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Abstract—This paper investigates the impact of human activity
and mobility (HAM) in the spreading dynamics of an epidemic.
Specifically, it explores the interconnections between HAM and
its effect on the early spread of the COVID-19 virus. During the
early stages of the pandemic, effective reproduction numbers
exhibited a high correlation with human mobility patterns,
leading to a hypothesis that the HAM system can be studied as a
coupled system with disease spread dynamics. This study applies
the generalized Koopman framework with control inputs to
determine the nonlinear disease spread dynamics and the input-
output characteristics as a locally linear controlled dynamical
system. The approach solely relies on the snapshots of spatiotem-
poral data and does not require any knowledge of the system’s
physical laws. We exploit the Koopman operator framework by
utilizing the Hankel Dynamic Mode Decomposition with Control
(HDMDc) algorithm to obtain a linear disease spread model
incorporating human mobility as a control input. The study
demonstrated that the proposed methodology could capture
the impact of local mobility on the early dynamics of the
ongoing global pandemic. The obtained locally linear model can
accurately forecast the number of new infections for various
prediction windows ranging from two to four weeks. The study
corroborates a leader-follower relationship between mobility
and disease spread dynamics. In addition, the effect of delay
embedding in the HDMDc algorithm is also investigated and
reported. A case study was performed using COVID infection
data from Florida, US, and HAM data extracted from Google
community mobility data report.

I. INTRODUCTION

Given how increasingly connected the world is, epidemics
are becoming more of a commonplace. As we know and have
come to see through the ongoing COVID-19 pandemic, the
significant loss of lives, as well as the short and long-term
economic impact, can be very devastating. Besides the loss of
lives, the pandemic has also crippled global transportation,
food supply, and challenged healthcare systems in ways
not seen before. Understanding and forecasting the spread
dynamics is a challenging task, in part because these are high-
dimensional, nonlinear, and time-varying systems. In addition,
the spreading process exhibits a multi-scale spatio-temporal
phenomenon [1–3]. It depends on many exogenous variables,
including human activity and mobility (HAM) and mitigation
measures such as vaccination and face coverings adopted by
people. HAM is considered a critical factor in the disease
spread, given the fact that the effective reproduction number
of the pandemic is highly correlated to mobility.
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During the onset of the ongoing global pandemic, miti-
gation strategies revolved around imposing various restriction
measures on human activity and mobility. Since the first ‘stay-
at-home’ order was issued in the United States on March 15,
2020, in Puerto Rico, similar executive orders issued by state
and municipal authorities notably curbed travel demand and
thus potentially limiting the community spread of COVID-
19. Similarly, governmental agencies worldwide have imposed
lockdown and introduced various social isolation strategies
for controlling the spread of coronavirus. The underlying
rationale for these restriction strategies, such as lockdown and
social isolation, is to reduce the scope of direct interpersonal
contacts, which on the other hand, adversely impact human
activity and mobility, in turn, slows down the disease trans-
mission rate. Thus dynamics of COVID-19 spread and the
dynamics of HAM are intertwined via an intricate relationship.

Despite the close connections between the spread of a
pandemic and mobility, obtaining a quantifiable relationship
between them is challenging because the spread dynamics of a
pandemic such as COVID-19 depend on various other factors
such as social distancing mask-wearing, mutation of the virus,
etc. Moreover, mobility is a multi-modal service, which means
each mode of mobility has a different mechanism to impact
the disease spread dynamics. Thus, Linka et al. characterized
mobility as a ‘global barometer’ of COVID-19 [4].

Fig. 1: Data-driven discovery of coupled system

Although the literature has, for many decades, proposed
ways of modeling epidemic processes in human populations,
several factors that affect the rate of spread or control are not
often accounted for. For example, human mobility and activity
levels in an outbreak can affect how fast the outbreak is
contained or how quickly it spreads. While this knowledge, in
part, informs the preliminary soft measures typically taken by
health policymakers such as social distancing and lockdown,
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which prevents mobility or travel of individuals between in-
fected and uninfected areas, the degree to which such external
factors affect the pace of spread are not often wholly known.
A significant research gap that arises here is establishing
the interplay between the pandemic dynamics and the HAM
changes due to adopted countermeasures (lockdown, social
distancing, etc.). This knowledge gap makes the existing con-
trol strategies deviate from arguably optimal approaches based
on the actual nonlinear dynamics. For a highly infectious
disease like COVID-19, a paradigm shift in characterizing
the spreading dynamics is necessary. To contain a resurgence
of the outbreak using scarce or limited resources (such as
vaccines and ventilators), a reliable approach of integrating
HAM into the spread models aided by novel data-driven tools
within a rigorous mathematical framework is necessary. The
output of the proposed tightly integrated, the equation-free
approach can provide more robust analysis and serve as a
helpful tool for policymakers.

