note that Flow can be regarded as a subcategory of WFlow,
as there is an obvious inclusion functor defined by (Φ,X) 7→ (Φ,X) and
(

(Φ,X)
h
−→ (Ψ, Y )

)

7→

(

(Φ,X)
(h,id)
−−−→ (Ψ, Y )

)

.

Isomorphisms in Map and Flow are called topological conjugacies and
isomorphic objects are called topologically conjugate. In WFlow, isomor-
phism is called topological equivalence and isomorphic objects are called
topologically equivalent. These definitions coincide with the usual ones.

Remark 2.4. The categories in [5] correspond to Map or Flow in this
paper.

Remark 2.5. Each of the categories defined above has a weakly initial
element similar to the “universal dynamical system” of [12]. For example,
the system (σ,Z) defined by

σ(n) = n+ 1
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for all n ∈ Z is weakly initial in the category Map. Further, the set
Map ((σ,Z), (f,X)) is isomorphic to the set of all orbits of (f,X). In par-
ticular, a morphism h : (σ,Z) → (f,X) corresponds to an orbit with period
m ∈ N if and only if h admits the following factorization:

(σ,Z)

(σ,Z/mZ) (f,X)
❄

◗
◗
◗
◗
◗s

h

✲h̄

Similar constructions can be carried out for Flow or WFlow.

3. Topological transversality and global Poincaré section

In this section, we define the concept of topological transversality for
continuous flows on topological manifolds. Based on this definition, we
show that Poincaré maps can be defined in a manner similar to the classical
smooth case. Additionally, we introduce categories of flows with global
Poincaré sections to consider the functoriality of the construction of Poincaré
maps.

We adopt the definition of topological transversality given in [14, 2] with
a certain modification.

Definition 3.1. Let (Φ,X) be a flow, where X is an n-dimensional topo-
logical manifold. A submanifold S ⊂ X without a boundary is topologically
transversal to Φ if

(1) S is codimension one and locally flat.
(2) For each x ∈ S, there exists a neighborhood U of x in X and a

homeomorphism φ : U → B ⊂ R
n, where B is the unit ball such

that Φ (U ∩ S) = B ∩ R
n−1 × {0}. Further, there exist δ+(x) > 0

and δ−(x) < 0 such that Φ(x, [δ−(x), 0)) and Φ(x, (0, δ+(x)]) are con-
tained in different connected components of U\S and Φ(x, [δ−(x), δ+(x)]))∩
S = {x}. Here, δ+ and δ− can be taken locally uniformly, that is,
there exist a neighborhood V ⊂ U of x and δ > 0 such that δ+(y) > δ
and δ−(y) < −δ for all y ∈ V ∩ S.

(3) For each set of the form Φ(y, [a, b]), where y ∈ X and a, b ∈ R,
Φ(y, [a, b]) ∩ S is compact in S.

Lemma 3.2. Let (Φ,X) be a flow and S ⊂ X be topologically transversal

to Φ. Then, for each x ∈ S and ǫ > 0, there exists an open neighborhood V
of x in X such that

Φ(y, [−ǫ, ǫ]) ∩ S 6= ∅

for all y ∈ V.

Proof. Let U be a neighborhood of x satisfying the condition of (2) in Defi-
nition 3.1. By the continuity of Φ, there exist a neighborhood V0 of x and
δ > 0 such that Φ(V0, [−δ, δ]) ⊂ U and δ < min (ǫ, δ+(x),−δ−(x)) . Then,
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we have Φ(x, δ),Φ(x,−δ) ∈ U\S. We take neighborhoods V+ and V− of
Φ(x, δ) and Φ(x,−δ), respectively, such that V+ ⊂ U\S and V− ⊂ U\S. Let
V := Φ(V+,−δ) ∩ Φ(V−, δ) ∩ V0. By considering the n-th coordinate of the
homeomorphism φ, we obtain that Φ(y, [−ǫ, ǫ]) ∩ S 6= ∅ for all y ∈ V. �

The next lemma excludes the possibility of sequences that return to the
section very frequently.

Lemma 3.3. Let (Φ,X) be a flow and S ⊂ X be topologically transversal to

Φ. If x ∈ S, there exist no sequences xn ∈ S and tn > 0 such that xn → x
and tn → 0 as n → ∞ and Φ(xn, tn) ∈ S.

Proof. Let U be a neighborhood of x satisfying condition (2) in Definition
3.1. Let V ⊂ U be a neighborhood of x such that there exists δ > 0 with
δ+(y) > δ for all y ∈ V ∩ S. If xn ∈ S and tn > 0 are sequences such that
xn → x and tn → 0 as n → ∞ and Φ(xn, tn) ∈ S, then xn ∈ V ∩ S and
consequently tn > δ for a sufficiently large n. This is a contradiction. �

Definition 3.4. Let (Φ,X) be a flow. A submanifold S ⊂ X is a global

Poincaré section if

(1) S is topologically transversal to Φ.
(2) For each x ∈ X, there exists t+ > 0 and t− < 0 such that Φ(x, t+) ∈

S and Φ(x, t−) ∈ S.

