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4 Université Côte d’Azur, CNRS, LJAD, Parc Valrose, 06108 NICE Cedex 02, France

Interdisciplinary Scientific Center Poncelet (CNRS IRL 2615), 119002 Moscow, Russia

E-mail: cbernard@unice.fr

Abstract. We consider a harmonic chain of N oscillators in the presence of a disordered

magnetic field. The ends of the chain are connected to heat baths and we study the

effects of the magnetic field randomness on heat transport. The disorder, in general, causes

localization of the normal modes due to which a system becomes insulating. However, for

this system, the localization length diverges as the normal mode frequency approaches zero.

Therefore, the low frequency modes contribute to the transmission, TN (ω), and the heat

current goes down as a power law with the system size, N . This power law is determined

by the small frequency behaviour of some Lyapunov exponent, λ(ω), and the transmission

in the thermodynamic limit, T∞(ω). While it is known that in the presence of a constant

magnetic field T∞(ω) ∼ ω3/2, ω1/2 depending on the boundary conditions, we find that the

Lyapunov exponent for the system behaves as λ(ω) ∼ ω for 〈B〉 6= 0 and λ(ω) ∼ ω2/3 for

〈B〉 = 0. Therefore, we obtain different power laws for current vs N depending on 〈B〉 and

the boundary conditions.

Keywords : Heat conduction, Transport properties.

1 Introduction

In his seminal paper [1] Anderson studied the conductance of electrons and explained how

the presence of impurities in the metal could reduce drastically the diffusive motion of the

electrons up to a complete halt and thus giving place to an insulator. This phenomenon
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depends strongly on the dimension and the Metal Insulator Transition is not instantaneous

with respect to the disorder strength only in dimension greater or equal to three. Nowadays

Anderson localization is seen as a generic phenomenon present in disordered media whereby

the addition of random defects in the medium has the tendency to localize in space the

normal modes of the system. As a consequence it reduces drastically the transport coeffi-

cient. Originally Anderson’s work took place in a quantum context but the phenomenon he

explained appears also in a classical one. In the 70’s Lebowitz and others [2, 3, 4, 5] started

to investigate the effect of impurities (random masses) on the transport properties of a one

dimensional harmonic chain, arguing in particular that the conductivity κ(N) of the chain

(which is proportional to the system size N for a purely harmonic chain), loses some order

of magnitude because of disorder: κ(N) ∼ Na, a < 1 (see [6] for a mathematical proof).

But at the difference with respect to original Anderson localization, the conductivity does

not become exponentially small in the system size and, depending on the physical boundary

conditions and thermostats, it can vanish (a < 0), diverge (0 < a < 1) or even converge

(a = 0) [7, 8, 9]. The reason for this is roughly due to the fact that for disordered harmonic

chains, normal modes with frequency ω becomes localized but with a length of localization

`(ω) ∼ ω−2. The role of thermostats and boundary conditions is more difficult to explain

without going into computational details. Thus we note that in disordered harmonic chains

the low frequency modes have still the possibility to transport energy [10]. The case where

the disorder is in the interparticle springs instead of the masses has recently been addressed

in [11, 12]. In higher dimensions the situation is less understood [13, 14]. More recently

there has been a renewed interest for these questions with respect to the effect of nonlinear-

ities [15, 16] or of an energy conserving noise [17, 18, 19, 20].

In this paper we consider an ordered (constant masses) one-dimensional chain of two-

dimensional charged oscillators subject to a random transverse magnetic field on every lattice

site (or equivalently a chain of disorderly charged oscillators subjected to a constant mag-

netic field on the lattice). In [21], by using the Non-Equlibrium Greens’s Function (NEGF)

formalism we obtained an explicit expression of the heat current in the steady state and

investigated then the transport properties of such a system when all the charges are the

same. We established that transport is ballistic like for ordered harmonic chains. The aim of

this paper is therefore to describe the effect of the charge impurities on the behaviour of the

conductivity of the system. This will require us to investigate the frequency dependence of

the localization lengths of normal modes. We show that due to charge disorder the current

shows different scaling with the system size which depends on the boundary conditions as

well as on the expectation value of the magnetic field.

This paper is structured as follows: in Sec. 2 we introduce the model and state the

results for heat current using the NEGF formalism. We also present numerical results for the

transmission function and discuss the effects of localization due to the random magnetic field
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on the transmission function. In Sec. 3, we use the Green’s function expression as a product

of random matrices to determine the Lyapunov exponents. We also present numerical results

for Lyapunov exponents which are consistent with our theoretical results. Using the results

for the Lyapunov exponents, we finally determine the size dependence of the mean of the

heat current in Sec. 4 and compare with direct numerical calculations of the current. We

conclude in Sec. 5.

