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In this paper we present an algorithm which allows single-stage direct Langevin dynamics simula-
tions of transitions over arbitrary high energy barriers employing the concept of the energy-dependent
temperature (EDT). In our algorithm, simulation time required for the computation of the corre-
sponding switching rate does not increase with energy barrier. This is achieved by using in simula-
tions an effective temperature which depends on the system energy: around the energy minima this
temperature is high and tends towards the room temperature when the energy approaches the saddle
point value. Switching times computed via our EDT algorithm show an excellent agreement with
results obtained with the established forward flux sampling (FFS) method. As the simulation time
required by our method does not increase with the energy barrier, we achieve a very large speedup
when compared even to the highly optimized FFS version. In addition, our method does not suffer
from stability problems occurring in multi-stage algorithms (like FFS and ’energy bounce’ methods)
due to the multiplication of a large number of transition probabilities between the interfaces.

I. INTRODUCTION

Evaluation of escape rates Γ (or, equivalently, switch-
ing times τsw) over high energy barriers is a highly impor-
tant and in most cases a very difficult task arising in any
scientific area where systems with more than one stable
states are studied - in physics, chemistry, molecular biol-
ogy, material science etc. [1]. This problem is much more
difficult than the computation of the height of the cor-
responding energy barriers separating these metastable
energy minima, because system dynamics near the sad-
dle point may be highly non-trivial. For solution of
the latter problem, several meanwhile standard methods
have been implemented in the recent decades. The most
widely used algorithm for this purpose is undoubtedly
the ’nudged elastic band’ (NEB) method of Jonsson et
al. [2], which employs the idea that the energy gradient
component perpendicular to the optimal path should be
zero along the whole path. The main advantage of NEB is
the suggestion to connect the neighbouring system states
along the transition path with artificial ’springs’ to pre-
vent a too large distance between these states during the
path-finding procedure. Some less known methods are
the closely related ’string method’ which also searches
for the ’minimal energy path’, but in a slightly different
way [3, 4] and the minimization of the Onsager-Machlup
functional [5], first implemented by us for an interacting
system of single-domain particles in [6].

Obviously, to compute the average lifetime of a sys-
tem with several metastable states - which is the quan-
tity of interest for applications one needs more than
the value of the energy barrier ∆E. Even in the sim-
plest analytical approximation for Γ given by the Arrhe-
nius law Γ = νatt exp(∆E/kBT ), the ’attempt frequency’
νatt, usually interpreted as the oscillation frequency near
the metastable state is present. Omitting the discussion
about the highly non-trivial task of computing this fre-
quency for systems with internal degrees of freedom (see,
e.g., [1, 7, 8] etc.), we recall that the Arrhenius law is fun-

damentally not a satisfactory approach [9, 10], because
the Arrhenius expression does not contain the system
damping, which presence in the escape required by the
fluctuation-dissipation theorem, as switching can occur
only due to the interaction with the thermal bath.

The best possible analytical solution for the escape
rate in a system with arbitrary damping (known as the
Kramers problem) was derived in the famous paper of
Mel’nikov and Meshkov [11]; this solution includes the
intermediate-to-high damping (IHD) regime studied by
Brown [12] and the very low damping (VLD) considered
by Klik and Günther [13]. The formalism developed in
[11] was successfully applied to a escape rate out of a sin-
gle well and transition rates between two energy minima
for a single-domain magnetic particle in [14] and [15]; for
the corresponding detailed review see [10].

However, as any analytical approach, the expression
given in [14] has serious shortcomings. The most im-
portant one is that the analytical treatment is impossi-
ble for magnetic particles with the size larger than the
characteristic micromagnetic length [16], because mag-
netization configuration of this particles is spatially non-
homogeneous. But even for the simplest case of single-
domain particles, analytical methods cannot account for
the ’back-hopping’ trajectories (i.e., trajectories which,
after crossing the saddle point, return to the starting
minimum before they reach the equilibrium in the target
minimum. Hence general numerical methods for the eval-
uation of the actual escape rate, which would take into
account all the features listed above are strongly desired.

Among these methods, the Langevin dynamics (LD) is
conceptually the simplest one, because it directly mimics
the time evolution of the system under the influence of
thermal fluctuations. Unfortunately, LD is suitable for
small barriers only (∆E/kBT ≤ 10), because switching
times (and correspondingly - the computation time) grow
exponentially with ∆E.