Remark 3.5. If the phase space is compact, condition (2) can be weakened
to the condition that each x ∈ X has t ∈ R such that Φ(x, t) ∈ S. Indeed,
let x ∈ S and consider the ω-limit set of x. Then, ω(x) ∩ S is nonempty by
the invariance of the limit set. By Lemma 3.2, we observe that there exists
t+ > 0 such that Φ(x, t+) ∈ S. The existence of t− is proved similarly.

Remark 3.6. By definition, a flow with a global Poincaré section has no
equilibrium points. By using the argument in [1], we can show that a smooth
flow without equilibrium points has a global Poincaré section if the phase
space is compact.

According to these definitions, we have the following generalization of
well-known results.

Theorem 3.7. Let (Φ,X) be a flow and S ⊂ X be topologically transversal

to Φ. If x0 ∈ S and there exists t+ > 0 such that Φ(x0, t+) ∈ S, there exist

a neighborhood U of x0 in X and continuous maps PΦ : U ∩ S → S and

TΦ : U ∩ S → (0,∞) such that

PΦ(x) = Φ(x, TΦ(x))

for each x ∈ U∩S and Φ(x, t) 6∈ S for 0 < t < TΦ(x). Further, if S is a global

Poincaré section, PΦ is defined on the entire S, and it is a homeomorphism.

Proof. First, we show the existence of TΦ(x) and PΦ(x) for each x ∈ U ∩
S, where U is a neighborhood of x0 in X. Let 0 < r < t+ and take a
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neighborhood V of Φ(x0, t+) by applying Lemma 3.2 with ǫ = r and x =
Φ(x0, t+). Let U := Φ(V,−t+). Then, we have

Φ(y, [t+ − r, t+ + r]) ∩ S 6= ∅

for all y ∈ U. We define

T (x) := {t > 0 | Φ(x, t) ∈ S}

for each x ∈ U ∩ S. By the choice of U , T (x) is nonempty. If we set
TΦ(x) := inf T (x), we have TΦ(x) ≥ δ+(x) > 0. Let tn ∈ T (x) be a sequence
with tn → TΦ(x) as n → ∞. For a sufficiently large a > 0, we have Φ(x, tn) ∈
S ∩ Φ(x, [0, a]) for all n. Therefore, Φ(x, TΦ(x)) ∈ S from the continuity of
Φ and the compactness of S ∩Φ(x, [0, a]). These results indicate that TΦ(x)
has the desired properties. We set PΦ(x) := Φ(x, TΦ(x)).

Let us now show that TΦ : U ∩ S → (0,∞) is continuous. Let x ∈ U ∩ S
and ǫ be an arbitrary positive number less than TΦ(x).

By Lemma 3.2, there exists an open neighborhood V1 ⊂ U of PΦ(x) =
Φ(x, TΦ(x)) such that Φ(y, [−ǫ, ǫ])∩S 6= ∅ for all y ∈ V1. By the continuity of
Φ, there exists an open neighborhood U1 of x such that Φ(U1, TΦ(x)) ⊂ V1.
Therefore, we have

Φ(y, [TΦ(x)− ǫ, TΦ(x) + ǫ]) ∩ S 6= ∅

for all y ∈ U1.
We show that there exists an open neighborhood U2 ⊂ U of x such that

Φ(y, (0, TΦ(x)− ǫ)) ∩ S = ∅

for all y ∈ U2 ∩ S. If this is not the case, we may take sequences xn ∈ S ∩U
and sn ∈ (0, TΦ(x)−ǫ) so that Φ(xn, sn) ∈ S and xn → x as n → ∞. As sn ∈
[0, TΦ(x)−ǫ], we may take a convergent subsequence sni

→ s ∈ [0, TΦ(x)−ǫ]
as i → ∞. Using the continuity of Φ, we observe that s = 0. Thus, we obtain
sequences yn ∈ S ∩ U and tn ∈ (0, TΦ(x)− ǫ) so that yn → x and tn → 0 as
n → ∞. However, this is impossible by Lemma 3.3.

Therefore, there exists an open neighborhood U0 := U1 ∩ U2 ⊂ U of x
such that Φ(y, (0, TΦ(x)− ǫ))∩S = ∅ and Φ(y, [TΦ(x)− ǫ, TΦ(x)+ ǫ])∩S 6= ∅
for all y ∈ U0 ∩ S. Together, these imply

TΦ(x)− ǫ ≤ TΦ(y) ≤ TΦ(x) + ǫ

for all y ∈ U0 ∩ S. Therefore, TΦ(x) is continuous and consequently PΦ(x)
is also continuous.

