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Abstract. For N ∈ N≥2 and α ∈ R such that 0 < α ≤
√
N − 1, we define Iα := [α, α+ 1] and

I−α := [α, α+ 1) and investigate the continued fraction map Tα : Iα → I−α , which is defined as

Tα(x) := N/x − d(x), where d : Iα → N is defined by d(x) := bN/x− αc. For N ∈ N≥7, for
certain values of α, open intervals (a, b) ⊂ Iα exist such that for almost every x ∈ Iα there is

an n0 ∈ N for which Tnα (x) /∈ (a, b) for all n ≥ n0. These gaps (a, b) are investigated in the

square Υα := Iα× I−α , where the orbits Tkα(x), k = 0, 1, 2, . . . of numbers x ∈ Iα are represented

as cobwebs. The squares Υα are the union of fundamental regions, which are related to the
cylinder sets of the map Tα, according to the finitely many values of d in Tα. In this paper some

clear conditions are found under which Iα is gapless. When Iα consists of at least five cylinder

sets, it is always gapless. In the case of four cylinder sets there are usually no gaps, except for
the rare cases that there is one, very wide gap. Gaplessness in the case of two or three cylinder

sets depends on the position of the endpoints of Iα with regard to the fixed points of Iα under

T .

1. Introduction

In 2008, Edward Burger and his co-authors introduced in [2] new continued fraction expansions,
the so-called N -expansions, which are nice variations of the regular continued fraction (RCF)
expansion. These N -expansions have been studied in various papers since; see [1], [3] and [4]. In
[5], a subclass of these N -expansions is introduced, for which the digit set is always finite. These
particular N -expanions are defined as follows:

For N ∈ N≥2 and α ∈ R such that 0 < α ≤
√
N − 1, let Iα := [α, α + 1] and I−α := [α, α + 1).

Hereafter we denote by N≥k the set of positive integers n ≥ k. We define the N -expansion map
Tα : Iα → I−α (or Iα) as

(1) Tα(x) :=
N

x
− d(x),

where d : Iα → N is defined by

d(x) :=

⌊
N

x
− α

⌋
, if either x ∈ (α, α+ 1] or both x = α and N/α− α 6∈ Z

and

d(α) =

⌊
N

α
− α

⌋
− 1, if N/α− α ∈ Z.

Note that if N/α− α ∈ Z, we have that Tα(α) = α+ 1. This is the only case in which the range
of Tα is Iα and not I−α .

For a fixed α ∈ (0,
√
N − 1] and x ∈ Iα we define for n ∈ N

dn = dn(x) := d(Tn−1α (x)).

Note that for α ∈ (0,
√
N − 1] fixed, there are only finitely many possibilities for each dn.
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Applying (1), we obtain for every x ∈ Iα a continued fraction expansion of the form

(2) x = T 0
α(x) =

N

d1 + Tα(x)
=

N

d1 +
N

d2 + T 2
α(x)

= · · · =
N

d1 +
N

d2 +
N

d3 +
.. .

,

which we will throughout this paper write as x = [d1, d2, d3, . . .]N,α (note that this expansion is
infinite for every x ∈ Iα, since 0 6∈ Iα); we will call the numbers di, i ∈ N, the partial quotients
or digits of this N -continued fraction expansion of x; see [3, 5], where these continued fractions
(also with a finite set of digits) were introduced and elementary properties were studied (such as
the convergence in reference [3]).

In each cylinder set ∆i := {x ∈ Iα; d(x) = i} of rank 1, with dmin ≤ i ≤ dmax, where dmax := d(α)
is the largest partial quotient, and dmin := d(α+ 1) the smallest one given N and α, the map Tα
obviously has one fixed point fi . As of now we will write simply ‘cylinder set’ for ‘cylinder set of
rank 1’.

It is easy to see that1

(3) fi = fi(N) :=

√
4N + i2 − i

2
, for dmin ≤ i ≤ dmax.

Note that N/α − α ∈ Z if and only if for some d ∈ N≤2 we have that d + 1 = max di for any
α0 < α, i.e. ∆d+1 6= ∅ and α = fd+1.

Given N ∈ N≥2, we let αmax =
√
N − 1 be the largest value of α we consider. The reason for this

is that for larger values of α we would have 0 as a partial quotient as well. Since T ′α(x) = −N/x2
and because 0 < α ≤

√
N−1, we have |T ′α(x)| > 1 on I−α . From this it follows that the fixed points

act as repellers and that the maps Tα are expanding when 0 < α ≤
√
N − 1. This is equivalent to

the convergence of the N -expansion of all x ∈ Iα.

Each pair of consecutive cylinders sets (∆i,∆i−1) is divided by a discontinuity point pi(N,α) of
Tα, satisfying N/pi − i = α, so pi = N/(α+ i). A cylinder set ∆i is called full if Tα(∆i) = I−α (or
Iα). When a cylinder set is not full, it contains either α (in which case Tα(α) < α+ 1) or α+ 1 (in
which case Tα(α+ 1) > α), and is called incomplete. On account of our definition of Tα, cylinder
sets will always be an interval, never consist of one single point.

The main object of this paper is the sequence Tnα (x), n = 0, 1, 2, . . ., for x ∈ Iα, which is called the
orbit of x under Tα. More specifically, we are interested in subsets of Iα that we will call gaps for
such orbits. Before we will give a proper definition of ‘gap’, we will give an example of orbits of
points in Iα for a pair {N,α}. Note that, due to the repellence of the fixed points, orbits cannot
remain in one cylinder set indefinitely when x ∈ Iα is not a fixed point of Tα, so any orbit will
show an infinite migration between cylinder sets. A naive approach is to compute the orbits of
many points of Iα and obtain a plot of the asymptotic behaviour of these orbits by omitting the
first, say hundred, iterations. Figure 1 shows such a plot for N = 51 and α = 6. It appears that
there are parts of Iα (illustrated by dashed line segments) that are not visited by any orbit after
many iterations of Tα.

∆1∆2

α α+ 1p2 f1f2r2 r1 `1 `2

Figure 1. N = 51, α = 6

1For reasons of legibility we will usually omit suffices such as ‘(N)’, ‘(N,α)’ or ‘(N, d)’.
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In fact, setting `i = T iα(α) and ri = T iα(α+ 1), the orbit of any point – apart from the fixed points
f1 and f2 – after once having left the interval (r2, r1) ⊂ ∆2 or (`1, `2) ⊂ ∆1 of Figure 1, will never
return to it.

In order to get a better understanding of the orbits of N -expansions, it is useful to consider the
graphs of Tα, which are drawn in the square ΥN,α := Iα×I−α . This square is divided in rectangular
sets of points �i := {(x, y) ∈ Υα : d(x) = i}, which are the two-dimensional fundamental regions
associated with the one-dimensional cylinder sets we already use. We will call these regions
shortly cylinders. Now consider (x, Tα(x)) ∈ ΥN,α. Then (x, Tα(x)) goes to (Tα(x), T 2

α(x)) under
Tα. Regarding this, Tα has one fixed point Fi := (fi, fi) in each �i. We will denote the dividing
line between �i and �i−1 by li, which is the set {pi} × [α, α+ 1), with pi the discontinuity point
between ∆i and ∆i−1. In case Tα(∆i) = I−α , we will call the cylinder �i full and the branch of the
graph of Tα in �i complete; if a cylinder is not full, we will call it and its associated branch of Tα
incomplete. We will call the collection of Υα and its associated branches, fixed points and dividing
lines an arrangement of Υα. When Υα is a union of full cylinders, we will call the associated
arrangement also full.

Figure 2 is an example of such an arrangement, in which a part of the cobweb is drawn associated
with the orbit we investigated previously. The discontinuity point p2 = 51/8 is now visible as a
dividing line between ∆1 and ∆2.

F1

F2

�2 �1

6 7

7

51
8

x

Figure 2. N = 51, α = 6, x = 6.5

In [3] and [5] the arrangement for N = 4 and α = 1 is studied, consisting of two full cylinders
�1 and �2 and not showing any gaps. On the other hand, the demonstration of the interval
(5/2, 13/5) being a gap of the interval [2, 3] in the case (N,α) = (9, 2) in [5] is done without
referring to such an arrangement. In this paper, and even more so in the next paper, we will show
that arrangements may considerably support the insight in the occurrence of gaps.

We will now give a formal definition of gaps, which is slightly delicate, since Tα(Iα) = I−α (or Iα
when N/α− α ∈ Z).

Definition 1. A maximal open interval (a, b) ⊂ Iα is called a gap of Iα if for almost every x ∈ Iα
there is an n0 ∈ N for which Tnα (x) /∈ (a, b) for all n ≥ n0.

Remark 1. In the example of Figure 1 the intervals (r2, r1) and (`1, `2) are gaps and for x ∈
(r2, r1) ∪ (`1, `2) \ {f1, f2} there exists an n0 = n0(x) such that Tnα (x) 6∈ (r2, r1) ∪ (`1, `2) for
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n ∈ N≥2. The ‘for almost’2 formulation in the definition of ‘gap’ is necessary so as to exclude fixed
points and pre-images of fixed points, i.e. points that are mapped under Tα to a fixed point, which
may never leave an gap. In Section 5 we even find a class of gaps (a, b) such that for uncountably
many x ∈ Iα and all n ∈ N ∪ {0} we have Tnα (x) ∈ (a, b).

Remark 2. When we use the word ‘gap’ in relation to arrangements, we mean the gap of the
associated interval Iα.

In [5] computer simulations were used to get a more general impression of orbits of N -expansions.
For a lot of values of α, plots such as Figure 1 were stacked, for 0 < α ≤ αmax, so as to obtain graphs
such as Figure 3, with the values of α on the vertical axis and at each height the corresponding
interval Iα drawn. In the same paper, similar graphs are given for N = 9, 20, 36 and 100. In
all cases it appears that ‘gaps’ such as in Figure 1 appear for values of α equal to or not much
smaller than αmax. Since the plots in [5] are based on computer simulations, they do not actually
show very small gaps (smaller than pixel size) nor clarify much the connection between the gaps
for each N . Still, the suggestion is strong that for α sufficiently small there are no gaps. It also
seems that for α large enough several disjoint gaps may occur. In Figure 3 we see this for α near
αmax =

√
50− 1.

Figure 3. A simulation of intervals Iα with gaps if existent, for 0 < α ≤
√

50−1
and N = 50

In this paper we will not only investigate conditions for gaplessness, we will also show that simu-
lations such as Figure 3 fail to reveal the existence, for certain N and α, of one extremely large
gap in plots such as Figure 3 below the last visible gap. In a subsequent paper we will go into
another very interesting property of orbits of N -expansions that is hardly revealed by simulations
such as Figure 3: the existence of large numbers of gaps for large N and α close to αmax. But
now we will concentrate on gaplessness.

Remark 3. When no gaps exist with non-empty intersection with a cylinder set, we call the
cylinder set gapless.

In Section 2 we will consider two classes of arrangements that have no gaps: full arrangements
and specific arrangements with more than three cylinders. The gaplessness of the latter class,
involving the proof of Theorem 4, for which some preliminary results will be presented shortly,
is largely given in Section 2, but involve some intricacies for small values of N so as to finish it
at the end of this paper. In Section 3 we will consider arrangements with two cylinders and in
Section 4 we will concentrate on arrangements with three cylinders, but will prove a sufficient
condition for gaplessness that is valid for arrangements with any number of cylinders larger than
2. Finally, in Section 5 we will prove a result on gaps in certain arrangements with four cylinders

2All ‘for all’ statements in this paper are with respect to Lebesgue measure.
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and we will finish the proof of Theorem 4. After that, it is merely a matter of checking that for
N ∈ {2, 3, 4, 5, 6} all arrangements are gapless.

