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SMOOTHNESS OF CLASS C2 OF NONAUTONOMOUS LINEARIZATION

WITHOUT SPECTRAL CONDITIONS

N. JARA

Abstract. We prove that smoothness of nonautonomous linearization is of class C2. Our ap-
proach admits the existence of stable and unstable manifolds determined by a family of nonau-
tonomous hyperbolicities. Moreover, our goal is reached without spectral conditions.

1. Introduction

The linearization problem was initially regarded locally by P. Hartman [9, Theorem I] in the
context of autonomous equations, later a specific type of those equations, namely a linear and a
quasi-linear system, were studied by C. Pugh [13] in order to achieve a global homeomorphism
between the flows of the systems. Next this result was adapted to the nonautonomous case by
K. J. Palmer [11], who implemented the concepts of exponential dichotomy in order to obtain its
linearization problem.

The homoeomorphisms with its properties that K.J. Palmer obtained are known as the concept
of topological equivalence which is useful to describe the asymptotic behaviour of solutions, even
when they may be unknown, for example, to find locally or global attractors, or more generally,
stable and unstable manifolds. Nevertheless, there are more dynamical properties that cannot
be described with purely topological tools and require a study of the the differentiability of such
homeomorphisms.

The study of the smoothness of homomorphisms has been a problem with a vast analysis in
both the autonomous and nonautonomous contexts: In the autonomous framework, S. Sternberg
[16, 17] proved that dynamical system given by Cr−diffeomorphism can be Ck−linearized locally
around hyperbolic fixed points that satisfy a nonresonant condition on its spectrum. This results
were later improved by G. R. Belickĭı [1, 2], still locally but giving more explicit conditions for the
derivatives of the conjugation. S. van Strein [18] was the first to obtain a similar result without
imposing resonance conditions, but his proof turned out to be wrong, as stated by V. Rayskin [14].

As far as the author has been able to ascertain of studying the differentiability of the topological
conjugacy between a linear and a quasilinear nonautonomous system was first regarded in the

work [6] by Á. Castañeda and G. Robledo, who ensured the homeomorphisms are C2 preserving
orientation diffeomorphisms if the linear system are exponentially asymptotically stable on R and
verified some conditions. This result was later improved in [3] to include more general decay
ratios other than exponential but in R

+. In these results authors were able to construct a global
diffeomorphism in the same fashion as K.J. Palmer.

L. V. Cuong et. al. [7] obtained a smooth linearization in a similar way as S. Sternberg when the
linear part admits an exponential dichotomy on whole real line. Recently, D. Dragičević et. al. [8]
have proved Strein’s statement to be true, and further extended it to the nonautonomous case while
also improving Cuong’s result, under the assumption that the linear system satisfy a nonuniform
hyperbolicity and other technical conditions, which do not include nonresonance conditions but
impose spectral bounds.

In this paper we develop ideas hold many similarities with Á. Castañeda, P. Monzón and G.
Robledo [5], since both study the topological equivalence of a linear and a quasi-linear systems on
the positive half real line. We improve their result in two senses: first we present a wider family
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of dichotomies accepted for the linear system, including both the exponential and the nonuniform
exponential under some technical conditions that will be expressed later. Secondly, and we allow
the existence of nonempty unstable manifolds for our linear system. We do not rely on of spectral
bounds or nonresonant conditions, but only in the interlacing of the properties of nonautonomous
hyperbolicity of the linear part, and boundedness and lipschitzness of the nonlinearities.

However, our work does not regard the continuity of the homeomorphism of topological equiv-
alence as a function of two variables, a property that Á. Castañeda et al. called continuous
topological equivalence [5, Definition 1.4]. We neither obtain a strong topological equivalence, a
characterization introduced by J. Shi [15, Definition 2.4], which corresponds to the uniform con-
tinuity of the homeomorphism and was also achieved on [5, Theorem 2.1]. Nevertheless, as a
byproduct of the existence of an uniform bound for the derivative of the homeomorphism at any
fixed time, we obtain a weaker version of this.

In the third section of this work we present and prove the topological equivalence between our
systems, admitting a wide family of dichotomies, similar to those described by P. Gonzalez et.
al. [4] for the discrete framework, work from which we borrow important tools, adapted for the
continuous framework.

In the fourth section we prove under technical conditions that the homeomorphism that we
previously constructed is a C1−diffeomorphism and give an explicit form for its derivative. Fur-
thermore, we give examples of concrete dichotomies that satisfy our conditions. Finally, in the fifth
section we give enough conditions to ensure the second class of differentiability for the topological
equivalence, as well as an explicit way to achieve those conditions with an specific dichotomy.

2. Preliminaries

We study the systems

(2.1) ẋ = A(t)x,

and

(2.2) ẏ = A(t)y + f(t, y).

Denote t 7→ x(t, τ, ξ) y t→ y(t, τ, η) to the solutions of (2.1) and (2.2) that pass through ξ and
η respectively on t = τ . We also denote X(t, s) the transition matrix of (2.1) such that for t = s is
the identity. Moreover, A : R+ → Md(R) is continuous, non singular (i.e. has invertible images)
and uniformly bounded, that is to say, there exists M > 1 such that

max

{

sup
s∈R+

∥

∥A(s)
∥

∥ , sup
s∈R+

∥

∥

∥A−1(s)
∥

∥

∥

}

=M.

The function f : R+ × R
d → R

d is such that there exist sequences u, v : R+ → R
+ that satisfy

that for every s ∈ R
+ and every pair (y, ỹ) ∈ R

d × R
d

|f(s, y)− f(s, ỹ)| ≤ v(s)|y − ỹ| ; |f(s, y)| ≤ u(s).

Furthermore, allow us to consider the following hypothesi:

(c1) (2.1) admits a non uniform dichotomy, i.e. there are two invariant complementary pro-
jectors P (·) and Q(·) such that P (t) + Q(t) = I for every t ≥ 0, a continuous function
K : [0,+∞[→ [0,∞[ and a decreasing C1 function h : [0,∞[→]0, 1], such that h(0) = 1
and limt→∞ h(t) = 0 and they satisfy























∥

∥X(t, s)P (s)
∥

∥ ≤ K(s)

(

h(t)

h(s)

)

, ∀t ≥ s ≥ 0

∥

∥X(t, s)Q(s)
∥

∥ ≤ K(s)

(

h(s)

h(t)

)

, ∀0 ≤ t ≤ s.