In this paper, We uncover the interconnections between the
simultaneous evolution of two systems – HAM and disease
spread – by treating them as a coupled dynamical system (see
Figure 1). This research builds a system discovery frame-
work through the Koopman operator framework exploiting
Hankel dynamic mode decomposition with control (HDMDc)
algorithm for understanding the dynamics of the COVID-
19 disease and its interplay with HAM. Figure 2 illustrates
the arrangement of the two systems in a feedback loop set.
HAM and epidemics spread system are coupled in a cascaded
fashion, where the current state of epidemics (e.g. number
of daily infections) triggers a feedback control action (e.g.
lockdowns), which affects the HAM system. This feedback
through the HAM system feeds back into the epidemics
system. Whereas other inputs (e.g. vaccinations) may affect
the epidemics system directly.

Fig. 2: Feedback loop arrangement for disease system

As a case study, this paper studies the early dynamics
of COVID-19 in the state of Florida, US, and develops a
locally linear model using large-scale snapshots of spatio-
temporal infection data and HAM data extracted form Google
community mobility data report. Integrating HAM data into

the framework will highlight the undercurrents of the disease
evolution as the economy reopened.

Contributions: Contributions of this paper are summarized
as follows:
• We formulate and study human activity, mobility, and

epidemics spread as cascaded coupled dynamical sys-
tems.

• The proposed method incorporates the impact of HAM
into infectious disease dynamics.

• The developed method for system identification yields a
locally linear equation-free model.

• A novel technique is proposed to quantify mobility as a
representation of human activity, which is then used as
a control input.

• We also identify the effect of delay embedding on the
model accuracy and prediction results.

Outline: Rest of the paper is organized as follows: Section II
discusses the background of the problem and the current
state of the art, Section III presents the adopted mathematical
framework, and Section IV discusses the characteristics of the
data and its preparation details. Finally, in Section-V we will
illustrate and explain the results of our analysis.

II. BACKGROUND AND LITERATURE REVIEW

This section briefly reviews some relevant literature and
approaches on mathematical models in epidemiology (II-A),
explores the connections between mobility and epidemic
spreading (II-B), and highlights the application of DMD-type
algorithms in various random dynamical system identification
including epidemiology and transportation (II-C).

A. Mathematical Models in Epidemiology and COVID-19

Although one of the earliest applications of mathematics
in epidemiology is traced back to the mid of 18th century
demonstrated by Daniel Bernoulli [5], deterministic epidemi-
ology modeling came into being at the beginning of the
20th century [6]; however, these models were not built by
mathematicians but by public health physicians who laid the
groundwork of developing compartmental models between
1900 and 1935 [7]. From the middle of the twentieth-century
application of mathematics in epidemiology has been signifi-
cantly increased.

Since the onset of the global pandemic in December 2019,
various mathematical models and techniques have been ap-
plied to understand, explain and predict its spreading dynam-
ics. Rahimi and et al. have presented an review on COVID-
19 prediction models in [8]. The proliferation of models at
the same time has raised a lot of criticisms and doubts,
as they often speculate contradictory prediction results. In
[9] authors discussed key limitations of mathematical models
used in interpreting epidemiological data and public decision
making. This research presented several validation approaches
to corroborate the speculations of these analyses.

Mathematical methods used to model COVID-19 generally
fall into two categories: (i) statistical models based on ma-
chine learning and regression (ii) mechanistic models such
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as SIR (susceptible-infected-recovered) or SEIR (susceptible-
exposed-infected-recovered) type models and their various
derivatives [10]. A comparative study between the two classes
of models is presented in [11]. While machine learning
models, which fall under statistical models, are black-box
approaches that rely solely on a significant amount of data
and incorporate no inherent feature of the disease, mechanistic
models exploit interacting disease mechanisms and incorpo-
rate disease-specific information. Due to the inherently dif-
ferent nature of the approaches, respective application scopes
are also different. For example, statistical models are effective
in short-term predictions, while mechanistic models are more
suitable for long-term prediction horizons. The application of
SEIR-type models in analyzing and predicting the COVID-19
outbreak has been widespread. Some examples can be found
be in [12–14].