2. Full arrangements and arrangements with more than four cylinders

When Iα consists of full cylinder sets only, we obviously have no gaps. In this situation the mutual
relations between N , α and d(α) show a great coherence, as expressed in the following theorem:

Theorem 1. The interval Iα consists of m full cylinder sets, with m ∈ N≥2, if and only if there
is a positive integer k such that

(4)


α = k,

N = mk(k + 1),

d(α) = (m− 1)(k + 1).

Proof of Theorem 1: Writing d := d(α), the interval Iα is the union of m full cylinder sets if and
only if

(5)

{
N
α − d = α+ 1,
N
α+1 − (d−m+ 1) = α.

Note that the first equation in (5) can be written as

N = α2 + (d+ 1)α,

while the second equation in (5) equals

N = α2 + (d+ 2−m)α+ d+ 1−m.

Subtracting the first of these equations from the last we find

(6) α =
d+ 1−m
m− 1

.

From (5), we have

(7) α =
−(d+ 1) +

√
(d+ 1)2 + 4N

2
,

which yields that α is either a quadratic irrational or a rational number. Since (6) implies that α
is a rational number we find that the integer (d + 1)2 + 4N must be a square, i.e. there exists a
positive integer s such that s2 = (d+ 1)2 + 4N . Note that d is an even integer if and only if s2 is
an odd integer if and only if s is an odd integer. Consequently we find that the numerator of α
in (7) is always even, and (7) yields that α is a positive integer, say k. From the equations in (5)
it follows that not only α = k but also α+ 1 = k + 1 is a divisor of N .

From the definition of Tα in (1) (especially the case N/α− α ∈ Z) we see that

(8) d = d(α) =
N

k
− (k + 1).

On the other hand (6) yields that, since α = k,

d = (m− 1)(k + 1),

and from this and (8) we see that

N

k
− (k + 1) = (m− 1)(k + 1),

i.e. N = mk(k + 1).
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Conversely, let k be a positive integer such that the relations of (4) hold. Then both N/α and
N/(α+1) are positive integers, implying that all cylinder sets are full. Moreover, since d = d(α) =
dmax is given by

d =
N

α
− α− 1 =

mk(k + 1)

k
− k − 1 = (m− 1)(k + 1),

and dmin = d(α+ 1) is given by

d(α+ 1) =

⌊
N

α+ 1
− α

⌋
= mk − k = (m− 1)k,

it follows that there are

dmax − (dmin − 1) = (m− 1)(k + 1)− (m− 1)k + 1 = (m− 1) + 1 = m

full cylinder sets. �

Theorem 1 serves as a starting point for our investigation of orbits of N -expansions. The first
thing we will do is give some preliminary results (in Subsection 2.1) that we need for proving
(in Subsection 2.2) Theorem 3 and Theorem 4 on gaplessness of arrangements with at least five
cylinders.

2.1. Preliminary results. The first thing to pay attention to is the way N and α and d(α),
the value of the largest partial quotient, are interdependent, which is illustrated by the following
lemmas:

Lemma 1. Given N and α, let d := d(α) be the largest possible digit. Then

d ≥ N − 1 if and only if α < 1.

The proof of this lemma is left to the reader.

When α = αmax =
√
N − 1, we have

d(α) =



⌊
2√
2−1 − (

√
2− 1)

⌋
= 4 for N = 2;⌊

3√
3−1 − (

√
3− 1)

⌋
= 3 for N = 3;⌊

4√
4−1 − (

√
4− 1)

⌋
− 1 = 2 for N = 4;⌊

N√
N−1 − (

√
N − 1)

⌋
=
⌊
2 +

√
N+1
N−1

⌋
= 2 for N ∈ N≥5.

(9)

On the other hand we have, for N ∈ N, N ≥ 2 fixed:

lim
α↓0

d(α) = lim
α↓0

⌊
N

α
− α

⌋
=∞.

The following lemma provides for a lower bound for the rate of increase of d(α) compared with
the rate of decrease of α.

Lemma 2. Let N ∈ N≥2 be fixed and d := d(α). Then d is constant for α ∈ [fd+1, fd), and d
increases overall more than twice as fast as α decreases.

Proof of Lemma 2: Starting from αmax, d increases by 1 each time α decreases beyond a fixed
point, i.e. when N/α−α ∈ N. For the difference between two successive fixed points fd−1 and fd
we have

fd−1−fd =

√
4N + (d− 1)2 − (d− 1)

2
−
√

4N + d2 − d
2

=

√
4N + (d− 1)2 −

√
4N + d2 + 1

2
<

1

2
.

This finishes the proof. �

Closely related to the previous lemma is the following one, the proof of which is left to the reader.
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Lemma 3. Let d ∈ N≥2 and N ∈ N≥2 be fixed and let fd(N) be defined by the equation N/fd(N)−
d = fd(N) (so fd(N) is the fixed point of the map x 7→ N/x− d for x ∈ (0, N/d)). Then

fd−1(N + 1)− fd(N + 1) > fd−1(N)− fd(N).

So, for d fixed, the distance between two consecutive fixed points increases when N increases. We
have, in fact, for d fixed:

lim
N→∞

(fd−1(N)− fd(N)) = 1
2 ;

cf. the proof of Lemma 2. For N fixed, on the other hand, we have:

lim
d→∞

fd(N) = 0.

While d(α) is a monotonously non-increasing function of α, the number of cylinder sets is not.
The reason is obvious: starting from α = αmax, the number of cylinder sets changes every time
either α or α+1 decreases beyond the value of a fixed point; in the first case, the number increases
by 1, and in the second case, it decreases by 1. Since T ′α(x) = −N/x2 < 0 and T ′′α (x) = 2N/x3 > 0
on Iα, Tα(x) is decreasing and convex on Iα, implying that a per saldo increase of the number of
cylinder sets. Still, for N and α large enough, it may take a long time of α decreasing from αmax

before the amount of cylinder sets stops alternating between two successive numbers k ∈ N≥2
and k + 1, and starts to alternate between the numbers k + 1 and k + 2. As an example, we
take N = 100. When α decreases from αmax, the interval Iα consists of two cylinder sets until α
decreases beyond f3 and cylinder set ∆3 emerges; then, when α+ 1 decreases beyond f1, cylinder
set ∆1 disappears and so on, until α decreases beyond f8 and ∆9 emerges while ∆6 has not yet
disappeared.

In order to get a grip on counting the number of cylinder sets, the following arithmetic will be
useful: a full cylinder set counts for 1, an incomplete left one counts for N/α− dmax − α, and an
incomplete right one for α+ 1− (N/(α+ 1)− dmin), giving rise to the following definition:

Definition 2. Let N ∈ N≥2 and α ∈ R such that 0 < α ≤
√
N − 1 and Tα the N -continued

fraction map. The branch number3 b(N,α) is defined as

b(N,α) := dmax − dmin − 1 (the number of full cylinder sets save for the outermost ones)

+
N

α
− dmax − α (the length of the image of the leftmost cylinder set)

+ α+ 1−
(

N

α+ 1
− dmin

)
(the length of the image of the rightmost cylinder set),

From this the next lemma follows immediately:

Lemma 4. For N ∈ N≥2 and 0 < α ≤
√
N − 1 we have

b(N,α) =
N

α
− N

α+ 1
=

N

α(α+ 1)
.

It follows that for fixed N the branch number b(N,α) is a strictly decreasing function of α.

Remark 4. Applying Lemma 4, we find

(10) b(N,αmax) =
N

(
√
N − 1)

√
N

= 1 +
1√
N − 1

.

It follows that b(N,α) > 1 for all N ∈ N≥2, so the number of cylinder sets is always at least 2.
On the other hand, from Lemma 4 it follows that the number of cylinder sets increases to infinity
as α decreases from αmax to 0. Actually, we have infinitely many digits only when α = 0. In this
case the corresponding N -expansion is the greedy N -expansion, studied in [1] and [3].

3The word ‘branch’ refers to the part of the graph of Tα on the concerning cylinder set.
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The relation N/(α(α+ 1)) = b yields

(11) α =

√
4N
b + 1− 1

2
,

from which we derive that d(α) = d (or d(α) = d− 1 in case N/α− α ∈ Z), where d is given by

(12) d =

 (b− 1)
√

4N
b + 1 + b+ 1

2

 .
2.2. Gaplessness when the branch number is large enough. So far, we merely discussed the
way Iα is divided in cylinder sets, depending on the values of N,α, d(α) and the branch number
b. In order to present some first results on sufficient conditions for gaplessness, we will zoom in
on some ergodic properties of Tα.

Lemma 5. If µ is an absolutely continuous invariant probability measure for Tα, then there exists
a function h of bounded variation such that

µ(A) =

∫
A

h dλ, λ− a.e., with λ the Lebesgue measure,

i.e. any absolutely continuous invariant probability measure has a version of its density function
of bounded variation.

Proof of Lemma 5: Since inf |T ′α| > 1, applying Theorem 1 from [6] immediately yields the
assertion. �

Theorem 2. Let N ∈ N≥2. Then there is a unique absolutely continuous invariant probability
measure µα such that Tα is ergodic with respect to µα.

Proof4 of Theorem 2: Let µα be a unique absolutely continuous invariant probability measure for
Tα and choose its density function h of bounded variation. Then there exists an open interval
J such that h(x) > 0 for any x ∈ J , since h has at most countably many discontinuity points.
Consider {TnJ : n ≥ 0}. Since inf |T ′| > 1, there exists an n0 such that Tn0(J) includes a
discontinuity point. (If necessary we may choose endpoints of J not in the preimages of disconti-
nuity points of Tα.) We note that for any measurable subset A ⊂ J with µα(A) > 0 equivalently
λ(A) > 0, µ(TnA) > 0 for any n ≥ 1. Now Tn0+1(J) includes two intervals J` and Jr attached to
α and α+1 respectively. For any measurable subset B0 ⊂ J`∪Jr of positive λ-measure, µ(B0) > 0,
since otherwise we have a contradiction; µ(B0) = 0 and µ(T−(n0+1)(B0)) > 0 (since there is a
B1 ⊂ J such that Tn0+1(B1) = B0, µ(B1) > 0). This shows that any two absolutely continuous
invariant probability measures µ1 and µ2 cannot have disjoint supports (i.e. they cannot be sin-
gular to each other), which is equivalent to the uniqueness of the absolutely continuous invariant
probability measure and hence its ergodicity. �

The next result follows directly from Theorem 2:

Corollary 1. If iteration of Tα maps all open subintervals of Iα to the interval I−α , then Iα
contains no gaps.

Proof of Corollary 1: The assumption implies that the absolutely continuous invariant probability
measure µα is equivalent to the Lebesgue measure, which implies that for any measurable subset
A ⊂ Iα, µ(A) = 0 if and only if λ(A) = 0. Suppose that there is a gap J . Since J is an open
interval, we have λ(J) > 0, thus µ(J) > 0. Since µ(Iα) < ∞ implies a.e. x ∈ J , there exists
infinitely many positive integers n such that Tn(x) ∈ J (by the Poincaré recurrence theorem),
which contradicts the assumption that there is a gap. �

4see also page 185, Theorem 1 in [7]
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Before we present the first of two theorems on gaplessness, we note that in the case N = 2, the
condition |T ′α(x)| > 2 for all x ∈ Iα is not satisfied for any α ∈ (0,

√
2− 1].