(c2)
∫ t

0

∥

∥X(t, s)P (s)
∥

∥ u(s)ds+

∫ ∞

t

∥

∥X(t, s)Q(s)
∥

∥ u(s)ds ≤ p <∞ , for every t ∈ R
+.
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(c3)
∫ t

0

∥

∥X(t, s)P (s)
∥

∥ v(s)ds +

∫ ∞

t

∥

∥X(t, s)Q(s)
∥

∥ v(s)ds ≤ q < 1 , for every t ∈ R
+.

(c4) The map u 7→ f(t, u) and its derivatives respect to u up to the order r (r ≥ 1) are

continuous functions of (t, u) ∈ R
+ × R

d and supu∈Rd

∥

∥

∥

∂f
∂u

(t, u)
∥

∥

∥ < +∞ is bounded.

(c5) For every fixed τ ∈ R
+, the functions K,h and v satisfy

∫ ∞

τ

K(s)h(s)v(s) exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

< +∞.

Remark 2.1. The projectors P and Q have been called invariant for (2.1), which means that for
every t, s ∈ R

+ they verify:

P (t)X(t, s) = X(t, s)P (s) and Q(t)X(t, s) = X(t, s)Q(s).

Definition 2.2. Green’s operator associated to (2.1) and the dichotomy (c1) is the matrix function
G : R+ × R

+ → Md(R) given by:

G(t, s) =







X(t, s)P (s) ∀t ≥ s ≥ 0,

−X(t, s)Q(s) ∀0 ≤ t < s,

and it is easily deduced that
∂G

∂t
(t, s) = A(t)G(t, s).

Remark 2.3. With this notation, conditions (c2) and (c3) are rewritten as:

(c2)
∫ ∞

0

∥

∥G(t, s)
∥

∥ u(s)ds ≤ p <∞ , for every t ∈ R
+.

(c3)
∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)ds ≤ q < 1 , for every t ∈ R
+.

3. Topological equivalence

In this section we prove that the linear system (2.1) and (2.2) are topologically equivalents on
the positive half line. In order to state this result, we first recall the following definition.

Definition 3.1. Let J ⊂ R an interval. Systems (2.1) and (2.2) are J-topologically equivalent if
there is a function H : J × R

d → R
d that satisfies

i) If x(t) is solution of (2.1), then H [t, x(t)] is solution of (2.2).
ii) H(t, u)− u is bounded on J × R

d.
iii) For every fixed τ ∈ J , the map u 7→ H(τ, u) is an homeomophism of Rd.

Moreover, the function u 7→ G(τ, u) = H−1(τ, u) verifies conditions ii) and iii) and maps solutions
of (2.2) on solutions of (2.1).

Theorem 3.2. If conditions (c1), (c2) and (c3) hold, then (2.1) and (2.2) are topologically
equivalent on R

+.

Proof. We develop the proof in several steps.

Step 1: Auxiliary functions. We define w∗ : R+ → R
d for (τ, η) ∈ R

+ × R
d by

w∗(t; (τ, η)) = −

∫ ∞

0

G(t, s)f(s, y(s, τ, η))ds

(3.1)

= −

∫ t

0

X(t, s)P (s)f(s, y(s, τ, η))ds+

∫ ∞

t

X(t, s)Q(s)f(s, y(s, τ, η))ds.
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We also define T : BC(R+,Rd) → BC(R+,Rd) for (τ, ξ) ∈ R
+ × R

d by

T (φ)(t; (τ, ξ)) =

∫ ∞

0

G(t, s)f(s, x(s, τ, ξ) + φ(s))ds.

T is well defined by (c2). Using condition (c3) we obtain

∣

∣T (φ)(t; (τ, ξ))− T (ψ)(t; (τ, ξ))
∣

∣ ≤

∫ ∞

0

∥

∥G(t, s)
∥

∥

∣

∣φ(s) − ψ(s)
∣

∣ v(s)ds

≤ q‖φ− ψ‖∞ ,

hence, using Banach’s fixed point Theorem, we obtain the existence of an unique fixed point

z∗(t; (τ, ξ)) =

∫ ∞

0

G(t, s)f(s, x(s, τ, ξ) + z∗(s; (τ, ξ)))ds.

It is easy to verify t 7→ w∗(t; (τ, η)) is solution to the initial value problem














ẇ(t) = A(t)w(t) − f(t, y(t, τ, η))

w(0) = −

∫ ∞

0

X(0, s)Q(s)f(s, y(s, τ, η))ds,

while t 7→ z∗(t; (τ, ξ)) is respectively solution to the initial value problem:














ż(t) = A(t)z(t)− f(t, x(t, τ, ξ) + z(t))

z(0) = −

∫ ∞

0

X(0, s)Q(s)f(s, x(s, τ, ξ) + z∗(s; (τ, ξ)))ds,

furthermore, by using (c2), the maps t 7→ w∗(t; (t, η)) and t 7→ z∗(t; (t, ξ)) are uniformly bounded.

Step 2: Construct maps H and G. By uniqueness of solutions

(3.2) x(t, τ, ξ) = x(t, s, x(s, τ, ξ)) , for every t, s, τ ∈ R
+,

and

(3.3) z∗(t; (τ, ξ)) = z∗(t; (s, x(s, τ, ξ))) , for every t, s, τ ∈ R
+.

For every fixed t ∈ R
+ we define H(t, ·) : Rd → R

d and G(t, ·) : Rd → R
d by

(3.4)















H(t, ξ) = ξ +

∫ ∞

0

G(t, s)f(s, x(s, t, ξ) + z∗(s; (t, ξ)))ds

= ξ + z∗(t; (t, ξ))

and

(3.5)















G(t, η) = η −

∫ ∞

0

G(t, s)f(s, y(s, t, η))ds

= η + w∗(t; (t, η)).

Using (c2), it follows immediately that H(t, ξ) − ξ and G(t, η) − η are bounded on R
+ × R

d,
hence H and G satisfy condition ii) from Definition 3.1. In order to study additional properties of
the map G, note that for τ ≥ t

y(t, τ, η) = X(t, τ)η −

∫ τ

t

X(t, s)f(s, y(s, τ, η))ds,

or equivalently

X(τ, t)y(t, τ, η) = η −

∫ τ

t

X(τ, s)f(s, y(s, τ, η))ds

= η −

∫ τ

t

X(τ, s)P (s)f(s, y(s, τ, η))ds−

∫ τ

t

X(τ, s)Q(s)f(s, y(s, τ, η))ds,



5

in particular, for t = 0 we obtain

X(τ, 0)y(0, τ, η) = η −

∫ τ

0

X(τ, s)P (s)f(s, y(s, τ, η))ds−

∫ τ

0

X(τ, s)Q(s)f(s, y(s, τ, η))ds

= η −

∫ τ

0

X(τ, s)P (s)f(s, y(s, τ, η))ds

+

∫ ∞

τ

X(τ, s)Q(s)f(s, y(s, τ, η))ds−

∫ ∞

0

X(τ, s)Q(s)f(s, y(s, τ, η))ds

= η −

∫ ∞

0

G(τ, s)f(s, y(s, τ, η))ds

−X(τ, 0)

∫ ∞

0

X(0, s)Q(s)f(s, y(s, τ, η))ds

= G(τ, η)−X(τ, 0)w∗(0; (τ, η)),

thus

(3.6) G(τ, η) = X(τ, 0)
{

y(0, τ, η) + w∗(0; (τ, η))
}

.