If S is a global Poincaré section, it is clear that TΦ and PΦ are defined
on the entire S. By the definition of a global Poincaré section, the same
constructions can be carried out for Ψ(x, t) := Φ(x,−t). Then, we have

TΨ = TΦ ◦ PΨ

TΦ = TΨ ◦ PΦ.

These are established as follows. For x ∈ S, we have Φ(PΨ(x), TΨ(x)) =
x ∈ S by definition. Therefore, TΨ(x) ≥ TΦ(PΨ(x)). On the other hand,
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we have Φ(x, t) 6∈ S for −TΨ(x) < t < 0 by definition of TΨ(x). This
implies Φ(PΨ(x), t) 6∈ S for 0 < t < TΨ(x). Therefore, TΨ(x) ≤ TΦ(PΨ(x)).
The other relation is obtained by symmetry. Now, we have (PΦ)−1 = PΨ
because

PΦ(PΨ(x)) = Φ(PΨ(x), TΦ(PΨ(x))) = Φ(PΨ(x), TΨ(x)) = x

PΨ(PΦ(x)) = Ψ(PΦ(x), TΨ(PΦ(x))) = Ψ(PΦ(x), TΦ(x)) = x

for all x ∈ S. �

Corollary 3.8. Let (Φ,X) be a flow with a global Poincaré section S. If
x ∈ S, we have

∞
∑

n=0

TΦ ◦ (PΦ)n(x) = ∞

∞
∑

n=1

TΦ ◦ (PΦ)−n(x) = ∞.

Proof. As we have TΨ = TΦ ◦ PΨ = TΦ ◦ (PΦ)−1, it is sufficient to prove
the first formula. Suppose the series is convergent and let the sum T∞ and
x∞ := Φ(x, T∞). Because we have

Φ

(

x,

N−1
∑

n=0

TΦ ◦ (PΦ)n(x)

)

= (PΦ)N (x)

for each N ≥ 1, xn := (PΦ)n(x) converges to x∞. For all n, xn is con-
tained in Φ(x, [0, T∞])∩S, which is compact by the definition of topological
transversality. Therefore, x∞ ∈ S. If we set tn := TΦ ◦ (PΦ)n(x), the con-
vergence of the sum implies tn → 0 and Φ(xn, tn) ∈ S for all n by definition.
Thus, we have a pair of sequences (xn, tn), which does not exist by Lemma
3.3. This is a contradiction. �

A flow may admit many different global Poincaré sections, and conse-
quently, a pair of a flow and a section may not necessarily be preserved
under a weak morphism. If the sections are preserved by a weak morphism
as sets, we have the following correspondence of the first return times be-
tween two flows.

Lemma 3.9. Let (Φ,X) and (Ψ, Y ) be flows with global Poincaré sections

S and S′, respectively, and (h, τ) : (Φ,X) → (Ψ, Y ) be a weak morphism.

Then,

(1) If h(S) ⊂ S′, TΨ(h(x)) ≤ τ(x, TΦ(x)) for all x ∈ S.
(2) If h−1(S′) ⊂ S, τ(x, TΦ(x)) ≤ TΨ(h(x)) for all x ∈ h−1(S′).

In particular, if S = h−1(S′), we have TΨ(h(x)) = τ(x, TΦ(x)) for all x ∈ S.

Proof. (1) Let x ∈ S. As we have Φ(x, TΦ(x)) ∈ S,

Ψ(h(x), τ(x, TΦ(x))) = h(Φ(x, TΦ(x))) ∈ h(S) ⊂ S′.

Because h(x) ∈ S′, it follows that TΨ(h(x)) ≤ τ(x, TΦ(x)).
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(2) Let x ∈ h−1(S′). We have Ψ(h(x), TΨ(h(x))) ∈ S′ and TΨ(h(x)) =
τ(x, tx) for some tx ∈ R because τ(x,−) is a homeomorphism. Therefore,
we have

Ψ(h(x), TΨ(h(x))) = h(Φ(x, tx)) ∈ S′,

which implies Φ(x, tx) ∈ h−1(S′) ⊂ S. Thus, we obtain TΦ(x) ≤ tx. Because
τ(x,−) is monotonically increasing, we conclude that

τ(x, TΦ(x)) ≤ τ(x, tx) = TΨ(h(x)),

which is the desired property. �

As a consequence of this lemma, we have the following result.