Theorem 3. Let N ∈ N≥3, and let 0 < α ≤
√
N − 1. Let |T ′α(x)| > 2 for all x ∈ Iα. Then Iα

contains no gaps.

Proof of Theorem 3: The condition implies N/(α+1)2 > 2, yielding α <
√
N/2−1. From Lemma

4 it follows that

b(N,α) >
2
√

2N√
2N − 2

,

which is larger than 2 for all N ∈ N≥3. So Iα consists of at least three cylinder sets. Since
|T ′α(x)| > 2 for all x ∈ Iα, there exists an ε > 0 such that for any open interval J0 that is
contained in a cylinder set of Tα we have

|Tα(J0)| ≥ (2 + ε)|J0|,
where |J | denotes the length (i.e. Lebesgue measure) of an interval J .

If Tα(J0) contains two consecutive discontinuity points pi+1, pi of Tα, then

(pi+1, pi) ⊂ Tα(J0),

and we immediately have that

IOα := (α, α+ 1) = Tα(pi+1, pi) ⊂ T 2
α(J0).

If Tα(J0) contains only one discontinuity point p of Tα, then Tα(J0) is the disjoint union of two
subintervals located in two adjacent cylinder sets:

Tα(J0) = J ′1 ∪ J ′2.
Obviously,

|Tα(J0)| = |J ′1|+ |J ′2|.
Now select the larger of these two intervals J ′1, J ′2, and call this interval J1. Then

|J1| ≥ (1 + ε
2 )|J0|.

In case Tα(J0) does not contain any discontinuity point of Tα, we set J1 = Tα(J0). Induction
yields that there exists an ` ∈ N such that

|J`| ≥
(

1 +
ε

2

)`
|J0| ,

whenever Tα(J`−1) includes no more than one discontinuity point of Tα. But then there must
exist a k ∈ N such that Tα(Jk) contains two (or more) consecutive discontinuity points of Tα, and
we find that T 2

α(Jk) = IOα . Applying Corollary 1, we conclude that there is no gap in Iα. �

The next theorem, which is partly a corollary of the previous one, gives an even more explicit
condition for gaplessness.

Theorem 4. Let Iα consist of five cylinder sets or more. Then Iα has no gaps.

Proof of Theorem 4, part I: Let Iα consist of five cylinder sets or more. Then b(N,α) > 3, implying

α <
1

2

√
4N
3 + 1− 1

2
(cf. (11)), in which case |T ′α(α+ 1)| > 3− 3

√
12N + 9− 9

2N
.

The second inequality yields that for N ∈ N≥18 we have |T ′α(α + 1)| > 2 and, applying Theorem
3, Iα is gapless. Now suppose N ∈ {12, . . . , 17}. Then b(Nα) = 3 involves arrangements with
four cylinders. In each of these cases, the smallest α such that Iα has not yet (i.e. decreasing
from αmax) consisted of five cylinder sets is f7. In all six cases (two of which are illustrated in
Figure 4) we have |T ′α(f7 + 1)| > 2, yielding the gaplessness of Iα for arrangements with five or
more cylinders in case N ∈ {12, . . . , 17}. This finishes the proof of Theorem 4 for N ∈ N≥12. For
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�6 �5 �4 �3

N = 17, α = f7; |T ′(α+ 1)| = 2.0098 · · ·

�6 �5 �4 �3

N = 12, α = f7; |T ′(α+ 1)| = 2.0415 · · ·

Figure 4. Two arrangements illustrating the gaplessness of arrangements with
five cylinders or more on account of Theorem 3

N ∈ {2, . . . , 11} a similar approach does not work. We will use some ideas that we will introduce
and develop in the next sections and will finish the proof of Theorem 4 at the end of Section 5.

In the following we will go into conditions for gaplessness of arrangements consisting of less than
five cylinders. We will start with two cylinders and will use the results for arrangements with
three and four cylinders.

Remark 5. Since b(N,α) is a strictly decreasing function of α (cf. Lemma 4) and b(N,αmax) =

1 + 1/(
√
N − 1), the condition Iα = ∆d ∪∆d−1 is never satisfied in case N ∈ {2, 3}.

3. Gaplessness when Iα consists of two cylinder sets

In general, when the branch number is not much larger than 1 (which is when α is not much
smaller than αmax), the overall expanding power of Tα, determined by T ′α (or |T ′α|, which we will
often use), is not enough to exclude the existence of gaps; we shall elaborate on this in a subsequent
article. However, in the case of two cylinder sets Iα = ∆d ∪∆d−1, there is a very clear condition
under which this power suffices:

Theorem 5. Let Iα = ∆d ∪∆d−1. If Tα(α) ≥ fd−1 and Tα(α+ 1) ≤ fd, then Iα is gapless.

Although the statement of 5 is intuitively clear, for the proof of Theorem 5 we need several results
and lemmas that we will prove first. Then, immediately following Remark 10 on page 15, we will
prove Theorem 5 itself.

Remark 6. If either Tα(α) < fd−1 or Tα(α + 1) > fd, it is easy to see that (Tα(α), T 2
α(α)) or

(T 2
α(α+ 1), Tα(α+ 1)) is a gap, respectively.

Since arrangements under the condition of Theorem 5 play an important role in this section, we
introduce the following notations:

Definition 3. Let N ∈ N≥4 be fixed. For d ∈ N≥2, we define F(d) as the family of all arrange-
ments ΥN,α such that Iα = ∆d ∪∆d−1, Tα(α) ≥ fd−1 and Tα(α+ 1) ≤ fd. We will write F∗(d) in
case α satisfies the equation Tα(α) = fd−1, the root of which we will henceforth denote by α(N, d).

Remark 7. Note that for each N ∈ N≥4 and d ∈ N≥2 we have that α(N, d), if it exists, is the
only value of α such that F∗(d) is not void.
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If the expanding power of Tα is large enough to exclude the existence of gaps for the largest α for
which an arrangement in F(d) exists, there will not be gaps in any arrangement in F(d). We will
now first show how to find these largest α, which takes some effort. When we have finished that,
we will go into the expanding power of |T ′α| in these arrangements with largest α.

For 4 ≤ N ≤ 8, with d = 2, we have Tαmax
(αmax) > f1, while Tαmax

(αmax+1) = αmax < f2. Hence
we see ΥN,αmax

∈ F(2) and F(2) 6= ∅. For N ∈ N≥9 we have Tαmax
(αmax) < f1. When d = 2 we

can find α such that ΥN,α in F∗(2) for each 9 ≤ N ≤ 17; see Figure 5, where ten arrangements in
various F(d) are drawn. Underneath each arrangement we have mentioned an approximation of
σ(α) := |T ′α(α+1)|, which we will later return to. This σ is important, because it is the expanding
power on the rightmost cylinder set that may be too weak to exclude gaps.

When d = 2 and N ∈ N≥18, the condition Tα(α) = fd−1 yields Tα(α + 1) > fd, and d has to
increase by 1 so as to find an arrangement in F(3). When d = 3, for 18 ≤ N ≤ 24 we find that
the largest α is fd−2 − 1, in which case Tα(α + 1) = α < fd and Tα(α) > fd−1 (so in this case
the arrangement with the largest α is in F(3) but not in F∗(3)); for 25 ≤ N ≤ 49, the largest
α is such that Tα(α) = f2. When N ∈ N≥50, the family F(3) is empty and d has to increase
further; see Figure 5 once more. In the proof of Lemma 8 this approach (of exhausting F(d) for
successive values of N and going to F(d + 1) for larger values of N) will be formalised into a
proof by induction. Due to (12) such an increase is always possible, no matter how large d and N
become.

�1�2

F1

F2

N = 9, σ ≈ 1.01

�1�2

F1

F2

N = 17, σ ≈ 1.06

�2�3

F2

F3

N = 18, σ ≈ 1.27

�2�3

F2

F3

N = 24, σ ≈ 1.23

�2�3

F2

F3

N = 25, σ ≈ 1.22

�2�3

F2

F3

N = 49, σ ≈ 1.20

�3�4

F3

F4

N = 50, σ ≈ 1.33

�3�4

F3

F4

N = 99, σ ≈ 1.26

�4�5

F4

F5

N = 100, σ ≈ 1.36

�4�5

F4

F5

N = 165, σ ≈ 1.29

Figure 5. Arrangements in F(d), d ∈ {2, 3, 4, 5}, where α is maximal

Note that this inductive approach works since for each d only finitely many N exist such that
there are α with ΥN,α ∈ F(d). To see why this claim holds, note that for fixed N and d, the
smallest α for which d = d(α) = dmax is αd, given by

αd = fd+1 =

√
4N + (d+ 1)2 − (d+ 1)

2
;

cf. (3). For this α it is not necessarily so that Iαd
= ∆d ∪ ∆d−1, i.e. that Iαd

consists of two
cylinder sets (e.g. if N = 2 and d = 5, there are five cylinder sets). However, if b(N,αd) ≤ 2 we
know that Iαd

exists of two cylinder sets, the left one of which is full. According to Lemma 4, the
branch number b(N,αd) satisfies

b(N,αd) =
N

fd+1(fd+1 + 1)
=

4N

4N + (d+ 1)2 − 2d
√

4N + (d+ 1)2 + d2 − 1
.
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Keeping d fixed and letting N →∞, we find

lim
N→∞

b(N,αd) = 1.

In view of this and Lemma 3 (and the results mentioned directly thereafter), we choose N suffi-
ciently large, such that for α ≥ αd we have b(N,α) < 5/4 and fd−1 − fd > 1/4.

Now suppose that for such a sufficiently large value of N there exists an α ≥ αd, such that
α ∈ F(d). Then by Definition 2 of branch number and the assumption that α ∈ F(d), we have
that

b(N,α) ≥ 1 + fd−1 − fd > 1 1
4 ,

which is impossible since for N sufficiently large, d fixed and α ≥ αd we have

b(N,α) ≤ b(N,αd) < 1 1
4 .

It follows that for d fixed and N sufficiently large, F(d) is void.

We will prove (in Lemma 8) that when N ∈ N≥25 there exists a minimal d ∈ N≥3 such that the
arrangement in F(d) with α maximal lies in F∗(d). Before we will prove this, we will explain the
relation between d and N for arrangements in F∗(d).

In Figure 5 we see that for N ∈ {49, 99, 165} the arrangements in F∗ are very similar, and that the
arrangement for N = 100 is more similar to these than the arrangement for N = 50. Moreover, the
last three arrangements look hardly curved. This is easy to understand, considering the following
equations, where b(N,α) = b is fixed:

|T ′α(α)| = b(
√

4bN + b2 + 2N + b)

2N
and |T ′α(α)| − |T ′α(α+ 1)| = b

√
4bN + b2

N
.

Since (b
√

4bN + b2)/N is a decreasing function of N , approaching 0 from above as N → ∞, the
second equation implies that for a fixed branch number b the branches become less curved as N
increases; i.e., the curves approach linearity as N → ∞ and b is fixed. Although in F∗(d) the
branch number is not so much fixed as bounded between 1 and 2, we have a similar decrease
of curviness as N increases. The arrangements for N ∈ {49, 99, 165} in Figure 5 suggest that
(assuming Tα(α) = fd−1, i.e. α = α(N, d))) when N →∞ (and d→∞ and α→∞ accordingly),
the difference fd−Tα(α+ 1) tends to 0, yielding a ‘limit graph’ of Tα that consists of two parallel
line segments (the straightened branch curves of Tα); see Figure 6, obtained by translating the
graph over (−α,−α). In this situation we have both a := Tα(α) (mod α) = fd−1 (mod α) and
Tα(α+1) = fd (also (mod α) in Figure 6). Because in the limit both parts of the graph are linear
with the same slope, we also have that (0, a + 1) lies on the prolonged right line segment, from
which we derive that the line segments have slope −1/a. The line with equation y = −x/a+a+ 1
intersects the line y = 1 at (a2, 1) (so the dividing line is x = a2) and intersects the line x = 1 in
(1,−1/a+ a+ 1), yielding the point (−1/a+ a+ 1,−1/a+ a+ 1) on the line through (0, a) with

equation y = −x/a+ a (since Tα(α+ 1) = fd). From this we derive 2a2 = 1, so a =
√

1/2.