2 The Model and heat current by NEGF

2.1 The model

We consider a chain of N harmonic oscillators each having two transverse degree’s of freedom

so that every oscillator is free to move in a plane perpendicular to the length of the chain. We

choose the plane of motion to be the x−y plane and denote the positions and momenta of the

nth oscillator by (xn, yn) and (pxn, p
y
n) respectively, with n = 1, 2, . . . , N . The oscillators are

assumed to have unit masses and each carry a positive unit charge. We consider a magnetic

field ~Bn = Bn~ez perpendicular to the plane of motion which can be obtained from a vector

potential ~An = (−Bnyn, Bnxn, 0) at each lattice site. In this paper, we assume that (Bn)n
form a sequence of independent identically distributed random variables with average 〈B〉
and variance σ2. The Hamiltonian of the chain is given by:

H =
N∑
n=1

(pxn +Bnyn)2 + (pyn −Bnxn)2

2
+

N∑
n=0

(xn+1 − xn)2 + (yn+1 − yn)2

2
,

where the inter particle spring constant has been fixed to 1. We will consider the two different

boundary conditions: (i) fixed boundaries with x0 = xN+1 = 0 and (ii) free boundaries with

x0 = x1, xN = xN+1. In order to study heat current through this system, we consider the

1st and the N th oscillators to be connected to heat reservoirs at temperatures TL and TR
respectively. The heat reservoirs are modelled using dissipative and noise terms leading to

the following Langevin equations of motion:

ẍn = (xn+1 + xn−1 − cnxn) +Bnẏn + ηxL(t)δn,1 + ηxR(t)δn,N − (γδn,1 + γδn,N)ẋn , (1)

ÿn = (yn+1 + yn−1 − cnyn)−Bnẋn + ηyL(t)δn,1 + ηyR(t)δn,N − (γδn,1 + γδn,N)ẏn . (2)

for n = 1, 2, . . . , N . Here ηL(t) := (ηxL(t), ηyL(t)) and ηR(t) := (ηxR(t), ηyR(t)) are Gaussian

white noise terms acting on the 1st and N th oscillators respectively. These follow the regular

white noise correlations,
〈
ηL/R(t)ηL/R(t′)

〉
=
√

2γTL/Rδ(t−t′) (Boltzmann’s constant is fixed

to one to simplify), where γ is the dissipation strength at the reservoirs. The coefficients cn
fix the boundary conditions of the problem. For fixed boundaries cn = 2 for all n, while for

free boundary conditions cn = 2− δn,1 − δn,N .
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2.2 Heat current

In [21], by using the non-equilibrium Green function formalism, we obtained an exact

expression for the heat current, JN , in the steady state of the chain. More exactly, let

us define the processes (f±n )n≥0 and (g±n )n≥0 as

f±n+1 = (cn+1 − ω2 ± ωBn+1)f
±
n − f±n−1, f±0 = 1, f±1 = c1 − ω2 ± ωB1 ,

g±n+1 = (cn+1 − ω2 ± ωBn+1)g
±
n − g±n−1, g±0 = 0, g±1 = 1 .

(3)

Then we introduce

F±N := F±N (ω) = f±N + iγω(g±N + f±N−1)− γ
2ω2g±N−1 , (4)

and the heat current is equal to

JN = (TL − TR)

∫ ∞
−∞

dω TN(ω) = 2(TL − TR)

∫ ∞
0

dω TN(ω) (5)

with the net transmission function TN defined for any frequency ω by

TN(ω) :=
γ2

π
ω2

[
1∣∣F+

N (ω)
∣∣2 +

1∣∣F−N (ω)
∣∣2
]
. (6)

We denote by 〈JN〉 the expectation of the heat current with respect to the magnetic

field distribution 〈·〉 and our goal is to understand its scaling behavior in N .

Observe that the stochastic processes (f−n )n≥0 and (g−n )n≥0 are defined in terms of the

two dimensional discrete time Markov chain (Un)n≥0 given by

Un+1 =

(
2− ω2 − ωBn+1 −1

1 0

)
Un, where Un :=

(
un
un−1

)
, (7)

by choosing suitable initial conditions. By replacing the Bn’s by −Bn’s in the last display,

we see that (f+
n )n≥0 and (g+n )n≥0 can also be expressed in terms of (Un)n≥0 . The state of

the Markov chain is nothing but the result of a product of 2 × 2 product of independent

and identically distributed random matrices. Roughly, the behaviour of F±N is related to the

growth of ‖UN(ω)‖ which will be in the form e2λ(ω)N , where

λ(ω) = lim
n→∞

1

2n
〈log ‖Un(ω)‖〉 = lim

n→∞

1

n
〈log |un(ω)|〉 > 0, (8)

with 〈...〉 denoting a disorder average, is half the Lyapunov exponent associated to the

Markov chain (Un)n≥0, or equivalently of the corresponding product of random matrices.

The limit exists by Furstenberg’s Theorem [22], is non-negative, independent of the initial

condition U0 and the limit holds in fact also for any realisation and not only by averaging

over the magnetic field distribution.