Lemma 3.10. Let (Φ,X) and (Ψ, Y ) be flows with global Poincaré sections

S and S′, respectively, and (h, τ) : (Φ,X) → (Ψ, Y ) be a weak morphism

such that h−1S′ = S. Then, we have a morphism of map dynamical systems

h|S : (PΦ, S) → (PΨ, S′), where h|S : S → S′ is the restriction of h to S.

Proof. As PΦ : S → S and PΨ : S′ → S′ are homeomorphisms, they define
map dynamical systems. For each x ∈ S, we have

h ◦ PΦ(x) = h(Φ(x, TΦ(x)))

= Ψ(h(x), τ(x, TΦ(x)))

= Ψ(h(x), TΨ(h(x))) = PΨ ◦ h(x).

Therefore, h|S : (PΦ, S) → (PΨ, S′) is a morphism of map dynamical sys-
tems. �

Thus, we may define the following:

Definition 3.11. Let (Φ,X) and (Ψ, Y ) be flows with global Poincaré
sections S and S′, respectively. A morphism (h, τ) : (Φ,X) → (Ψ, Y ) in
WFlow is said to preserve the global Poincaré sections if S = h−1(S′).

The category of flows with global Poincaré sections FlowGS is the cate-
gory whose objects are flows with global Poincaré sections and whose mor-
phisms are morphisms in Flow, which preserves the global Poincaré sections.

Similarly, we may define a category WFlowGS whose objects are flows
with global Poincaré sections and whose morphisms are morphisms inWFlow,
which preserves the global Poincaré sections.

Objects in WFlowGS or FlowGS are denoted by a triple of the form
(Φ,X, S), where (Φ,X) is a flow with a global Poincaré section S.

From Lemma 3.10, we immediately obtain the following:

Theorem 3.12. The construction of a Poincaré map is functorial for WFlowGS.
That is, there exists a functor P : WFlowGS → Map defined by setting

• P (Φ,X, S) = (PΦ, S) for each object (Φ,X, S) in WFlowGS.
• For each morphism h : (Φ1,X1, S1) → (Φ2,X2, S2) P (h) = h|S1 :
(PΦ1, S1) → (PΦ2, S2).
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Corollary 3.13. The construction of a Poincaré map is functorial for

FlowGS.

Proof. Take the composition of P : WFlowGS → Map with the inclusion
functor FlowGS →֒ WFlowGS. �

4. Poincaré maps and suspension flows

In this section, we consider the categorical relationship between a Poincaré
map and a suspension.

To establish the notation, we recall the definition of a suspension flow.

Definition 4.1. Let f : X → X be a homeomorphism on a topological
manifold X. The mapping torus Xf of f is the manifold defined by

Xf := X × [0, 1]/ ∼,

where ∼ is the smallest equivalence relation with (x, 1) ∼ (f(x), 0) for each
x ∈ X. There is a natural surjection πf : X × [0, 1] → Xf , which sends each
point to the corresponding equivalence class. We denote a point in Xf by
[x, t], where x ∈ X, 0 ≤ t < 1.

Definition 4.2. Let (f,X) be a map dynamical system. The suspension

flow Σf : Xf × R → Xf of (f,X) is defined by

Σf([x, t], s) := [fn(x), s + t− n],

where x ∈ X, 0 ≤ t < 1 and n ∈ Z is a unique integer satisfying s+ t− 1 <
n ≤ s+ t.

Theorem 4.3. The construction of a suspension flow is functorial. That

is, there exists a functor Σ : Map → FlowGS defined by setting

• Σ(f,X) = (Σf,Xf , (Xf )0) for each object (f,X) in Map.
• For each morphism h : (f,X) → (g, Y ), we set

Σ(h) = h̄ : (Σf,Xf , (Xf )0) → (Σg, Yg, (Yg)0),

where h̄([x, t]) = [h(x), t] and (Xf )0 = {[x, 0] | x ∈ X} and (Yg)0 =
{[y, 0] | y ∈ Y }.

Proof. Let h : (f,X) → (g, Y ) be a morphism in Map. First, we show that
h̄ : Xf → Yg is well-defined and continuous. Well-definedness is verified
by a direct calculation using g ◦ h = h ◦ f. The continuity follows from the
commutativity of the following diagram and the universal property of the
quotient topology:

X × [0, 1] Xf

Y × [0, 1] Yg

✲
πf

❄

h×id

❄

h̄

✲
πg



10 TOMOHARU SUDA

We show that h̄ commutes with suspension flows. This is verified by a direct
calculation:

h̄ (Σf([x, t], s)) = h̄ ([fn(x), s + t− n])

= [h(fn(x)), s + t− n]

= [gn(h(x)), s + t− n]

= Σg([h(x), t], s)

= Σg(h̄([x, t]), s)

where x ∈ X, 0 ≤ t < 1 and n ∈ Z is a unique integer satisfying s+ t− 1 <
n ≤ s+ t.