From Figure 6 we almost immediately find that the branch number for the limit case is
√

2 and
that the dividing line is at 1/2. We use this heuristic to find a formula describing the relation
between N and d for arrangements in F∗(d) very precisely. Note that for arrangements similar to
the limit graph we have

1 + fd−1 − fd =

√
4N + (d− 1)2 −

√
4N + d2 + 1

2
+ 1 ≈ b(N,α) ≈

√
2,

from which we derive

(13) N ≈ (4 + 3
√

2)(d2 − d) + 2 or d ≈ 1

2

(
1 +

√
(6
√

2− 8)(N − 2) + 1

)
.
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(a, a)

(1,− 1
a + a+ 1)

a

(a2, 1)

0 1

1

Figure 6. The ‘limit graph’ of Tα, translated over (−α,−α), under the con-
ditions Iα = ∆d ∪ ∆d−1 and N/α − d = fd−1 for N → ∞ (and α, d → ∞
accordingly)

If, for d fixed, we determine arrangements in F∗(d) such that the difference fd − Tα(α + 1)
is positive and as small as possible according to our heuristic, the best function seems to be
N = (4 + 3

√
2)(d2 − d), yielding the right N (after rounding off to the nearest integer) for

d ∈ {3, . . . , 500} \ {9, 50, 52, 68, 69, 80, 97, 129, 167, 185, 210, 231, 289, 330, 416, 440, 444, 479, 485},
in all of which cases the rounding off should have been up instead of down. For d = 2 we
find N = d2(4 + 3

√
2)e = 17, for d = 3 we find N = b6(4 + 3

√
2)c = 49, for d = 4 we find

N = d12(4 + 3
√

2)e = 99 and or d = 5 we find N = d20(4 + 3
√

2)e = 165; see Figure 5 once more.

Although we do not know generally when rounding off to the nearest integer yields the right
N , with (13) we can find a very good overall indication of the relation between d and N for
arrangements in F∗(d) by looking at the difference between the image of α(N, d) + 1 and fd; see
Definition 3. With some straightforward calculations we find that

(14) α(N, d) =
N
(√

4N + (d− 1)2 − (d+ 1)
)

2(N − d)
.

Applying (14), we write fd(N)− (N/(α(N, d) + 1)− (d− 1)) as

jd(N) :=
(N2 + dN + d)

√
4N + d2 −N2

√
4N + (d− 1)2 − (N2 − d(d− 4)N − d(d− 2))

2(N2 + dN + d)

and, more generally, define

(15) jd(x) :=
(x2 + dx+ d)

√
4x+ d2 − x2

√
4x+ (d− 1)2 − (x2 − d(d− 4)x− d(d− 2))

2(x2 + dx+ d)

for x ∈ [25,∞).

We note that Iα = ∆d ∪∆d−1 is equivalent to N/(α+ 1)− (d− 1) ≥ α. In case α = α(N, d), we
have

(16)
N

α(N, d) + 1
− (d− 1) =

N2
√

4N + (d− 1)2 −
(
(d− 1)N2 + 2d(d− 2)N + 2d(d− 1)

)
2(N2 + dN + d)

.

Applying (16), for the difference hd(N) := N/(α(N, d) + 1)− (d− 1)− α(N, d) we write

(17) hd(N) :=
2N3 + 4dN2 + (2d3 − 5d2 + 3d)N + 2d2(d− 1)− dN(2N + 1)

√
4N + (d− 1)2

2(N − d)(N2 + dN + d)
,
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and, more generally, define

(18) hd(x) :=
2x3 + 4dx2 + (2d3 − 5d2 + 3d)x+ 2d2(d− 1)− dx(2x+ 1)

√
4x+ (d− 1)2

2(x− d)(x2 + dx+ d)
,

for x ∈ [25,∞).

Now we can prove the lemma that is illustrated by the arrangements for N ∈ {17, 49, 99, 165} in
Figure 5. In order to so, we define for fixed d ∈ N≥2

S(d) := {N ∈ N≥4 : Iα = ∆d ∪∆d−1, Tα(α) = fd−1(N) and Tα(α+ 1) ≤ fd(N)}
and

Md := maxS(d).

Lemma 6. Let d ∈ N≥2. Then Md ∈ {b(4 + 3
√

2)(d2 − d)c, d(4 + 3
√

2)(d2 − d)e}.

Proof of Lemma 6: First we note that for d = 2, we have that d(4+3
√

2)(d2−d)e equals 17, which
corresponds with what we had already calculated and drawn in Figure 5. Now let d ∈ N≥3. First

we have to show that hd(Md) > 0 for Md ∈ {b(4 + 3
√

2)(d2 − d)c, d(4 + 3
√

2)(d2 − d)e}, for this
assures us that Iα = ∆d ∪∆d−1. We will leave this to the reader; it is merely very cumbersome
to show, while technically straightforward5.

The only thing left to do is showing that

(19)

{
jd((4 + 3

√
2)(d2 − d)) > 0;

jd((4 + 3
√

2)(d2 − d) + 1) < 0,

since the first equation implies that jd(b(4 + 3
√

2)(d2 − d)c) > 0, while the second implies that

jd(d(4 + 3
√

2)(d2 − d)e + 1) < 0. The work to be done is as cumbersome and straightforward as
the previous work to be done for this proof and is left to the reader as well. �

Before we will show that for N ∈ N≥25 there are a d ∈ N≥3 and an α such that ΥN,α ∈ F∗(d), we
will prove the following lemma:

Lemma 7. Let d ∈ N≥3. Let N ∈ N≥25 be such that Iα(Md,d) = ∆d∪∆d−1 and Tα(Md,d)(α(Md, d)) =
fd−1 for Md ∈ {N,N + 1}. Then

Tα(N+1,d)(α(N + 1, d) + 1)− α(N + 1, d) > Tα(N,d)(α(N, d) + 1)− α(N, d),

i.e. hd(N + 1) > hd(N).

Proof of Lemma 7: We want to show that hd(N) from (17) is an increasing sequence, and do so
by calculating the derivative of with x ∈ [25,∞), and then showing that h′d(x) > 0 on [25,∞).
Although a little bit intricate, the work is straightforward and is left to the reader. �

Now we can prove the following lemma:

Lemma 8. Let N ∈ {9, . . . , 17, 25, 26, . . .}. Then there are d ∈ N≥2 and α ∈ (0,
√
N − 1) such

that Iα = ∆d ∪∆d−1, Tα(α) = fd−1 and Tα(α+ 1) ≤ fd (i.e. α = α(N, d)).

Proof of Lemma 8: We will use induction on d. For N ∈ {9, . . . , 17, 25, 26, . . . , 99} and d ∈ {2, 3, 4}
we refer to Figure 5 and leave the calculations to the reader. Specifically, we have for 50 ≤ N ≤ 99
that ΥN,α(N,4) ∈ F∗(4). It is easily seen that Υ99,α(99,5) ∈ F∗(5) as well. Due to Lemma 6,
there is an N5 > 99 such that ΥN5,α(N5,5) ∈ F∗(5). Applying Lemma (7), we see that for all
N ∈ {99, . . . , N5} we have ΥN,α(N,5) ∈ F∗(5). For the induction step, let d ∈ N≥5 be such that
there is an α for which ΥNd,α ∈ F∗(d), where Nd is the largest such N possible, cf. Lemma 6. If

5We have throughout this paper frequently used (Wolfram) Mathematica for making intricate calculations, all
of which are nonetheless algebraically basic. In relevant cases we think it will be evident if we did.
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we can show that for this Nd there is an α′ such that ΥNd,α′ ∈ F∗(d + 1), we are finished. This
can be done by showing that

(20) hd+1((4 + 3
√

2)(d2 − d)− 1) > 0,

for this implies hd+1(Nd) > 0, in which case α′ is such that Nd/α
′ − (d + 1) = fd, i.e. α′ =

α(N, d+ 1). Although intricate, the calculations are straightforward and are left to the reader. �

Remark 8. Although Lemma 8 is about N in the first place, our approach is actually based on
increasing d and then determining all N such that arrangements ΥN,α ∈ F∗(d) exist. The proof
of Lemma 8 yields the arrangements with the smallest d (and therefore the largest α) for which
ΥN,α ∈ F∗(d), as illustrated by the last five arrangements of Figure 5.

Example 1. For d = 4 we have Md−1 = b(4+3
√

2)(d2−d)c = 98. Then ΥMd−1,α(Md−1,4) ∈ F∗(4)
and ΥMd,α(Md,4) ∈ F∗(4), while ΥMd+1,α(Md+1,5) ∈ F∗(5); see Figure 5. It follows immediately
from our construction of α(Md + 1, 5) that this is the largest α such that ΥMd+1,α ∈ F(5).

With manual calculations we can quickly calculate the expanding power of Tα in α + 1 for ar-
rangements in F and F∗ and N not too large, say N ∈ N≤49, where the smallest values are found
where α is as large as possible. The next proposition gives a lower bound for |T ′α(α+ 1)| for such
arrangements for most N .

Proposition 1. Let N ∈ {18} ∪ {50, 51, . . .} \ {95, . . . , 99} and α ∈ (0,
√
N − 1] such that Iα =

∆d∪∆d−1 for some d ∈ N, d ∈ N≥2. Furthermore, suppose that Tα(α) ≥ fd−1 and Tα(α+1) ≤ fd.

Then |T ′α(α+ 1)| > 3
√

2 = 1.259921 · · · .

Proof of Proposition 1: Considering Lemma 8, we can confine ourselves to arrangements in F∗
with α as large as possible. For α = α(N, d) (cf. (14)) we can write |T ′α(α+ 1)| = N/(α+ 1)2 as
(21)

kd(N) =
2N4 + (d− 1)2N3 + 2d(d− 1)N2 + 2d2N + ((d− 1)N3 + 2dN2)

√
4N + (d− 1)2

2(N4 + 2dN3 + d(d+ 2)N2 + 2d2N + d2)
.

It is not hard to find that, for d fixed, kd is a decreasing sequence, with limN→∞ kd(N) = 1.
However, from (13) it follows that if N → ∞ we have that also d → ∞ in a precise manner.
Due to the previous lemmas, for each d we can confine ourselves to considering only N/(α + 1)2

for the largest N and α such that ΥN,α ∈ F∗(d). Applying Lemma 6, an easy way to check if

indeed |T ′α(N,d)(α(N, d) + 1)| > 3
√

2 is considering kd(x), with x ∈ [100,∞), and then calculating

kd((4 + 3
√

2)(d2 − d) + 1) for d ∈ N≥5, which is amply larger than 3
√

2 = 1.2599 · · · . For the
remaining cases d = 3 and N = 18 and for d = 4 and N ∈ {50, 51, . . . , 94} it is easily checked

manually that indeed |T ′α(N,d)(α(N, d) + 1)| > 3
√

2. �

Remark 9. Considering our previous remarks concerning arrangements in F∗, it may be clear
that limN→∞N/(α(N, d) + 1)2 =

√
2.