Step 3: H maps solutions of (2.1) on solutions of (2.2) and G maps solutions of (2.2) on
solutions of (2.1). By uniqueness of solutions, by simple differentiation we obtain

(3.7) H [t, x(t, τ, ξ)] = y(t, τ,H(τ, ξ))

and

(3.8) G[t, y(t, τ, η)] = x(t, τ, G(τ, η)) = X(t, τ)G(τ, η),

hence both maps satisfy condition i) of Definition 3.1 respectively.

Step 4: u 7→ G(t, u) and u 7→ H(t, u) are bijective for every fixed t ≥ 0.

First we show H(t, G(t, η)) = η for every t ≥ 0. Using (3.4) and (3.5)

H(t, G[t, y(t, τ, η)]) = G[t, y(t, τ, η)]

+

∫ ∞

0

G(t, s)f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)])))

= y(t, τ, η)−

∫ ∞

0

G(t, s)f(s, y(s, τ, η))ds

+

∫ ∞

0

G(t, s)f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)]))).

Define ω(t) =
∣

∣H [t, G[t, y(t, τ, η)]]− y(t, τ, η)
∣

∣. Note that

ω(t) ≤
∣

∣H [t, G[t, y(t, τ, η)]]−G[t, y(t, τ, η)]
∣

∣+
∣

∣G[t, y(t, τ, η)]− y(t, τ, η)
∣

∣ <∞,
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since both H and G satisfy condition ii) of Definition 3.1. Thus, using (c3), along with the previous
expression and the identities (3.3), (3.4) and (3.8), for an arbitrary t ∈ R

+ we have

ω(t) =

∣

∣

∣

∣

∫ ∞

0

G(t, s)
{

f(s, x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)]))) − f(s, y(s, τ, η))
}

ds

∣

∣

∣

∣

≤

∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)
∣

∣x(s, t, G[t, y(t, τ, η)]) + z∗(s; (t, G[t, y(t, τ, η)])) − y(s, τ, η)
∣

∣ ds

≤

∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)
∣

∣x(s, t, x(t, τ, G(τ, η))) + z∗(s; (t, x(t, τ, G(τ, η)))) − y(s, τ, η)
∣

∣ ds

≤

∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)
∣

∣x(s, τ,G(τ, η)) + z∗(s; (s, x(s, τ,G(τ, η)))) − y(s, τ, η)
∣

∣ ds

=

∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)
∣

∣H [s,G[s, y(s, τ, η)])]− y(s, τ, η)
∣

∣ ds

=

∫ ∞

0

∥

∥G(t, s)
∥

∥ v(s)ω(s)ds ≤ q · sup
s∈R+

{ω(s)}.

Thus ω(t) = 0 for every t ∈ R
+, otherwise we get a contradiction. In particular, taking t = τ

we obtain H(τ,G(τ, η)) = η. Now we show G(t,H(t, ξ)) = ξ. Indeed, using (3.2), (3.3), (3.4), (3.5)
and (3.7) we get

G[t,H [t, x(t, τ, ξ)]] = H [t, x(t, τ, ξ)]−

∫ ∞

0

G(t, s)f(s, y(s, t,H [t, x(t, τ, ξ)]))ds

= H [t, x(t, τ, ξ)]−

∫ ∞

0

G(t, s)f(s, y(s, t, y(t, τ,H(τ, ξ))))ds

= H [t, x(t, τ, ξ)]−

∫ ∞

0

G(t, s)f(s, y(s, τ,H(τ, ξ)))ds

= x(t, τ, ξ) +

∫ ∞

0

G(t, s)f(s, x(s, t, x(t, τ, ξ)) + z∗(s; (t, x(t, τ, ξ))))ds

−

∫ ∞

0

G(t, s)f(s, y(s, τ,H(τ, ξ)))ds

= x(t, τ, ξ) +

∫ ∞

0

G(t, s)f(s, x(s, τ, x(τ, τ, ξ)) + z∗(s; (s, x(s, τ, ξ))))ds

−

∫ ∞

0

G(t, s)f(s, y(s, τ,H(τ, ξ)))ds

= x(t, τ, ξ)

+

∫ ∞

0

G(t, s)
{

f(s, x(s, τ, ξ) + z∗(s; (s, x(s, τ, ξ)))) − f(s, y(s, τ,H(τ, ξ)))
}

ds

= x(t, τ, ξ) +

∫ ∞

0

G(t, s)
{

f(s,H(s, x(s, τ, ξ)))− f(s, y(s, τ,H(τ, ξ)))
}

ds

= x(t, τ, ξ) +

∫ ∞

0

G(t, s)
{

f(s, y(s, τ,H(τ, ξ)))− f(s, y(s, τ,H(τ, ξ)))
}

ds

= x(t, τ, ξ),

evaluating on t = τ we obtain G(τ,H(τ, ξ)) = ξ.
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Step 5: u 7→ G(t, u) is continuous.

It is enough to show η 7→ w∗(t; (t, η)) is continuous for every t ≥ 0, sinceG(t, η) = η+w∗(t; (t, η)).
Let η ∈ R

d and {ηn}n∈N ⊂ R
d be a sequence such that limn→∞ ηn = η. Fix t, τ ∈ R

+ and define
(an)n∈N the sequence of functions over R+ given by

an(s) = G(t, s)f(s, y(s, τ, ηn)),

notice that

|an(s)| ≤
∥

∥G(t, s)
∥

∥ u(s) , for every s ∈ R
+ and n ∈ N.

On the other hand, as u 7→ f(s, u) and ξ 7→ y(s, τ, ξ) are continuous, it is clear (an)n∈N converges
pointwise to a : R+ → R

d given by

a(s) = G(t, s)f(s, y(s, τ, η)).

