
ar
X

iv
:2

10
7.

06
62

2v
1

 [
m

at
h.

O
C

]
 1

4
Ju

l 2
02

1

Stability Analysis of Time-varying Delay Neural

Network for Convex Quadratic Programming With

Equality Constraints and Inequality Constraints⋆

Ling Zhang, Xiaoqi Sun∗

Mathematics and Statistics Department, Qingdao University, Qingdao, China

Abstract

In this paper, a kind of neural network with time-varying delays is proposed

to solve the problems of quadratic programming. The delay term of the neural

network changes with time t. The number of neurons in the neural network is

n + h, so the structure is more concise. The equilibrium point of the neural

network is consistent with the optimal solution of the original optimization

problem. The existence and uniqueness of the equilibrium point of the neural

network are proved. Application inequality technique proved global exponential

stability of the network. Some numerical examples are given to show that the

proposed neural network model has good performance for solving optimization

problems.

Keywords: Neural network; Global exponential stability; Convex quadratic

programming; Time-varying delay

1. Introdution

The model of the convex quadratic programming (CQP) problem is sim-

ple in form, convenient to construct, and easy to solve, it is now the basic

method of learning risk assessment management[1, 2, 3], system analysis[4, 5],

⋆This project was supported by Natural Science Foundation of Shangdong Province,
No.ZR2019PA007

∗Corresponding author
Email address: sunxiaoqi@live.com (Xiaoqi Sun)

Preprint submitted to Journal of LATEX Templates November 24, 2021

http://arxiv.org/abs/2107.06622v1

combinatorial optimization science[6], economic dispatch[7], and other disci-

plines. The quadratic programming problem is widely used in the fields of ro-

bust control[8], parameter estimation[9, 10], regression analysis[11], image and

signal processing[12], etc. The general form of the CQP model is given below:

min 1
2x

TQx+ cTx := f(x)






s.t.Ax = b

Bx ≤ d

(1)

Where Q ∈ Rn×n is semi-definite matrix, x = (x1, x2, ..., xn) ∈ Rn, c ∈ Rn,

A ∈ Rn×n is a row full rank matrix, that is Rank(A) = m, b ∈ Rm, B ∈ Rh×n,

d ∈ Rh.

Quadratic programming problem is widely used in practical problems. Due

to a large number of dimensions and complex structure in practical problems,

calculations with traditional numerical methods will take too long. Solving the

quadratic programming problems through artificial neural networks can shorten

the calculation time. In 1986, D. Tank and J.J. Hopfield[13] first proposed to

solve the optimization problem by constructing a neural network. After that,

the application of neural networks based on circuit implementation to solve

quadratic programming problems has become a research topic. Kennedy and

Chua[14] proposed a penalty function to construct neural networks. Using this

neural network, the results of Tank and Hopfield are extended to general nonlin-

ear programming problems. Based on the Lagrange multiplier method instead

of using penalty functions, Zhang and Constantinides[15] make the network

contain two types of neurons, reducing the restrictions on the form of the cost

function. Huang improved on Zhang and Constantinides and designed a new

Lagrangian-type neural network, which can directly deal with inequality con-

straints without adding relaxation variables[16]. Based on the gradient method,

Chen et al. established a type of neural network that did not involve penalty

parameters and could solve both the original problem and the dual problem at

the same time[17].Based on the projection theorem and KKT condition, Xia et

al. established a recurrent neural network to solve the related linear piecewise

2

equation, which reduced the complexity of the model[18].A type of recursive

neural network was proposed by Nazemi et al [21] to solve quadratic program-

ming problems. The constructed neural network does not need the multiplier

related to inequality in quadratic programming conditions.

In reality, due to the influence of hardware performance and the limitation

of signal transmission, it is inevitable to produce time delay in the limited

transmission time. The impact of time delay on the operating system is often

not negligible. Some papers have proposed neural networks with a time delay

to solve quadratic optimization problems. For example, Liu et al. put forward

a kind of time-delay neural network to solve the linear projection equation and

proved the stability of the time-delay neural network by linear matrix inequality

method(LMI) methods. Yang and Cao [20] proposed a time-delay projection

neural network without penalty function and Lagrange multipliers. Its structure

is simple and the network state variables are reduced, but this will affect its

practicability. Sha et al. [22] proposed a type of delayed neural network added

time delay, with fewer neurons to improve computational efficiency, reduce the

number of network structure layers. Wen et al. [25] generalized the neural

network that solves the convex optimization problem, and gave a time-delay

neural network to solve the general optimization problem with weak convexity.