Thus, methods for evaluating numerically the escape
rate over high barriers are usually based on a kind of
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gradual ’climbing’ towards the saddle point uphill the
energy surface.

The most successful general method of this class is the
so called forward flux sampling (FFS) [17–20]. In FFS,
the phase space between the two energy minima of in-
terest is first divided into a (large) number of interfaces.
Then the probability w(λi → λi+1) to reach the next in-
terface starting from the previous one is computed. In
order to ensure that this probability is computed rea-
sonably fast and accurately by standard LD simulations,
subsequent interfaces are placed relatively close to each
other. Finally, multiplying the product of all these tran-
sition (for all interface pairs between the two minima)
by the flux from the starting minimum through the first
interface, one obtains the transition rate.

The interfaces are usually defined in the system coor-
dinate space, using the sequence of values of the ’reaction
coordinate’, which defines whether the transition has oc-
curred or not. In micromagnetics, this method was ap-
plied for magnetization switching in columnar recording
structures (order parameter being the average magneti-
zation projection) [21–23] and in skyrmions (order pa-
rameter was the skyrmion size) [24].

Computational time for FFS is roughly proportional to
the energy barrier height, because for larger barriers more
interfaces are needed in order to maintain the transition
probabilities between the neighbouring interfaces reason-
ably high. However, an additional (and often really sub-
stantial) time effort is required for the optimal position-
ing of interfaces. This optimal positioning should ensure
that transition probabilities w(λi → λi+1) are the same
for all interface pairs, because in this case the most accu-
rate estimation of the transition rate is achieved [19, 20].
Corresponding optimal placement required an iterative
procedure which naturally requires several evaluations
of the whole set of these probabilities, i.e., several com-
plete FFS runs. We could demonstrate [25] that this
large additional effort can be avoided if the interfaces are
placed directly in the energy space, so that all probabil-
ities wi→i+1 (which are ∼ exp(−(Ei+1 − Ei)/kBT ) are
approximately equal.

Another inherent problem of FFS and related multi-
stage climbing methods (e.g. the ’energy bounce’ (EnB)
algorithm [26]) is the tight requirement to the accuracy
of the numerically computed transition probabilities wi
(evaluated by LD simulations). This accuracy should be
really high because the final result includes the product
of these probabilities so that any bias of wi will be ele-
vated to the corresponding degree. Systematic errors are
especially dangerous - it is easy to estimate that for a
system with 50 interfaces, such an error of only 2% in
each wi would lead to the error of nearly 300% in the fi-
nal result. Even the stochastic mean-square error of only
5% on each interface - a very low value for this kind of
simulations - would lead to a relative error of ≈ 35% in
the computed switching rate.

Thus, a new class of numerical methods which could
perform the evaluation of the switching rate using only

single-stage (in contrast to a gradual ’climbing’ over a
long series of interfaces as in FFS and EnB algorithms)
Langevin dynamics simulations for energy barriers of ar-
bitrary heights are highly desirable. In this study, we
present such an algorithm based on the concept of the
energy-dependent effective temperature. Our method al-
lows stable and accurate single-stage simulations of tran-
sitions over any barrier with the simulation time which
does not increase with the barrier height.

This paper is organized as follows: In Sec. II A we
describe the main idea of our algorithm: it is based on
LD simulations of the system where the effective tem-
perature depending on the system energy (EDT) is in-
troduced: this temperature is high near the energy min-
ima and tends to the room temperature in the vicinity
of the saddle point(s). Then, in Section II B we derive
the relation between the switching time obtained for the
EDT system and the switching time of interest, i.e., for
a constant temperature (CT). In the next Section III the
Markov chain used for the evaluation of the ratio of prob-
ability products for EDT and CT cases is constructed.
Section IV is devoted to the validation of our method via
the EDT-version of the FFS algorithm. Finally, Sec. V
contains the direct comparison of ’real’ switching times
obtained by EDT and standard (T = Const) FFS al-
gorithms. Here we show a very good agreement between
both methods in the energy barriers 10 ≤ ∆E/kBT ≤ 60,
where switching times span about 20 orders of magni-
tude. Further, we demonstrate a large speedup of the
EDT algorithm as compared even to the optimized (as
explained in [25]) FFS method.