Remark 10. The value 3
√

2 in the proof of Proposition 1 relates to the proof of Theorem 5 and
also to the proofs of Proposition 9 and Theorem 3, where the numbers

√
2 and 2 have a similar

importance. Considering the proof of Proposition 1, we could actually replace 3
√

2 by the smallest
possible value, given by

94

(α(94) + 1)2
=

20480015 + 320305
√

385

21233664
= 1.2604 · · · .

Finally we are ready to prove Theorem 5, stating that Iα = ∆d ∪∆d−1, with d := d(α), is gapless

if Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd. Considering Remark 10 the value 3
√

2 in Proposition 1
can be replaced by 1.26, the third power of which is 2.000376. We will use this to stress that the
gaplessness of Theorem 5 is actually relatively ample and does not require infinitesimal estimations.
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Proof of Theorem 5: First we note that the conditions imply N ∈ N≥4. Now let ΥN,α ∈ F(d)
and let K ⊂ Iα be any open interval. Since K expands under Tα, there is an n ∈ N ∪ {0} such
that Tnα (K) contains for the first time a fixed point or the discontinuity point pd, in the former
case of which we are finished. So we assume that Tnα (K) ∩∆d = (b, pd] =: L, with fd < b < pd.
Note that Tα(L) = [α, Tα(b)) ⊂ [α, fd). For T 2

α(L) = (T 2
α(b), Tα(α)], we similarly may assume that

fd−1 < T 2
α(b) < α+ 1 (since otherwise fd−1 ∈ T 2

α(L), and again we are done).

Now suppose that T 3
α(L) contains pd, excluding fd ∈ T 3

α(L). Then T 3
α(L) = L1 ∪ M1, with

L1 = [T 2
α(α), pd] and M1 = (pd, T

3
α(b)). First we confine ourselves to N ∈ {18} ∪ {50, . . .} \

{95, . . . , 99}. Since then |T 3
α(L)| > 2.000376|L| (cf. Remark 10), we have certainly |L1| > 1.001|L|

or |M1| > 1.001|L|. If we consider the images of L1 and M1 under Tα, T 2
α and T 3

α similarly as we
did with the images of L, we find that due to expansiveness (see the proof of Theorem 3) there
must be an m such that fd ∈ T 3m

α (L1) or fd−1 ∈ T 3m
α (M1) and we are finished. If T 3

α(L) does
not contain pd, the expansion of L will only go on longer, yielding even larger L′1 and M ′1 and the
reasoning would only be stronger that no gaps can exist.

For N ∈ {4, . . . , 17, 19, 20, . . . , 49, 95, 96, . . . , 99} a similar approach can be taken, but there is no
useful general lower bound for |T ′α(x)| on Iα. For these cases, however, the moderate expanding
power in ∆d−1 is easily made up for by a relatively strong expanding power in ∆d, and the
gaplessness is easily, although tediously, checked by hand (cf. Examples 2 and 3 below). This
finishes the proof of Theorem 5.

�

Example 2. In case N = 7, there exist α ∈ (0,
√

7 − 1] for which Iα = ∆2 ∪ ∆1. The largest

α for which Υ7,α ∈ F(2) is αmax =
√

7 − 1, in which case |T ′α(α + 1)| = 1. However, |T ′α(f2)| =
2.0938 · · · > 2, and the approach taken above works if only for the expanding power of Tα on
[α, f2).

Example 3. In case N = 99, we have Iα = ∆4∪∆3, and Υ99,α ∈ F∗ for α = 99(
√

405−5)/190 =
7.8807 · · · . Then |T ′α(α + 1)| = 1.2552 · · · , |T ′α(f3)| = 1.3503 · · · and |T ′α(f4)| = 1.4908 · · · . So
for an interval (p4, x), with x ∈ (pd, f3), assuming that f4 6∈ T 3

α(p4, x), we have |T 3
α(p4, x)| >

1.3503 · · · × 1.2552 · · · × 1.4908 · · · × |(p4, x)| � 2|(p4, x)|, implying enough expanding power for
T 3
α to exclude the existence of gaps.

Remark 11. We can also prove that |T ′α(x)| >
√

2 on ∆d for all arrangements under the assump-
tions of Theorem 5, but we cannot do without knowledge about the slope on ∆d−1.

Next we will make preparations for formulating a sufficient condition for gaplessness in case Iα
consists of three cylinder sets. Proving it involves more subtleties on the one hand, but will have
a lot of similarities with the two-cylinder set case on the other hand. Once we have finished that,
not much work remains to be done for gaplessness in case Iα consists of four or five cylinder sets.

4. A sufficient condition for gaplessness when Iα consists of three or four
cylinder sets

When Iα = ∆d ∪ . . . ∪∆d−m, with m ∈ {2, 3}, there is a sufficient condition for gaplessness that
resembles the condition for gaplessness in case Iα consists of two cylinder sets a lot:

Theorem 6. Let Iα = ∆d ∪ . . . ∪∆d−m, with m ∈ {2, 3}. Then Iα is gapless if

Tα(α) ≥ fd−1 or Tα(α+ 1) ≤ fd−m+1.

We will prove this theorem in parts. In Subsection 4.1 we will prove Theorem 6 for m = 2; in
Subsection 4.2 we will extend the result of Subsection 4.1 to m = 3; considering Theorem 4,
extension to larger m is not useful.
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Remark 12. The difference between the ‘and’ of Theorem 5 and the ‘or’ of Theorem 6 has to do
with the existence, in the latter case, of at least one full cylinder set.

4.1. Gaplessness when Iα consists of three cylinder sets. Since we have m = 2, the condi-
tion Tα(α) ≥ fd−1 can be split in

(22)


1. Tα(α+ 1) ≤ fd−1 ≤ Tα(α);

2. fd−1 ≤ Tα(α) ≤ Tα(α+ 1);

3. fd−1 ≤ Tα(α+ 1) ≤ Tα(α);

of course the condition Tα(α+ 1) ≤ fd−1 can be split in a similar way. We will prove Theorem 6
by proving gaplessness according to this distinction in three cases, associated with Lemma 9, 10
and 11 respectively. The first of these is not very hard to prove:

Lemma 9. Let Iα = ∆d ∪ ∆d−1 ∪ ∆d−2. If Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd−1, then Iα is
gapless.

Proof of Lemma 9: The assumptions imply that b(N,α) > 2, yielding σ(α) = |T ′α(α + 1)| >
√

2
for N ∈ N≥17. If N ∈ N≥17, we let K ⊂ Iα be any open interval. Since K expands under Tα,
there is an n ∈ N ∪ {0}) such that Tnα (K) contains a fixed point or a discontinuity point pd−i
(with i ∈ {0, 1}) , in the former case of which we are finished. So we assume that Tnα (K) ⊃ L,
where L = (b, pd−i], with fd−i < b < pd−i, with i ∈ {0, 1}. If Tα(L) contains a fixed point, we are
finished. If Tα(L) does not contain a fixed point, then it cannot contain a discontinuity point, and
we have that |T 2

α(L)| > 2|L|, implying enough expanding power of Tα to ensure gaplessness of at
least one cylinder set (which might be non-full). Since both Tα(α) ≥ fd−1 and Tα(α+ 1) ≤ fd−1,
it follows that Iα is gapless. For 2 ≤ N ≤ 16 the slopes on Iα may differ considerably: for some N ,
such as N = 7 and N = 16 we also have σ >

√
2, but when this is not he case, the steepness left

of fd−2 is amply larger then
√

2; see Figure 7 for some examples where α is as large as possible.
This finishes the proof of Lemma 9 (cf. case 1 in (22)). �

�1�2�3

N = 3, σ = 1
|T ′α(f1)| ≈ 1.77
|T ′α(f2)| ≈ 3

�1�2�3

N = 4, σ ≈ 1.06
|T ′α(f1)| ≈ 1.64
|T ′α(f2)| ≈ 2.62

�2�3�4

N = 7, σ ≈ 1.46
|T ′α(f2)| ≈ 2.09
|T ′α(f3)| ≈ 2.95

�2�3�4

N = 9, σ ≈ 1.40
|T ′α(f2)| ≈ 1.92
|T ′α(f3)| ≈ 2.62

�5 �4 �3

N = 16, σ ≈ 1.64
|T ′α(f3)| ≈ 2.08
|T ′α(f4)| ≈ 2.62

Figure 7. Arrangements with largest α such that there is a d with Iα = ∆d ∪
∆d−1 ∪∆d−2 under the condition Tα(α) ≥ fd−1 and Tα(α+ 1) ≤ fd−1

If Iα = ∆d ∪∆d−1 ∪∆d−2 under the condition Tα(α) ≥ fd−1 and Tα(α+ 1) > fd−1 or under the
condition Tα(α) < fd−1 and Tα(α + 1) ≤ fd−1, Iα is gapless as well, but this is much harder to
prove. The following definition will be convenient:

Definition 4. Let Iα = ∆d ∪ . . . ∪∆d−m, and 1 ≤ m ≤ d − 1. If Tα(α) ≤ fd−1 or Tα(α + 1) ≥
fd−m+1, the cylinder set ∆d respectively ∆d−m is called small.

Taking a similar approach as in the proof of Theorem 5, one can show that the map Tα has enough
expansive power to ensure that for any open interval K ⊂ Iα there exists a non-negative integer n
such that Tnα (K) contains a fixed point. If this fixed point is in a non-small or even full cylinder
set, we are done (as in the proofs of Theorem 5 and Lemma 9). However, if this fixed point is
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from the small cylinder set, then it only follows that every point of the small cylinder set is in the
orbit under Tα of some point in K. Note this implies that the small cylinder set is gapless. So
we may assume that the small cylinder set is gapless. Let us assume that the left cylinder set is
small. We define L := Tα(∆d) \∆d. Since ∆d is gapless, we have L = (pd, T (α)] ⊂ (pd, fd−1), so
Tα(L) = [T 2

α(α), α + 1). If T 2
α(α) ≤ fd−2, we are finished, so we assume that T 2

α(α) > fd−2. We
then have T 2

α(L) = (Tα(α+ 1), T 3
α(α)]. If T 3

α(α) ≥ fd−1 we are finished, since then fd−1 ∈ T 2
α(L).

The question arises whether it is possible to keep avoiding fixed points if we go on with letting
Tα work on L and its images (or similarly, when the right cylinder set is small, some interval
R := Tα(∆1)\∆1). We will argue that this is not possible in the two most plausible cases for gaps
to exist, involving the least expansion.

�3�4�5

N = 23, α = 2.898

|T ′α(α+ 1)| ≈ 1.51

|T ′α(α)| ≈ 2.74

�1�2�3

N = 11, α = 1.873 · · ·
|T ′α(α+ 1)| ≈ 1.33

|T ′α(α)| ≈ 3.14

�1�2�3

N = 7, α = 1.54

|T ′α(α+ 1)| ≈ 1.09

|T ′α(α)| ≈ 2.95

Figure 8. Arrangements with one very small cylinder

The first case is illustrated with two arrangements in Figure 8, one where N = 23 and one where
N = 11. In both arrangements one outer cylinder is very small while the other one is full or almost
full. In the arrangement where N = 23, we see that L is a very narrow strip between p5 and Tα(α),
T 2
α(L) is not so narrow anymore, and T 3

α(L) is definitely wide enough to make clear that avoiding
fixed points f4 and f3 is not possible. The middle arrangement, where N = 11, is an example of
the case where ∆d−2 is small and ∆d is actually full. Here we have that R := Tα(∆1) \∆1 is a
very narrow strip between Tα(α + 1) and p2 and that T 2

α(R) is only slightly larger than Tα(∆1),
whence eventually there will be an n ∈ N such that f3 ∈ Tnα (R) or f2 ∈ Tnα (R).

