
ar
X

iv
:2

10
7.

06
62

2v
1 

 [
m

at
h.

O
C

] 
 1

4 
Ju

l 2
02

1

Stability Analysis of Time-varying Delay Neural
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Abstract

In this paper, a kind of neural network with time-varying delays is proposed

to solve the problems of quadratic programming. The delay term of the neural

network changes with time t. The number of neurons in the neural network is

n + h, so the structure is more concise. The equilibrium point of the neural

network is consistent with the optimal solution of the original optimization

problem. The existence and uniqueness of the equilibrium point of the neural

network are proved. Application inequality technique proved global exponential

stability of the network. Some numerical examples are given to show that the

proposed neural network model has good performance for solving optimization

problems.

Keywords: Neural network; Global exponential stability; Convex quadratic

programming; Time-varying delay

1. Introdution

The model of the convex quadratic programming (CQP) problem is sim-

ple in form, convenient to construct, and easy to solve, it is now the basic

method of learning risk assessment management[1, 2, 3], system analysis[4, 5],
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combinatorial optimization science[6], economic dispatch[7], and other disci-

plines. The quadratic programming problem is widely used in the fields of ro-

bust control[8], parameter estimation[9, 10], regression analysis[11], image and

signal processing[12], etc. The general form of the CQP model is given below:

min 1
2x

TQx+ cTx := f(x)






s.t.Ax = b

Bx ≤ d

(1)

Where Q ∈ Rn×n is semi-definite matrix, x = (x1, x2, ..., xn) ∈ Rn, c ∈ Rn,

A ∈ Rn×n is a row full rank matrix, that is Rank(A) = m, b ∈ Rm, B ∈ Rh×n,

d ∈ Rh.

Quadratic programming problem is widely used in practical problems. Due

to a large number of dimensions and complex structure in practical problems,

calculations with traditional numerical methods will take too long. Solving the

quadratic programming problems through artificial neural networks can shorten

the calculation time. In 1986, D. Tank and J.J. Hopfield[13] first proposed to

solve the optimization problem by constructing a neural network. After that,

the application of neural networks based on circuit implementation to solve

quadratic programming problems has become a research topic. Kennedy and

Chua[14] proposed a penalty function to construct neural networks. Using this

neural network, the results of Tank and Hopfield are extended to general nonlin-

ear programming problems. Based on the Lagrange multiplier method instead

of using penalty functions, Zhang and Constantinides[15] make the network

contain two types of neurons, reducing the restrictions on the form of the cost

function. Huang improved on Zhang and Constantinides and designed a new

Lagrangian-type neural network, which can directly deal with inequality con-

straints without adding relaxation variables[16]. Based on the gradient method,

Chen et al. established a type of neural network that did not involve penalty

parameters and could solve both the original problem and the dual problem at

the same time[17].Based on the projection theorem and KKT condition, Xia et

al. established a recurrent neural network to solve the related linear piecewise
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equation, which reduced the complexity of the model[18].A type of recursive

neural network was proposed by Nazemi et al [21] to solve quadratic program-

ming problems. The constructed neural network does not need the multiplier

related to inequality in quadratic programming conditions.

In reality, due to the influence of hardware performance and the limitation

of signal transmission, it is inevitable to produce time delay in the limited

transmission time. The impact of time delay on the operating system is often

not negligible. Some papers have proposed neural networks with a time delay

to solve quadratic optimization problems. For example, Liu et al. put forward

a kind of time-delay neural network to solve the linear projection equation and

proved the stability of the time-delay neural network by linear matrix inequality

method(LMI) methods. Yang and Cao [20] proposed a time-delay projection

neural network without penalty function and Lagrange multipliers. Its structure

is simple and the network state variables are reduced, but this will affect its

practicability. Sha et al. [22] proposed a type of delayed neural network added

time delay, with fewer neurons to improve computational efficiency, reduce the

number of network structure layers. Wen et al. [25] generalized the neural

network that solves the convex optimization problem, and gave a time-delay

neural network to solve the general optimization problem with weak convexity.

Indeed, the delayed neural networks not contained in a constant value,

it will produce a change over time. Therefore, it is meaningful to study neural

networks with variable time delays for solving quadratic programming problems.

In this paper, a neural network model with variable time delay is established

based on the saddle point theorem and the projection theorem. The existence

and uniqueness of the network are analyzed, and the global exponential stability

of the network is proved by using the inequality technique. Some numerical

examples are listed and verified by Matlab2016a. The results show that the

neural network has good performance.