II. ENERGY-DEPENDENT TEMPERATURE:
METHODOLOGY

A. Main idea

Direct LD simulations of transitions over high energy
barriers are not feasible due to the major drawback of this
method: the system spends the overwhelming majority of
time in the vicinity of its energy minima, and the proba-
bility of approaching the landscape region near the saddle
point is exponentially small (p ∼ exp(−∆E/kBT )).

To overcome this obstacle, we suggest to introduce the
effective energy-dependent temperature T (E). This tem-
perature depends on the system energy in the following
way: it is equal to the room temperature Troom for en-
ergies slightly below the saddle point (T (E)→ Troom for
∆E − E ∼ kBT ), and is much higher than Troom for
energies considerably lower than the energy barrier ∆E:
T (E) = Tlrg � Troom for ∆E − E � kBT .

For this purpose, we use the functional dependence

T (E) = a1 + a2 tanh

(
∆E − bcool · kBT

∆T

)
(1)

(see Fig. 1). The finite width ∆T of this T -distribution
should merely ensure a smooth transition between the
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’hot’ and ’cold’ regions (abrupt temperature change
would cause numerical instabilities of LD trajectories);
we have checked that values ∆T = (0.1 ÷ 1.0)kBT lead
to the same final results. Parameters a1 and a2 should
be chosen to satisfy the two conditions

T (E : E − Ecool � kBT )→ Troom

T (E : Ecool − E � kBT )→ Tlrg
(2)

(’cold’ region near the barrier and ’hot’ region far below
the barrier), so that a1 = (Troom + Tlrg)/2 and a2 =
(Troom − Tlrg)/2.

Temperature Tlrg itself and the ’cooling’ energy Ecool =
∆E − bcool · kBTroom should be set so that the proba-
bility p(Ecool) ∼ exp(−Ecool/kBTlrg) to occupy states
near Ecool is large enough to frequently provide ’launch-
ing points’ for the system to overcome the energy barrier
starting from this energy. Basing on desired values of
p(Ecool) = 0.001− 0.01, we obtain Ecool/kBTlrg = alrg ∼
4−6. We have used alrg = 4; its further increase naturally
led to fewer observed transitions and poorer statistics.

The last parameter to be determined - bcool - con-
trols the height of the effective energy barrier ∆Eeff =
∆E−Ecool = bcool·kBTroom which the system has to over-
come starting from the energy Ecool. The upper limit of
bcool is set by the ability to overcome the correspond-
ing barrier employing standard LD simulations. On the
other hand, too small vales of bcool lead to very frequent
crossings of the energy barrier, so that it is difficult to
distinguish between ’true’ and ’false’ transitions between
the basins (see [25] for the detailed discussion). These
arguments lead to the parameter range 5 ≤ bcool ≤ 10; in
our simulations we have used mostly bcool = 7 and have
checked that varying it in above mentioned limits does
not change final results within the statistical accuracy.

An example of the dependence T (E) with parameters
given above is shown in Fig. 1 for a system with the
energy barrier ∆E = 18kBT .

FIG. 1. Temperature as function of energy.

It is clear that for the system with the EDT profile
(1) we should observe numerous transitions over the bar-
rier ∆E by employing direct LD simulations, no matter
how large this barrier is: effective temperature for en-
ergies E < ∆E − bcoolkBT is high enough to ensure a

significant occupation of these states, so that the energy
barrier to be overcome is only ∆EEDT ' bcoolkBT . The
corresponding switching time for an EDT-system thus
can be computed in a standard way using LD simula-
tions, namely dividing the physical simulation time by
the number of ’true’ switchings: τEDT

sw = tsim/Nsw [25].
The key problem is how to establish the relation be-

tween this EDT-computed switching time τEDT
sw and the

switching time for the same system at a constant tem-
perature τCT

sw - a quantity of a real physical interest.

B. Relation between the EDT-computed time and
the real switching time

To establish the above mentioned relation, we start
with the same expression for the transition rate Γ (recall
that τsw = 1/Γ) which is used in forward-flux sampling
(FFS) algorithms: we introduce virtual interfaces {λi, i =
1, ..., N} between the basins A and B (whereby λ1 ≡ λA,
λN ≡ λB), so that

ΓA→B = Φλ1→λ2
·
N−1∏
i=2

w(λi → λi+1) ≡ ΦA ·
N−1∏
i=2

wi→i+1

(3)
Note that we have slightly changed the numbering of in-
terface compared to our previous paper [25] to make it
consistent with the numbering of Markov chain states
used in the next sections.