The rightmost arrangement in Figure 8 is an is an illustration of the second plausible case for
the existence of gaps: here ∆3 is small, while ∆1 is incomplete but not small. This arrangement
illustrates the role pd might play in avoiding fixed points: in this case, taking L := Tα(∆3) \∆3,
we have T 3

α(L) = M1∪M2, with M1 = [T 4
α(α), p2] and M2 = (p2, T

2
α(α+1)]. Since T 3

α(L) contains
a discontinuity point, the expansion under Tα is interrupted. If Tα(M1) would be a subset of
Tα(∆3) and Tα(M2) would be a subset of Tα(L), the expansion would be finished and we would
have three gaps: (Tα(α), Tα(α + 1)), (T 3

α(α), T 4
α(α)) and (T 2

α(α + 1), T 2
α(α)) – but this is not the

case, as we will shortly prove.

Of course arrangements exist such that one of the outer cylinders is small, fixed points are avoided
(in the sense we used above) for a long time and it takes more of Tα working on L or R before
one of the discontinuity points is captured. But in these cases the interruption of the expansion is
even weaker than in the cases above. We will first show that arrangements such as the rightmost
one of Figure 8 exclude the existence of gaps (cf. Lemma 10) and will then consider cases such as
the first two arrangements of Figure 8 (cf. Lemma 11).
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Lemma 10. Let Iα = ∆d ∪∆d−1 ∪∆d−2.Then Iα is gapless if

fd−1 ≤ Tα(α) ≤ Tα(α+ 1) or Tα(α) ≤ Tα(α+ 1) ≤ fd−1.

Proof of Lemma 10: We will confine ourselves to the first case of this lemma, that is when fd−1 ≤
Tα(α) ≤ Tα(α + 1), since the second one is proved similarly (in fact, this case is slightly harder
due to the smaller size of the absolute value of the derivatives). Regarding our observations above,
we may assume that the small cylinder set (which in this case is ∆d−2) is gapless (cf. the remarks
after Definition 4). We will show that this implies the gaplessness of the other cylinder sets as well.
We define R := Tα(∆d−2) \∆d−2 and try to determine α such that pd ∈ T 3

α(R) (see the remark
immediately preceding this lemma). Necessary conditions for this are T 2

α(α) < pd < T 4
α(α + 1)

(assuming that fd 6∈ Tα(R) and fd−1 6∈ T 2
α(R), since in either case we would be done). If these

conditions are satisfied, we write T 3
α(R) = V1 ∪V2, with V1 = [T 2

α(α), pd] and V2 = (pd, T
4
α(α+ 1)].

We will show that we cannot have both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂ Tα(∆d−2), which is
necessary for limiting the expansion of R under Tα and so not eventually capturing fd and fd−1;
see Figure 9.

�2�3�4

N = 30, α = 3.6

|T ′α(α+ 1)| ≈ 1.42

V2V1 RTα(R) T 2
α(R)

|T ′α(α)| ≈ 2.31

Figure 9. Arrangement illustrating Lemma 10

We take an approach that is similar to the proof of Theorem 5, for which several lemmas and
a proposition where used, partially concerning a relation between N and d in the arrangements
involved, partially concerning the slope in α + 1. In this proof we will not explicitly formulate
similar statements as lemmas or propositions, nor do we prove them, since they require similar
basic but very intricate calculations that we prefer to omit.

In order to find the relationship between N and d for arrangements with the conditions T 2
α(α) < pd

and T 4
α(α + 1) > pd mentioned above, we refer to some more relevant arrangements, as shown in

Figure 10. In both cases in Figure 10, α is such that T 2
α(α) = pd, which is a value of α that is only

a little larger than the values for which T 2
α(α) < pd and T 4

α(α + 1) > pd. A ‘limit arrangement’
(where the third, rightmost cylinder is infinitely small), similar to the ‘limit arrangement’ used in
the proof of Theorem 5, is shown in Figure 11. The assumptions yield a3 + a2 − 1 = 0, with real
root a = 0.75487 · · · =: γ.

Similar to the proof of Theorem 5 we then find that for arrangements as in Figure 10 we have

N ≈ (d− 1)(d− 1 + γ)(1 + γ)

γ2
.
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�1�2�3

N = 17, α = 2.6576

|T ′α(α+ 1)| ≈ 1.27

|T ′α(α)| ≈ 2.41

�2�3�4

N = 35, α = 4.00167

|T ′α(α+ 1)| ≈ 1.40

|T ′α(α)| ≈ 2.19

Figure 10. Two arrangements in which almost T 2
α(α) < pd < T 4

α(α+ 1)
(in fact, in both cases pd = T 2

α(α)).

(a, a)

(a, 1− a2)

y = −(a+ 1)x+ a+ 1

y = −(a+ 1)x+ a

a

( a
a+1 , 1)

0 1

Figure 11. The ‘limit graph’ of Tα, translated over (−α,−α), under the condi-
tions Iα = ∆d∪∆d−1 and N/(N/α−d)− (d−1) = pd for N →∞ (and α, d→∞
accordingly). This ‘arrangement’ can be seen as one with three cylinders, where
∆d−2 (mod α), the one on the right, is infinitely small; see also the arrangements
in Figure 10.

Using this relationship, we can take a similar approach as in the proof of Proposition 1. We leave
out the tedious steps and confine ourselves to observing that the slope of the line segments in Figure
11 is −(γ+1) = −1.75487 · · · and that in arrangements where T 2

α(α) < pd and T 4
α(α+1) > pd, we

will see that the slope T ′α(α+1) approaches −(γ+1) as N tends to infinity. However, for our proof

the inequality |T ′α(α + 1)| > 1/2(
√

5 + 1) = 1.61803 · · · =: G suffices, which turns out to hold for
N ∈ N≥273. We will use this to show that for N ∈ N≥273 we have |T 3

α(R)| > |Tα(∆d−2)|+ |Tα(R)|.
From this it immediately follows that we cannot have that both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂
Tα(∆d−2), and we are done with the proof of Lemma 11.

Since |T ′α(x)| is a decreasing function on Iα, and writing β := |∆d−2|, we have

|Tα(∆d−2)| > |T ′α(α+ 1)| · β, so |R| > (|T ′α(α+ 1)| − 1)β.

It follows that

|Tα(R)| > (|T ′α(α+ 1)| − 1) · |T ′α(pd−1)|β,
that

|T 2
α(R)| > (|T ′α(α+ 1)| − 1) · |T ′α(pd−1)| · |T ′α(fd)|β,
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and finally that

|T 3
α(R)| > (|T ′α(α+ 1)| − 1) · |T ′α(pd−1)|2 · |T ′α(fd)|β.

We also have |Tα(∆d−2)| < |T ′α(pd−1)|β, so

|R| < (|T ′α(pd−1)| − 1)β and |Tα(R)| < |T ′α(fd−1)| · (|T ′α(pd−1)| − 1)β.

It follows that

|Tα(∆d−2)|+ |Tα(R)| < (|T ′α(pd−1)|+ |T ′α(fd−1)| · (|T ′α(pd−1)| − 1))β

= (|T ′α(pd−1)| − |T ′α(fd−1)|+ |T ′α(fd−1)| · |T ′α(pd−1)|)β
< |T ′α(fd−1)| · |T ′α(pd−1)|β.

So, although crudely, we certainly have that |T 3
α(R)| > |Tα(∆d−2)|+ |Tα(R)| if

|T ′α(fd−1)| · |T ′α(pd−1)| < (|T ′α(α+ 1)| − 1) · |T ′α(pd−1)|2 · |T ′α(fd)|,

that is, if

(23) 1 < (|T ′α(α+ 1)| − 1) · |T ′α(pd−1)| · |T
′
α(fd)|

|T ′α(fd−1)|
.

Since

(|T ′α(α+1)|−1)·|T ′α(pd−1)|· |T
′
α(fd)|

|T ′α(fd−1)|
> (|T ′α(α+1)|−1)·|T ′α(pd−1)| > (|T ′α(α+1)|−1)·|T ′α(α+1)|,

we know that (23) holds for |T ′α(α + 1)| > G, which in turn holds for all N ∈ N≥273. We remark
that this value is quite a wide upper bound, since we did a rough approximation. Still, checking
that we cannot have both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂ Tα(∆d−2) for smaller N is not that hard
and is left to the reader. This finishes the proof of Lemma 10 (cf. case 2 in (22)). �

Lemma 10 implies that in case Iα = ∆d∪∆d−1∪∆d−2 and fd−1 ≤ Tα(α) ≤ Tα(α+ 1) or Tα(α) ≤
Tα(α + 1) ≤ fd−1 the division of an interval containing pd in two smaller ones cannot prevent
an overall expansion that excludes any gaps. The other plausible case with three cylinder sets in
which gaps might exist is when one outer cylinder set is very small, while the other one is full
or nearly full, such that either T 3

α(α + 1) ≥ Tα(α + 1) (when ∆d−2 is the small cylinder set) or
T 3
α(α) ≤ Tα(α) (when ∆d is the small cylinder set). We will show that this is not possible either:

Lemma 11. Let Iα = ∆d ∪∆d−1 ∪∆d−2. Then Iα is gapless if

fd−1 ≤ Tα(α+ 1) ≤ Tα(α) or Tα(α+ 1) ≤ Tα(α) ≤ fd−1.

Proof of Lemma 11: Taking into account our observations immediately following Definition 4 and
the arrangements of Figure 8 for N = 23 and N = 11, we only have to prove that there are no
α such that T 3

α(α) < Tα(α) is possible when Tα(α + 1) ≤ Tα(α) ≤ fd−1 (in case ∆d is small) or
such that T 3

α(α + 1) > Tα(α + 1) is possible when fd−1 ≤ Tα(α + 1) ≤ Tα(α) (in case ∆d−2 is
small). Note that the conditions T 3

α(α) < Tα(α) and T 3
α(α+ 1) > Tα(α+ 1) imply that the branch

number is slightly larger than 2. Now remember that Iα consists of m full cylinder sets if and only
if α = k, N = mk(k + 1) and d = (m− 1)(k + 1) for some k ∈ N, cf. Theorem 1. Figure 12 shows
for increasing values of N a sequence of arrangements where the branch number b is 2, from one
full arrangement (here for N = 4) with two cylinders to the next one (here for N = 12). Since
|T ′α(α)| > |T ′α(α + 1)|, the arrangements suggest that in case b is slightly larger than 2, the most
favourable arrangement for T 3

α(α + 1) = Tα(α + 1) to have real roots is when N = 2k2 + 2k − 1,
where k ∈ N≥2, while for T 3

α(α) = Tα(α) to have real roots is when N = 2k2 + 2k + 1, where
k ∈ N. We will confine ourselves to investigating only the possibility of T 3

α(α + 1) = Tα(α + 1);
the calculations for the other case are similar.
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�1�2

b(4, α) = 2

�1�2�3

b(5, α) = 2

�1�2�3

b(6, α) = 2

�1�2�3

b(11, α) = 2

�2�3

b(12, α) = 2

Figure 12. Arrangements of ΥN,α with b = 2; in each case α =
√
2N+1−1

2 .