The order of this article is as follows: in the second part, we derive the

neural network model with n + h neurons utilizing saddle point theorem, pro-

jection theorem, and some inequalities; in the third part, using techniques such
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as scaling of inequalities, combined with the lemma, we discussed the existence

and uniqueness of the proposed neural network with variable delays; in the

fourth part, we discuss that the proposed neural network is globally exponen-

tially stable when the condition (|κ−1|+1)‖I−αW‖−κ < 0 is satisfied. In the

fifth part, the examples of 3 -dimensional and 4 - dimensional convex quadratic

programming are given to verify the better performance of the neural networks.

2. Establishment of neural network model

Let Ω = {x ∈ Rn|Ax = b, Bx ≤ d} be a non-empty feasible region of (1),

and the optimal solution of (1) is in Ω. The Lagrange function of (1) can be

written as

G(x, u, v) = f(x)− uT(Ax − b)− vT(d−Bx) (2)

where u ∈ Rm, v ∈ Rh are Lagrange multipliers.

Using the saddle point theorem, if x∗ is used to represent the optimal solution

of (1), then there exists u∗, v∗ such that the following inequality holds

G(x∗, u, v∗) ≤ G(x∗, u∗, v∗) ≤ G(x, u∗, v∗) (3)

We put (2) into (3)

f(x∗)− uT(Ax∗ − b)− (v∗)T(d−Bx∗)

≤ f(x∗)− (u∗)T(Ax∗ − b)− (v∗)T(d−Bx∗)

≤ f(x)− (u∗)T(Ax− b)− (v∗)T(d−Bx)

(4)

It can be obtained from the left side of (4) (−uT + (u∗)T)(Ax∗ − b) ≤ 0 that is

(u− (u∗))T(Ax∗ − b) ≥ 0, ∀u ∈ Rm (5)

so as to get Ax∗ = b.

It can be obtained from the right side of (4) f(x∗)−(u∗)TAx∗−f(x)+(u∗)TAx ≤

vTBx− (v∗)TBx∗ that is

f(x∗)− (u∗)TAx∗ + c∗ − (f(x) − (u∗)TAx+ (v∗)TBx) ≤ 0 (6)
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It was found that x∗ = min{f(x)−(u∗)TAx+(v∗)TBx}. Thus, x∗, u∗, v∗ satisfy

∇f(x∗) − ATu∗ + BT v∗ = 0, ∇f(x∗) denotes the gradient of the differential

function f(x), that is

x∗ = Q−1(ATu∗ −BT v∗ − c). (7)

From (7), and we already know Ax∗ = b, it can be deduced that Ax∗−A(Qx∗+

c) +AATu∗ −ABTv∗ = b, that is AATu∗ = b−Ax∗ +A(Qx∗ + c) +ABTv∗ =

A(Qx∗ + c+BTv∗)− (Ax∗ − b), thus

Au∗ = AT(AAT)−1A(Qx∗ + c+BTv∗)−AT(AAT)−1(Ax∗ − b) (8)

and we have

ATu∗ = Qx∗ + c+BTv∗ (9)

so that (I−AT(AAT)−1A)(Qx∗ + c+BTv∗) +AT(AAT)−1(Ax∗ − b) = 0. Now

write

M := AT(AAT)−1A ∈ Rn×n, N := AT(AAT)−1 ∈ Rn×m (10)

we have

(I−M)(Qx∗ + c+BTv∗) +N(Ax∗ − b) = 0. (11)

By the projection theorem, (v + α(Bx− d))+ − v = 0, that is

v∗ = PΩ(v
∗ + α(Bx − d)) (12)

where α ∈ R+,R+ = s|s > 0, s ∈ R,(v)+ = (v1, v2, ..., vh) ∈ Rh and (vi)
+ =

max[vi, 0].