Eq. (3) represents a very general statement that tran-
sition rate ΓA→B can be viewed as the product of the
flux ΦA out of the basin A through the interface λ2 (i.e.,
the number of particles per unit time starting in A and
crossing the first interface outside A), and the subsequent
conditional probabilities w(λi → λi+1) that a particle
starting from the interface i reaches the interface i+ 1.

Using Eq. (3), the ratio τCT
sw /τEDT

sw can be written as

τCT
sw

τEDT
sw

=
ΓEDT
A→B

ΓCT
A→B

=
ΦEDT

A (T = Tlrg)

ΦCT
A (T = Troom)

·

N−1∏
i=2

wEDT
i→i+1

N−1∏
i=2

wCT
i→i+1

(4)

where the initial fluxes should be computed at corre-
sponding temperatures, as explicitly indicated in (4).
Hence, the actual switching time is

τCT
sw = τEDT

sw · ΦEDT
A

ΦCT
A

·

N−1∏
i=2

wEDT
i→i+1

N−1∏
i=2

wCT
i→i+1

(5)

As explained above, τEDT
sw in this expression can be com-

puted from direct LD simulations. The fluxes ΦEDT
A and

ΦCT
A are also easily available from such simulations, be-

cause the first interface is usually chosen to be close
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(∼ kBT ) to the basin A. Thus, our task reduces to the
evaluation of the ratio of two probability products

r =

N−1∏
i=2

wEDT
i→i+1

N−1∏
i=2

wCT
i→i+1

(6)

We emphasize that the method for evaluation of this ratio
should be either an analytical one or a numerical method
with a very low computational effort, because otherwise
the EDT algorithm will not have any advantage com-
pared to standard FFS methods. In the next Section, we
shall construct a Markov chain which enables the eval-
uation of (6) using only N diagonalizations of matrices
with the sizes ≤ N .

III. MARKOV CHAIN FORMALISM

A. Evaluation of the of the equilibrium
probabilities wi→i+1 using Markov chains

In this subsection we demonstrate how to compute
the required ratio (6) of probability products using the
Markov chain (MCh) formalism (see, e.g., [27]). For this
purpose, we introduce the Markov chain with the set of
states {i = 1, ..., N}, which correspond to our set of inter-
faces {λA = λ1, ..., λi, ..., λN = λB}. We denote the one-
step transition probabilities between these chain states
as pi→i+1 and qi→i−1. Corresponding Markov chain for
the whole set of interfaces is shown in Fig. 2.

FIG. 2. Markov chain consisting of N states {1, ..., N} which
correspondence to the interfaces {λA, ..., λB} is shown by
black arrows.

Probabilities pi→i+1 and qi→i−1 form the one-step

transition matrix P̂ for the Markov chain (which gov-
erns the change of the state occupations in this chain
after one step): Pi,i+1 = pi→i+1 and Pi,i−1 = qi→i−1.

To compute the transition probabilities wi→i+1 ap-
pearing in the basic expression (3) (and correspondingly
- in Eqs. (4)-(6)), we first recall how these probabili-
ties are defined: a system trajectory is started from the
interface λi and simulated (using the standard Langevin
dynamics) until it either arrives at the next interface λi+1

or returns to the basin A. Then the next trajectory is
launched from λi etc. Probability wi→i+1 is defined as
the fraction of launched trajectories which arrive at λi+1.

According to this procedure, the random process for
which we construct the Markov chain for the evaluation

of wi→i+1, terminates when the system reaches either the
state 1 or the state (i + 1). Hence, we have the Markov
chain of the length (i + 1) with absorbing borders, so
that corresponding elements of the one-step transition

matrix P̂(i+1) of this chain are P
(i+1)
11 = P

(i+1)
i+1,i+1 = 1,

P
(i+1)
12 = p1→2 = 0 and P

(i+1)
i+1,i = qi+1→i = 0. The whole

matrix P̂(i+1) is then tridiagonal and has the form

P̂(i+1) =



1 0 · · · 0
q21 0 p23

0 q23 0 p34

...
. . .