B. Mobility and Epidemiology

The relationship between mobility and the spread of in-
fectious disease has been well established [15–19]. This was
a subject of paramount importance even in the pre-COVID-
19 era. Mobility restriction strategies like cordon sanitaire
were implemented for controlling various epidemics such as
bubonic plague (1666) [20], yellow fever (1793, 1821, 1882
[21], and cholera (1830, 1884) [22]. Some of the early efforts
that estimated the impact of mobility through mathematical
analysis on disease outbreak include [23, 24], which are
followed by few other studies. The relationship between
mobility and disease spread are reported in [15–18]. In [19]
authors illustrated the relationship between mobility restriction
and epidemic at various scales and levels.

One of the earliest attempts to correlated mobility trends
with COVID-19 transmission was reported in [25]. This
research showed that there lies a positive relationship between
mobility inflow and the number of COVID-19 cases. A predic-
tion model of COVID-19 using community mobility reports
was proposed in [26]. It used a partial differential equation
model and integrated Google community mobility data with
it. The model captures the combined effects of transboundary
spread among county clusters in Arizona and human actives.
In [27] the authors applied the Poisson time series model
to explore the connection between population mobility and
COVID-19 daily cases. The model was simultaneously applied
at the county level and state level in South Carolina. On the
other hand, the effect of human mobility trend under non-
Pharmaceutical interventions was investigated in [28], where
a generalized additive mixed model (GAMM) was proposed.
In [29] it was shown that the spread dynamics of COVID-19
during the early stage of the outbreak is highly correlated to
human mobility. In this research, mobility data was obtained
from mobile data.

By using the susceptible-exposed-infected-recovered
(SEIR) model, the impact of air traffic and car mobility
on COVID-19 dynamics in Europe was evaluated by Linka
et al. [4]. They used a standard SEIR compartment model
with a network structure for capturing local dynamics. To
integrate the effect of mobility in the model, they applied

a hyperbolic tangent-type ansatz. The authors argued that
local mobility has a high correlation with the reproduction
number. Also, they showed that mobility and reproduction are
correlated during the early stages of the outbreak but become
uncorrelated during later stages. Hence, they advocated
that local mobility can be used as a quantitative metric for
prediction and identification stages. Another insightful study
was conducted in [30], where the authors presented their
arguments with quantitative analysis on travel restriction in
controlling an outbreak. They also applied the SEIR model
and integrated mobility into the model. Linka et al. have
found a lead-lag relationship between mobility and the spread
of COVID-19. Similar results were obtained in [11].

Fig. 3: Classification of epidemiological models and their connection
with the proposed HDMDc based model

C. Application of DMDc in System Identification

The application of dynamic mode decomposition (DMD)
type models in epidemiology was first demonstrated in [31].
In this research, the DMDc was applied to historical data to
model the spread of infectious diseases like flu, measles, and
polio and explore its connection with the vaccination. This
study demonstrated that exogenous inputs of dynamics such as
vaccination in case of epidemic spread could be incorporated
with the original dynamics by using DMDc.

The application of Hankel matrix structure in system identi-
fication was demonstrated in [32]. Like disease spread, traffic
flow is also a dynamical system that is highly nonlinear and
prone to randomness. In [33] the authors extracted spatio-
temporal coherent structures of highway traffic dynamics by
using the concept of so-called Koopman modes. They applied
Hankel DMD for computing Koopman modes and used the
estimated modes for traffic dynamics forecast. Besides, this
technique can be applied to capture various traffic dynamics
of signalized intersections. In [34] HDMDc was used to
identify the underlying dynamical system of traffic queue.
Furthermore, they made predictions on traffic queue length
and applied Koopman spectral analysis to determine queue
length instability. Another interesting application of DMD in
random dynamical system identification is demonstrated in
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[35] where it was applied in infrastructure energy assessment.
In this work, the authors used HDMD to extract insights into
the thermal dynamics of an airport.

Figure 3 illustrates the relationship between the major mod-
eling paradigms used in epidemiology and their connection
with the proposed approach. The advantages of DMD-type
algorithms are summarized as follows:
• DMD-type algorithms yield a locally linear model.
• DMD-type algorithms are purely data-driven and require

no physical knowledge about the system.
• They do not require parameter estimation.
• They provide an equation-free approach.
• These approaches can be modified to incorporate input-

output characteristics of the system.

III. MATHEMATICAL FRAMEWORK

This section will present the mathematical framework of
the proposed methodology, problem formulation, discussion
on DMD type techniques such as HDMD and HDMDc, and
the issue of delay coordinate embedding.