Indeed, the delayed neural networks not contained in a constant value,

it will produce a change over time. Therefore, it is meaningful to study neural

networks with variable time delays for solving quadratic programming problems.

In this paper, a neural network model with variable time delay is established

based on the saddle point theorem and the projection theorem. The existence

and uniqueness of the network are analyzed, and the global exponential stability

of the network is proved by using the inequality technique. Some numerical

examples are listed and verified by Matlab2016a. The results show that the

neural network has good performance.

The order of this article is as follows: in the second part, we derive the

neural network model with n + h neurons utilizing saddle point theorem, pro-

jection theorem, and some inequalities; in the third part, using techniques such

3

as scaling of inequalities, combined with the lemma, we discussed the existence

and uniqueness of the proposed neural network with variable delays; in the

fourth part, we discuss that the proposed neural network is globally exponen-

tially stable when the condition (|κ−1|+1)‖I−αW‖−κ < 0 is satisfied. In the

fifth part, the examples of 3 -dimensional and 4 - dimensional convex quadratic

programming are given to verify the better performance of the neural networks.

2. Establishment of neural network model

Let Ω = {x ∈ Rn|Ax = b, Bx ≤ d} be a non-empty feasible region of (1),

and the optimal solution of (1) is in Ω. The Lagrange function of (1) can be

written as

G(x, u, v) = f(x)− uT(Ax − b)− vT(d−Bx) (2)

where u ∈ Rm, v ∈ Rh are Lagrange multipliers.

Using the saddle point theorem, if x∗ is used to represent the optimal solution

of (1), then there exists u∗, v∗ such that the following inequality holds

G(x∗, u, v∗) ≤ G(x∗, u∗, v∗) ≤ G(x, u∗, v∗) (3)

We put (2) into (3)

f(x∗)− uT(Ax∗ − b)− (v∗)T(d−Bx∗)

≤ f(x∗)− (u∗)T(Ax∗ − b)− (v∗)T(d−Bx∗)

≤ f(x)− (u∗)T(Ax− b)− (v∗)T(d−Bx)

(4)

It can be obtained from the left side of (4) (−uT + (u∗)T)(Ax∗ − b) ≤ 0 that is

(u− (u∗))T(Ax∗ − b) ≥ 0, ∀u ∈ Rm (5)

so as to get Ax∗ = b.

It can be obtained from the right side of (4) f(x∗)−(u∗)TAx∗−f(x)+(u∗)TAx ≤

vTBx− (v∗)TBx∗ that is

f(x∗)− (u∗)TAx∗ + c∗ − (f(x) − (u∗)TAx+ (v∗)TBx) ≤ 0 (6)

4

It was found that x∗ = min{f(x)−(u∗)TAx+(v∗)TBx}. Thus, x∗, u∗, v∗ satisfy

∇f(x∗) − ATu∗ + BT v∗ = 0, ∇f(x∗) denotes the gradient of the differential

function f(x), that is

x∗ = Q−1(ATu∗ −BT v∗ − c). (7)

From (7), and we already know Ax∗ = b, it can be deduced that Ax∗−A(Qx∗+

c) +AATu∗ −ABTv∗ = b, that is AATu∗ = b−Ax∗ +A(Qx∗ + c) +ABTv∗ =

A(Qx∗ + c+BTv∗)− (Ax∗ − b), thus

Au∗ = AT(AAT)−1A(Qx∗ + c+BTv∗)−AT(AAT)−1(Ax∗ − b) (8)

and we have

ATu∗ = Qx∗ + c+BTv∗ (9)

so that (I−AT(AAT)−1A)(Qx∗ + c+BTv∗) +AT(AAT)−1(Ax∗ − b) = 0. Now

write

M := AT(AAT)−1A ∈ Rn×n, N := AT(AAT)−1 ∈ Rn×m (10)

we have

(I−M)(Qx∗ + c+BTv∗) +N(Ax∗ − b) = 0. (11)

By the projection theorem, (v + α(Bx− d))+ − v = 0, that is

v∗ = PΩ(v
∗ + α(Bx − d)) (12)

where α ∈ R+,R+ = s|s > 0, s ∈ R,(v)+ = (v1, v2, ..., vh) ∈ Rh and (vi)
+ =

max[vi, 0].