We show that h̄ preserves the sections, that is, h̄−1(Yg)0 = (Xf )0. By
definition, we have h̄(Xf )0 ⊂ (Yg)0, so (Xf )0 ⊂ h̄−1(Yg)0. Conversely, if
[x, t] ∈ h̄−1(Yg)0 with 0 ≤ t < 1, then t = 0 and therefore, [x, t] ∈ (Xf )0.

Finally, we show that Σ is a functor. It is clear that Σ(1(f,X)) = 1(Σf,Xf ,(Xf )0).

If h1 : (f1,X1) → (f2,X2) and h2 : (f2,X2) → (f3,X3) are morphisms in

Map, we have (h2 ◦ h1) = h̄2 ◦ h̄1. �

Now, we have three categories and three functors between them:

(1) Inclusion functor I : FlowGS → WFlowGS.
(2) Poincaré map functor P : WFlowGS → Map.
(3) Suspension functor Σ : Map → FlowGS.

From the existence of these functors, we immediately recover some known
results on the preservation of isomorphisms.

Theorem 4.4. Each of the following statements holds.

(1) If two flows with global Poincaré sections are topologically equivalent,

there is a pair of global Poincaré sections such that the Poincaré

maps are topologically conjugate.

(2) If two maps are topologically conjugate, their suspension flows are

topologically conjugate.

At this point, we must consider the degree of difference between the orig-
inal flow and the suspension flow of the Poincaré map. First, we note that
there is a pair of flows that are topologically equivalent but not topologically
conjugate. The following is a modification of an example in [11].

Example 1. We define two flows on A = {z ∈ C | 1 < |z| < 2} by

Φ1(z, t) := zeiπt

Φ2(z, t) := ze2πit.

Then, they are topologically equivalent but not topologically conjugate.

Proof. Topological equivalence is obvious. Suppose there is a homeomor-
phism h : A → A such that Φ1 and Φ2 are topologically conjugate, that
is,

h
(

zeiπt
)

= h(z)e2πit



POINCARÉ MAPS AND SUSPENSION FLOWS: A CATEGORICAL REMARK 11

for all z ∈ A and t ∈ R. By considering t = 1, we obtain h(z) = h(−z) for
all z ∈ A, which contradicts the condition that h is injective. �

Note that we may take A0 = {x | 0 < x < 1} as a global Poincaré
section for these flows. With this choice, the Poincaré map is the identity
idA0 in either case. Further, the suspension flow for idA0 coincides with Φ1.
Thus, the suspension flow of a Poincaré map is not necessarily topologically
conjugate with the original flow. On the other hand, topological equivalence
can be established.

Lemma 4.5. There is a natural transformation (k, τ) : IΣPI → I defined

by the following for each (Φ,X, S) in FlowGS :

k(Φ,X,S)([x, t]) := Φ(x, tTΦ(x))

τ(Φ,X,S)([x, t], s) :=

∫ s+t

0
RΦ(x)(u)du − tTΦ(x),

where x ∈ S, 0 ≤ t < 1 and

RΦ(x)(u) :=
∑

i∈Z

TΦ((PΦ)i(x))χ[i,i+1)(u),

where χ[i,i+1) is the indicator function of [i, i + 1).

Proof. First, we show that (k, τ)(Φ,X,S) : IΣPI(Φ,X, S) → (Φ,X, S) is well-
defined as a weak morphism in WFlowGS. Well-definedness and continuity
of k(Φ,X,S) follow from the commutativity of the following diagram:

S × [0, 1] SPΦ

X

✲
πPΦ

◗
◗
◗
◗◗s

K
❄

k(Φ,X,S)

where K : S × [0, 1] → X is defined by K(x, t) := Φ(x, tTΦ(x)) for each
(x, t) ∈ S × [0, 1].

By definition, we have τ(Φ,X,S)([x, t], 0) = 0. Because RΦ(x)(−) is a
positive-valued function, τ(Φ,X,S)([x, t],−) : R → R is strictly monotonous.
By Corollary 3.8, it is also a surjection. Thus, τ(Φ,X,S)([x, t],−) is a homeo-
morphism.

We check that k(Φ,X,S) commutes with the flows by a direct calculation.
When n ≥ 0, where n ∈ Z is a unique integer satisfying s+ t−1 < n ≤ s+ t,
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we have

k(Φ,X,S) (ΣPΦ([x, t], s)) = k(Φ,X,S) ([(PΦ)n(x), s + t− n])

= Φ((PΦ)n(x), (s + t− n)TΦ ◦ (PΦ)n(x))

= Φ

(

x,

n−1
∑

i=0

TΦ ◦ (PΦ)i(x) + (s+ t− n)TΦ ◦ (PΦ)n(x)

)

= Φ

(

x,

∫ s+t

0
RΦ(x)(u)du

)

= Φ
(

k(Φ,X,S)([x, t]), τ(Φ,X,S)([x, t], s)
)

.