A. Problem Formulation

To interpret and analyze the data that we are dealing with,
we make the assumption that the data is generated by an
underlying dynamical system. We assume that there is a phase
space Ω and a map F : Ω → Ω. The transformation F
generates a dynamics on the phase space Ω. Given any initial
point ω0 ∈ Ω, there is a trajectory{

ωi+1 := F iωi : i = 0, 1, 2, . . .
}
. (1)

We only assume the existence of (Ω, F ), but not their explicit
form. The information about Ω will obtained through a
measurement / function X : Ω → Rn. This measurement
generates the sequence of data points in Rk

{xi := X (ωi) : i = 0, 1, 2, . . .}

These assumptions make up the data-driven framework, it
enables a parameter-free reconstruction of the dynamical
systems. Note that the measurement X is not necessarily
one-to-one, thus the data-points xi may not correspond to
a unique underlying state in Ω. In particular, it may not
be possible to connect the xi with a dynamical rule of the
form xi+1 = F̃ (xi). xi should be interpreted as a partial
observation of the true state in Ω, in the i-th time frame.

B. Delay-coordinate embedding

The method of delay coordinates incorporates a number
h of time shifted versions of the map X to obtain a higher
dimensional map

X (h) : Ω→ Rk(h+1),

X (h)(ω) :=
(
X (ω),X (F 1ω), . . . ,X (Fhω)

)
.

Thus the delay coordinated version of each point xn is

xn ↔ x
(h)
N := (xn, xn+1, . . . , xn+h) .

The main purpose of delay coordinates is that they produce
an embedding of the dynamics, as shown in the lemma below.

Lemma 1 (Delay-coordinate embedding [36]): Given a
diffeomorphism F : Ω → Ω, for almost every function
X : Ω→ Rn, there is an integer h0 such that for every h > h0,
the function X (h) : Ω→ Rn(h+1) obtained by incorporating h
delay coordinates into X , is an embedding / one-to-one map
of Ω into Rn(h+1).

This statement above is for “almost every” measurement
functions X , meaning that it holds for typical X [37] For
such X , the statement says that there is some choice of h
by which every value of X (h) is the unique representative
of an underlying state of Ω. The image of X (h) is thus an
embedding or one-to-one image of Ω in the Euclidean space
Rn(h+1). The size of h would depend on X and Ω.

C. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a tool for data-
driven discovery of dynamical systems. One way to look at it
is as a union of spatial dimensionality reduction and Fourier
transformation in time. Let X(h) be the n(1 + h)×m matrix
formed by collecting m consecutive snapshots x(h)i :

X =

 | | |
x
(h)
1 x

(h)
2 ... x

(h)
m

| | |


Similarly, let X ′ be n(1 + h) ×m time shifted version of

X .

X ′ =

 | | |
x
(h)
2 x

(h)
3 ... x

(h)
m+1

| | |

 .
The method of DMD takes a locally linear approximation of
the dynamics (1) by assuming a linear relation of the form

X ′ = AX, (2)

where the matrix A represents the discrete-time locally linear
dynamics. It is a best fitting operator, which minimizes
Frobenius norm of equation (2). Suppose X has the SVD
(singular value decomposition) X = UΣV ∗. Then the Moore
Penrose inverse of A can be computed as

A = X ′(UΣV ∗)−1 = X ′V Σ−1U∗ (3)

DMD is thus a regression algorithm [38] and it produces
locally linear approximation of the dynamics. However, in a
few instances DMD fails to capture the dynamical nature of
the system, e.g., in case of a standing wave. Hankel DMD
(HDMD) is a variant of DMD applied on a time-delayed
Hankel matrix which increases the order of the underlying
dynamical system, thereby aiding in the estimation of hidden
oscillatory modes.

D. Dynamic mode decomposition with control

DMD with control (DMDc) is a modified version of DMD
which takes into account both the system measurements
and the exogenous control input to uncover the input-output
characteristics and the underlying dynamics. Hankel DMD
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with control (HDMDc) is defined in a similar fashion and
is the application of DMDc algorithm on the time delayed
coordinates. If there is an external control input uk ∈ Rq

acting on the system, then the autonomous system (1) becomes

ωk+1 = Fc(ωk, uk), k = 0, 1, 2, 3, . . .