...
0 pi−1,i

qi,i−1 0 pi,i+1

0 · · · 0 1


(7)

This matrix belongs to the class of the so called stochastic
matrices, for which the sum of elements of each row is
one.

Next, we recall that wi→i+1 is computed from LD sim-
ulations which are carried out until the system reaches
either the interface λi+1 or the basin A, i.e., without
restricting the simulation time. In the Markov chain for-
malism this corresponds to the probability that the sys-
tem, being initially in the i-th state, will be found in the
(i + 1)-th state after an arbitrary large number of steps
(equilibrium configuration). Thus, in order to compute

wi→i+1 from the one-step matrix P̂(i+1)), we have to find

the matrix Ê(i+1) = limk→∞(P̂(i+1))k. The probability
of interest is then given by the corresponding matrix el-

ement of Ê(i+1), namely wi→i+1 = E
(i+1)
i,i+1 .

Importantly, the matrix limk→∞(P̂(i+1))k can be com-
puted very fast: after the diagonalization of the matrix

P̂(i+1) = Q̂D̂ ˆQ−1 this limit becomes limk→∞(P̂(i+1))k =

limk→∞ Q̂D̂k ˆQ−1, so that we have to evaluate only the
limits limk→∞ dkj for eigenvalues of the matrix P̂(i+1).
According to the properties of stochastic matrices, all
their eigenvalues obey the inequality di ≤ 1, so that cor-
responding limits are either 0 or 1.

B. Assignment of one-step probabilities {p} and {q}

To assign the one-step probabilities pi→i+1 and qi+1→i
for the Markov chain, we have first to establish the cor-
respondence between the energy landscape and these
states in our case. In our previous paper [25] we have
proposed to place the interfaces for FFS simulation of
the transition A → B, not according to the values
of magnetic moment projections (as it is done usually
[21, 22]), but equidistantly in the energy space of the
studied system. This positioning has greatly simplified
the FFS algorithm, because the probabilities wi→i+1 de-
pend mainly on the energy differences between the in-
terfaces (wi→i+1 ∼ exp(−(Ei+1 − Ei)/kT )). Hence, for
energy-equidistant interfaces these probabilities should
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be approximately the same for all ’uphill’ interface pairs
i → i + 1, what should minimize the statistical error of
FFS [19, 20].

In our EDT algorithm presented here we use the same
principle to position the interfaces and correspondingly -
Markov chain states, as shown in Fig. 3.

FIG. 3. Markov chain and energy landscape.

This interface placement allows us to assign the MCh
probabilities pi→i+1 and qi+1→i using the equilibrium
thermodynamics and the principle of the detailed bal-
ance (see, e.g., [28]). According to this principle, one-
step MCh probabilities pi→j and qj→i are related to the
equilibrium probabilities to find the system in the corre-
sponding states πi and πj as πipi→j = πjqj→i. Further,
in a thermodynamic equilibrium these latter probabili-
ties are given by πi ' ni exp(−Ei/kBT ), where ni is the
density of states at the energy Ei. Hence, one-step MC
probabilities pi→i+1 and qi+1→i should obey the relation

pi→i+1

qi+1→i
=
πi+1

πi
=
ni+1e

−Ei+1/kBT

nie−Ei/kBT
=
ni+1

ni
exp

(
−δEi,i+1

kBT

)
(8)

where δEi,i+1 = Ei+1 − Ei.
To satisfy this relation, we set

pi→i+1 =

(
ni+1

ni

)1/2

exp

(
−1

2

δEi,i+1

kBT

)
(9)

qi+1→i =

(
ni
ni+1

)1/2

exp

(
+

1

2

δEi,i+1

kBT

)
(10)

To evaluate the ratio ni+1/ni for two subsequent states
we note that for a small energy increments δEi,i+1 ≡ δE
we can expand ni+1 = n(Ei+1) into the Taylor series near
E = Ei, obtaining

ni+1 = ni +
∂n

∂E

∣∣∣∣
E=Ei

δE = ni

(
1 +

δE

ni

∂n

∂E

∣∣∣∣
E=Ei

)
(11)

so that the required ratio is(
ni+1

ni

)±1/2

= 1± δE

2ni

∂n

∂E

∣∣∣∣
E=Ei

(12)

Thus, for energies where the function n(E) is non-
singular (what is normally the case if E does not cor-
respond to an extremum of a saddle point) we can set
ni+1/ni ≈ 1 for small δE → 0. Finally, we have to nor-
malize p’s and q’s so that pi→i+1 + qi→i−1 = 1 to satisfy
the normalization condition for transition probabilities
out of the state i.