For now we quickly discuss the effect of localization due to the random magnetic field

on the heat transport and the need for calculating the Lyapunov exponent λ(ω) for small

frequencies ω.
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(a) Uniform magnetic field (b) Random magnetic field

Figure 1: Variation of the net transmission, in units of kB = 1, with ω for uniform magnetic

field, panel (a), and random magnetic field, panel (b). The axes are in log scale and γ = 0.2.

The magnetic field in (a) is set to be 1 on all oscillators and in (b) it was chosen uniformly

from the interval (0, 2). As can be seen clearly from the plots, the localization effects cause

suppression of the transmission.

2.3 Effect of localization due to random magnetic field on the net Transmission

Using Eq. (6), we can calculate the net transmission TN(ω) for any spatial configuration of

the magnetic field using a computer programme. In Fig. (1a) and Fig. (1b) we plot the net

transmission function with ω for a uniform magnetic field and for a random magnetic field

for different system sizes respectively. On comparison of the two plots, we can see that the

randomness causes suppression of the net transmission and also the net transmission for the

random magnetic field case goes down with system size while the system size has nearly no

effect on the transmission for the uniform magnetic field. The suppression in case of random

magnetic field is due to localization of the normal modes of the system. The normal modes of

frequency ω get exponentially localized due to randomness with a localization length given

by 1/λ(ω) where λ(ω) is the Lyapunov exponent defined in Eq. (8). As a result of this

they a priori do not contribute to the transmission. However, note that the transmission for

random magnetic field is higher near ω = 0 and goes down as we move away which means

that the normal modes with energies closer to ω = 0 have a larger localization length, i.e.

λ(ω)→ 0 as ω → 0. Since we are eventually interested in the size dependence of the current,

for large N , which is the integral of the transmission over all ω, we can reduce the integration

limit to values of ω for which the localization length is greater than the system size. For
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the remaining ω values for which the localization length is less than the system size, the

transmission would be negligible. Hence, we cut off the integral limit to ω = ωNmax where

1/λ(ωNmax) = N and the current is then given by

〈JN〉 ≈ 2(TL − TR)

∫ ωNmax

0

dω lim
N→∞

〈TN(ω)〉 = 2(TL − TR)

∫ ωNmax

0

dωT∞(ω) . (9)

Note that the frequency ωNmax would be very small for large N , and for such small frequencies

we expect T∞(ω) to have a weak dependence on disorder [since in the recursion Eq. (7), the

randomness is multiplied by ω] — hence in the above equation T∞(ω) is written without

a disorder average and can in fact be determined by considering the chain in a constant

magnetic field of strength 〈B〉. In [21], we proved that for constant magnetic field 〈B〉 6= 0,

T∞(ω) ∼ ω3/2 and ∼ ω1/2 for fixed and free boundaries respectively, while for 〈B〉 = 0

it goes as ω2 and ω0 for the two boundary conditions respectively. To determine the size

dependence of the current in addition to the small ω behaviour of T∞(ω) we also need

the small ω behaviour of λ(ω). We now proceed to the next section where we discuss the

Lyapunov exponents of this equation.

3 Analysis of the Lyapunov exponents

In this section we present theoretical and numerical results on the asymptotics of Lyapunov

exponents for small ω for the Markov processes defined by Eq. (7). The Lyapunov exponents

are independent of the boundary conditions – so for this section we only work with fixed

boundary conditions by setting cn = 2 for all n – and of the initial condition of the process –

i.e. it is the same for f±n and g±n . We show that Eq. (7) has three different behaviors for the

Lyapunov exponent depending on the expected value 〈B〉 of the random magnetic field. For

〈B〉 > 0 the Lyapunov exponent satisfies λ(ω) ∼ ω and for 〈B〉 < 0, λ(ω) ∼ ω1/2. However,

for 〈B〉 = 0, λ(ω) ∼ ω2/3. Similar Lyapunov exponent behaviours are found for a harmonic

oscillator with parametric noise, [23] and we will see that Eq. (7) could be written exactly

in this form in the continuum limit.

3.1 Theoretical results for Lyapunov exponents

Let (zt)t≥0 ∈ R2 be the solution of the following stochastic differential equation (with

arbitrary initial condition)

żt = A0zt + εσξtA1zt , (10)

where ε is a small positive parameter, σ > 0 a constant, ξt a one dimensional standard white

noise and A0 and A1 are 2× 2 matrices such that

A0 =

(
0 1

−c 0

)
, A1 =

(
0 0

−1 0

)
with c ∈ R .
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The Lyapunov exponent λz(ε) of the process (zt)t≥0 is defined by

λz(ε) = lim
t→∞

1

t
〈log ‖zt‖〉 , (11)

where 〈·〉 denotes the expectation with respect to the white noise. It is proved in Appendix

A that if we denote zt = (ut, vt)
⊥ then we have the Lyapounov exponent for (ut)t≥0 is the

same as for (zt)t≥0:

λz(ε) = lim
t→∞

1

t
〈log |ut|〉 . (12)

The following result, proved in [24], gives the behaviour of the Lyapunov exponent λz(ε) for

small noise

(i) If c = 0 then λz(ε) = λ̂(σ)ε2/3 where λ̂(σ) is defined in Eq. (A.9) .