Noting that Φ((PΦ)−1(x), t) = Φ(x, t − TΦ ◦ (PΦ)−1(x)), we calculate the
following for n ≤ −1:

k(Φ,X,S) (ΣPΦ([x, t], s)) = k(Φ,X,S) ([(PΦ)n(x), s + t− n])

= Φ((PΦ)n(x), (s + t− n)TΦ ◦ (PΦ)n(x))

= Φ

(

x,

−n+1
∑

i=1

TΦ ◦ (PΦ)−i(x) + (s + t− n− 1)TΦ ◦ (PΦ)n(x)

)

= Φ

(

x,

∫ s+t

0
RΦ(x)(u)du

)

= Φ
(

k(Φ,X,S)([x, t]), τ(Φ,X,S)([x, t], s)
)

.

The condition that k−1
(Φ,X,S)S = (SPΦ)0 can be verified by a direct calcula-

tion.
Finally, we show that (k, τ) is natural. Let h : (Φ1,X1, S1) → (Φ2,X2, S2)

be a morphism in FlowGS. Then, we have

h ◦ k(Φ1,X1,S1)([x, t]) = h ◦ Φ1(x, tTΦ1(x))

= Φ2(h(x), tTΦ2(x))

= k(Φ2,X2,S2)([h(x), t])

= k(Φ2,X2,S2) ◦ h|S1([x, t]),

where x ∈ S1 and 0 ≤ t < 1. We also have

τ(Φ1,X1,S1)([x, t], s) =

∫ s+t

0
RΦ1(x)(u)du − tTΦ1(x)

=

∫ s+t

0
RΦ2(h(x))(u)du − tTΦ2(h(x))

= τ(Φ2,X2,S2)(h|S1([x, t]), s),

using TΦ2(h(x)) = TΦ1(x). �

Remark 4.6. The map k(Φ,X,S) is bijective. Surjectivity is obvious. For
injectivity, if Φ(x, tTΦ(x)) = Φ(x′, t′TΦ(x

′)) for x, x′ ∈ S and t, t′ ∈ [0, 1), we
have

x′ = Φ(x, tTΦ(x)− t′TΦ(x
′)) ∈ S.
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If tTΦ(x) − t′TΦ(x
′) > 0, then it follows that tTΦ(x) − t′TΦ(x

′) ≥ TΦ(x).
Because t < 1, this is a contradiction. Therefore, tTΦ(x)− t′TΦ(x

′) ≤ 0. By
interchanging t and x with t′ and x′, we also have t′TΦ(x

′) − tTΦ(x) ≤ 0.
Therefore, we conclude that x = x′ and consequently t = t′.

Using the invariance of domain theorem, we observe that (k, τ) : IΣPI →
I is a natural isomorphism. In ordinary terms, this observation can be
phrased as follows.

Corollary 4.7. If (Φ,X, S) is a flow with a global Poincaré section, then

(Φ,X, S) is topologically equivalent to ΣP (Φ,X, S).

Another natural transformation can be constructed.

Lemma 4.8. There is a natural transformation l : 1Map → PIΣ defined by

l(f,X)(x) := [x, 0]

for each x ∈ X.

Proof. First, we show that l(f,X) : (f,X) → PIΣ(f,X) is well-defined as
a morphism in Map. As l(f,X) is a composition of continuous maps, it is
well-defined and continuous. Additionally, we have

l(f,X) ◦ f(x) = [f(x), 0] = Σf([x, 0], 1) = PIΣf([x, 0]) = (PIΣf) ◦ l(f,X)(x)

for all x ∈ X.
We show that l is natural. Let h : (f,X) → (g, Y ) be a morphism in

Map. Then,

(PIΣ)(h) ◦ l(f,X)(x) = [h(x), 0] = l(g,Y ) ◦ h(x)

for all x ∈ X. �

These results suggest that there is another category larger than FlowGS

and smaller than WFlowGS for which the constructions of Poincaré maps
and suspensions become adjoint.

Definition 4.9. A weak morphism (h, σ) : (Φ1,X1, S1) → (Φ2,X2, S2) in
WFlowGS is rate-preserving if

σ

(

Φ1(x, tTΦ1(x)),

∫ s+t

0
RΦ1(x)(u)du − tTΦ1(x)

)

=

∫ s+t

0
RΦ2(h(x))(u)du − tTΦ2(h(x))

for all x ∈ S1, 0 ≤ t < 1 and s ∈ R, where RΦ1 and RΦ2 are the same as in
Lemma 4.5.