Thus, by Lebesgue’s dominated convergence Theorem we have

lim
n→∞

w∗(t; (τ, ηn)) = lim
n→∞

−

∫ ∞

0

G(t, s)f(s, y(s, τ, ηn))ds

= − lim
n→∞

∫ ∞

0

an(s)ds = −

∫ ∞

0

a(s)ds = w∗(t; (τ, η)).

Hence η 7→ w∗(t; (τ, η)) is continuous and in particular η 7→ w∗(t; (t, η)) is also continuous.

Step 6: u 7→ H(t, u) is continuous.

It is enough to show ξ 7→ z∗(t; (t, ξ)) is continuous for every t ≥ 0.

Let ξ ∈ R
d and a sequence {ξn}n∈N ⊂ R

d such that limn→∞ ξn = ξ. Let u 7→ φ(t; (τ, u)) be a
continuous function for t, τ ∈ R

+ fixed. We define

bn(s) = G(t, s)f(s, x(s, τ, ξn) + φ(s; (τ, ξn))),

note it satisfies

|bn(s)| ≤
∥

∥G(t, s)
∥

∥ u(s) , para todo s ∈ R
+ y n ∈ N,

and

lim
n→∞

bn(s) = G(t, s)f(s, x(s, τ, ξ) + φ(s; (τ, ξ))) := b(s).

Using Lebesgue’s dominated convergence Theorem we have

lim
n→∞

(Tφ)(t; (τ, ξn)) = lim
n→∞

∫ ∞

0

G(t, s)f(s, x(s, τ, ξn) + φ(s; (τ, ξn)))ds

= lim
n→∞

∫ ∞

0

bn(s)ds =

∫ ∞

0

b(s)ds = (Tφ)(t; (τ, ξ)),

thus ξ 7→ (Tφ)(t; (τ, ξ)) is continuous, and hence it’s fixed point ξ 7→ z∗(t; (τ, ξ)) is continuous as
well, which allows us to conclude H is continuous and so it is an homeomorphism. In conclusion
(2.1) and (2.2) are topologically equivalent on R

+. �

4. Differentiability of topological equivalence under a dichotomy

In this section we prove that the topological equivalence is of class C1. Our approach does not
impose resonance conditions or spectral gaps.

We recall of the definition, introduced on [4], of Cr− topologically equivalent on the positive
half line .

Definition 4.1. The systems (2.1) and (2.2) are Cr-topologically equivalent on R
+ if they are

topologically equivalent on R
+ with the map u 7→ H(t, u), which is a diffeomorphism of class Cr,

with r ≥ 1, for every fixed t ≥ 0.

Lemma 4.2. If conditions (c1)-(c5) hold, with r = 1 on (c4), then η 7→ w∗(0; (τ, η)) defined on
(3.1) is a C1 map.
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Proof. Fix η ∈ R
d and let (δn)n∈N ⊂ R

d be a properly convergent to zero sequence. Fix τ ∈ R
+

and define

ϕn(s) = G(0, s)
f(s, y(s, τ, η + δn))− f(s, y(s, τ, η))− ∂f

∂u
(s, y(s, τ, η))∂y

∂η
(s, τ, η)δn

|δn|
.

As η 7→ y(s, τ, η) is continuous, then limn→∞ y(s, τ, η + δn) = y(s, τ, η). Using (c4) it follows
from classic results of differentiability respect to the initial conditions (see for example Theorem
4.1 in [10]) that η 7→ y(s, τ, η) is differentiable. Again by (c4) we obtain

lim
n→∞

ϕn(s) = 0.

Also note
∥

∥

∥

∥

∂f

∂u
(s, u)

∥

∥

∥

∥

= lim
δ→0

|f(s, u+ δ)− f(s, u)|

|δ|
≤ lim

δ→0
v(s) = v(s),

hence

|ϕn(s)| ≤
∥

∥G(0, s)
∥

∥

∣

∣f(s, y(s, τ, η + δn))− f(s, y(s, τ, η))
∣

∣+
∣

∣

∣

∂f
∂u

(sy(s, τ, η))∂y
∂η

(s, τ, η)δn

∣

∣

∣

|δn|

≤
∥

∥G(0, s)
∥

∥

v(s)
∣

∣y(s, τ, η + δn)− y(s, τ, η)
∣

∣+ v(s)
∣

∣

∣

∂y
∂η

(s, τ, η)δn

∣

∣

∣

|δn|

≤
∥

∥G(0, s)
∥

∥ v(s)

(
∣

∣y(s, τ, η + δn)− y(s, τ, η)
∣

∣

|δn|
+

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

)

.

Let η̃ ∈ R
d and s ≥ τ . We know

y(s, τ, η) = y(τ, τ, η) +

∫ s

τ

ẏ(r, τ, η)dr = η +

∫ s

τ

ẏ(r, τ, η)dr,

hence

y(s, τ, η)− y(s, τ, η̃) = η − η̃ +

∫ s

τ

ẏ(r, τ, η)− ẏ(r, τ, η̃)dr.

Defining z(s) = ẏ(s, τ, η)− ẏ(s, τ, η̃), the previous expression implies

|y(s, τ, η)− y(s, τ, η̃)| ≤ |η − η̃|+

∫ s

τ

|z(r)|dr.

Note

ẏ(s, τ, η)− ẏ(s, τ, η̃) = A(s)
[

y(s, τ, η)− y(s, τ, η̃)
]

+ f(s, y(s, τ, η))− f(s, y(s, τ, η̃)),

from where it follows that

|z(s)| ≤
∥

∥A(s)
∥

∥ |y(s, τ, η)− y(s, τ, η̃)|+ |f(s, y(s, τ, η))− f(s, y(s, τ, η̃))|

≤
∥

∥A(s)
∥

∥ |y(s, τ, η)− y(s, τ, η̃)|+ v(s)|y(s, τ, η) − y(s, τ, η̃)|

≤
(

∥

∥A(s)
∥

∥ + v(s)
)

|y(s, τ, η)− y(s, τ, η̃)|

≤
(

∥

∥A(s)
∥

∥ + v(s)
)

[

|η − η̃|+

∫ s

τ

|z(r)|dr

]

.

Define Z(s) = |η− η̃|+
∫ s

τ
|z(r)|dr. Note s > τ ⇒ Z 6= 0, thus, the previous expression becomes

Z ′(s)

Z(s)
≤
(

∥

∥A(s)
∥

∥+ v(s)
)

,

from where

log
(

Z(s)
)

− log
(

Z(τ)
)

= log

(

Z(s)

|η − η̃|

)

≤

∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr,
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hence

|y(s, τ, η)− y(s, τ, η̃)| ≤ |η − η̃|+

∫ s

τ

|z(r)|dr = Z(s) ≤ |η − η̃| exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

,

so, for s ≥ τ
|y(s, τ, η)− y(s, τ, η + δn)|

|δn|
≤ exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

,

which in particular implies
∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

≤ exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

.