(ii) If c > 0 then λz(ε) ∼ σ2

8c
ε2 .

(iii) If c < 0 then λz(ε) ∼
√
|c| .

A sketch of the proof of this result is given in Appendix A.

Consider now Eq. (7) defining the discrete time Markov chain Un = (un, un−1)
> and

rewrite it in the following form, for small ω,

un+1 + un−1 − 2un = −ω〈B〉un − ω(Bn+1 − 〈B〉)un +O(ω2) .

In the continuum limit, the discrete time process (un)n≥0 becomes then the continuous time

process (ut)t≥0 solution of

üt = −ω〈B〉ut − ωσξtut (13)

where (ξt)t≥0 is a standard white noise and σ2 the variance of the (Bn)n. Defining

wt = (ut, u̇t)
> we see that the previous equation reads

ẇt =

(
0 1

−ω〈B〉 0

)
wt + σωξt

(
0 0

−1 0

)
wt . (14)

We are interested in the Lyapunov exponent of the process (ut)t≥0 (or equivalently of the

process (wt)t≥0 as said before):

λw(ω) = lim
t→∞

1

t
〈log ‖wt‖〉 = lim

t→∞

1

t
〈log |ut|〉 (15)

Eq. (14) looks similar to Eq. (10) but to fit perfectly with Eq. (10) we perform the time

scaling

ũt = ut/√ω

in Eq. (13) wich gives by scaling invariance of white noise

¨̃ut = −〈B〉ũt − ω1/4σξtũt (16)
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Case Range of Bn s : λ(ω) ∼ Cωs C Ctheoretical

〈B〉 > 0

λ(ω) ∼ σ2

8〈B〉ω

(0, 0.25) 0.986 0.0045 0.0052

(0, 0.5) 0.999 0.0102 0.0104

(0, 0.75) 1.0005 0.0156 0.0156

〈B〉 < 0

λ(ω) ∼
√
|〈B〉|ω1/2

(−0.25, 0) 0.492 0.315 0.353

(−0.5, 0) 0.492 0.444 0.5

(−0.75, 0) 0.491 0.532 0.612

〈B〉 = 0

λ(ω) = λ̂(σ)ω2/3

(−0.25, 0.25) 0.658 0.073 0.079

(−0.5, 0.5) 0.658 0.115 0.127

(−0.75, 0.75) 0.649 0.136 0.167

Table 1: Comparison of analytical prefactor for the three cases with the numerical prefactor.

For this table, N = 107.

or equivalently for z̃t = (ũt, ˙̃ut)
> the equation

˙̃zt =

(
0 1

−〈B〉 0

)
z̃t + σω1/4ξt

(
0 0

−1 0

)
z̃t . (17)

With the previous notation we have hence

λw(ω) =
√
ω λz̃(ω

1/4) . (18)

Eq. (17) fits perfectly Eq. (10) with c = 〈B〉 and ε = ω1/4. Then using point (i), (ii) and

(iii) of Eq. (10) and Eq. (18) we get

(i) If 〈B〉 = 0, λw(ω) = λ̂(σ)ω2/3 where λ̂(σ) is defined in Eq. (A.9) .

(ii) If 〈B〉 > 0, λw(ω) ∼ σ2

8〈B〉ω .

(iii) If 〈B〉 < 0, λw(ω) ∼
√
| 〈B〉 |ω1/2 .

It makes sense to believe that λ(ω) defined by Eq. (8) and λw(ω) defined by Eq. (15)

have roughly the same behaviour as ω → 0 but a strong theoretical argument supporting

this belief is missing. However, in the case 〈B〉 > 0, we can obtain directly the behaviour of

λ(ω) by following the approach of [25] and we observe then a good agreement at first order

between λ(ω) and λw(ω), not only at the level of the exponent in ω but also at the level of

the prefactor, see Table 1. Unfortunately we were not able to carry this approach for 〈B〉 < 0

or 〈B〉 = 0 and we decided hence to not pursue this approach. However numerical results

presented in the next section support strongly the claim that λ(ω) ∼ λw(ω) for ω → 0.

3.2 Numerical results for Lyapunov exponents

We numerically calculate the Lyapunov exponents by using Eq. (3) to generate uN for 100

realizations of the random magnetic field. The Lyapunov exponent would then be given by
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(a) 〈B〉 > 0 (b) 〈B〉 = 0 (c) 〈B〉 < 0

Figure 2: Variation of numerically calculated Lyapunov exponent, λ = 1
N
〈log |uN |〉, with ω.