So we will try and find out if for N = 2k2 + 2k − 1, d = k + 1, with k ∈ N≥2, the positive root of
T 3
α(α+ 1) = Tα(α+ 1) lies in Iα. To do this, we solve

2k2 + 2k − 1

2k2 + 2k − 1

2k2 + 2k − 1

α+ 1
− (k − 1)

− k
− (k + 1) =

2k2 + 2k − 1

α+ 1
− (k − 1),

which is reducible to

(2k3 + 6k2 − k − 1)α2 + (2k4 + 5k2 + k − 2)α− (4k5 + 6k4 + 2k3 − 3k2 − k + 1) = 0,

yielding

(24) α =

√
36k8 + 144k7 + 164k6 − 12k5 − 95k4 − 2k3 + 21k2 − 4k − (2k4 + 5k2 + k − 2)

2(2k3 + 6k2 − k − 1)
.

A straightforward computation shows that this last expression is smaller than fk+2, meaning that
the root (24) lies outside Iα when Iα = ∆k+1 ∪∆k ∪∆k−1. Since N = 2k2 + 2k− 1 was the most
favourable option for investigation, this finishes our proof (cf. case 3 in (22)). �

Remark 13. The arrangement for N = 11 in Figure 8 illustrates that the difference between
T 3
α(α+ 1) and Tα(α+ 1) may be very small.

4.2. A sufficient condition for gaplessness in case Iα consists of four cylinder sets. In
the previous subsection we proved Theorem 6 for m = 2, by proving Lemmas 9, 10 and 11. In
this subsection we will consider m = 3 and go into the analogons of Lemmas 9, 10 and 11.

When Iα consists of four cylinder sets, the analogon of Lemma 9 is that arrangements Iα are
gapless when Iα = ∆d ∪ ∆d−1 ∪ ∆d−2 ∪ ∆d−3 while Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd−2. The
analogon of Lemma 11 is that arrangements Iα are gapless when Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3
while fd−2 ≤ Tα(α + 1) ≤ Tα(α) or Tα(α + 1) ≤ Tα(α) ≤ fd−1. In both cases branch numbers
larger than 3 are involved, in which case |T ′α(α + 1)| > 2 when N ∈ N≥18 (and Theorem 3 yields
the desired result). The cases 2 ≤ N ≤ 17 can be checked manually and are left to the reader; in
Figure 13 the arrangement for N = 11, associated with Lemma 11, illustrates that gaps are out
of the question.

The analogon of Lemma 10 is that arrangements Iα are gapless when Iα = ∆d∪∆d−1∪∆d−2∪∆d−3
while fd−1 ≤ Tα(α) ≤ Tα(α + 1) or Tα(α) ≤ Tα(α + 1) ≤ fd−2. The arrangements for N = 15,
N = 24 and N = 35 in Figure 13 are interesting illustrations of the analogon of Lemma 10 in
the case of two full cylinder sets instead of one. We will confine ourselves to the arrangement for
N = 15; the other ones have similar properties.

The arrangement for N = 15 is the boundary case for the situation where we have four cylinders,
the left one of which (that would be ∆6 in this example) is extremely small and the right one is
such that almost p5 ∈ T 2

α(Tα(∆6) \∆6). The interesting thing is that this option would imply a
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�2�3�4�5

N = 11, α = f6

�3�4�5

N = 15, α = f6
and Tα(α+ 1) = p5

�4�5�6

N = 24, α = f3 − 1
and Tα(α) = p5

�5�6�7

N = 35, α = f4 − 1
and Tα(α) = p6

Figure 13. Four arrangements with two full cylinders

(1, a)

y = − 1
ax+ 3

y = − 1
ax+ 2

y = − 1
ax+ 1

(a, 1)

0 1

Figure 14. The ‘limit graph’ of Tα, translated over (−α,−α), under the con-
ditions Iα = ∆d ∪ ∆d−1∆d−2 and N/(α + 1) − (d − 2) = pd for N → ∞ (and
α, d→∞ accordingly)

quick interruption of the expansion of Tα(∆6) \∆6, involving two large gaps. But it is not really
an option: the arrangement for N = 15 in Figure 13 is exceptional among relatively small N (as
well as the arrangements for N = 24 and N = 35 are), while for N > 36 we have |T ′α(α+ 1)| > 2
when Iα = ∆d ∪ ∆d−1∆d−2 and N/(α + 1) − (d − 2) = pd or N/α − d = pd. We derived this
in a similar way as in the proof of Lemma 10 (see Figure 11) or the preparations for Theorem 5
(see Figure 6). Figure 14 shows the associated ‘limit graph’, from which it is easily found that

a = 1/2(3−
√

5), yielding branch number 2 + g, with g = 1/G the small golden section.

With this, we conclude the proof of Theorem 6. �

In the next section we will prove that if Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3 gaps exist only in very
rare cases and if they do, that they are very large. After that, we will finish the proof of Theorem
4, stating that all arrangements with five cylinders are gapless.

5. Gaplessness in case Iα contains two full cylinder sets

When an arrangement contains three cylinders, and two of them are full, the arrangement is
gapless according to Theorem 6. In this section we will proof that arrangements of four cylinders
generally do not contain a gap either, save for special values of N . The core of this proof rests on
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values of α satisfying one of the equations

Tα(α) = T 3
α(α) (with root α`) and Tα(α+ 1) = T 3

α(α+ 1) (with root αu).

We will show that for N such that α` < αu very large gaps exist for α ∈ [α`, αu].

The central theorem of this section is the following:

Theorem 7. Let N ∈ N≥2 and Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3. Then there is a gap in Iα if and
only if N = 2k2 + 2k − i, with k > 1 and i ∈ {1, 2, 3}. Moreover, if there is a gap in Iα, the gap
contains fd−1 and fd−2, while ∆d and ∆d−3 are gapless.

Proof of Theorem 7: Suppose that there is a gap containing fd−1 and fd−2 in Iα and that ∆d

and ∆d−3 are gapless. Then, as a sub-interval of a gap, the interval (fd−1, fd−2) is a gap. Since
fd−1 < fd−2, N/(fd−1 + d− 1) = fd−1 and N/(fd−2 + d− 2) = fd−2, we know that

(fd−1, fd−2) (
(

N

fd−2 + d− 1
,

N

fd−1 + d− 2

)
,

where the larger open interval is a gap as well. What is more, the infinite sequence of intervals

(fd−1, fd−2) (
(

N

fd−2 + d− 1
,

N

fd−1 + d− 2

)
(

(
N

N
fd−1+d−2 + d− 1

,
N

N
fd−2+d−1 + d− 2

)
( . . .

consists of the union of (fd−1, fd−2) with pre-images of (fd−1, fd−2) in ∆d−1 and ∆d−2 respectively
and therefore of gaps containing fd−1 and fd−2. It is contained in the closed interval [q, r], with

q = [d− 1, d− 2]N,α ∈ ∆d−1 and r = [d− 2, d− 1]N,α ∈ ∆d−2,

yielding

(25) T 2
α(q) = q, Tα(q) = r, Tα(r) = q and T 2

α(r) = r.

Since ∆d and ∆d−3 are gapless, Tα(α) and Tα(α+ 1) lie outside the interval (q, r), which is to say

pd < Tα(α) ≤ q and r ≤ Tα(α+ 1) < pd−2.

For the images of α under Tα this means that either T 2
α(α) ∈ ∆d−3 or T 2

α(α) ∈ ∆d−2, in the latter
case of which we have, due to the expansiveness of Tα and the equalities of (25),

|Tα(α)− q| ≤ |T 2
α(α)− r| ≤ |T 3

α(α)− q|,
with equalities only in the case Tα(α) = q. From this we derive that

(26) either T 2
α(α) ∈ ∆d−3 or T 2

α(α) ∈ ∆d−2 ∧ T 3
α(α) ≤ Tα(α)

and, similarly, that

(27) either T 2
α(α+ 1) ∈ ∆d or T 2

α(α+ 1) ∈ ∆d−1 ∧ T 3
α(α+ 1) ≥ Tα(α+ 1).

In the following we will write αu(N,m) (u for ‘upper’) for the positive root of the equation

T 3
α(α + 1) = Tα(α + 1) (so Tα(α + 1) = r) and α`(N,m) (l for ‘lower’) for the positive root of

the equation T 3
α(α) = Tα(α) (so Tα(α) = q), with m the number of full cylinder sets; in the

current case we have m = 2. Recall that Iα consists of m full cylinder sets if and only if α = k,
N = mk(k + 1) and d = (m− 1)(k + 1) for some k ∈ N, cf. Theorem 1, so when m = 2, we have
arrangements consisting of two full arrangements only for α = k, N = 2k(k+ 1) and d = k+ 1. If
N is 2k(k + 1)− n, with n ∈ N, and α = k − x, with x ∈ R, we have

b(N,α) =
2k2 + 2k − n

(k − x)(k + 1− x)
= 2 +

4xk − n+ 2x− 2x2

(k − 1)(k + 1− x)
> 2 +

4xk − n
k2 + x2

,

which is a little bit larger than 2 provided x and n are relatively small. For these arrangements
we have

d(α) =

⌊
2k2 + 2k − n

k − x
− (k − x)

⌋
=

⌊
k + 2 + 3x+

2x2 + 2x− n
k − x

⌋
= k + 2
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and

d(α+ 1) =

⌊
2k2 + 2k − n
k + 1− x

− (k + 1− x)

⌋
=

⌊
k − 1 + 3x+

2x2 + 2x− n
k + 1− x

⌋
= k − 1.

So, for x and n relatively small, the arrangements consist of four cylinders, while the branch
number is only a little bit larger than 2. We will now use this to finish the forward implication of
Theorem 7.

Since ∆d−3 decreases and ∆d increases as α decreases, we see that the assumption that there is
a gap containing fd−1 and fd−2 in Iα implies αu(N, 2) ≥ α`(N, 2). We will shortly show that
the only values of N for which αu(N, 2) ≥ α`(N, 2) are N = 2k2 + 2k − i, with k > 1 and
i ∈ {1, 2, 3}; in all cases d = k + 2. Although we could keep i as a variable in our calculations,
we can limit ourselves to the case i = 3, since i = 3 is the least favourable value of i allowing
for a gap, as is suggested6 in Figures 12 and 15 through 18. We will show that for i = 3 indeed
αu(N, 2) ≥ α`(N, 2). Subsequently we will show that for 4 ≤ i ≤ 4k no gaps exist; the upper
bound is 4k, since 2k2 + 2k − 4k = 2(k − 1)2 + 2(k − 1), so as to confine the calculations to the
group of arrangements where d = k + 2.

N = 11, α = 1.8719 · · · (k = 2, i = 1)

T 3
α(α+ 1) = Tα(α+ 1)

F4

F3

F2

F1

�1�2�3�4

Figure 15

F4

F3

F2

F1

�1�2�3�4

N = 11, α = 1.8687 · · · (k = 2, i = 1)

T 3
α(α) = Tα(α)

Figure 16

So, let N = 2k2 + 2k − 3 and d = k + 2. Then α`(N, 2) = [k + 2, k + 1, k] and αu(N, 2) + 1 =
[k − 1, k, k + 1]7. Omitting straightforward calculations, we find that

αu(2k2 + 2k − 3, 2) =
(2k2 + 2k − 3)

√
D − (2k4 + 3k2 + 3k − 6)

4k3 + 12k2 − 6k − 6

and

α`(2k
2 + 2k − 3, 2) =

(2k2 + 2k − 3)(
√
D − (k2 + 5k + 4))

4k3 − 18k − 8
,

with

D = 9k4 + 18k3 − 3k2 − 12k = (3k2 + 3k − 2)2 − 4.