In conclusion, for s ≥ τ we have

|ϕn(s)| ≤
∥

∥G(0, s)
∥

∥ v(s)

(
∣

∣y(s, τ, η + δn)− y(s, τ, η)
∣

∣

|δn|
+

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

)

≤ 2
∥

∥G(0, s)
∥

∥ v(s) exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

≤ 2K(s)h(s)v(s) exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

.

On the other hand, on the compact [0, τ ] the sequence of continuous functions s 7→
|y(s,τ,η+δn)−y(s,τ,η)|

|δn|

converge pointwise to s 7→
∥

∥

∥

∂y
∂η

(s, τ, η)
∥

∥

∥ when n → ∞, which is also continuous, hence the conver-

gence is uniform, i.e. there exist n̂ ∈ N such that n ≥ n̂ and s ∈ [0, τ ] we have
∣

∣y(s, τ, η + δn)− y(s, τ, η)
∣

∣

|δn|
+

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

≤ 2

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

+ 1.

Hence, for n ≥ n̂ and s ∈ [0, τ ] we have

|ϕn(s)| ≤
∥

∥G(0, s)
∥

∥ v(s)

(
∣

∣y(s, τ, η + δn)− y(s, τ, η)
∣

∣

|δn|
+

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

)

≤ K(s)h(s)v(s)

(

2

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

+ 1

)

.

Summarizing, if we define F : R+ → R by

F(s) =



















K(s)h(s)v(s)

(

2
∥

∥

∥

∂y
∂η

(s, τ, η)
∥

∥

∥ + 1

)

τ ≥ s ≥ 0,

2K(s)h(s)v(s) exp
(

∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr
)

∀s ≥ τ,

we get |ϕn(s)| ≤ F(s) for every n ≥ n̂. Note that using (c5)
∫ ∞

0

F(s)ds ≤

∫ τ

0

K(s)h(s)v(s)

(

2

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

+ 1

)

ds

+2

∫ ∞

τ

K(s)h(s)v(s) exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

ds < +∞.

Thus, using Lebesgue’s dominated convergence Theorem we obtain

lim
n→∞

w∗(0; (τ, η + δn))− w∗(0; (τ, η)) +
[

∫∞

0
G(0, s)∂f

∂u
(s, y(s, τ, η))∂y

∂η
(s, τ, η)ds

]

δn

|δn|

= lim
n→∞

∫ ∞

0

−ϕn(s)ds = −

∫ ∞

0

(

lim
n→∞

ϕn(s)

)

ds = 0,

hence η 7→ w∗(0; (τ, η)) is differentiable. �
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Corollary 4.3. If conditions (c1)-(c5) hold, with r = 1 on (c4), then for every fixed τ ∈ R
+ we

have
∂w∗(0; (τ, η))

∂η
= −

∫ ∞

0

G(0, s)
∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η)ds.

Theorem 4.4. If conditions (c1)-(c5) hold, with r = 1 on (c4), then the systems (2.1) and (2.2)
are C1-topologically equivalent on R

+.

Proof. By Theorem 3.2 we know they are topologically equivalent. By Lemma 4.2 we know
η 7→ w∗(0; (τ, η)) is a C1 map and by classic results of differentiability respect to the initial
conditions (see for example Theorem 4.1 in [10]) we know η 7→ y(0, τ, η) is as well a C1 map, which
along with the expression (3.6) allows us to conclude η 7→ G(τ, η) is a C1 map.

Furthermore, as G is a topological equivalence, then ξ 7→ G(τ, ξ)− ξ is bounded, thus G(τ, ξ) →
∞ when |ξ| → ∞. This fact, along with the previous discussion implies by [12, Corollary 2.1] that
ξ 7→ G(τ, ξ) is a C1 diffeomorphism. Moreover, as G(τ,H(τ, ξ)) = ξ, we have

∂G

∂ξ
(τ,H(τ, ξ))

∂H

∂ξ
(τ, ξ) = I,

and so ∂H
∂ξ

(τ, ξ) =
[

∂G
∂ξ

(τ,H(τ, ξ))
]−1

, which completes the proof. �

Corollary 4.5. If (c4) is satisfied with r = 1. Furthermore, suppose (2.1) admits an exponential
dichotomy, i.e. P and Q are constant complementary projectors, K(s) = K > 0 for every s ∈ R

+

and h(s) = e−λs, with λ > 0. Suppose v(s) = v > 0 and u(s) = u > 0 for every s ∈ R
+. Then, if

2Kv < λ and M + v < λ, the systems (2.1) and (2.2) are C1-topologically equivalent on R
+.

Proof. For an arbitrary t ∈ R
+ we have

∫ ∞

0

∥

∥G(t, s)
∥

∥ uds =

∫ t

0

∥

∥X(t, s)P
∥

∥ uds+

∫ ∞

t

∥

∥X(t, s)Q
∥

∥ uds

≤

∫ t

0

e−λ(t−s)Kuds+

∫ ∞

t

e−λ(s−t)Kuds

≤ Ku
1− e−λt

λ
+
Ku

λ
≤

2Ku

λ
,

thus (c2) is satisfied. Analogously
∫ ∞

0

∥

∥G(t, s)
∥

∥ vds ≤
2Kv

λ
< 1,

thus (c3) is verified. Finally, for an arbitrary τ ∈ R
+ we have

∫

∞

τ

Kve−λs exp

(∫ s

τ

∥

∥A(r)
∥

∥ + vdr

)

ds ≤

∫

∞

τ

Kve−λs exp

(∫ s

τ

M + vdr

)

ds

=

∫

∞

τ

Kve−λse(M+v)(s−τ)ds

= e−(M+v)τKv

∫

∞

τ

e(M+v−λ)sds < +∞,

so (c5) is satisfied. Applying Theorem 4.4 the systems are C1-topologically equivalent on R
+. �

Corollary 4.6. Suppose (2.1) admits a nonuniform exponential dichotomy, i.e. there are two
complementary invariant projectors P (·) and Q(·) and constants constanes C, λ, ε1 > 0 such that











∥

∥X(t, s)P (s)
∥

∥ ≤ Ce−λ(t−s)+ε1s, ∀t ≥ s ≥ 0

∥

∥X(t, s)Q(s)
∥

∥ ≤ Ceλ(t−s)+ε1s, ∀0 ≤ t ≤ s.
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Furthermore, suppose that for each t ∈ R
+ u 7→ f(t, u) is a C1 map such that u 7→ ∂f

∂u
(t, u) is a

bounded map that satisfies

(4.1) |f(s, u)| ≤ κe−ε0s

and

(4.2)

∥

∥

∥

∥

∂f

∂u
(s, u)

∥

∥

∥

∥

≤ νe−ε1s,

for given ν, κ > 0 y ε0 > ε1 − λ. Then, if M < λ, for ν > 0 being small enough the systems (2.1)
and (2.2) are C1-topologically equivalent on R

+.