Our linear model involving the measurement maps becomes

x
(h)
k+1 = Ax

(h)
k +Buk. (4)

If the uk are collected into an s × m matrix Υ, we get the
system of linear equations

X ′ = AX +BΥ (5)

E. Connections with Koopman operator

Although the original dynamics is by no means linear,
(4) represents a finite dimensional approximation of a linear
formulation of the dynamics, called the Koopman formulation.
The Koopman operator Ψ is essentially a time-shift operator.
It operates on functions instead of points on the phase space
Ω. Given any function f : Ω → R, Ψf is another function
defined as

(Ψf)(z) := f (Fz) , ∀z ∈ Ω, (6)

where F is the underlying dynamical system (1). The Koop-
man operator converts any nonlinear dynamical system into a
linear map. Thus all the tools from operator theory / functional
analysis can be brought into the study of dynamics [39–41].
However, the original dynamics which is usually on a finite
dimensional phase-space is converted into dynamics on some
infinite dimensional vector space. The properties of Ψ depends
on the choice of vector/function space. Some common choices
of function spaces are C(Ω) the space of continuous functions,
or Cr(Ω), the space of r-times differentiable functions on Ω.
We shall use L2(µ), the space of square-integrable functions
with respect to the invariant measure µ of the dynamics. Now
note that the columns of matrix X are repeated iterations of
Ψ :

X =
[
(Ψ0X (h))(ω0), (Ψ1X (h))(ω0), . . . , (Ψm−1X (h))(ω0)

]
,

for some unknown initial state ω0 ∈ Ω. Similarly

Υ =
[
(Ψ0u)(ω0), (Ψ1u)(ω0), . . . , (Ψm−1u)(ω0)

]
,

for some unknown control-measurement u : Ω → Rq . Thus
both A, B record the action of U on finite dimensional Krylov
subspaces. This justifies (4) as a finite rank approximation of
the infinite-dimensional operator Ψ and thus of F . If we set
Ω =

[
X Υ

]>
and G =

[
A B

]
, the equation becomes

X ′ = GΩ (7)

To solve this, we reuse notation to take the SVD Ω = UΣV ∗

and then set
A := X ′V Σ−1X∗

B = X ′V Σ−1Υ
(8)

In practice, if the size of the data is limited to N time samples,
then if we choose h delay coordinates, then m can be at most
N − h.

IV. DATA SOURCES AND PREPARATION

This section discusses data sources and data preparation
methods used in this research. It is divided into two subsec-
tions. IV-A provides a timeline for state government response
and case counts, IV-B provides the details of the data used in
the case study, while IV-C introduces the proposed technique
of generating control inputs from the mobility data.

A. Early Developments in Florida

After the first reported cases on March 1, 2020, the state of
Florida entered into a public health emergency followed by a
series of restrictions and shutdowns on bars and recreation
facilities from March 17, 2020, to March 31, 2020. On
April 1, 2020, the Governor of Florida issued a stay-at-home
order. In the following two weeks number of reported cases
gradually decreased, and subsequently, beach saloons, bars,
and educational institutes gradually received permission to
reopen from April 17, 2020, to June 10, 2020. However, as
the number of cases rapidly increased, the state government
shut down all bars on June 26, 2020.

B. Data Description

Mobility data was collected from Google COVID-19 Com-
munity Mobility Report [42]. This publicly available dataset
contains the daily change of six different types of community
mobility trends: (i) Retail and recreation (m(1)), (ii) Grocery
and pharmacy (m(2)), (iii) Transit stations (m(3)), (iv) Parks
(m(4)), (v) Work stations (m(5)), (vi) Residential (m(6)). Let
m

(j)
k,i be the change in mobility on the ith time-frame, in the k-

th county, for the j-th mode of mobility. For each time-frame
i and the k-th county, set

pk,i :=
1

nj

nj∑
j=1

m
(j)
k,i , 1 ≤ k ≤ n, 1 ≤ i ≤ m, (9)

where nj is the number of modes of mobility. In our study
we took nj = 5. Residential mobility was not considered
while calculating mobility control input due to the underlying
assumption that residential mobility is not responsible for
disease spread. Besides, unlike the first five modes, residential
mobility exhibited increasing trends during the pandemic.

This dataset records daily mobility data of each county re-
garding percentile changes concerning a normalized pre-covid
baseline to adjust weekend factors. The baseline was a daily
mobility average from the five weeks starting from January 3,
2020, to February 6, 2020. This dataset records daily mobility
data of each county regarding percentile changes concerning a
normalized pre-covid baseline to adjust weekend factors. The
baseline was a daily mobility average from the five weeks of
January 3, 2020, to February 6, 2020. A seven-day moving
average of percentile change illustrates the general mobility
trend shown in Figure 4. It also summarizes all governmental
decisions. All forms of mobility exhibited strong increasing
trends after the reopening decisions came in mid-April and
continued until the end of June. However, partial shutdown
orders on various facilities reemerged as the second wave
approached in the summer. The figure shows that in Florida,
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Fig. 4: Percentile change of mobility in Florida from 15 February 2020 to 15 August 2020. Cumulative mobility change was calculated
from Google COVID-19 Community Mobility Report by taking the average of all modes of mobility mentioned in the data.