〈log |uN |〉 denotes average of log |uN | over 100 realizations of the random magnetic field. For

(a), (b) and (c) the magnetic fields were chosen randomly from the intervals (0, 1), (−1, 1)

and (−1, 0) respectively. The solid line is the data from the simulation while the dashed line

is a power law fit, Cωs, to the data with C and s as fitting parameters. The obtained values

of the fitting parameters agree appreciably with the theoretical values.

λ = 1
N
〈log |uN |〉, where N is the number of oscillators. We plot in Fig. (2), the numerical data

thus obtained for different ω and the power law fit, Cωs, for the data with C and s as fitting

parameters. We see that the values of s obtained for the three casses, 〈B〉 > 0, 〈B〉 < 0

and 〈B〉 = 0, agree reasonably well with the theoretically expected values. The prefactor,

C, obtained for the three cases also seems to agree with the expected values from theory, see

Table 1.

We now have the behaviour of the Lyapunov exponents at small ω for Eq. (3) and

we found this to be different depending on the expectation value of the random magnetic

field. The transmission is determined by f+
N as well as f−N and these two have different

Lyapunov exponents for 〈B〉 6= 0, therefore the larger of the two exponents will dominate

in the transmission. This is the Lyapunov exponent for f−N for 〈B〉 > 0, while for 〈B〉 = 0,

f+
N and f−N have the same Lyapunov exponent. In the next section, we determine the size

dependence of the current using these results for the Lyapunov exponents.

4 Size dependence of the current

We now have the small ω behaviour of λ(ω) for the transmission. We found this to be

different for 〈B〉 6= 0 and 〈B〉 = 0, so we expect different power laws for the current for the

two cases. The boundary conditions will also play a role in the power law via the small ω

behaviour of T∞(ω). We therefore take the cases 〈B〉 6= 0 and 〈B〉 = 0 separately for the

two boundary conditions.
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Boundary Conditions Average magnetic field T∞(ω) λ(ω) Power law for the current 〈JN〉
Fixed 〈B〉 6= 0 ∼ ω3/2 ∼ ω ∼ 1/N5/2

Fixed 〈B〉 = 0 ∼ ω2 ∼ ω2/3 ∼ 1/N9/2

Free 〈B〉 6= 0 ∼ ω1/2 ∼ ω ∼ 1/N3/2

Free 〈B〉 = 0 ∼ ω0 ∼ ω2/3 ∼ 1/N3/2

Table 2: Power law for the current for different boundary conditions and average magnetic

fields.

(a) 〈B〉 6= 0 (b) 〈B〉 = 0

Figure 3: Numerically obtained power laws for the average current, averaged over 100

realizations of the disorder, with fixed and free boundary conditions. For 〈B〉 > 0, Bn

is chosen from (1, 3) while for 〈B〉 = 0, Bn is chosen from (−2, 2).

Fixed boundary conditions:

(a) For 〈B〉 6= 0, T∞(ω) ∼ ω3/2 and λ(ω) ∼ ω. Therefore using these in Eq. (9) we have

〈JN〉 ∼ 1/N5/2.

(b) For 〈B〉 = 0, T∞(ω) ∼ ω2 and λ(ω) ∼ ω2/3 which gives 〈JN〉 ∼ 1/N9/2.

Free boundary conditions:

(a) For 〈B〉 6= 0, T∞(ω) ∼ ω1/2 and λ(ω) ∼ ω which gives 〈JN〉 ∼ 1/N3/2 .

(b) For 〈B〉 = 0, T∞(ω) ∼ ω0 and λ(ω) ∼ ω2/3 which gives 〈JN〉 ∼ 1/N3/2 .

The results are summarized in Table 1. Fig (3) shows the numerically obtained power laws

for 〈B〉 6= 0 and 〈B〉 = 0. Numerically, the power laws are obtained by calculating TN(ω) for

different ω and then performing the integration numerically. We expect to see the power law

10



(a) 〈B〉 6= 0 (b) 〈B〉 = 0

Figure 4: Comparison for the transmission for disordered and uniform cases for the two

boundary conditions. For 〈B〉 6= 0, Bn is chosen from (1, 3) while for 〈B〉 = 0, Bn is chosen

from (−1, 1). These are compared with the transmission for the uniform cases with Bn = 〈B〉
respectively.

behaviour at some large enough N . We see a reasonable agreement with the theoretically

expected power laws except for the case with 〈B〉 = 0 and free BC, where we get 〈JN〉 ∼ 1/N2

instead of the expected 〈JN〉 ∼ 1/N3/2 .

The case with 〈B〉 = 0 seems to be quite subtle because of the following reasons:

• The assumption that T∞(ω) may be replaced by the transmission for the uniform case

for small ω does not hold good for 〈B〉 = 0 case. This can be clearly seen from Fig. (4),

where we show a comparison of the transmission for small ω for 〈B〉 6= 0 and 〈B〉 = 0

with their respective uniform cases. While 〈B〉 6= 0 shows a clear agreement with the

corresponding uniform case, 〈B〉 = 0 case shows a clear disagreement. It is not clear

how to estimate T∞(ω) for this case.