6Note that in Figure 12 we have d = k + 1, while there is no small cylinder set ∆k+2
7We omit the suffix ‘N,α’ behind these expansions not only for eligibility but also because α has yet to be

determined as the root of T 3
α(α) = Tα(α) or T 3

α(α+ 1) = Tα(α+ 1).
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Since we assume that there is a gap containing fd−1 and fd−2, we have αu ≥ α`. Omitting the
basic calculations, we find that this inequality holds for k ∈ N≥2. In the case k = 3 (and so
N = 21), we have indeed

αu(2k2+2k−3, 2) =

√
508032− 192

192
= 2.7123 · · · > 2.7122 · · · =

√
508032− 588

46
= α`(2k

2+2k−3, 2);

see Figure 20.

Some more basic calculations show that the cases N = 2k2 + 2k − 1 and N = 2k2 + 2k − 2 allow
for larger intervals [α`, αu] where large gaps exist; see the next examples.

αu(11, 2) =

√
9075− 26

37
= 1.8719 · · · and α`(11, 2) =

99−
√

9075

2
= 1.8686 · · ·

αu(10, 2) =

√
1725− 12

17
= 1.7372 · · · and α`(10, 2) =

45−
√

1725

2
= 1.7334 · · ·

αu(9, 2) =

√
5103− 22

31
= 1.5946 · · · and α`(9, 2) =

27−
√

567

2
= 1.5941 · · ·

αu(8, 2) =

√
228− 5

7
= 1.4428 · · · and α`(8, 2) = 9−

√
57 = 1.4501 · · ·

We see that the intervals αu − α` decrease as N decreases, until (for N = 8) the ‘interval’ would
have negative length, hence does not exist.

N = 10, α = 1.7372 · · · (k = 2, i = 2)
T 3
α(α+ 1) = Tα(α+ 1)

F4

F3

F2

F1

�1�2�3�4

Figure 17

F4

F3

F2

F1

�1�2�3�4

N = 9, α = 1.5946 · · · (k = 2, i = 3)
T 3
α(α+ 1) = Tα(α+ 1)

Figure 18

Now suppose N = 2k2 + 2k − 4 (note that voor k = 2 we have N = 8). Then

αu(2k2 + 2k − 4, 2) =
(k + 2)

√
D − (k3 + k2 + 2k + 4)

2(k2 + 4k + 2)

and

α`(2k
2 + 2k − 4, 2) =

(k − 1)
√
D − (k3 + 4k2 − k − 4)

2(k2 − 2k − 1)
,

with
D = 9k4 + 18k3 − 7k2 − 16k.

There are no gaps provided α`(2k
2 + 2k − 4, 2) − αu(2k2 + 2k − 4, 2) > 0. Once more we omit

the calculations, finding that this inequality holds for k ∈ N≥2, so we conclude that there are no
gaps in case N = 2k2 + 2k − 4. When we replace the number 4 in N = 2k2 + 2k − 4 by larger
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integers (if possible), there will not be any gaps either: the length of the ‘interval’ [α`, αu] would
only become more negative. This concludes the proof that if Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3 and
there is a gap containing fd−1 and fd−2 in Iα, then N = 2k2 + 2k− i, with k > 1 and i ∈ {1, 2, 3}.

For the converse statement, we assume that N = 2k2 + 2k− i, with k ∈ N and i ∈ {1, 2, 3}. If also
d = k + 2, then earlier in this proof we showed that only then α`(N, 2) ≤ αu(N, 2). We will show
that for α such that α`(N, 2) ≤ α ≤ αu(N, 2) there is a gap in Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3
containing both fd−1 and fd−2.

As earlier in this proof, we set

q = [ d− 1, d− 2 ]N,α and r = [ d− 2, d− 1 ]N,α.

Set G = (q, r), then clearly both fd−1 ∈ G and fd−2 ∈ G. Furthermore, by definition of α`(N, 2)
and αu(N, 2) we have that for every α ∈ [α`(N, 2), αu(N, 2)] that

Tα(α) ≤ q (and therefore T 2
α(α) ≥ r)

and that

Tα(α+ 1) ≥ r (and therefore T 2
α(α+ 1) ≤ q).

Note that Tα((pd, q) = (r, α+ 1) and that Tα((r, pd−2) = (α, q). Then we have that Tα(Gc) = Gc,
where Gc is the complement of G in Iα. We are left to show that G = (q, r) is a gap; i.e. that for
almost all x ∈ G there exists an n = n(x) such that Tnα (x) ∈ Gc.

To show this, consider the map T : Iα → Iα, defined by

(28) T (x) =


−x
pd−α + (α+1)pd−α2

pd−α , if x ∈ ∆d;
N
x − (d− 1), if x ∈ ∆d−1;
N
x − (d− 2), if x ∈ ∆d−2;
−x

α+1−pd−2
+ (α+1)2−αpd−2

α+1−pd−2
, if x ∈ ∆d−3.

So on ∆d and on ∆d−3 we have that T is a straight line segment with negative slope, through
(α, α+1) and (pd, α) on ∆d, resp. through (pd−2, α+1) and (α+1, α) on ∆d−3. For x ∈ ∆d−1∪∆d−2
we have that T (x) = Tα(x). To show that G is a gap, it is enough to show the ergodicity of T . Then
the maximality of G follows from the fact that the support of the absolutely continuous invariant
measure is Gc, since Tα(Gc) = Gc. The proof of the existence of the absolutely continuous
invariant measure for T and its ergodicity is similar to the proof of Theorem 2. Here all branches
are complete and the proof is rather simpler. Once we have the ergodicity of T , it is obvious that
for a.e. x ∈ G there exists n0 = n0(x) such that z = Tn0(x) ∈ Gc. Then z never returns in G
under iterations of Tα. This finishes the proof of Theorem 7. �

We stress that the in case of N = 2k2 + 2k − 3 the intervals [α`, αu] on which gaps exist may be
very small; see Figure 20. On the other hand, in case N = 2k2 + 2k − 4, the gaplessness may be
a very close call; see Figure 19. Table 1 illustrates how fast these differences between α` and αu
decrease as N increases:

Remark 14. While a fixed point fi is repellent for points within ∆i, the fixed points in two
adjacent cylinder sets behave mutually contracting for all other points in these cylinder sets. As
a consequence, it may take quite some time before the orbit of points in the full cylinders of
gap arrangements with four cylinders leave these full cylinders for the first time. As an example
we take the gap arrangement for k = 50 (according to the notations used above). Then N =
2 · 502 + 2 · 50− 3 = 5097, d = 52 and α ≈ αu ≈ α` ≈ 49.98019737. Table 2 shows for ten values
of x between α and α + 1 the smallest n such that Tnα (x) 6∈ ∆51 ∪∆50. What is more, there are
uncountably many x in the gap (a, b) that contains fd−1 and fd−2 such that Tnα (x) ∈ (a, b) for
all n ∈ N ∪ {0}. Indeed, for any sequence (d1, d2, . . . , dn, . . .) such that dn ∈ {d − 1, d − 2}, with
n ∈ N, we have that x = [d1, d2, d3, . . .]N,α ∈ (a, b).
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α`(N, 2) αu(N, 2)
N = 9 1.594119 · · · 1.594686 · · ·
N = 21 2.712252 · · · 2.712310 · · ·
N = 37 3.776839 · · · 3.776851 · · ·
N = 57 4.817672 · · · 4.817675 · · ·
N = 8 1.450165 · · · 1.442809 · · ·
N = 20 2.613247 · · · 2.611575 · · ·
N = 36 3.700989 · · · 3.700407 · · ·
N = 56 4.756087 · · · 4.755832 · · ·

Table 1. The thin thread between having a gap or not

x 50 50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9
n 5417 2090 3568 1123 4776 185 5816 16231 5646 7604

Table 2. The difficulty of leaving the gap: with N = 5097, α = 49.98019737,
for each of ten values of x ∈ [α, α + 1] the smallest n is given such that Tnα (x) 6∈
∆51 ∪∆50.

F5

F4

F3

F2

�2�3�4�5

N = 20, α = 2.6124

α` = 2.6132 · · · and αu = 2.6115 · · ·

Figure 19

F5

F4

F3

F2

�2�3�4�5

N = 21, α = 2.7123
α` = 2.7122 · · · and αu = 2.7123 · · ·

Figure 20

For the final, second part of the proof of Theorem 4, we will consider one by one all cases left,
that is N ∈ {2, . . . , 11}. When N = 11 and α ≥ f7, Iα consists of five cylinder sets if and only if
α ∈ (f2 − 1, f6); see the left arrangement of Figure 21, which we already saw in Figure 13. Since
α`(11, 3) > αu(11, 3) (cf. page 24), we conclude on similar grounds as in the proof of Theorem 7,
that the arrangement is gapless. When α ∈ [f7, f2 − 1], the interval Iα consists of four cylinder
sets, implying gaplessness because of Theorem 7. Since |T ′α(f7 + 1)| = 2.04 · · · , gaps are also
excluded for all α ≤ f7. A similar approach works for N = 10 (with |T ′α(f7 + 1)| = 2.03 · · · ),
N = 9 (with |T ′α(f7 + 1)| = 2.02 · · · ) and even N = 8, in which case f7 = 1, |T ′α(f7 + 1)| = 2, and
the arrangement with four cylinders is full.
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For N ∈ {3, . . . , 7} we take a different approach, confining ourselves to the case N = 7; the cases
N ∈ {3, . . . , 6} are done similarly. We will omit most calculations, which are generally quite
tedious and do hardly elucidate anything. So let N = 7. Then Iα consists of at least five cylinder
sets if and only if α < f6; see the second arrangement of Figure 21. We have |T ′α(α + 1)| = 2

for α = 1
2

√
14− 1, in which case dmin = 2; see the third arrangement of Figure 21. Now suppose

1
2

√
14 − 1 ≤ α < f6 = 1. We have |T ′α(f6 + 1)| = 7

4 and |T ′α(α)| > 7. Regarding these relatively
large values, it is not hard to understand that ∆2 is gapless. The part of the orbit of α+1 under Tα
in the third arrangement of Figure 21 illustrates that even in the case of α = 1

2

√
14, the expansion

of [Tα(α+ 1), p3] under Tα clearly excludes the existence of gaps.

Finally, let N = 2. We have |T ′α(f1)| = 2, indicating the rapid increase of |T ′α| on Iα when α
decreases. The large expansiveness of Tα left of f1 assures the gaplessness of ∆1. We will show
that for any α ∈ (0,

√
2−1] the image of [Tα(α+1), p2]) contains most of the fixed points, implying

the gaplessness of Iα; see the last arrangement of Figure 21 for an illustration of this. When
Tα(α+ 1) ≤ f2 this is quite obvious, so we assume Tα(α+ 1) > f2. Suppose that T 2

α(α+ 1) = fs,

for some s ∈ N≥2. Then, omitting some basic calculations, we have α = (s+1−
√
s2 + 8)/(2s−7),

whence

d = d(α) =

⌊
4s2 − 11s+ (4s− 13)

√
s2 + 8− 15

2s− 7

⌋
≥ 4s2 − 13s+ (4s− 13)

√
s2 + 8− 8

2s− 7
,

from which we derive that d ≥ 4s.

This finishes the proof of Theorem 4. �

�2�3�4�5

N = 11, α = f6

�2�3�4�5

N = 7, α = f6 = 1

�2�3�4�5�6�7

N = 7, α = 1
2

√
14− 1

�13 · · · �2 �1

N = 2, α = 0.15

Figure 21. Borderline cases for part II of the proof of Theorem 4
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