Fig. 5: Moving average of daily COVID-19 case counts per 100k population in twenty most populated counties of Florida from April 01,
2020 to July 15, 2020
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during the second wave of the pandemic highest number
of daily cases were reported around the third week of July
2020. However, from the fourth week of July, the trend went
downwards.

Fig. 6: Spatial distribution of infection spread. Cumulative cases until
30 June 2020 are shown for the twenty most populated counties of
Florida.

On the other hand, the data of county-wise COVID-19
confirmed cases in Florida was collected from USAFact public
website [43]. It presents daily counts of cumulative COVID
cases at the county level, which is shown in the color map
presented in Figure-6.

In this research, we considered the twenty most most
populated counties in terms of total infection in Florida.
86.3% of all reported COVID-19 cases in Florida up to 01
July 2020 came from these twenty counties. The actual daily
case counts are discrete phenomena, and thus it shows the
random fluctuations in the raw data, which primarily arises
due to the collective impact of weekends and reporting system
of the testing process. Rolling-average is a widely preferred
solution to encounter the problem. Figure-5 shows seven
day rolling average of the original data. Both Figure-5 and
Figure-4 illustrate the training and prediction window of the
proposed model for visualization. The first wave of COVID-
19 in Florida first wave of COVID-19 struck by the end of
June. The objective of choosing the window is to investigate
how accurately the model can capture that.

C. Generating Control Input From Mobility Data
In order to incorporate the impact of mobility into the

disease spread model, we have developed a novel approach,
where control input sequences are created from percentile
change of mobility data obtained from google community
mobility reports. For each time-frame i set

pmax,i := max
1≤i≤n

pk,i, pmin,i := min
1≤≤n

pk,i,

and then set our control input to the k-th county, at the i-th
time frame to be

uk,i := w
pk,i − pmin,i

pmax,i − pmin,i
, 1 ≤ k ≤ n, 1 ≤ i ≤ m. (10)

For each time i, ui := (uk,i)
n
k=1 is the control vector that we

create. The term w above is a scaling factor. If w = 1, then

the components of ui lie in [0, 1], which could be a mismatch
with the magnitude of the signals x(h)k . We choose w by trial
and error for the best forecasting results.

Fig. 7: Control inputs are generated from Google Covid-19 Com-
munity Mobility Report. We chose scaling factor w = 100 in this
example

V. RESULTS AND DISCUSSION

In this section, we will discuss the obtained results ob-
tained. This section is divided into two subsections. Section
V-A describes the physical significance, characteristics of the
proposed linear model. Besides, we will also discuss different
parameters of the linear model, i.e. effect of delay embeddings
and corroboration of lead-lag relationship. In Section V-B we
will focus on the prediction results obtained from the model.

A. Characteristics of the Linear Model

The proposed HDMDc-based linear model of disease spread
describes the evolution of reported cumulative case counts and
conjoins mobility inputs with it. The states of the dynamics
consist of cumulative case counts of COVID-19 of twenty
counties of Florida. The model was trained with historical
cumulative case count and mobility input, while the training
window spanned from 19 April 2020 to 24 June 2020. In
this study, various delay coordinates were used to formulate
Hankel matrix G from the original data matrix X and control
input sequence in order to raise the dimension of observable
space. It means that the observable space of the dynamics con-
sists of previous two weeks’ data. In HDMDc, the dimension
of identified matrices of a nonlinear system depends on two
parameters-

1) Number of delay coordinates h
2) Output dimension n of the measurement map X .
We have used 56 delay embeddings for the system iden-

tification. As a result A,B ∈ R1120×1120. As an example,
Figure 8 shows A and B matrices of a system consisting of
four counties of Florida - Marion, Lake, Osceola, Collier. We
do not show the obtained system matrices for all the twenty
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Fig. 8: A and B matrices

Fig. 9: Average of MAPE of case count forecast across 20 counties
for a four-week long prediction window vs. embedding h. In this plot
we took moving average across four consecutive h to understand the
trend.