IV. VALIDATION OF THE EDT ALGORITHM

Dependencies of probabilities pi on the interface num-
ber i for the whole Markov chain are shown in Fig. 4
(qi = 1 − pi and thus are not shown) for T = Troom =
Const and T = T (E) (1) as lines marked with crosses;
in this example here the barrier is ∆E = 38kBT and the
interface distance δE = 0.25kBT .

According to the definition (9), for the case T = Const
the one-step probabilities pi should exhibit a jump for
the interface corresponding to the saddle point (i.e., the
middle interface, see Fig. 4(a)), because at this point
the energy difference Ei+1 − Ei changes its sign. The
same Eq. (9) implies that for the energy-dependent tem-
perature (see Fig. 1), the values of pi’s should rapidly
change also around the interface corresponding to the
energy Ecool = ∆E − bcoolkBT (line with crosses in Fig.
4(b)), where the temperature drops from Tlrg to Troom.

FIG. 4. One-step probabilities pi→i+1 (lines with crosses) and
total probabilities wi→i+1 (lines with circles) as functions of
the interface number for T = Troom (a) and T = T (E) (b).

Total transition probabilities wi→i+1 obtained from
these one-step quantities as explained above (i.e., as

wi→i+1 = E
(i+1)
i,i+1 , where Ê(i+1) = limk→∞(P̂(i+1))k with

the matrix P̂ given by (7)), are shown in the same Fig.
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4 as lines marked by circles. It can be seen that after the
jump of pi the total probability wi→i+1 changes smoothly,
tending to its new limit for the new constant tempera-
ture: wi→i+1 → exp(−δE/kBT ) for δE > 0 [25]. This
behaviour is in accordance with the physical sense of the
quantity wi→i+1 defined as the result of an unlimited
number of steps for the Markov chain with the matrix
(7). For example, it is clear that the total probability
wi→i+1 to reach the next interface - i.e., not to return
back to the basin A - should gradually increase when the
distance to this basin increases.

FIG. 5. Total transition probabilities wi→i+1 for FFS (open
triangles) and MCh (closed circles) methods for the constant
temperature T = 300K (system with ∆E/kBT = 38 and
δE/kBT = 1).

The behaviour of the Markov chain probabilities
wMCh
i→i+1 can be better understood by comparing them to

the same quantities calculated with the FFS which uses
the same energy-equidistant interfaces (see [25] for the
details of the latter method). Results of this comparison
for the system with ∆E = 38kBT and interface distance
δE = 1kBT are shown for the case T = Const in Fig. 5
and for the energy-dependent temperature T (E) (1) - in
Fig. 6.

First we note that both for T = Const and EDT the
difference between wi→i+1 obtained by MCh and FFS
for interface energies below the saddle point is due to
the rather large value of the interface distance (δE =
1kBT ) used here, so that neglecting the change in the
density of states n(E) in the MCh method according to
the expansion (12) has a noticeable effect. However, this
difference decreases with δE → 0, as explained above.

The most important feature of wi→i+1 seen in Fig. 5
and 6 is the large discrepancy between MCh and FFS
probabilities at and slightly above the saddle point en-
ergy ∆E. This discrepancy reflects the qualitative dif-
ference between the FFS and MCh methods. Namely, in
FFS we evaluate wi→i+1 by LD simulations taking into
account complicated physical processes near the saddle
point (back-hopping in the first place) and the pecu-
liarities of FFS interfaces for the specific system under
study. In particular, for our macrospin the probabil-

FIG. 6. The same as in Fig. 5 for the energy-dependent
temperature T(E) given by (1).