Through linear transformation, we can deduce ∃γ to make (8) into the following

formula

(v+α((Bx− d)− γ[(I−M)(Qx∗ + c+BTv∗)+N(Ax∗ − b)]h))
+ − v = 0. (13)

We define U1 = {x ∈ Rn| − ∞ ≤ x ≤ +∞}, U2 = {x ∈ Rh|0 ≤ x ≤ +∞}, and

from (10), we can deduce NA = M , so we have

5

x = PU1
{x− α[(I−M)(Qx+ c+BTv) +N(Ax− b)]}

= PU1
{x− α[(I −M)(Qx+ c+BTv) +Mx−Nb)]}

= PU1
{(In 0n×h)





x

v





−α[((IN −Mn×n)Qn×n +Mn×n(IN −Mn×n)B
T
n×h)





x

v





+(IN −Mn×n)c−Nn×hb]}

v = PU2
{v + α((Bx − d)− γ[(I−M)(Qx+ c+BTv) +N(Ax− b)]h)}

= PU2
{(0n×h In)





x

v



− α[(γ[(IN −Mn×n)Qn×n +Mn×n]h

−Bn×hγ[(IN −Mn×n)B
T
n×h]h)





x

v



+ d+ γ[(In −Mn×n)c−Nn×hb]h]}

Denote U = {x ∈ Rn+h|l ≤ x ≤ j}, l =





−∞n×1

0h×1



 , j =





+∞n×1

+∞h×1



, that

is




x

v



 = PU{





x

v



− α

[





(IN −Mn×n)Qn×n +Mn×n (IN −Mn×n)B
T
n×h

γ[(IN −Mn×n)Qn×n +Mn×n]h −Bn×h γ[(IN −Mn×n)B
T
n×h]h









x

v



 +





(In −Mn×n)c−Nn×hb

d+ γ[(In −Mn×n)c−Nn×hb]h



]}

define

y =





x

v



 , p =





(In −Mn×n)c−Nn×hb

d+ γ[(In −Mn×n)c−Nn×hb]h



 ,

W =





(IN −Mn×n)Qn×n +Mn×n (IN −Mn×n)B
T
n×h

γ[(IN −Mn×n)Qn×n +Mn×n]h −Bn×h γ[(IN −Mn×n)B
T
n×h]h



 ,

we finally get

y = PU (y − α(Wy + p)) (14)

6

After the above analysis, we get the time-varying neural network model to

solve(1)


















dy
dt

= −κy(t) + (κ− 1)PU (y(t− τ(t)) − α(Wy(t− τ(t)) + p)

+PU (y(t)− α(Wy(t) + p))

y(t) = ϕ(t), t ∈ [−τ, 0]

(15)

Where κ > 0 is a scale parameter, PU : Rn+h → U is the projection operator

in the sense of Hilbert space, defined by PU (s) = argmin
z∈U

‖ s− z ‖, ∀y ∈ Rn+h ,

where ‖‖ represents the Euclidean norm, τ > 0 denotes the transmission delay.

αp is the network input item, y as the network output item, I−αW is connected

to weight. If we use Ωℵ to represent the set of equilibrium points of (15) and

Ω∗ to represent the set of optimal solutions of (1). Then we will get that if

x∗ ∈ Ωℵ, then there is a v∗ such that y∗ = (x∗T , v∗T)T satisfies the projection

equation (14), which means that x∗ ∈ Ω∗. So we have Ωℵ = Ω∗.

We Give the following lemma and definitions in preparation for the following

discussion.

Lemma 1. [23] If there is a solution y(t) for (15) that satisfies the initial con-

dition y(t) = ϕ(t), ∀ϕ(t) ∈ C([−τ, 0], Rn)t ∈ [−τ, 0], and the solution y(t) is

bounded on [0, T], then the existence interval of y(t) is [0,∞].

Definition 1. [26] If ∃ρ > 0, η > 0 such that the following inequality holds

‖y(t)− y∗‖ ≤ ρ‖ϕ− y∗‖e−ηt, ∀t ≥ 0

,

where ‖ϕ− y∗‖ = sup
−τ≤t≤0

[(ϕ(t) − y∗)T (ϕ(t) − y∗)]
1

2 , then the equilibrium point

y∗ of the time-varying Delay Neural Network defined by (15) is globally expo-

nentially stable.

3. Existence and uniqueness

Theorem 1. For ∀ϕ ∈ C([−τ(t), 0], Rn+p), the solution of the neural network

(15) exists and is unique, t ∈ [0,+∞].

7

Proof: Let

Y (y(t)) = −κy(t) + (κ− 1)PU (y(t− τ(t))− α(Wy(t− τ(t)) + p) + PU (y(t)

−α(Wy(t) + p))
,

thus dy
dt

= Y (y(t)).