Through linear transformation, we can deduce ∃γ to make (8) into the following

formula

(v+α((Bx− d)− γ[(I−M)(Qx∗ + c+BTv∗)+N(Ax∗ − b)]h))
+ − v = 0. (13)

We define U1 = {x ∈ Rn| − ∞ ≤ x ≤ +∞}, U2 = {x ∈ Rh|0 ≤ x ≤ +∞}, and

from (10), we can deduce NA = M , so we have

5



x = PU1
{x− α[(I−M)(Qx+ c+BTv) +N(Ax− b)]}

= PU1
{x− α[(I −M)(Qx+ c+BTv) +Mx−Nb)]}

= PU1
{( In 0n×h )





x

v





−α[((IN −Mn×n)Qn×n +Mn×n(IN −Mn×n)B
T
n×h)





x

v





+(IN −Mn×n)c−Nn×hb]}

v = PU2
{v + α((Bx − d)− γ[(I−M)(Qx+ c+BTv) +N(Ax− b)]h)}

= PU2
{( 0n×h In )





x

v



− α[(γ[(IN −Mn×n)Qn×n +Mn×n]h

−Bn×hγ[(IN −Mn×n)B
T
n×h]h)





x

v



+ d+ γ[(In −Mn×n)c−Nn×hb]h]}

Denote U = {x ∈ Rn+h|l ≤ x ≤ j}, l =





−∞n×1

0h×1



 , j =





+∞n×1

+∞h×1



, that

is




x

v



 = PU{





x

v



− α

[





(IN −Mn×n)Qn×n +Mn×n (IN −Mn×n)B
T
n×h

γ[(IN −Mn×n)Qn×n +Mn×n]h −Bn×h γ[(IN −Mn×n)B
T
n×h]h









x

v



 +





(In −Mn×n)c−Nn×hb

d+ γ[(In −Mn×n)c−Nn×hb]h



]}

define

y =





x

v



 , p =





(In −Mn×n)c−Nn×hb

d+ γ[(In −Mn×n)c−Nn×hb]h



 ,

W =





(IN −Mn×n)Qn×n +Mn×n (IN −Mn×n)B
T
n×h

γ[(IN −Mn×n)Qn×n +Mn×n]h −Bn×h γ[(IN −Mn×n)B
T
n×h]h



 ,

we finally get

y = PU (y − α(Wy + p)) (14)
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After the above analysis, we get the time-varying neural network model to

solve(1)


















dy
dt

= −κy(t) + (κ− 1)PU (y(t− τ(t)) − α(Wy(t− τ(t)) + p)

+PU (y(t)− α(Wy(t) + p))

y(t) = ϕ(t), t ∈ [−τ, 0]

(15)

Where κ > 0 is a scale parameter, PU : Rn+h → U is the projection operator

in the sense of Hilbert space, defined by PU (s) = argmin
z∈U

‖ s− z ‖, ∀y ∈ Rn+h ,

where ‖‖ represents the Euclidean norm, τ > 0 denotes the transmission delay.

αp is the network input item, y as the network output item, I−αW is connected

to weight. If we use Ωℵ to represent the set of equilibrium points of (15) and

Ω∗ to represent the set of optimal solutions of (1). Then we will get that if

x∗ ∈ Ωℵ, then there is a v∗ such that y∗ = (x∗T , v∗T )T satisfies the projection

equation (14), which means that x∗ ∈ Ω∗. So we have Ωℵ = Ω∗.

We Give the following lemma and definitions in preparation for the following

discussion.

Lemma 1. [23] If there is a solution y(t) for (15) that satisfies the initial con-

dition y(t) = ϕ(t), ∀ϕ(t) ∈ C([−τ, 0], Rn)t ∈ [−τ, 0], and the solution y(t) is

bounded on [0, T ], then the existence interval of y(t) is [0,∞].

Definition 1. [26] If ∃ρ > 0, η > 0 such that the following inequality holds

‖y(t)− y∗‖ ≤ ρ‖ϕ− y∗‖e−ηt, ∀t ≥ 0

,

where ‖ϕ− y∗‖ = sup
−τ≤t≤0

[(ϕ(t) − y∗)T (ϕ(t) − y∗)]
1

2 , then the equilibrium point

y∗ of the time-varying Delay Neural Network defined by (15) is globally expo-

nentially stable.

3. Existence and uniqueness

Theorem 1. For ∀ϕ ∈ C([−τ(t), 0], Rn+p), the solution of the neural network

(15) exists and is unique, t ∈ [0,+∞].
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Proof: Let

Y (y(t)) = −κy(t) + (κ− 1)PU (y(t− τ(t))− α(Wy(t− τ(t)) + p) + PU (y(t)

−α(Wy(t) + p))
,

thus dy
dt

= Y (y(t)).

