
Lindblad evolution without the sign problem

Tomoya Hayata1

1Department of Physics, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521, Japan
(Dated: January 13, 2022)

Quantum Monte Carlo is one of the most powerful numerical tools for studying nonpeturbative properties
of quantum many-body systems. However, its application to real-time problems is limited since the complex
and highly-oscillating path-integral weight of the real-time evolution harms the important sampling. In this
Letter, we show that some real-time problems in open fermion systems can be simulated using the quantum
Monte Carlo. To this end, we prescribe a mapping between a real-time problem in open quantum systems
and a statistical problem in non-Hermitian quantum systems; for some cases, the latter can be solved without
suffering from the complex measure problem. To explain our idea and demonstrate how it works, we compute
the real-time evolution of fidelities in open fermion systems under dissipation.

Introduction. Understanding the real-time dynamics of
quantum many-body systems under dissipations due to envi-
ronments or measurements has been one of the most important
and challenging problems in modern physics. Intriguing prob-
lems drawing attention of researchers are e.g., the dissipation-
induced phase transition [1, 2], entanglement phase transi-
tion [3–5], information scrambling under decoherence [6–8],
as well as how quantum computing works in a noisy near-term
quantum device [9]. Even limiting the scope of our interests
to the Markovian cases, where the time evolution of an open
quantum system is described by the quantum master equation
in the Lindblad form [10, 11], the efficient numerical methods
are still under development (see e.g., Ref. [12] for a review).

The most promising candidate for accurate and large-scale
numerical simulations would be a family of quantum Monte
Carlo methods if they are applicable. However real-time prob-
lems suffer from the severe sign problem than statistical prob-
lems (see e.g. Ref. [13]). We will explain that in more de-
tail. In a statistical problem, we compute the partition func-
tion based on the importance sampling of the imaginary-time
(Suzuki-Trotter) evolution. When the imaginary-time evolu-
tion becomes sign alternating, the importance sampling is no
longer applicable; This is the notorious sign problem [14].
Similarly, in a real-time problem, we need to compute the real-
time evolution based on the importance sampling. However,
the path-integral weight has now a complex and highly oscil-
lating phase, which strongly harms the importance sampling.

Even though the conventional Monte Carlo approach suf-
fers from the severe sign problem, in this Letter, we show that
the real-time evolution of some observable in open fermion
systems can be computed by the quantum Monte Carlo. The
key idea is the correspondence between the Lindblad evo-
lution and imaginary-time evolution with a non-Hermitian
Hamiltonian. Based on it, we provide a prescription by map-
ping a real-time problem in open quantum systems to a statis-
tical problem in non-Hermitian quantum systems. Although
the non-Hermiticity usually harms the importance sampling,
we can avoid it if the non-Hermitian Hamiltonian has a spe-
cial symmetry [15]. This implies that if we can map a real-
time problem to a statistical problem with such special non-
Hermitian system, we can solve the real-time problem by the
quantum Monte Carlo. For demonstration of our idea, we

compute the real-time evolution of fidelities in open fermion
systems by the determinant quantum Monte Carlo.

Quantum master equation. We consider an open quan-
tum system interacting with environments or under continu-
ous measurements. If the effects of environments are pertur-
bative and approximated by the Markov process, the time evo-
lution of a density matrix of the system ρ is described by the
quantum master equation in the Lindblad form [10, 11]:

dρ

dt
= −i (Hρ− ρH)

+
∑
i

γi

(
ΓiρΓ†i −

1

2
Γ†iΓiρ−

1

2
ρΓ†iΓi

)
.

(1)

Here, t and H are the time and Hamiltonian operator, respec-
tively. The first term in the right-hand side of Eq. (1) gives
the unitary time-evolution. On the other hand, the second
term gives the non-unitary time-evolution due to dissipations;
Γi, and γi > 0 are the i-th quantum jump operator and its
strength, respectively. The quantum jump operators act on
a density matrix by a superposition as in the second term of
Eq. (1); This superposition keeps the completely positive and
trace-preserving properties of ρ during the time evolution.