FIG. 7. Ratio of probabilities wEDT
i→i+1/w

T=Const
i→i+1 for FFS

(open triangles) and MCh (full circles) methods as function
of the interface energy. A very good agreement of these ratios
for both methods is clearly demonstrated.

ity to reach the saddle-point interface is especially small
(large dips at Ei = ∆E on wi-dependencies for FFS), be-
cause the conditions to reach this interface also include
the requirement that mx-projection changes its sign (see
[25] for details). For this reason the distance between
the saddle interface and the previous one in the coor-
dinate space is much larger than for preceding interface
pairs (see Fig. 8), leading to the correspondingly small
probability w(λs−1 → λs). For the same reason, wi→i+1

strongly increases immediately after this interface, be-
cause the probability to return to previous interfaces is
very low. In contrast, in MCh we merely compute the
limit Ê(i+1) = limk→∞(P̂(i+1))k where one-step proba-

bilities pi and qi in the matrix P̂ have only a relatively
small jump near the saddle point, so that wi→i+1 changes
in the vicinity of the saddle point much slower than for
FFS.

However - and this is the key point of our method
- the ratio of probabilities w for constant and energy-
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FIG. 8. To the explanation of the dip on the dependencies
wi→i+1(Ei) in Figs. 5 and 6: the interface λs−1 immediately
before the saddle point and the next (saddle) interface λs are
separated by a large distance in the coordinate space.

dependent temperatures wEDT
i→i+1/w

CT
i→i+1 should be the

same (in the limit δE → 0) in both FFS and MCh meth-
ods for all interface energies, including the region near
the saddle point.

This statement follows directly from the construction
of the energy-dependent temperature (1), where T (E)→
Troom for E ' ∆E. Due to this behaviour of T (E), for
one-step MCh probabilities (9) near the saddle point we
have pEDT

i→i+1 = pT=Const
i→i+1 (and the same applies for q’s).

Hence, as long as bcool is large enough to allow wi→i+1

(computed from the matrix Ê(i+1)) to reach its steady-
state value for T = Troom in the saddle point region, in
this region we should obtain wEDT

i→i+1 = wCT
i→i+1. In the

FFS method, probabilities w are obtained from LD sim-
ulations, which ’feel’ at each time integration step only
the local temperature, so these probabilities should also
be equal in the saddle-point region for T = Const and
T (E) cases.

Corresponding ratios wEDT
i→i+1/w

CT
i→i+1 are plotted in

Fig. 7 for the same system as in Fig. 5 and 6. It can
be clearly seen that these ratios for FFS and MCh meth-
ods agree very well for all interface energies - as well far
below the saddle point (where these ratios are governed
only by the local temperatures) as in the saddle point
region, where the dynamics of a real system plays a deci-
sive role in the FFS method. This means that the ratio of
the probability products (6) required for the evaluation
of the switching time in our energy-dependent temper-
ature concept can be computed using the Matrix chain
method. As stated above, this computation is very fast,
involving only a few matrix multiplications to obtain the
limit Ê(i+1) = limk→∞(P̂(i+1))k. Moreover, the ratio
r (6) computed this way depends only on the function
T (E) and thus can be evaluated for any system with the
given barrier ∆E once and for all.

Hence our algorithm for the switching time evalua-
tion requires only numerical simulations of transitions
over the barrier for the studied system with the energy-

dependent temperature. This means that we have to col-
lect only a sufficiently accurate statistics of transitions
over the effective barrier with the height ∆Eeff =' ∆E−
Ecool = broomkBT . Corresponding simulation time is not
only accessible for the direct LD modelling, but should
be approximately independent on the height of the ac-
tual barrier ∆E - in strong contrast both to standard LD
simulations (where simulation time tsim ∼ exp(∆E/kBT )
and FFS methods, where tsim ∼ ∆E.

Moreover, our method does suffer from the instability
problem arsing in FFS and EnB algorithms due to the
presence of the product of numerically computed tran-
sition probabilities, as explained in details in the Intro-
duction. Computation of the probability product ratio r
(6) in our method is error-free, so that this instability is
completely absent.

Summarizing, our algorithm consists of the following
stages:

(1) Divide the path between the basins A and B into
N states with the energy differences δE between them.

(2) Set the energy-dependent temperature (EDT) (1).
(3) Using this T (E) dependence, assign the one-step

hopping probabilities {pi} and {qi} between the states
according to (9) and (10).

(4) For each state i, build the transition matrix P̂i+1

given by (7) for the corresponding Markov chain.
(5) Compute the total EDT transition probabilities

as matrix elements wEDT
i→i+1 = E

(i+1)
i,i+1 , where Ê(i+1) =

limk→∞(P̂(i+1))k

(6) Repeat the steps (3)-(5) for the constant tempera-
ture T = Troom to obtain the probabilities wCT

i→i+1.
(7) Perform LD simulations for the EDT case and com-

pute the EDT switching time τEDT
sw in a standard way.