• Interestingly we note that the transmission coefficient has peaks at much lower

frequencies than the ordered case. These peaks correspond to the normal modes of

the isolated chain and it is then of interest to study the system size dependence of the

lowest allowed normal mode frequency, ωNs , for the disordered chains with 〈B〉 6= 0 and

〈B〉 = 0, and the ordered case with B = 0. In Fig. (5) we show the scaling of ωNs with

N . We see that, for 〈B〉 6= 0, ωNmax ∼ 1/N while ωNs ∼ 1/N2. Thus, for any finite but

large N , we have ωNmax > ωNs and there are a suffient number of conducting modes. On

the other hand, for 〈B〉 = 0, both ωNmax and ωNs scale as 1/N3/2 and this could be the

reason why our heuristic approach for current scaling fails for this case.

11



(a) 〈B〉 6= 0

Figure 5: Scaling of lowest allowed normal mode, ωNs with the system size, N . For 〈B〉 6= 0,

Bn is chosen from (1, 3) while for 〈B〉 = 0, Bn is chosen from (−1, 1). The B = 0 plot

corresponds to the ordered chain (the ordered case B 6= 0 is not shown and has the scaling

N−2).

5 Conclusion

We considered a harmonic chain of charged particles in the presence of random magnetic

fields and derived power laws for the current with respect to the system size. The power laws

were found to be sensitive to boundary conditions and the expectation value of the magnetic

field. This was understood as arising from the different behaviour of the Lyapunov exponent

λ(ω) and T∞(ω) for small frequency ω.

Arguing that the small ω behaviour of T∞(ω) was the same as that for the ordered chain,

we used results obtained in our previous paper [21] using the non-equilibrium Green function

approach. It was found there that this behaviour depends strongly on the presence or not of

the magnetic field but also on the boundary conditions imposed. To estimate the Lyapunov

exponent we mapped the discrete time process which determines the Green’s functions to the

motion of a harmonic oscillator with parametric noise. This not only revealed an interesting

connection between the Lyapunov exponents of the two systems but also showed that the

Lyapunov exponent have different behaviour for different expectation values of the magnetic

field. For 〈B〉 > 0, 〈B〉 = 0 and 〈B〉 < 0 we find that the Lyapunov exponents were of order

ω, ω2/3 and ω1/2 respectively. These behaviours of the Lyapunov exponent were also verified

numerically.

Using the results for the T∞(ω) and λ(ω), we make analytic predictions of different

system-size dependences of the current, depending on the expectation value of the magnetic

field and the boundary conditions. For free boundary conditions the current decreases

as 1/N3/2 irrespective of the expectation value of the magnetic field. However, for fixed
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boundary conditions the current decreases as 1/N3/2 and 1/N9/2 for 〈B〉 6= 0 and 〈B〉 = 0

respectively. Our direct numerical estimates show disagreement for the case 〈B〉 = 0, and

this is especially clear for the case with free boundary conditions. We discussed possible

reasons for the disagreement, amongst which is the intriguing numerical observation of the

1/N3/2 system-size dependence of the lowest normal mode frequency for the 〈B〉 = 0 case.

The resolution of this issue remains an interesting outstanding problem.

Appendix A Lyapunov exponent for a harmonic oscillator with parametric

noise

In order to obtain an expansion of λz(ε) we follow the strategy developed by Pardoux et al.

in [26] and by Wihstutz in [27]. The first step of the proof is to use the ergodic theorem to

obtain an explicit formula (see Eq. (A.6)) for λz(ε) instead of Eq. (11). In the second step

we perform a perturbation analysis in ε with this new expression.

First we express the solution of the 2-dimensional SDE (zt)t≥0 in terms of a 1-dimensional

SDE. Define (θt)t≥0 to be the solution of

θ̇t = h0(θt) +
1

2
ε2∂θh1(θt)h1(θt) + εh1(θt)ξt , (A.1)

with

h0(θ) = sin2(θ)(c− 1)− c and h1(θ) = −σ cos2(θ) . (A.2)

One can check that

zt = Rt (cos(θt), sin(θt))
>

where

Rt = ‖z0‖ exp

(∫ t

0

[
q0 (θτ ) + ε2r (θτ )

]
dτ − ε

∫ t

0

q1 (θτ ) ξτdτ

)
, (A.3)

with

q0(θ) = (1− c) cos(θ) sin(θ) , q1(θ) = σ2 cos(θ) sin(θ) , (A.4)

r(θ) =
σ2 cos2(θ)

2

[
2 cos2(θ)− 1

]
. (A.5)