If y∗ is used to represent the equilibrium point of the time-varying delay neural

network (15), then we can get that

‖Y (y(t))‖ = ‖Y (y(t))− Y (y∗)‖

≤ κ‖y(t)− y∗‖+ (κ− 1)‖PU (y(t− τ(t)) − α(Wy(t− τ(t)) + p)

−PU (y
∗ − α(Wy∗ + p)))‖+ ‖PU (y(t)− α(Wy(t) + p)

−PU (y
∗ − α(Wy∗ + p)))‖

≤ κ‖y(t)− y∗‖+ (κ− 1)(‖y(t− τ(t)) − y∗‖ − ‖αW‖‖y(t)− y∗‖)

+(‖y(t)− y∗‖ − ‖αW‖‖y(t)− y∗‖)

≤ κ(2 + ‖αW‖)y∗ + (κ+ (1 + ‖αW‖))y(t)

+(κ− 1)(1 + ‖αW‖)y(t− τ(t))

Let β1 = κ(2 + ‖αW‖), β2 = κ+ (1 + ‖αW‖), β2 = (κ− 1)(1 + ‖αW‖), since

y(x) =







y(0) +
∫ t

0
Y (y(s))ds, t ∈ [0, T]

ϕ(t), t ∈ [−τ, 0]
,

it can be concluded that

‖y(t)‖ ≤ ‖ϕ(t)‖+
∫ t

0 ‖Y (y(s))‖ds

≤ ‖ϕ(t)‖+
∫ t

0
β1‖y

∗‖+ β2‖y(s)‖+ β3‖y(s− τ(s)‖ds

≤ ‖ϕ(t)‖+ β1‖y
∗‖T + β2

∫ t

0 ‖y(s)‖ds+ β3

∫ t−τ(s)

−τ(s) ‖y(s)‖ds

≤ (1 + β3τ)‖ϕ(t)‖ + β1‖y
∗‖T + (β2 + β3)

∫ t

0 ‖y(s)‖ds

From Bellman’s inequality, we have

‖y(t)‖ ≤ [(1 + β3τ)‖ϕ(t)‖ + β1‖y
∗‖T]e(β2+β3)t, t ∈ [0, T].

That is, the boundedness of ‖y(t)‖ on [0, T] has been proved. By Lemma 1, ∃y(t)

for (14) on [0,∞]. A discussion on the uniqueness of y(t) is given below. Suppose

the solution is not unique, then there is a solution with y(t), ˜y(t), (y(t) 6= ˜y(t))

being (15). Express the solutions of y(t), ˜y(t) through the variation-of-constants

8

formula

y(t) = e−κty(0) + (κ− 1)
∫ t

0 e−κ(t−s)PU (y(s− τ(s)) − α(Wy(s− τ(s)) + p))ds

+
∫ t

0
e−κ(t−s)PU (y(s)− α(Wy(s) + p))ds

(16)

˜y(t) = e−κty(0) + (κ− 1)
∫ t

0
e−κ(t−s)PU (˜y(s− τ(s)) − α(W ˜y(s− τ(s)) + p))ds

+
∫ t

0 e
−κ(t−s)PU (˜y(s)− α(W ˜y(s) + p))ds

(17)

Subtract (16) and (17), we have

sup
t

‖y(t)− ˜y(t)‖ ≤ sup
t

‖(κ− 1)
∫ t

0
e−κ(t−s)PU (y(s− τ(s)) − ˜y(s− τ(s))

−αW (y(s− τ(s)) − ˜y(s− τ(s))))ds‖

≤ sup
t

|κ− 1|
∫ t

0
e−κ(t−s)‖I − αW‖‖y(s− τ(s))− ˜y(s− τ(s))‖ds

+sup
t

∫ t

0
e−κ(t−s)‖I − αW‖‖y(s)− ˜y(s)‖ds

≤ |κ− 1|‖I − αW‖ sup
t

‖y(t− τ(t)) − ˜y(t− τ(t))‖
∫ t

0
e−κ(t−s)ds

+‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0
e−κ(t−s)ds

≤ |κ− 1|‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0 e
−κ(t−s)ds

+‖I − αW‖ sup
t

‖y(t)− ˜y(t)‖
∫ t

0 e
−κ(t−s)ds

≤ |κ−1|+1
κ

‖I − αW‖ sup
t
(1− e−κt)‖y(t)− ˜y(t)‖

which implies that

(1−
|κ− 1|+ 1

κ
‖I − αW‖ sup

t
(1− e−κt)) sup

t
‖y(t)− ˜y(t)‖ ≤ 0. (18)

Yet

1−
|κ− 1|+ 1

κ
‖I − αW‖ sup

t
(1 − e−κt) > 0. (19)

According to (18) and (19), we have

sup
t

‖y(t)− ˜y(t)‖ ≤ 0.