As is well known, Eq. (1) can be rewritten in the Schödinger
equation type-form, namely, the matrix and vector form (see
e.g., Ref. [12]). To this end, we map a density matrix to a
wave function (vector) in the doubled Hilbert space:

ρ =
∑
i,j

ρij |i〉〈j| → |ρ〉 =
∑
i,j

ρij |i〉 ⊗ |j〉, (2)

where |i〉, and |j〉 are the basis of the original Hilbert space.
In this representation, Eq. (1) is written as

d|ρ〉
dt

= L|ρ〉, (3)

with the Liouville operator

L = −iH ⊗ 1 + i1⊗HT

+
∑
i

γi

(
Γi ⊗ Γ∗i −

1

2
Γ†iΓi ⊗ 1− 1

2
1⊗ ΓTi Γ∗i

)
.

(4)
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In this representation, the time evolution is formally solved
as |ρ(t)〉 = eLt|ρ(0)〉 with the initial state |ρ(0)〉. As we
shall see below, the real-time evolution operator eLt is un-
derstood as the imaginary-time evolution operator with the
non-Hermitian Hamiltonian, and the quantum Monte Carlo is
adopted to evaluate the imaginary-time evolution.

Fidelities and quantum Monte Carlo. Let us define two
fidelities, which are computable using the quantum Monte
Carlo. One is a generalization of the Loschmidt echo to open
quantum systems:

Mρ(t) = 〈ργi=0(t)|ρ(t)〉
= 〈ρ(0)|e−Lγi=0teLt|ρ(0)〉,

(5)

where |ργi=0(t)〉, and Lγi=0 are the vectorized density ma-
trix, and evolution operator without quantum jumps, i.e., all
γi = 0 in Eq. (4), and |ργi=0(t)〉 obeys the Hamiltonian evo-
lution. Regarding the quantum jumps as perturbations, this
quantifies the deviation of trajectories from the Hamiltonian
evolution due to dissipations. The other is a relative purity:

Pρ(t) = 〈ρ(0)|ρ(t)〉
= 〈ρ(0)|eLt|ρ(0)〉.

(6)

This is an extension of the persistent probability in the unitary
system, and used e.g., for studying quantum speed limits in
open systems [16]. Here, to make a connection between real-
time and statistical problems apparent, we consider average
about initial states

∑
ρ(0)Mρ and

∑
ρ(0) Pρ. As initial states,

we consider all eigenvectors of the computational basis of the
doubled Hilbert space (|ρ(0)〉 = |i〉 ⊗ |j〉). Then, we can
replace the inner product by the trace as

M(t) = tr e−Lγi=0teLt, (7)

and

P (t) = tr eLt. (8)

To demonstrate how the quantum Monte Carlo works, let
us solve a concrete model. We consider a spinless fermion in
a two-dimensional square lattice with regular hopping terms,
and impose the periodic boundary conditions. We choose the
number operator at each site x as quantum jump operator, and
take γi = γ for simplicity (It is generalizable to the inho-
mogeneous and even time-dependent couplings). Then, the
Liouville operator reads

L = K + U, (9)

with

K =− iw
∑
x,i

(
c†xcx+î + c†

x+î
cx

)
+ iw

∑
x,i

(
d†xdx+î + d†

x+î
dx

)
,

(10)

and

U =
∑
x

γ

(
c†xcx −

1

2

)(
d†xdx −

1

2

)
− γ

4
, (11)

where cx and dx (c†x and d†x) are annihilation (creation) oper-
ators acting on the left- and right-kets in the doubled Hilbert
space. w is the strength of hopping temrs, and î [i = x, y]
represents the unit vector along the i direction.

Now it is clear that the fidelity P (t) = tr eLt is nothing but
the canonical partition function of the non-Hermitian quantum
system Z = tr e−βHeff , with the Hamiltonian Heff = −L,
and the inverse temperature β = t. The left- and right-kets in
the doubled Hilbert space is understood as the spin degrees of
freedom, and the effective non-Hermitian Hamiltonian is the
attractive Hubbard model with the non-Hermitian imaginary
hopping terms. We note that we can absorb the imaginary
unit i in Eq. (10) into the definition of fields: c′x = icx, and
d′x = idx. By this redefinition, Eq. (10) is equivalent to the
Hatano-Nelson type hopping terms discussed in Ref. [15].