Lemma 4.10. If (h, σ) : (Φ1,X1, S1) → (Φ2,X2, S2) in WFlowGS is rate-

preserving, we have

σ(x, tTΦ(x)) = tσ(x, TΦ(x))

for all x ∈ S1 and 0 ≤ t < 1.
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Proof. We show this by a direct calculation. Let x ∈ S1 and 0 ≤ t < 1.
Then, we have

σ(x, tTΦ1(x)) = σ

(

Φ1(x, 0 · TΦ1(x)),

∫ t+0

0
RΦ1(x)(u)du − 0 · TΦ1(x)

)

=

∫ t+0

0
RΦ2(h(x))(u)du − 0 · TΦ2(h(x))

= tTΦ2(h(x)) = tσ(x, TΦ1(x)).

Here, we used the result of Lemma 3.9. �

Lemma 4.11. The identity morphism in WFlowGS is rate-preserving.

The composition of two rate-preserving morphisms is again rate-preserving.

Proof. The first statement is obvious. Let (h1, σ1) : (Φ1,X1, S1) → (Φ2,X2, S2)
and (h2, σ2) : (Φ2,X2, S2) → (Φ3,X3, S3) be rate-preserving morphisms.
Then, we have

σ2 ◦ σ1

(

Φ1(x, tTΦ1(x)),

∫ s+t

0
RΦ1(x)(u)du − tTΦ1(x)

)

= σ2

(

h1 (Φ1(x, tTΦ1(x))) , σ1

(

Φ1(x, tTΦ1(x)),

∫ s+t

0
RΦ1(x)(u)du − tTΦ1(x)

))

= σ2

(

h1 (Φ1(x, tTΦ1(x))) ,

∫ s+t

0
RΦ2(h1(x))(u)du − tTΦ2(h1(x))

)

= σ2

(

Φ2(h1(x), σ1(x, tTΦ1(x))),

∫ s+t

0
RΦ2(h1(x))(u)du − tTΦ2(h1(x))

)

= σ2

(

Φ2(h1(x), tσ1(x, TΦ1(x))),

∫ s+t

0
RΦ2(h1(x))(u)du − tTΦ2(h1(x))

)

=

∫ s+t

0
RΦ3(h2 ◦ h1(x))(u)du − tTΦ3(h2 ◦ h1(x)),

for all x ∈ S1, 0 ≤ t < 1 and s ∈ R. �

Therefore, we can define a category RWFlowGS, whose objects are flows
with global Poincaré sections and whose morphisms are rate-preserving mor-
phisms. If we denote the inclusion functors by J− : FlowGS → RWFlowGS

and J+ : RWFlowGS → WFlowGS, it is clear that I = J+J−.

Lemma 4.12. Let (Φ,X, S) be an object in FlowGS. Then, the weak mor-

phism (k, τ)(Φ,X,S) : IΣPI(Φ,X, S) → (Φ,X, S) is rate-preserving.

Proof. First, we note that

∫ s+t

0
RΣPΦ([x, 0])(u)du − tTΣPΦ([x, 0]) = s
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for all [x, 0] ∈ (SPΦ)0, 0 ≤ t < 1 and s ∈ R because TΣPΦ([x, 0]) = 1 for all
[x, 0] ∈ (SPΦ)0. We calculate the following:

τ(Φ,X,S)

(

ΣPΦ([x, 0], tTΣPΦ([x, 0])),

∫ s+t

0
RΣPΦ([x, 0])(u)du − tTΣPΦ([x, 0])

)

= τ(Φ,X,S) (ΣPΦ([x, 0], t), s)

= τ(Φ,X,S) ([x, t], s)

=

∫ s+t

0
RΦ(x)(u)du − tTΦ(x)

=

∫ s+t

0
RΦ(k(Φ,X,S)([x, 0]))(u)du − tTΦ(k(Φ,X,S)([x, 0])),

for all [x, 0] ∈ (SPΦ)0, 0 ≤ t < 1 and s ∈ R. �

Thus, we have the following result:

Lemma 4.13. There is a natural transformation (k, τ) : J−ΣPJ+ →
1RWFlowGS given by the restriction of the natural transformation (k, τ) :
IΣPI → I defined in Lemma 4.5.

Proof. It is sufficient to verify the naturality conditions. Let (h, σ) : (Φ1,X1, S1) →
(Φ2,X2, S2) be a morphism in RWFlowGS.

If [x, t] ∈ (S1)PΦ1 with 0 ≤ t < 1, we have

h ◦ k(Φ1,X1,S1)([x, t]) = h (Φ1(x, tTΦ1(x)))

= Φ2 (h(x), σ(x, tTΦ1)(x))

= Φ2 (h(x), tσ(x, TΦ1)(x))

= Φ2 (h(x), tTΦ2(x))

= k(Φ2,X2,S2)([h(x), t])

= k(Φ2,X2,S2) ◦ h̄([x, t]).