Therefore, y(t) = ˜y(t), this contradicts the above assumption. That is to say,

the (15) has a unique solution.

9

4. Global exponetial stability

Theorem 2. When condition (|κ−1|+1)‖I−αW‖−κ < 0, the equilibrium point

y∗ of neural networks with time-varying delays has global exponential stability.

Proof: Since y∗ is the equilibrium point of (15), the following equation can be

obtained

d(y(t)−y∗)
dt

= −κ(y(t)− y∗) + (κ− 1)PU ((y(t− τ(t)) − y∗)

−α(W (y(t− τ(t)) − y∗) + p))

+PU ((y(t)− y∗)− α(W (y(t) − y∗) + p))

From the above formula, y(t)−y∗ can be expressed as the following form through

the variation-of-constants

y(t)− y∗ = e−κt(ϕ− y∗) + (κ− 1)
∫ t

0
PU ((y(s− τ(s)) − y∗)

−α(W (y(s− τ(s)) − y∗) + p))e−κ(t−s)ds

+
∫ t

0
PU ((y(s)− y∗)− α(W (y(s) − y∗) + p))e−κ(t−s)ds

then

‖y(t)− y∗‖ ≤ e−κt‖ϕ− y∗‖+ |κ− 1|
∫ t

0 ‖(y(s− τ(s)) − y∗)

−α(W (y(s− τ(s)) − y∗) + p)‖e−κ(t−s)ds

+
∫ t

0 ‖(y(s)− y∗)− α(W (y(s)− y∗) + p)‖e−κ(t−s)ds

= e−κt‖ϕ− y∗‖+ |κ− 1|
∫ t

−τ(s)
‖(I − αW)(y(s) − y∗)− αp‖

e−κ(t−s−τ(s))ds+
∫ t

0 ‖(I − αW)(y(s)− y∗)− αp‖e−κ(t−s)ds

≤ e−κt‖ϕ− y∗‖+ |κ−1|
κ

(‖I − αW‖‖ϕ− y∗‖e−κt)− |κ−1|
κ

αpe−κt

+(|κ− 1|+ 1)
∫ t

0
‖(I − αW)(y(s)− y∗)− αp‖e−κ(t−s)ds

= e−κt((κ+|κ−1|‖I−αW)‖ϕ−y∗‖+|κ−1|αp
κ

)

+(|κ− 1|+ 1)
∫ t

0
‖(I − αW)(y(s)− y∗)− αp‖e−κ(t−s)ds

As in the following inequality, eκt is moved to the left-hand side of the inequality

‖y(t)− y∗‖eκt ≤ (κ+|κ−1|‖I−αW)‖ϕ−y∗‖+|κ−1|αp
κ

+(|κ− 1|+ 1)
∫ t

0 ‖(I − αW)(y(s)− y∗)− αp‖eκsds

≤ (κ+|κ−1|‖I−αW)‖ϕ−y∗‖+|κ−1|αp
κ

e(|κ−1|+1)‖I−αW)‖t

10

That is

‖y(t)− y∗‖ ≤ (κ+|κ−1|‖I−αW)‖ϕ−y∗‖+|κ−1|αp
κ

e[(|κ−1|+1)‖I−αW)‖−κ]t

So we can obtained that if (|κ − 1| + 1)‖I − αW)‖ − κ < 0, the time-varying

delay neural network defined by (15) is globally exponentially stable.

5. Simulation results

Example 1. Consider the following quadratic programming

min f(x) = 0.36x2
1 + 0.3x2

2 + 0.2x2
3 − x1 + 0.6x2 + 0.5x3

Subject to



















x1 − x2 + x3 = 6

0.5x1 − 0.7x2 + 0.2x3 ≤ 5

1
4x1 +

2
5x2 −

3
5x3 ≤ 7

Let Q =











0.72 0 0

0 0.6 0

0 0 0.4











, c =











−1

0.6

0.5











, A =
(

1 −1 1
)