counties due to their large sizes which inhibits any visual
interpretation.
Choice of the number of delay embedding: The choice
of the number of delay embedding coordinates in system
identification is a complex question as it depends on the
nature of a system - and it is still an open research question.
The choice of delay embedding in linear system identification
of a nonlinear system is elaborately discussed in [44]. The
relationship between delay embedding and error observed
in this research is shown in Figure-9. In this figure, the
average prediction MAPE across all twenty counties for delay
embedding ranging between h = 10 to h = 56 is shown.
The figure shows that with the increase of delay embedding,
the accuracy of prediction increases. The predictions were

Fig. 10: The relationship between number of nonzero eigenvalues of
A matrix with the increase of delay embedding

performed for a four-week long window.
Figure 11 presents the impact of delay embedding coordi-

nates in system identification accuracy. All three case figures
in Figure 11 show that with the increase of the number
of delay coordinate h, the imaginary parts of the system
eigenvalues get closer to zero. Also, we observed that with the
increase of h, the number of nonzero eigenvalues decreases.
Figure 10 shows the exact relationship between h and the
number of nonzero eigenvalues.

Fig-11a shows how eigenvalues of A matrix delay embed-
ding change with the increase of delay embedding when there
is no control input in the system. Similarly, fig-11b and, fig-
11c shows the evolution of eigenvalue with respect to delay
embedding, when weighting factor on mobility input w = 300
and 600 respectively. It shows that with the increase of the
weighting factor, the amplitude of eigenvalues decreases. Also
note that with the increase of delay embedding and weighting
factor the prediction accuracy increases.

B. Prediction Results

With model introduced in Section-V-A prediction on case
count was made. The prediction window is stretched from
June 25, 2020 to July 17,2020. We computed Mean Absolute
Percentage Error (MAPE) to quantify the accuracy of the
forecast. Let xk,i be the original cumulative COVID cases
upto the kth county on any ith day, and x̂k,i be the forecast.
MAPE Ei,k is defined as follows:

Ek,i =| xk,i − x̂k,i
xk,i

| ×100% (11)

We generated control input sequences by using the strategy
proposed in the section IV-C. Generated control inputs are
shown in Figure-7.

Mobility and the spread of infection obey a leader-follower
relationship. Multiple studies such as-[4, 11, 29, 45] reported
that mobility trends maintain a leader-follower relationship of
approximately two to three weeks with COVID-19 infection

8



(a)

(b)

(c)

Fig. 11: Evolution of eigenvalue spectrum of system matrix A for different weighting factors. Average prediction error was calculated for
a 28 day prediction window across twenty counties
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Fig. 12: Case count prediction errors in three different scenarios are
presented in the figure as a case study. For each day of the prediction
window, we calculated the average of prediction errors across all
twenty counties selected in the study.

trends. The proposed model can also capture that relationship.
To demonstrate that, we have reorganized the data matrix X
with daily cases instead of cumulative cases. Furthermore, to
reflect that lead-lag relationship into the model, control inputs
are shifted back 14 days, which means the current states are
controlled by mobility inputs generated two weeks before.

In Figure-12 prediction errors in three different scenarios
are plotted such as-
• case-1: considering the leader-follower relationship
• case-2: ignoring the leader-follower relationship
• case-3: ignoring all the mobility inputs
Figure 12 shows that after leader-follower adjustment in

the model, prediction results were more accurate. The figure
also exhibits that the prediction results were worst when
mobility was not considered as the control input. This figure
supports the validity of the proposed model. First of all, it
shows that mobility as an exogenous input has improved the
HDMD algorithm’s performance, which supports the idea of
including mobility as an input into the model. Furthermore,
the figure testifies that the proposed model can reflect the lag-
lead relationship between COVID-19 and mobility dynamics.

Although prediction is not a primary application of DMD-
type algorithms, we made forecasts to demonstrate the model’s
validity. Figure 13 and Figure 14, Figure 15, show prediction
results respectively for two-week and three-week and four-
week window for all the twenty counties we selected for
this study. Table I illustrates average prediction errors. We
calculated MAPE across the prediction window, and we
define it as the prediction error for a specific county for a
specific prediction window. We also included the number of
delay embedding h and weight w on mobility used in each
prediction window.

In the two-week window, overall MAPE prediction error
across twenty counties was less than 5%. Prediction perfor-
mance in Lee county was found to be best as the model
could Predict total cases with an estimated error of only 0.1%.

On the other hand, the model performed worst for Manatee
county, where the prediction error was 15.13%.

In the three-week window, overall MAPE prediction error
across twenty counties was less than 10%. In this window, the
model’s prediction performance for Volusia county was the
best as it could predict total cases with an estimated error of
only 0.18%, while the performance was the worst for Manatee
county. For the latter error was 35.45%.