Proof. Condition (c1) is easily verified with K(s) = Ceε1s and h(s) = e−λs. Note that condition
(4.2) implies

|f(s, y)− f(s, ỹ)| ≤ νe−ε1s|y − ỹ|,

hence our general conditions are verified with v(s) = νe−ε1s and u(s) = κe−ε0s. Thus condition
(c2) is satisfied inmedietly and, for small enough ν, (c3) is as well, meanwhile (c4) is granted by
hypothesis. Denote

Ψτ (s) = exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

.

It is easy to see s ≥ τ ≥ t implies Ψt(s) ≤ Ψτ (s), hence for a fixed τ ∈ R
+

Ψτ (s) ≤ Ψ0(s) ≤ e(M+ν)s.

Thus
∫ ∞

τ

K(s)h(s)v(s)Ψτ (s)ds ≤

∫ ∞

0

Cνe−λsΨ0(s)ds

≤ Cν

∫ ∞

0

e(M+ν−λ)sds,

which, as M < λ, is finite as soon as ν is small enough, particularly 0 < ν < λ − M . Thus,
condition (c5) is verified. Applying Theorem 4.4 the corollary follows. �

5. Second class of differentiability for the topological equivalence

We once again consider the expression (3.6) in order to study the second derivative of the
homeomorphism of topological equivalence. Taking in account classic results of differentiability
respect to the initial conditions (see for example Theorem 4.1 in [10]), we know the map η 7→
y(0, τ, η) has the same class of differentiability as u 7→ f(τ, u) for every τ ∈ R

+ when conditions
(c1)-(c4) are satisfied; hence the class of differentiability of the homeomorphism relies on the
differentiability of the map η 7→ w∗(0; (τ, η)).

Lemma 5.1. Suppose conditions (c1)-(c5) hold, with r = 2 on (c4). Furthermore, suppose there
are functions V : R+ → R

+ and πτ : R+ → R
+ such that

(5.1)

∥

∥

∥

∥

∥

∂2f

∂u2
(s, u)

∥

∥

∥

∥

∥

≤ V(s) , for every s ∈ R
+

and

(5.2)

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

≤ πτ (s) , for every s ≥ τ.

If for every fixed τ ∈ R
+ the previous functions verify

(5.3)

∫

∞

τ






K(s)h(s)







πτ (s)v(s) +V(s)

[

exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

]2











ds < +∞,

then η 7→ w∗(0; (τ, η)) is a C2 map.
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Proof. We follow the same strategy as in Lemma 4.2. In Corollary 4.3 we established

∂w∗(0; (τ, η))

∂η
= −

∫ ∞

0

G(0, s)
∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η),

for every fixed τ ∈ R
+, which is granted by conditions (c1)-(c5). Denote

Oτ,η(s) =
∂f

∂u
(s, y(s, τ, η))

∂2y

∂η2
(s, τ, η) +

∂2f

∂u2
(s, y(s, τ, η))

(

∂y

∂η
(s, τ, η)

)2

.

Fix η ∈ R
d and let (δn)n∈N ⊂ R

d be a properly convergence to zero sequence. Choose τ ∈ R
+

and define the sequence of functions (Fn,τ,η)n∈N over R+ given by

Fn,τ,η(s) =
∂f

∂u
(s, y(s, τ, η + δn))

∂y

∂η
(s, τ, η + δn)−

∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η).

We now define (ψn)n∈N by

ψn(s) = G(0, s)
Fn,τ,η(s)−Oτ,η(s)δn

|δn|
,

which by (c4) verifies
lim
n→∞

ψn(j) = 0.

On the other hand, it is easy to deduce from (5.1) and (5.2) that
∥

∥

∥

∥

∂f

∂u
(s, u)−

∂f

∂u
(s, ũ)

∥

∥

∥

∥

≤ V(s)|u− ũ| , for every s ∈ R
+

and
∥

∥

∥

∥

∂y

∂η
(s, τ, η)−

∂y

∂η
(s, τ, η̃)

∥

∥

∥

∥

≤ πτ (s)|η − η̃| , for s ≥ τ.

Thus, for s ≥ τ

∥

∥Oτ,η(s)
∥

∥ ≤

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η))

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∂2f

∂u2
(s, y(s, τ, η))

∥

∥

∥

∥

∥

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

2

≤ πτ (s)v(s) +V(s)

[

exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

]2

,

and
∥

∥Fn,τ,η(s)
∥

∥ ≤

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η + δn))

∂y

∂η
(s, τ, η + δn)−

∂f

∂u
(s, y(s, τ, η + δn))

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

+

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η + δn))

∂y

∂η
(s, τ, η)−

∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η + δn))

∥

∥

∥

∥

∥

∥

∥

∥

∂y

∂η
(s, τ, η + δn)−

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

+

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η + δn))−

∂f

∂u
(s, y(s, τ, η))

∥

∥

∥

∥

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

≤ v(s)πτ (s)|δn|+V(s)|y(s, τ, η + δn)− y(s, τ, η)| exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

≤



v(s)πτ (s) +V(s)

[

exp

(
∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

]2


 |δn|.

Now, consider the sequence of continuous functions s 7→

∥

∥

∥

∂y
∂η

(s, τ, η)− ∂y
∂η

(s, τ, η + δn)
∥

∥

∥

|δn|
defined

on [0, τ ]. As they converge pointwise to the continuous function s 7→
∥

∥

∥

∂2y
∂η2 (s, τ, η)

∥

∥

∥ on the compact
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domain [0, τ ] the convergence is uniform. Thus, there is n̂ ∈ N such that
∥

∥

∥

∂y
∂η

(s, τ, η)− ∂y
∂η

(s, τ, η + δn)
∥

∥

∥

|δn|
≤

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

+ 2 for every 0 ≤ s ≤ τ ;n ≥ n̂.

Thus, for 0 ≤ s ≤ τ and n ≥ n̂

∥

∥Fn,τ,η(s)
∥

∥ ≤






v(s)





∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

+ 2



+V(s)

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

2






|δn|,

while for s ∈ [0, τ ]

∥

∥Oτ,η(s)
∥

∥ ≤

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

v(s) +V(s)

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

2

.