,b = 6, B =





0.5 −0.7 0.2

1
4

2
5

3
5



, d =





5

7



. The eigenvalues of Q can be calculated as

λ1 = 0.4000, λ2 = 0.6000, λ3 = 0.7200. The optimal solution for this example

can be calculated to be x∗ =
(

0.4000 0.6000 0.7200
)T

. Next we choose

u = 0.003, α = 0.45, γ = 1, κ = 2, and calculated the

M =











0.3333 −0.3333 0.3333

−0.3333 0.3333 −0.3333

0.3333 −0.3333 0.3333











, N =











0.3333

−0.3333

0.3333











,

W =























0.8133 −0.1333 0.2000 0.0333 0.5556

−0.0933 0.7333 −0.2000 −0.2333 0.1778

0.0933 −0.1333 0.6000 0.2667 −0.3778

0.3133 1.1667 0.4000 −0.4667 0.3556

0.4800 0.0667 1.2000 −0.4667 0.3556























, (|κ− 1|+ 1)‖I − αW)‖ − α < 0, through Theorem 4.1, we can know that the

equilibrium point of the time-delay neural network (15) is globally exponentially

11

0 5 10 15 20 25 30

t

-3

-2

-1

0

1

2

3

ou
tp

ut
 tr

aj
ec

to
rie

s
of

 n
eu

ra
l n

et
w

or
k

x1=2.6042

x2=-2.4583

x3=0.9375

Figure 1: The state trajectory of the time-delay neural network corresponding to Example 1

stable. We obtain the state trajectory of the time-delay neural network (15)

corresponding to Example 1 through Matlab2016a. The trajectory corresponds

to 10 sets of random initial functions, and τ = 0.365. From Figure11, we can see

that the state trajectory of the neural network globally converges to the optimal

solution of the quadratic programming in Example 1.

Example 2. Consider the following quadratic programming

min f(x) = 0.7x2
1 + 0.6x2

2 + 0.25x2
3 + 2x2

4 + 0.35x1x2 + 0.45x1x3 + 0.25x2x3

+ 1
9x2x4 + 0.36x1 + 0.79x2 − 9x3 − 8x4

Subject to



















x1 + 0.5x2 − x3 − 0.95x4 = 4

x1 + 0.2x2 − 0.3x3 + 0.6x4 ≤ 4.5

−0.6x1 + x2 + 0.13x3 − 0.3x4 ≤ 3.5

12

Let

Q =

















1.4 0.35 0.45 0

0.35 1.2 0.25 1
9

0.45 0.25 0.5 0

0 1
9 0 4

















, c =

















0.36

0.79

−9

−8

















, B =





1 0.2 −0.3 0.6

−0.6 1 0.13 −0.3



 ,

A =
(

1 0.5 −1 −0.95
)

, b = 4, d =





4.5

3.5





. The eigenvalues of Q can be calculated as λ1 = 0.3012, λ2 = 0.9396, λ3 =

1.8547, λ4 = 4.0045. The optimal solution for this example can be calculated to

be x∗ =
(

2.6080 1.8757 −0.5792 0.1317
)T

. Next we choose u = 0.001,

α = 0.75, γ = 1, κ = 2, and calculated the

M =

















0.3172 0.1586 −0.3172 −0.3013

0.1586 0.0793 −0.1586 −0.1507

−0.3172 −0.1586 0.3172 0.3013

−0.3013 −0.1507 0.3013 0.2863

















,W =

















0.3172

0.1586

−0.3172

−0.3013

















,

W =





























1.3603 0.3200 0.1090 0.8864 0.7367 −0.6174

0.3302 1.1850 0.0795 0.5543 0.0684 0.9913

0.4897 0.2800 0.8410 −0.8864 −0.0376 0.1474

0.0377 0.1396 0.3239 3.1579 0.8501 −0.2834

1.2178 1.7246 1.6534 3.1122 1.6185 0.2379

2.2178 0.9246 1.2234 4.0122 1.6185 0.2379





























,

(|κ−1|+1)‖I−αW)‖−α < 0, through the Theorem 4.1, we would know that the

equilibrium point of the time-delay neural network (15) is globally exponentially

stable. We obtain the state trajectory of the time-delay neural network (15)

corresponding to Example 2 through Matlab2016a. The trajectory corresponds

to 20 sets of random initial functions, and τ = 0.03. From the Figure22, we

can see that the state trajectory of the neural network globally converges to the

optimal solution of the quadratic programming in Example 2.

13

0 1 2 3 4 5 6 7 8

t

-2

-1

0

1

2

3

4

ou
tp

ut
 tr

aj
ec

to
rie

s
of

 n
eu

ra
l n

et
w

or
k

x1=2.6080

x2=1.8758

x3= -0.5792

x4=0.1317

Figure 2: The state trajectory of the time-delay neural network corresponding to Example 2

14

6. Conclusion

This paper proposes a class of neural network models with variable time

delays to solve convex optimization problems. Compared with constant time

delays, the discussion of variable time delay has better practical value. The

equilibrium point of the neural network corresponds to the optimal solution of

the convex optimization problem. Therefore, it is meaningful to use the neu-

ral network with n + h neurons to solve the optimization problem in practice.