Further, for all [x, t] ∈ (S1)PΦ1 with 0 ≤ t < 1 and s ∈ R,

σ ◦ τ(Φ1,X1,S1)([x, t], s)

= σ
(

k(Φ1,X1,S1)([x, t]), τ(Φ1 ,X1,S1)([x, t], s)
)

= σ

(

Φ1(x, tTΦ1(x)),

∫ s+t

0
RΦ1(x)(u)du − tTΦ1(x)

)

=

∫ s+t

0
RΦ2(h(x))(u)du − tTΦ2(h(x))

= τ(Φ2,X2,S2)([h(x), t], s)

= τ(Φ2,X2,S2) ◦ id([x, t], s),

where id is the time part of J−(h̄). �
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Combining the results above, we obtain the desired result, which gives us
the exact relation between the constructions of Poincaré maps and suspen-
sion flows.

Theorem 4.14. J−Σ ⊣ PJ+.

Proof. We verify that the triangle identities are satisfied by l : 1Map →
PIΣ = (PJ+)(J−Σ) and (k, τ) : (J−Σ)(PJ+) → 1RWFlowGS.

In what follows, we omit J+ or J− for ease of notation.
Let (f,X) be an object in Map. Then, we have

kΣ(f,X) ◦ Σ(l(f,X))([x, t])

= kΣ(f,X)

(

[l(f,X)(x), t]
)

= Σf
(

l(f,X)(x), t
)

= [x, t]

for all x ∈ X and 0 ≤ t < 1. Further, we have

τΣ(f,X) ◦ id([x, t], s)

= τΣ(f,X)

(

[l(f,X)(x), t], s
)

=

∫ s+t

0
RΣf (l(f,X)(x))(u)du − tTΣf (l(f,X)(x))

= s

for all x ∈ X, 0 ≤ t < 1 and s ∈ R. These results show that the following
diagram commutes in RWFlowGS.

Σ(f,X) ΣPΣ(f,X)

Σ(f,X)

✲
Σ(l(f,X))

◗
◗
◗
◗
◗◗s

1Σ(f,X)

❄

(k,τ)Σ(f,X)

Let (Φ,X, S) be an object in RWFlowGS. Then, we have

P
(

(k, τ)(Φ,X,S)

)

◦ lP (Φ,X,S)(x)

= k(Φ,X,S)|(SPΦ)0 ([x, 0])

= k(Φ,X,S) ([x, 0])

= Φ(x, 0) = x

for all x ∈ S. Therefore, the following diagram commutes in Map.

P (Φ,X, S) PΣP (Φ,X, S)

P (Φ,X, S)

✲
lP (Φ,X,S)

❍
❍
❍

❍
❍❍❥

1P (Φ,X,S) ❄

P((k,τ)(Φ,X,S))

Thus, we conclude that J−Σ ⊣ PJ+. �
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The next corollary is an immediate consequence of Remark 4.6 and the
injectivity of l(f,X).

Corollary 4.15. The categories Map and RWFlowGS are equivalent.

We remark that the rate-preserving condition can always be assumed for
topologically equivalent flows.

Theorem 4.16. Let (Φ1,X1, S1) and (Φ2,X2, S2) be isomorphic in WFlowGS.
Then, they are isomorphic in RWFlowGS.

Proof. By the functoriality of ΣP, ΣP (Φ1,X1, S1) and ΣP (Φ2,X2, S2) are
isomorphic in RWFlowGS. Because (k, τ) gives isomorphisms, we conclude
that (Φ1,X1, S1) and (Φ2,X2, S2) are isomorphic in RWFlowGS. �

5. Concluding remarks

The categorical equivalence of Corollary 4.15 enables us to obtain corre-
spondences between various concepts of flows and map dynamical systems.
For example, Theorem 4.16 implies that the topological conjugacy of map
dynamical systems is categorically equivalent to the topological equivalence
of flows. This provides further justification for the use of topological equiva-
lence in the study of flows, in addition to the usual argument that topological
conjugacy is too strict.

We also observe a lack of correspondence for some notions. As flows with
global Poincaré sections do not have equilibria, it follows that map dynami-
cal systems do not have a concept corresponding to them under the equiva-
lence obtained here. It would be interesting to consider whether there exists
another pair of functors under which fixed points correspond to equilibria.
A candidate will be the time-one map because it corresponds to the dis-
cretization functor, which has been considered in [5]. However, it is known
that this construction is not very expressive, and it is unclear whether an
interesting equivalence can be found [3].
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