Observe that ‖zt‖ = Rt. Moreover, since in Eq. (A.1) the noise is vanishing exactly at the

points θ∗k = (2k + 1)π/2, k ∈ Z, and that the drift in Eq. (A.1) at θ∗k is equal to −1, we see

that starting from θ0 ∈ [θ∗k−1, θ
∗
k) the process (θt)t≥0 will pass successively in the intervals

θ0 ∈ [θ∗` , θ
∗
`+1) for ` ≤ k − 1 without coming back to an interval previously visited. This

defines a sequence of random times t` = inf{t ≥ 0 ; θt ∈ [θ∗k−`−1, θ
∗
k−`)} for ` ≥ 0 with

t0 = 0. The process is thus clearly not ergodic. A simple way to restore this ergodicity (that

will be needed later) is to consider the process (θ̃t)t≥0, living in [−π/2, π/2), and defined by
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θ̃t = θt + (k − `)π for t ∈ [t`, t`+1). The process θ̃t satisfies the same stochastic differential

equation as (θt)t≥0 but when it reaches −π/2 it is immediately reseted to π/2. Equivalently

(θ̃t)t≥0 is solution of Eq. (A.1) but seen as a SDE on the torus [−π/2, π/2) where the two end

points of the interval have been identified. The process (θ̃t)t≥0 has now the nice property to

be ergodic. We denote by ρε(θ)dθ its invariant measure which is computed below. Observe

moreover that Eq. (A.3) still holds by replacing θ by θ̃ because the functions q0, q1, r are

π-periodic. In order to keep notation simple we denote in the sequel the process θ̃ by θ.

By definition (11) of Lyapunov exponent and Eq. (A.3) we get that

λz(ε) = lim
t→∞

1

t

〈∫ t

0

[
q0 (θτ ) + ε2r (θτ )

]
dτ + ε

∫ t

0

q1 (θτ ) ξτdτ

〉
= lim

t→∞

1

t

〈∫ t

0

[
q0 (θτ ) + ε2r (θτ )

]
dτ

〉
,

since 〈
∫ t
0
q1 (θτ ) ξτdτ〉 = 0. Then by using the ergodic theorem we obtain

λz(ε) =

∫ π/2

−π/2

[
q0(θ) + ε2r(θ)

]
ρε(θ)dθ . (A.6)

The expansion in ε for λz(ε) can then be obtained from the expansion of ρε.

Before doing this we prove Eq. (12), i.e. that the process (zt)t≥0 =
(
(ut, vt)

>)
t≥0 and

the process (ut)t≥0 have the same Lyapunov exponent. By definition we have

lim
t→∞

1

t
〈log |ut|〉 = lim

t→∞

1

t
〈log ‖zt‖〉+ lim

t→∞

1

t
〈log | cos(θt)|〉 . (A.7)

Since (θt) is an ergodic process we obtain that

lim
t→∞

1

t
〈log | cos(θt)|〉 = lim

t→∞

1

t

∫ π/2

−π/2
ρε(θ) log (| cos(θ)|) dθ = 0 .

This proves the claim.

Let us now compute ρε which is the solution of the stationary Fokker-Planck equation

∂θ

[
ε2

2
∂θ(h

2
1ρε)− (h0 + ε2

2
h1∂θh1)ρε

]
= 0 . (A.8)

If we look for a solution such that ε2

2
∂θ(h

2
1ρε) − (h0 + ε2

2
h1∂θh1)ρε = 0 we get ρε(θ) ∝

cos−2(θ)e−
2ε−2

3σ2
tan3(θ)− 2cε−2

σ2
tan(θ) which is not normalisable. Hence we have to look for a

normalisable solution such that ε2

2
∂θ(h

2
1ρε)− (h0 + ε2

2
h1∂θh1)ρε = A for some constant A. We

get then that

ρε(θ) = Z−1ε vε(θ) cos−2(θ)

∫ tan(θ)

−∞
exp

(
2ε−2

3σ2
u3 +

2cε−2

σ2
u

)
du
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with

vε(θ) = exp

{
−2ε−2

3σ4
tan3(θ)− 2cε−2

σ4
tan(θ)

}
and Zε the partition function making ρε a probability. Injecting this in Eq. (A.6) we may

derive the results claimed by a careful saddle point analysis. We prefer instead to rely on a

more heuristic analysis to bypass boring computations.

It is natural to expect that as ε → 0 the stationary measure ρε(θ)dθ will converge to

the one of θ̇t = h0(θt) (i.e. Eq. (A.1) with ε = 0). However as we will see this deterministic

dynamical system has different behaviours depending on the value of c and that in some

cases we have also to compute the next order corrections.

If c > 0, the deterministic dynamical system has a unique invariant state ρ0(θ)dθ with

ρ0(θ) = −
√
c
π
h−10 (θ) because h0 never vanishes on [−π/2, π/2). Hence ρε → ρ0 as ε → 0.