Let us define

Fτ (s) :=































2
∥

∥G(0, s)
∥

∥

(

v(s)

(

∥

∥

∥

∂2y
∂η2 (s, τ, η)

∥

∥

∥
+ 1

)

+V(s)
∥

∥

∥

∂y
∂η

(s, τ, η)
∥

∥

∥

2
)

, 0 ≤ s ≤ τ

2
∥

∥G(0, s)
∥

∥

(

v(s)πτ (s) +V(s)

[

exp
(

∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr
)

]2
)

, s ≥ τ.

It is easy to see
∥

∥ψn(s)
∥

∥ ≤ Fτ (s) for every s ∈ R
+ and n ≥ n̂. Now, using (5.3) we have

∫ ∞

0

Fτ (s)ds ≤ 2

∫ τ

0

∥

∥G(0, s)
∥

∥






v(s)





∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

+ 1



+V(s)

∥

∥

∥

∥

∂y

∂η
(s, τ, η)

∥

∥

∥

∥

2






ds

+2

∫ ∞

τ

K(s)h(s)



v(s)πτ (s) +V(s)

[

exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

]2


 ds < +∞.

Finally, using Lebesgue’s dominated convergence Theorem we obtain

lim
n→∞

∂w∗

∂η
(0; (τ, η + δn))−

∂w∗

∂η
(0; (τ, η)) +

[

∫∞

0
G(0, s)Oτ,η(s)ds

]

δn

|δn|
= − lim

n→∞

∫ ∞

0

ψn(s)ds

= −

∫ ∞

0

(

lim
n→∞

ψn(s)

)

= 0,

which implies η 7→ ∂w∗

∂η
(0; (τ, η)) is differentiable, hence η 7→ w∗(0; (τ, η)) is a C2 map. �

Corollary 5.2. If conditions from Lemma hold 5.1, then for every fixed τ ∈ R
+

∂2w∗(0; (τ, η))

∂η2
= −

∫ ∞

0

G(0, s)

[

∂f

∂u
(s, y(s, τ, η))

∂2y

∂η2
(s, τ, η) +

∂2f

∂u2
(s, y(s, τ, η))

(

∂y

∂η
(s, τ, η)

)2
]

ds.

Theorem 5.3. If conditions (c1)-(c5) hold, with r = 2 on (c4), and conditions from Lemma 5.1
are satisfied, then (2.1) and (2.2) are C2-topologically equivalent on R

+.

Note that Theorem 5.3 follows easily in the same fashion as the proof of Theorem 4.4. Now we
proceed to study some technical results in order to establish a concrete example of above Theorem.

Lemma 5.4. If conditions (c1)-(c4) hold, with r = 2 on (c4), then

∂

∂s

∂y

∂η
(s, τ, η) =

∂

∂η

∂y

∂s
(s, τ, η).
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Proof. Note that

∂

∂s

∂y

∂η
(s, τ, η) =

∂

∂s

(

X(s, τ) +
∂

∂η

∫ s

τ

X(s, r)f(r, y(r, τ, η))dr

)

=
∂

∂s

(

X(s, τ) +

∫ s

τ

X(s, r)
∂f

∂u
(r, y(r, τ, η))

∂y

∂η
(r, τ, η)dr

)

= A(s)

(

X(s, τ) +

∫ s

τ

X(s, r)
∂f

∂u
(r, y(r, τ, η))

∂y

∂η
(r, τ, η)dr

)

+
∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η)

= A(s)
∂y

∂η
(s, τ, η) +

∂f

∂u
(s, y(s, τ, η))

∂y

∂η
(s, τ, η)

=
∂

∂η

∂y

∂s
(s, τ, η),

where the second equality is verified using Lebesgue’s dominated convergence Theorem. �

Corollary 5.5. If conditions (c1)-(c5) hold, with r = 2 on (c4), then t 7→ z(t, τ, η) := ∂y
∂η

(t, τ, η)

is solution to the matrix initial value problem:















z′(t) =

[

A(t) +
∂f

∂u
(t, y(t, τ, η)

]

z(t)

z(τ) = I.

Lemma 5.6. Suppose conditions (c1)-(c5) hold, with r = 2 on (c4). If s 7→ V(s) satisfies (5.1),
then for every s ≥ τ

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

≤ exp

(∫ s

τ

∥

∥A(p)
∥

∥+ v(p)dp

)

·

∫ s

τ

{

V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

}

dp.

Proof. Let η, η̃ ∈ R
n and fix τ ∈ R

+. Denote s 7→ z(s, τ, η) := ∂y
∂η

(s, τ, η) and s 7→ z(s, τ, η̃) :=
∂y
∂η

(s, τ, η̃). By Corollary 5.5 we know

z′(s, τ, η) =

[

A(s) +
∂f

∂u
(s, y(s, τ, η))

]

z(s, τ, η),

hence

z′(s, τ, η)− z′(s, τ, η̃) = A(s)
(

z(s, τ, η)− z(s, τ, η̃)
)

+
∂f

∂u
(s, y(s, τ, η))z(s, τ, η)

−
∂f

∂u
(s, y(s, τ, η̃))z(s, τ, η̃)

=

[

A(s) +
∂f

∂u
(s, y(s, τ, η))

]

(

z(s, τ, η)− z(s, τ, η̃)
)

+

[

∂f

∂u
(s, y(s, τ, η)) −

∂f

∂u
(s, y(s, τ, η̃))

]

z(s, τ, η̃).
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Thus
∥

∥z′(s, τ, η)− z′(s, τ, η̃)
∥

∥ ≤

∥

∥

∥

∥

A(s) +
∂f

∂u
(s, y(s, τ, η)

∥

∥

∥

∥

∥

∥z(s, τ, η)− z(s, τ, η̃)
∥

∥

+

∥

∥

∥

∥

∂f

∂u
(s, y(s, τ, η))−

∂f

∂u
(s, y(s, τ, η̃))

∥

∥

∥

∥

∥

∥z(s, τ, η̃)
∥

∥

≤
(

∥

∥A(s)
∥

∥+ v(s)
)

∥

∥z(s, τ, η)− z(s, τ, η̃)
∥

∥

+V(s)
∣

∣y(s, τ, η)− y(s, τ, η̃)
∣

∣

∥

∥z(s, τ, η̃)
∥

∥

≤
(

∥

∥A(s)
∥

∥+ v(s)
)

∥

∥z(s, τ, η)− z(s, τ, η̃)
∥

∥

+V(s) exp

(

2

∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

|η − η̃|,

or equivalently, for p ∈ [τ, s]
∥

∥z′(p, τ, η)− z′(p, τ, η̃)
∥

∥

|η − η̃|
≤

(

∥

∥A(p)
∥

∥+ v(p)
)

∥

∥z(p, τ, η)− z(p, τ, η̃)
∥

∥

|η − η̃|
+V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

.