If y∗ is used to represent the equilibrium point of the time-varying delay neural

network (15), then we can get that

‖Y (y(t))‖ = ‖Y (y(t))− Y (y∗)‖

≤ κ‖y(t)− y∗‖+ (κ− 1)‖PU (y(t− τ(t)) − α(Wy(t− τ(t)) + p)

−PU (y
∗ − α(Wy∗ + p)))‖+ ‖PU (y(t)− α(Wy(t) + p)

−PU (y
∗ − α(Wy∗ + p)))‖

≤ κ‖y(t)− y∗‖+ (κ− 1)(‖y(t− τ(t)) − y∗‖ − ‖αW‖‖y(t)− y∗‖)

+(‖y(t)− y∗‖ − ‖αW‖‖y(t)− y∗‖)

≤ κ(2 + ‖αW‖)y∗ + (κ+ (1 + ‖αW‖))y(t)

+(κ− 1)(1 + ‖αW‖)y(t− τ(t))

Let β1 = κ(2 + ‖αW‖), β2 = κ+ (1 + ‖αW‖), β2 = (κ− 1)(1 + ‖αW‖), since

y(x) =







y(0) +
∫ t

0
Y (y(s))ds, t ∈ [0, T ]

ϕ(t), t ∈ [−τ, 0]
,

it can be concluded that

‖y(t)‖ ≤ ‖ϕ(t)‖+
∫ t

0 ‖Y (y(s))‖ds

≤ ‖ϕ(t)‖+
∫ t

0
β1‖y

∗‖+ β2‖y(s)‖+ β3‖y(s− τ(s)‖ds

≤ ‖ϕ(t)‖+ β1‖y
∗‖T + β2

∫ t

0 ‖y(s)‖ds+ β3

∫ t−τ(s)

−τ(s) ‖y(s)‖ds

≤ (1 + β3τ)‖ϕ(t)‖ + β1‖y
∗‖T + (β2 + β3)

∫ t

0 ‖y(s)‖ds

From Bellman’s inequality, we have

‖y(t)‖ ≤ [(1 + β3τ)‖ϕ(t)‖ + β1‖y
∗‖T ]e(β2+β3)t, t ∈ [0, T ].

That is, the boundedness of ‖y(t)‖ on [0, T ] has been proved. By Lemma 1, ∃y(t)

for (14) on [0,∞]. A discussion on the uniqueness of y(t) is given below. Suppose

the solution is not unique, then there is a solution with y(t), ˜y(t), (y(t) 6= ˜y(t))

being (15). Express the solutions of y(t), ˜y(t) through the variation-of-constants
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formula

y(t) = e−κty(0) + (κ− 1)
∫ t

0 e−κ(t−s)PU (y(s− τ(s)) − α(Wy(s− τ(s)) + p))ds

+
∫ t

0
e−κ(t−s)PU (y(s)− α(Wy(s) + p))ds

(16)

˜y(t) = e−κty(0) + (κ− 1)
∫ t

0
e−κ(t−s)PU ( ˜y(s− τ(s)) − α(W ˜y(s− τ(s)) + p))ds

+
∫ t

0 e
−κ(t−s)PU ( ˜y(s)− α(W ˜y(s) + p))ds

(17)

Subtract (16) and (17), we have

sup
t

‖y(t)− ˜y(t)‖ ≤ sup
t

‖(κ− 1)
∫ t

0
e−κ(t−s)PU (y(s− τ(s)) − ˜y(s− τ(s))

−αW (y(s− τ(s)) − ˜y(s− τ(s))))ds‖

≤ sup
t

|κ− 1|
∫ t

0
e−κ(t−s)‖I − αW‖‖y(s− τ(s))− ˜y(s− τ(s))‖ds

+sup
t

∫ t

0
e−κ(t−s)‖I − αW‖‖y(s)− ˜y(s)‖ds

≤ |κ− 1|‖I − αW‖ sup
t

‖y(t− τ(t)) − ˜y(t− τ(t))‖
∫ t

0
e−κ(t−s)ds

+‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0
e−κ(t−s)ds

≤ |κ− 1|‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0 e
−κ(t−s)ds

+‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0 e
−κ(t−s)ds

≤ |κ−1|+1
κ

‖I − αW‖ sup
t
(1− e−κt)‖y(t)− ˜y(t)‖

which implies that

(1−
|κ− 1|+ 1

κ
‖I − αW‖ sup

t
(1− e−κt)) sup

t
‖y(t)− ˜y(t)‖ ≤ 0. (18)

Yet

1−
|κ− 1|+ 1

κ
‖I − αW‖ sup

t
(1 − e−κt) > 0. (19)

According to (18) and (19), we have

sup
t

‖y(t)− ˜y(t)‖ ≤ 0.