For the proposed neural network, it is proved that the equilibrium point of the

neural network exists and is unique, we discussed that it is globally exponen-

tially stable under certain conditions. Some examples are given to illustrate the

practicability of the network.

References

References

references

[1] Arvind Kumar Jain,S.C. Srivastava. Strategic Bidding and Risk Assessment

Using Genetic Algorithm in Electricity Markets[J]. International Journal of

Emerging Electric Power Systems,2011,10(5).

[2] Ertunga C. Özelkan,Ágnes Galambosi,Emmanuel Fernández-

Gaucherand,Lucien Duckstein. Linear quadratic dynamic program-

ming for water reservoir management[J]. Applied Mathematical Mod-

elling,1997,21(9).

[3] Ciapessoni E.,Cirio D.,Massucco S.,Pitto A.. A Probabilistic Risk Assess-

ment and Control methodology for HVAC electrical grids connected to

multiterminal HVDC networks[J]. IFAC Proceedings Volumes,2011,44(1).

[4] Volkan Kumtepeli,Yulong Zhao,Maik Naumann,Anshuman Tripathi,Youyi

Wang,Andreas Jossen,Holger Hesse. Design and analysis of an aging-aware

energy management system for islanded grids using mixed-integer quadratic

programming[J]. International Journal of Energy Research,2019,43(9).

15

[5] Zheng Lv,Zhiping Qiu,Qi Li. An Interval Reduced Basis Approach

and its Integrated Framework for Acoustic Response Analysis of Cou-

pled Structural-Acoustic System[J]. Journal of Computational Acous-

tics,2017,25(3).

[6] Roberto Castan̈eda Lozano,Christian Schulte. Survey on Combinatorial

Register Allocation and Instruction Scheduling[J]. ACM Computing Sur-

veys (CSUR),2019,52(3).

[7] Reza Bakhshi-CJafarabadi,Javad Sadeh,Adel Soheili. Global optimum eco-

nomic designing of grid-connected photovoltaic systems with multiple in-

verters using binary linear programming[J]. Solar Energy,2019,183.

[8] Cheng-Shion Shieh. Robust Output-Feedback Control for Linear Continu-

ous Uncertain State Delayed Systems with Unknown Time Delay[J]. Cir-

cuits, Systems amp,Signal Processing,2002,21(3).

[9]]Jun Xiao,You Situ,Weideng Yuan,XinyangWang,Yi-Zhang Jiang. Parame-

ter Identification Method Based on Mixed-Integer Quadratic Programming

and Edge Computing in Power Internet of Things[J]. Mathematical Prob-

lems in Engineering,2020,2020.

[10] Zhigang Ren,Shan Guo,Zhipeng Li,Zongze Wu. Adjoint-based parameter

and state estimation in 1-D magnetohydrodynamic (MHD) flow system[J].

Journal of Industrial amp; Management Optimization,2018,14(4).

[11] Kumru Didem Atalay,Ergün Eraslan,M. Oya ?inar. A hybrid algorithm

based on fuzzy linear regression analysis by quadratic programming for time

estimation: An experimental study in manufacturing industry[J]. Journal

of Manufacturing Systems,2015,36.

[12] Huake Wang,Guisheng Liao,Jingwei Xu,Shengqi Zhu. Space-time matched

filter design for interference suppression in coherent frequency diverse ar-

ray[J]. IET Signal Processing,2020,14(3).

16

[13] D. Tank. J. Hopfield. Simple ’neural’ optimization networks: An A/D con-

verter, signal decision circuit, and a linear programming circuit,” in IEEE

Transactions on Circuits and Systems. 1986.

[14] M. P. Kennedy. L. O. Chua. Neural networks for nonlinear programming.

1988.

[15] S. Zhang. A.G. Constantinides, Lagrange Programming Neural Networks.

1988.

[16] Y. Huang. Lagrange-type neural networks for nonlinear programming prob-

lems with inequality constraints. IEEE Conference on Decision and Control,

2005. 4129-4133

[17] Chen. Kz. Leung. Y. Leung. K. et al. A Neural Network for Solving Non-

linear Programming Problems. 11, 103-111 (2002).