By using the Suzuki-Trotter decomposition

eLt = ΠNt
n=1e

K∆teU∆t + O(∆t2), (12)

with ∆t = t/Nt, and Nt being the number of the steps in the
Suzuki-Trotter decomposition, and the Hubbard-Stratonovich
transformation [17]

e∆tγ(c†xcx− 1
2 )(d†xdx− 1

2 ) =
e−

γ∆t
4

2

∑
sx=±1

esxλ(c†xcx+d†xdx−1),

(13)
with coshλ = eγ∆t/2, the fidelities in Eqs.(7), and (8) are
written as [18, 19]

M(t, λ) = tr e−KtΠNt
n=1e

K∆teU∆t

= N
∑

sn,x=±1

e−λsn,xdet
[
1 + e−K↑tB↑

]
× det

[
1 + e−K↓tB↓

]
= N

∑
sn,x=±1

e−λsn,x
∣∣det

[
1 + e−K↑tB↑

]∣∣2
=:
∑
sn,x

m(t, λ),

(14)

and

P (t, w) = tr ΠNt
n=1e

K∆teU∆t

= N
∑

sn,x=±1

e−λsn,xdet [1 +B↑]

× det [1 +B↓]

= N
∑

sn,x=±1

e−λsn,x |det [1 +B↑]|2

=:
∑
sn,x

p(t, w),

(15)



3

where Kσ=↑,↓ are the hopping matrices with amplitude
∓iw, and Bσ=↑,↓ = eKσ∆teλV (s1,x) · · · eKσ∆teλV (sN,x),
with V (sN,x) being the diagonal matrix, whose compo-
nents are sn,x = ±1. The normalization factor is N =(
e−

γ∆t
2 /2

)NtV
, with V being the spatial volume. Since

eK↓∆t =
[
eK↑∆t

]∗
, the weights m(t, λ), and p(t, w) are

semi-positive, so that we can compute the time evolution of
the fidelities based on the quantum Monte Carlo. Importantly,
the Hamiltonian dynamics evolves the two spin components
along the forward and backward directions, so that the com-
plex phase is always cancelled in the spin components, while
the weight of each spin component is complex and oscillates,
which strongly harms the importance sampling only with the
one-sided time evolution.

In Monte Carlo simulations, we cannot evaluate the weight
itself. As is common in them, we regard the ratio of weights
as an observable and compute M(t, λ) as

M(t, λ)

M(t, 0)
=

N−1∏
i=0

M(t, (i+ 1)∆λ)

M(t, i∆λ)

=

N−1∏
i=0

1

〈 m(t,i∆λ)
m(t,(i+1)∆λ) 〉t,(i+1)∆λ

,

(16)

where M(t, 0) = tr1 = 22V , ∆λ = λ/N , and

〈O(sn,x)〉t,i∆λ =

∑
sn,x

m(t, i∆λ)O(sn,x)∑
sn,x

m(t, i∆λ)
. (17)

We note that the ratio of the normalization factor should be
correctly taken into account in Eq.(16). Instead of comput-
ing M(t, λ)/M(t, 0) itself, we rewrite M(t, λ)/M(t, 0) as
the product of the ratios as in Eq.(16), and compute each ratio
indepedently by the quantum Monte Carlo. In this way, each
ratio can be computed efficiently since the typical set of sn,x
has a good overlap in the two fidelities. Similarly, P (t, w) is
computed as

P (t, w)

P (t, 0)
=

N−1∏
i=0

P (t, (i+ 1)∆w)

P (t, i∆w)