Therefore, y(t) = ˜y(t), this contradicts the above assumption. That is to say,

the (15) has a unique solution.
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4. Global exponetial stability

Theorem 2. When condition (|κ−1|+1)‖I−αW‖−κ < 0, the equilibrium point

y∗ of neural networks with time-varying delays has global exponential stability.

Proof: Since y∗ is the equilibrium point of (15), the following equation can be

obtained

d(y(t)−y∗)
dt

= −κ(y(t)− y∗) + (κ− 1)PU ((y(t− τ(t)) − y∗)

−α(W (y(t− τ(t)) − y∗) + p))

+PU ((y(t)− y∗)− α(W (y(t) − y∗) + p))

From the above formula, y(t)−y∗ can be expressed as the following form through

the variation-of-constants

y(t)− y∗ = e−κt(ϕ− y∗) + (κ− 1)
∫ t

0
PU ((y(s− τ(s)) − y∗)

−α(W (y(s− τ(s)) − y∗) + p))e−κ(t−s)ds

+
∫ t

0
PU ((y(s)− y∗)− α(W (y(s) − y∗) + p))e−κ(t−s)ds

then

‖y(t)− y∗‖ ≤ e−κt‖ϕ− y∗‖+ |κ− 1|
∫ t

0 ‖(y(s− τ(s)) − y∗)

−α(W (y(s− τ(s)) − y∗) + p)‖e−κ(t−s)ds

+
∫ t

0 ‖(y(s)− y∗)− α(W (y(s)− y∗) + p)‖e−κ(t−s)ds

= e−κt‖ϕ− y∗‖+ |κ− 1|
∫ t

−τ(s)
‖(I − αW )(y(s) − y∗)− αp‖

e−κ(t−s−τ(s))ds+
∫ t

0 ‖(I − αW )(y(s)− y∗)− αp‖e−κ(t−s)ds

≤ e−κt‖ϕ− y∗‖+ |κ−1|
κ

(‖I − αW‖‖ϕ− y∗‖e−κt)− |κ−1|
κ

αpe−κt

+(|κ− 1|+ 1)
∫ t

0
‖(I − αW )(y(s)− y∗)− αp‖e−κ(t−s)ds

= e−κt( (κ+|κ−1|‖I−αW )‖ϕ−y∗‖+|κ−1|αp
κ

)

+(|κ− 1|+ 1)
∫ t

0
‖(I − αW )(y(s)− y∗)− αp‖e−κ(t−s)ds

As in the following inequality, eκt is moved to the left-hand side of the inequality

‖y(t)− y∗‖eκt ≤ (κ+|κ−1|‖I−αW )‖ϕ−y∗‖+|κ−1|αp
κ

+(|κ− 1|+ 1)
∫ t

0 ‖(I − αW )(y(s)− y∗)− αp‖eκsds

≤ (κ+|κ−1|‖I−αW )‖ϕ−y∗‖+|κ−1|αp
κ

e(|κ−1|+1)‖I−αW )‖t
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That is

‖y(t)− y∗‖ ≤ (κ+|κ−1|‖I−αW )‖ϕ−y∗‖+|κ−1|αp
κ

e[(|κ−1|+1)‖I−αW )‖−κ]t

So we can obtained that if (|κ − 1| + 1)‖I − αW )‖ − κ < 0, the time-varying

delay neural network defined by (15) is globally exponentially stable.

5. Simulation results

Example 1. Consider the following quadratic programming

min f(x) = 0.36x2
1 + 0.3x2

2 + 0.2x2
3 − x1 + 0.6x2 + 0.5x3

Subject to



















x1 − x2 + x3 = 6

0.5x1 − 0.7x2 + 0.2x3 ≤ 5

1
4x1 +

2
5x2 −

3
5x3 ≤ 7

Let Q =











0.72 0 0

0 0.6 0

0 0 0.4











, c =











−1

0.6

0.5











, A =
(

1 −1 1
)