[18] Youshen Xia,Gang Feng,Jun Wang. A recurrent neural network with ex-

ponential convergence for solving convex quadratic program and related

linear piecewise equations[J]. Neural Networks,2004,17(7).

[19] Liu Qingshan,Cao Jinde,Xia Youshen. A delayed neural network for solving

linear projection equations and its analysis.[J]. IEEE transactions on neural

networks,2005,16(4).

[20] Yang Yongqing,Cao Jinde. Solving quadratic programming problems by

delayed projection neural network.[J]. IEEE transactions on neural net-

works,2006,17(6).

[21] Alireza Nazemi. A neural network model for solving convex quadratic pro-

gramming problems with some applications[J]. Engineering Applications of

Artificial Intelligence,2014,32.

[22] Sha Chunlin,Zhao Hongyong,Ren Fengli. A new delayed projection neural

network for solving quadratic programming problems with equality and

inequality constraints[J]. Neurocomputing,2015,168.

17

[23] Hale J K, Lunel S M V. Introduction to functional differential equations[M].

Springer Science Business Media, 2013.

[24] Yang Y, Cao J. A feedback neural network for solving convex constraint

optimization problems[J]. Applied Mathematics and Computation, 2008,

201(1-2): 340-350.

[25] Wen X, Qin S, Feng J, et al. A Delayed Neural Network for Solving a

Class of Constrained Pseudoconvex Optimizations[C]//2019 9th Interna-

tional Conference on Information Science and Technology (ICIST). IEEE,

2019: 29-35.

[26] Niu J, Liu D. A new delayed projection neural network for solving quadratic

programming problems subject to linear constraints[J]. Applied Mathemat-

ics and Computation, 2012, 219(6): 3139-3146.

[27] Liu Q, Cao J. Globally projected dynamical system and its applications[J].

Neural Inf. Process.-Lett. Rev, 2005, 7(1): 1-9.

[28] Chen Y H, Fang S C. Neurocomputing with time delay analysis for solving

convex quadratic programming problems[J]. IEEE Transactions on Neural

Networks, 2000, 11(1): 230-240.

[29] Xue X, Bian W. A project neural network for solving degenerate convex

quadratic program[J]. Neurocomputing, 2007, 70(13-15): 2449-2459.

[30] Liu J, Liu X, Xie W C. Global convergence of neural networks with mixed

time-varying delays and discontinuous neuron activations[J]. Information

Sciences, 2012, 183(1): 92-105.

[31] Xuejun Zou,Dawei Gong,Liping Wang,Zhenyu Chen. A novel method to

solve inverse variational inequality problems based on neural networks[J].

Neurocomputing,2016,173.

[32] Xinjian Huang,Xuyang Lou,Baotong Cui. A novel neural network for solv-

ing convex quadratic programming problems subject to equality and in-

equality constraints[J]. Neurocomputing,2016,214.

18

[33] Sha C, Zhao H. A novel neurodynamic reaction-diffusion model for solv-

ing linear variational inequality problems and its application[J]. Applied

Mathematics and Computation, 2019, 346: 57-75.

[34] Chunlin Sha,Hongyong Zhao. A novel neurodynamic reaction-diffusion

model for solving linear variational inequality problems and its applica-

tion[J]. Applied Mathematics and Computation,2019,346.

[35] Chunlin Sha,Hongyong Zhao,Tingwen Huang,Wen Hu. A Projection Neu-

ral Network with Time Delays for Solving Linear Variational Inequality

Problems and Its Applications[J]. Circuits, Systems, and Signal Process-

ing,2016,35(8).

[36] Alireza Nazemi. A Capable Neural Network Framework for Solving De-

generate Quadratic Optimization Problems with an Application in Image

Fusion[J]. Neural Processing Letters,2018,47(1).

[37] Alireza Nazemi. A new collaborate neuro-dynamic framework for solving

convex second order cone programming problems with an application in

multi-fingered robotic hands[J]. Applied Intelligence,2019,49(10).

[38] Nazemi Alireza,Mortezaee Marziyeh. A Novel Collaborate Neural Dynamic

System Model for Solving a Class of Min-Max Optimization Problems

with an Application in Portfolio Management[J]. The Computer Jour-

nal,2019,62(7).

[39] 2011.Liu Q, Cao J. Global exponential stability of discrete-time recurrent

neural network for solving quadratic programming problems subject to lin-

ear constraints[J]. Neurocomputing, 2011, 74(17): 3494-3501.

19

	1 Introdution
	2 Establishment of neural network model
	3 Existence and uniqueness
	4 Global exponetial stability
	5 Simulation results
	6 Conclusion