=

N−1∏
i=0

1

〈 p(t,i∆w)
p(t,(i+1)∆w) 〉t,(i+1)∆w

(18)

where P (t, 0) = [2(1+e−γt)]V can be analytically computed,
∆w = w/N , and

〈O(sn,x)〉t,i∆w =

∑
sn,x

p(t, i∆w)O(sn,x)∑
sn,x

p(t, i∆w)
. (19)

Numerical simulation. We computed the ratios of the fi-
delities in Eqs (16), and (18) by the the determinant quantum
Monte Carlo [18]. The simulation details are as follows. We
take the strength of quantum jumps γ/w = 0.1 and 4, and the
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FIG. 1. Time evolution of the generalization of Loschmidt echo
M(t, λ). We normalize M(t, λ) by its initial value M(0, λ) = 22V .
The strength of the coupling is γ/w = 4. The error bars are the
standard error of the mean.

total number of the products N = 32. We performed the sim-
ulations with one lattice volume V = 82 for γ/w = 0.1, and
with three lattice volumes V = 82, 122, and 162 for γ/w = 4.
We fixed the Trotter step with ∆t = 0.05/w. The extrapo-
lation ∆t → 0 is left for a future study. We employed the
stabilization techniques developed in Refs. [19, 20] to com-
pute a long Trotter chain without deteriorating the numerical
precision.

We show the time evolution of the generalization of
Loschmidt echo M(t, λ), and the relative purity P (t, w) in
Figs. 1, and 2. For γ/w = 4, we clearly see that both of
M(t, λ) and P (t, w) decay exponentially in time, and reach
the stationary values very quickly. We found that the decay
rates and stationary values show the volume-law scaling as
clearly seen in the volume dependence of the fidelities.

We have also performed numerical simulations with the
small coupling strength γ/w = 0.1. We show the time evo-
lution of the relative purity P (t, w) in Fig 2. Surprisingly,
using the quantum Monte Carlo, we can compute even the
oscillatory damping. This oscillation originates from the uni-
tary time-evolution of free fermions, so that it is cancelled in
e−Lγ=0t and eLt, and not visible in M(t, λ).

Summary and future prospects. We have shown that the
real-time evolution of fidelities in open fermion systems can
be computed on the basis of the determinant quantum Monte
Carlo. To this end, we prescribe a mapping between the fi-
delities in open quantum systems and the partition function in
non-Hermitian quantum systems; the latter can be solved with
the determinant quantum Monte Carlo. Although we consid-
ered the simple spinless fermion model for a demonstration,
the common strategy to search the sign-free Hamiltonians in
Hermitian systems is still useful for the non-Hermitian Hamil-
tonian [15], and thus we can find more generic sign-free open
fermion systems.
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FIG. 2. Time evolution of the relative purity P (t, w). We normalize
P (t, w) by its initial value P (0, w) = 22V . The solid curves show
the results with γ/w = 4, and V = 82, 122, 162, while the dashed
curve shows the results with γ/w = 0.1, and V = 82. The error
bars are the standard error of the mean.

There are several future applications. First, although we
consider the averaged fidelities to map a real-time open quan-
tum system to a finite-temperature non-Hermitian quantum
system (in particular for identifying time as inverse temper-
ature), we can also start with a specific initial state without
averaging. In this case, the fidelities in Eqs. (5), and (6) can
be computed on the basis of the projector quantum Monte
Carlo. This might be more suitable for a comparison with
experiments. Second, we may be able to compute the fidelity-
type out-of-time-order correlators [21, 22] by generalizing our
method. This would be useful to study the information scram-
bling under dissipation. Finally, we have computed the fi-
delities of an open quantum system, or equivalently, the par-
tition function of a non-Hermitian quantum system. We can
compute correlation functions as in the usual quantum Monte
Carlo simulations. In particular, our method can be used to
study the finite-temperature phases of non-Hermitian quan-
tum systems via the mapping to the real-time open quantum
systems. This would be very interesting since the physical
meaning of temperature was not clear in non-Hermitian quan-
tum systems, and only the phases of the groundstate have been
discussed so far.

This work was supported by JSPS KAKENHI Grant Num-
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[1] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and
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