,b = 6, B =





0.5 −0.7 0.2

1
4

2
5

3
5



, d =





5

7



. The eigenvalues of Q can be calculated as

λ1 = 0.4000, λ2 = 0.6000, λ3 = 0.7200. The optimal solution for this example

can be calculated to be x∗ =
(

0.4000 0.6000 0.7200
)T

. Next we choose

u = 0.003, α = 0.45, γ = 1, κ = 2, and calculated the

M =











0.3333 −0.3333 0.3333

−0.3333 0.3333 −0.3333

0.3333 −0.3333 0.3333











, N =











0.3333

−0.3333

0.3333











,

W =























0.8133 −0.1333 0.2000 0.0333 0.5556

−0.0933 0.7333 −0.2000 −0.2333 0.1778

0.0933 −0.1333 0.6000 0.2667 −0.3778

0.3133 1.1667 0.4000 −0.4667 0.3556

0.4800 0.0667 1.2000 −0.4667 0.3556























, (|κ− 1|+ 1)‖I − αW )‖ − α < 0, through Theorem 4.1, we can know that the

equilibrium point of the time-delay neural network (15) is globally exponentially

11
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Figure 1: The state trajectory of the time-delay neural network corresponding to Example 1

stable. We obtain the state trajectory of the time-delay neural network (15)

corresponding to Example 1 through Matlab2016a. The trajectory corresponds

to 10 sets of random initial functions, and τ = 0.365. From Figure11, we can see

that the state trajectory of the neural network globally converges to the optimal

solution of the quadratic programming in Example 1.

Example 2. Consider the following quadratic programming

min f(x) = 0.7x2
1 + 0.6x2

2 + 0.25x2
3 + 2x2

4 + 0.35x1x2 + 0.45x1x3 + 0.25x2x3

+ 1
9x2x4 + 0.36x1 + 0.79x2 − 9x3 − 8x4

Subject to



















x1 + 0.5x2 − x3 − 0.95x4 = 4

x1 + 0.2x2 − 0.3x3 + 0.6x4 ≤ 4.5

−0.6x1 + x2 + 0.13x3 − 0.3x4 ≤ 3.5

12



Let

Q =

















1.4 0.35 0.45 0

0.35 1.2 0.25 1
9

0.45 0.25 0.5 0

0 1
9 0 4

















, c =

















0.36

0.79

−9

−8

















, B =





1 0.2 −0.3 0.6

−0.6 1 0.13 −0.3



 ,

A =
(

1 0.5 −1 −0.95
)

, b = 4, d =





4.5

3.5





. The eigenvalues of Q can be calculated as λ1 = 0.3012, λ2 = 0.9396, λ3 =

1.8547, λ4 = 4.0045. The optimal solution for this example can be calculated to

be x∗ =
(

2.6080 1.8757 −0.5792 0.1317
)T

. Next we choose u = 0.001,

α = 0.75, γ = 1, κ = 2, and calculated the

M =

















0.3172 0.1586 −0.3172 −0.3013

0.1586 0.0793 −0.1586 −0.1507

−0.3172 −0.1586 0.3172 0.3013

−0.3013 −0.1507 0.3013 0.2863

















,W =

















0.3172

0.1586

−0.3172

−0.3013

















,

W =





























1.3603 0.3200 0.1090 0.8864 0.7367 −0.6174

0.3302 1.1850 0.0795 0.5543 0.0684 0.9913

0.4897 0.2800 0.8410 −0.8864 −0.0376 0.1474

0.0377 0.1396 0.3239 3.1579 0.8501 −0.2834

1.2178 1.7246 1.6534 3.1122 1.6185 0.2379

2.2178 0.9246 1.2234 4.0122 1.6185 0.2379





























,

(|κ−1|+1)‖I−αW )‖−α < 0, through the Theorem 4.1, we would know that the

equilibrium point of the time-delay neural network (15) is globally exponentially

stable. We obtain the state trajectory of the time-delay neural network (15)

corresponding to Example 2 through Matlab2016a. The trajectory corresponds

to 20 sets of random initial functions, and τ = 0.03. From the Figure22, we

can see that the state trajectory of the neural network globally converges to the

optimal solution of the quadratic programming in Example 2.
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Figure 2: The state trajectory of the time-delay neural network corresponding to Example 2

14



6. Conclusion

This paper proposes a class of neural network models with variable time

delays to solve convex optimization problems. Compared with constant time

delays, the discussion of variable time delay has better practical value. The

equilibrium point of the neural network corresponds to the optimal solution of

the convex optimization problem. Therefore, it is meaningful to use the neu-

ral network with n + h neurons to solve the optimization problem in practice.

For the proposed neural network, it is proved that the equilibrium point of the

neural network exists and is unique, we discussed that it is globally exponen-

tially stable under certain conditions. Some examples are given to illustrate the

practicability of the network.
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