On the other hand

z(s, τ, η)− z(s, τ, η̃) = z(τ, τ, η) +

∫ s

τ

z′(p, τ, η)dp− z(τ, τ, η̃)−

∫ s

τ

z′(p, τ, η̃)dp

=

∫ s

τ

z′(p, τ, η)− z′(p, τ, η̃)dp,

hence

φ(s) :=

∥

∥z(s, τ, η)− z(s, τ, η̃)
∥

∥

|η − η̃|
≤

∫ s

τ

∥

∥z′(p, τ, η)− z′(p, τ, η̃)
∥

∥

|η − η̃|
dp,

thus, we can deduce

φ(s) ≤

∫ s

τ

{

(

∥

∥A(p)
∥

∥+ v(p)
)

φ(p) +V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

}

dp,

or alternatively, writing for s ≥ τ

α(s) =
∥

∥A(s)
∥

∥ + v(s)

and

β(s) =

∫ s

τ

V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

dp,

we have

φ(s) ≤ β(s) +

∫ s

τ

α(p)φ(p)dp

by using Gronwall’s Lemma we have

φ(s) ≤ β(s) exp

(∫ s

τ

α(p)dp

)

=

∫ s

τ

{

V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

}

dp · exp

(∫ s

τ

∥

∥A(p)
∥

∥+ v(p)dp

)

,

which by definition of
∥

∥

∥

∂2y
∂η2 (s, τ, η)

∥

∥

∥, concludes the proof. �

Corollary 5.7. Suppose conditions (c1)-(c5) hold, with r = 2 on (c4). If v(s) = νe−ε1s and
V(s) = ζe−ε2s satisfies (5.1), then for s ≥ τ

∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

≤
ζe−3τ(M+ν)

2(M + ν)− ε2

[

e(3(M+ν)−ε2)s − e(2(M+ν)−ε2)τ+(M+ν)s
]

.
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Proof. By Lemma 5.6 we have
∥

∥

∥

∥

∥

∂2y

∂η2
(s, τ, η)

∥

∥

∥

∥

∥

≤ exp

(
∫ s

τ

∥

∥A(p)
∥

∥ + v(p)dp

)

·

∫ s

τ

{

V(p) exp

(

2

∫ p

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

}

dp

≤ e(s−τ)(M+ν)

∫ s

τ

{

ζe−ε2pe2(p−τ)(M+ν)
}

dp

= ζe(s−3τ)(M+ν) e
(2(M+ν)−ε2)s − e(2(M+ν)−ε2)τ

2(M + ν)− ε2

=
ζe−3τ(M+ν)

2(M + ν)− ε2

[

e(3(M+ν)−ε2)s − e(2(M+ν)−ε2)τ+(M+ν)s
]

�

Theorem 5.8. Suppose (2.1) admits a nonuniform exponential dichotomy, i.e. there are two
complementary invariant projectors P (·), Q(·) and constants C, λ, ε1 > 0 such that











∥

∥X(t, s)P (s)
∥

∥ ≤ Ce−λ(t−s)+ε1s, ∀t ≥ s ≥ 0

∥

∥X(t, s)Q(s)
∥

∥ ≤ Ceλ(t−s)+ε1s, ∀0 ≤ t ≤ s.

Furthermore, suppose that for each t ∈ R
+ u 7→ f(t, u) is a C2 map satisfying

|f(s, u)| ≤ κe−ε0s,
∥

∥

∥

∥

∂f

∂u
(s, u)

∥

∥

∥

∥

≤ νe−ε1s

and

(5.4)

∥

∥

∥

∥

∂f

∂u
(s, u)−

∂f

∂u
(s, ũ)

∥

∥

∥

∥

≤ ζe−ε2s|u− ũ|,

for given κ, ν, ζ > 0 and ε0 > ε1 − λ. If 3M < λ + ε2, 2M < λ + ε2 − ε1 and M < λ, then for
small enough ν > 0 the systems (2.1) and (2.2) are C2-topologically equivalent on R

+.

Proof. By Corollary 4.6 we know conditions (c1)-(c5) are verified, this the systems are C1-
topologically equivalent on R

+, with v(s) = νe−ε1s. It is easy to see (5.4) implies (5.1), with
V(s) = ζe−ε2s. As in Corollary 4.6, denote

Ψτ (s) = exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

,

and note that s ≥ τ ≥ t implies Ψt(s) ≤ Ψτ (s), thus for every fixed τ ∈ R
+

Ψτ (s)
2 ≤ Ψ0(s)

2 ≤ e2(M+ν)s.

Hence
∫ ∞

τ

K(s)h(s)V(s)Ψτ (s)
2ds ≤

∫ ∞

0

K(s)h(s)V(s)Ψ0(s)
2ds

≤ Cζ

∫ ∞

0

e[−λ−ε2+ε1+2(M+ν)]sds.

As 2M < λ+ ε2 − ε1, then for a small enough ν we have

(5.5)

∫ ∞

τ

K(s)h(s)V(s)

[

exp

(∫ s

τ

∥

∥A(r)
∥

∥ + v(r)dr

)

]2

ds < +∞.

Now, by Corollary 5.7, we know

πτ (s) :=
ζe−3τ(M+ν)

2(M + ν)− ε2

[

e(3(M+ν)−ε2)s − e(2(M+ν)−ε2)τ+(M+ν)s
]

,

satisfies condition (5.2) from Lemma 5.1. Note that
∫ ∞

τ

K(s)h(s)πτ (s)v(s)ds =

∫ ∞

τ

Kτ

[

e(3(M+ν)−ε2−λ)s −
e(M+ν−λ)s

e(ε2−2(M+ν))τ

]

ds < +∞,
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for a small enough ν, where Kτ = Cζνe−3τ(M+ν)

2(M+ν)−ε2
. The previous argument, along with (5.5) imply that

conditions (5.3) from Lemma 5.1 is satisfied. Finally, applying Theorem 5.3 the result follows. �

Remark 5.9. In the previous result, if ε0 = ε1 = ε2 := ε, then the conditions ε0 > ε1 − λ,
3M < λ+ ε2, 2M < λ+ ε2 − ε1 and M < λ, may be reduced to 2M < λ and 3M < λ+ ε.
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