(8) Perform LD simulations for T = Troom and T = Tlrg

to compute the corresponding fluxes ΦCT
0 and ΦEDT

0 out
of the basin A.

(9) Compute the real switching time (for the constant
temperature) τCT

sw according to (5).
We emphasize once more that the only really time-

consuming step in this algorithm is the procedure (7),
where an accurate statistics of the switching events
should be collected.

V. PHYSICAL RESULTS AND COMPARISON
OF EDT WITH FFS

To demonstrate the high accuracy of our algorithm and
to quantitatively compare the simulation time for deter-
mination of the switching rate in our EDT paradigm with
the corresponding time required by FFS, we have simu-
lated with both methods the same series of macrospins
with the biaxial anisotropy as analysed in [25], i.e. the
macrospins with magnetic parameters as for Permalloy
(magnetization M = 800 G, damping λ = 0.01) and de-
magnetizing factors of flat nanoellipses with the thickness
h = 3 nm, short axis a = 40 nm and long axes b varying
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from 50 to 100 nm; corresponding energy barriers are in
the range 9 ≤ ∆E/kBT ≤ 60.

FIG. 9. Switching times computed by the standard (T =
Const) FFS method (red open circles) compared to the same
times obtained via EDT. An excellent agreement between
both methods is clearly demonstrated

.

Switching times for these macrospins cover approxi-
mately 20 orders of magnitude as shown in Fig. 9(a). Our
method demonstrates an excellent agreement with FFS
simulations in the whole range of energy barriers. This
agreement can be seen especially well in Fig. 9(b), where
FFS and EDT switching times obtained numerically are
plotted as ratios between them and the analytical result
obtained in [25] for the same macrospins.

Finally, to compare the performance of our algorithm
and the FFS method, we have determined simulation
times required to compute the switching time with the
relative accuracy ε = 5% with both methods. Corre-
sponding result plotted in Fig. 10 confirm our conclu-
sions drawn above. Namely, the FFS simulation time
growths approximately linearly with the barrier height
∆E, because the time required to compute each prob-
ability wi is approximately the same for each interface,
and the required number of interfaces growth linearly
with ∆E. For our EDT algorithm, simulation time even
decreases somewhat when the barrier increases, because
for higher barriers the temperature Tlrg should be higher
to ensure the same values of the probability p(Ecool) (see
Sec. II A), so that the number of transitions over the
barrier per unit time in EDT-LD simulations also in-
creases. Thus we need smaller simulation time to obtain
the statistics of the same quality.

The speedup of the EDT algorithm compared to FFS is
shown in Fig. 10(b): the break point is achieved already

FIG. 10. Speed up. ∆t = 0.001, 5% of accuracy (a) Calcu-
lation time for FFS and LD EDT (bcool = 7) methods; (b)
speed up LD EDT vs. FFS

for a very moderate barrier ∆E/kBT ≈ 20, and for the
highest studied value ∆E/kBT ≈ 60 our method is more
the 40x faster than FFS.

VI. CONCLUSION

In this paper we have introduced the concept of the
energy-dependent temperature (EDT), which allows to
simulate transitions over arbitrary high energy barriers by
single-stage Langevin dynamics simulations. Our method
has been verified on the example of a biaxial magnetic
macrospin - the system with two energy minima and
two equivalent saddle points - where our results agree
very well with switching times obtained via the forward
flux sampling (FFS). We have shown that the computa-
tion time for the EDT-based LD simulations does not in-
crease with the energy barrier height, in contrast to FFS
and other ’climbing’ methods, thus providing a unique
possibility to simulate transitions over any barrier with
a very moderate numerical effort. The speedup of our
LD-EDT method in comparison with the (strongly opti-
mized) FFS simulation achieves 40x for the energy bar-
rier of ≈ 60kBT . Further, the presented EDT-LD al-
gorithm does not require the evaluation of the product
of a large number of conditional probabilities for transi-
tions between subsequent interfaces as in FFS and related
methods (like ’energy bounce’ etc [25]) and thus does not
suffer from the stability problem arising due to this pro-
cedure in presence of any systematic error occurs by the
computation of these probabilities.
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