However, since
∫ π
0
q0(θ)ρ0(θ)dθ = 0, we have to expand ρε at order ε2 to obtain the behavior

of λε in Eq. (A.6). Let us assume that ρε = ρ0 + ε2δρ0 + o(ε2), inject this in Eq. (A.8) and

identify the powers in ε. We obtain that

∂θ[h0 (δρ0)] = 1
2
∂θ
[
∂θ(h

2
1ρ0)− (h1∂θh1)ρ0

]
which implies, since

∫ π/2
−π/2(δρ0)(θ)dθ = 0 that

δρ0 = A
h0

+ 1
2h0

[
∂θ(h

2
1ρ0)− (h1∂θh1)ρ0

]
.

We deduce that

δρ0 =
A

h0
+
σ2
√
c

π

(
sin(θ) cos3(θ)

h20
+ (c− 1)

(
cos5(θ) sin(θ)

h30(θ)

))
.

Since
∫ π/2
−π/2(δρ0)(θ)dθ = 0 we obtain A = 0 and

δρ0 =
σ2
√
c

π

(
sin(θ) cos3(θ)

h20
+ (c− 1)

(
cos5(θ) sin(θ)

h30(θ)

))
.

Hence we get that

λz(ε) = ε2
∫ π/2

−π/2
(r(θ)ρ0(θ) + q0(θ)δρ0(θ)) dθ + o(ε2) .

By the change of variable x = tan(θ) we get∫ π/2

−π/2
r(θ)ρ0(θ)dθ =

σ2
√
c

2π

∫ ∞
−∞

x2 − 1

(1 + x2)(x2 + c)
dx =

σ2

2(
√
c+ 1)2

.∫ π/2

−π/2
q0(θ)δρ0(θ)dθ = σ2

(
(4
√
c+ 1)(c− 1)2

8(
√
c+ 1)4c

+
1− c

2(
√
c+ 1)3

)
.
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Hence we finally get

λz(ε) = ε2
σ2

8c
+ o(ε2).

This proves case (ii).

If c < 0 then c
c−1 ∈ (0, 1) and the function h0 vanishes on [−π/2, π/2) if and only if

θ ∈ [−π/2, π/2) is solution of

sin2(θ) =
c

c− 1
.

There are two solutions θ∗ > 0 and −θ∗ < 0. The deterministic dynamical has two extremal

invariant probability measures given by δ±θ? . Since h′0(θ
∗) < 0 < h′0(−θ∗), δ−θ∗ is unstable

while δθ∗ is stable. By introducing noise in this dynamical system the stable stationary state

is selected when the intensity of the noise is sent to zero afterwards, i.e. ρε(θ)dθ → δθ∗ . We

conclude that

lim
ε→0

λz(ε) = q0(θ
∗) =

√
|c| .

This proves case (iii).

The case c = 0 is more delicate. Since h0(·) = − sin2(·), the unique invariant measure

for the deterministic dynamical system is δ0 (stable) and we expect that ρε(θ)dθ → δ0 as

ε → 0. Observe however that q0(0) = 0 so that we have to find the first correction to the

approximation of ρε to δ0. Due to the singularity of the Dirac mass we cannot perform an

expansion analysis in ε. Hence we will use another argument to get item (i). Consider the

following linear transformation Tε =
(
ε2/3 0
0 1

)
which is such that ε2/3‖z‖ ≤ ‖Tεz‖ ≤ ‖z‖ for

any z ∈ R2 and ε ≤ 1. This implies that (zt)t≥0 and (Tεzt)t≥0 have the same Lyapunov

exponent. Expressing as we did before

ẑt := Tεzt = ‖ẑt‖(cos θ̂t, sin θ̂t)
>

we notice that

˙̂
θt = ε2/3

(
− sin2(θ̂t)− σ2 sin

(
θ̂t

)
cos3(θ̂t)

)
− ε1/3σ cos2(θ̂t)ξt ,

which implies by scaling invariance of the white noise that θ̂t = αtε2/3 where

α̇t =
(
− sin2(αt)− σ2 sin(αt) cos3(αt)

)
− σ cos2(αt)ξt .

If ρ̂(α)dα is the unique invariant measure for (αt)t≥0 we have by a scaling argument that the

Lyapunov exponent satisfies

λz(ε) = ε2/3λ̂(σ)

with

λ̂(σ) =

∫ π/2

−π/2
(q0(α) + r(α)) ρ̂(α)dα, (A.9)
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where q0 and r are defined respectively in Eq. (A.4) and Eq. (A.5) with c = 0. To obtain

the value of λ̂(σ) it is sufficient to find ρ̂ which is the unique normalisable function of the

Fokker-Planck equation associated to the process(αt)t≥0, i.e.

ρ̂(α) = Ẑ−1 cos−2(α)e−
2

3σ2 tan3(α)

∫ tan(α)

−∞
exp
(

2u3

3σ2

)
du ,

where Ẑ is the normalisation constant making ρ̂ a probability measure.
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