The table also shows that overall prediction performance
was best for the two-week prediction window, which means
that after weeks, HDMDc based prediction performance exac-
erbates. One possible explanation of deterioration happens be-
cause HDMDc is a locally linear approximation of a complex
dynamical system. Intuitively it makes sense that for more
extended periods, this locally linear approximation will be
less valid.

In the four-week window, we considered two different delay
embedding h = 42 and 56. For h = 42 overall prediction
error of the model was worse than that of h = 56. However,
we observed some interesting patterns here. Setting h = 42,
it was found that for five counties, prediction errors were
more than 25%. For Manatee county, the model performed
the worst with an error of 57.57%. On the other hand, when
we chose h = 56, only two counties exhibited prediction
error more than 25%, and the worst prediction result was
found in Polk county with an error of 32.41%. However, pre-
diction performance drastically deteriorated for the two most
populated and COVID-infested counties of Florida, namely-
Miami-Dade and Broward. It implies that although increasing
embedding improves the model’s overall performance, it can
deteriorate prediction accuracy for some counties. Hence,
careful selection of delay embedding is necessary, and it
should be selected as per the model’s objective. Although we
have chosen some specific number of delay embedding in this
study i.e. h = 29, 42, and 56, there would not have been much
difference, if we chose h = 31 instead of h = 29, or h = 52
instead of h = 56. The underlying rationale can be understood
from Figure 9. The figure shows that for a particular band of
h, the prediction error remains almost the same. However,
errors tend to decrease with the increase of h.

We studied the role of delay embedding h and scaling factor
w in forecasting performance. We observed that increasing the
number of embedding and scaling factor improves forecast-
ing performances for longer prediction windows. When the
number of embedding increases, the model can train itself
with a richer set of historical values, which might improve its
accuracy for a longer prediction window; whereas for a shorter
window, the model can adjust itself with a lesser number
of delay embedding. The results also show that forecasting
performance improves when we assign heavier scaling factors
on control inputs for longer prediction windows.

In order to validate the proposed model, further reproduc-
tion number of COVID-19 was estimated from the infection
case counts forecast. By definition, reproduction number is the
average fractional increase of the number of new cases with
respect to the existing cases during the infectious period. For
example, if the infectious period of COVID-19 is considered
34 days and the total number of cases are increased 2.5 times

10



TABLE I: Performance Analysis

Prediction Error of Case Count and Effective Reproduction Number R(t)
Cumulative Case Prediction Errors R(t) Prediction Errors

County Population 25 Jun’20 - 08 July’20 25 Jun - 14 July 25 June - 21 July 25 June - 21 July 01 July - 15 July
2020 2020 2020 2020 2020

h = 29, w = 200 h = 42, w = 400 h = 42, w = 600 h = 55, w = 600
Miami-Dade 2,699,428 4.09 7.49 5.33 19.35 18.41

Broward 1,926,205 1.08 3.40 0.86 16.08 7.50
Palm 1,465,027 3.71 1.31 11.94 5.55 11.43

Hillsborough 1,422,278 3.39 12.47 25.83 3.00 14.15
Orange 1,349,746 5.57 21.52 31.63 3.62 15.10
Pinellas 964,666 12.37 24.51 47.67 17.49 4.44
Duval 936,186 8.61 1.05 1.22 21.81 6.92

St.Lucie 312,947 5.47 8.13 1.22 13.09 11.58
Marion 353,526 2.37 2.60 9.14 10.46 4.92
Lake 345,867 3.20 9.17 19.50 8.82 9.12

Osceola 351,955 2.10 11.92 15.13 11.22 5.96
Collier 371,453 1.65 4.19 7.21 13.97 10.74

Manatee 384,213 15.13 35.45 57.57 19.77 4.90
Sarasota 419,496 0.57 6.49 3.92 17.31 15.75
Seminole 461,402 10.41 19.20 27.76 3.82 11.37
Volusia 536,487 2.56 0.18 6.98 8.76 9.00
Pasco 524,602 9.79 6.24 11.83 30.70 6.41

Brevard 585,507 1.52 4.11 24.31 6.31 15.61
Polk 686,218 1.04 4.19 16.53 32.41 16.66
Lee 737,468 0.11 6.77 8.83 2.32 12.68

Average 4.74 % 9.52 % 16.72 % 13.29% 10.63 %

Fig. 13: Cumulative case prediction for two weeks window - 25 June to 02 July, 2020. We selected h = 29 and w = 200 for the prediction
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Fig. 14: Cumulative case prediction for three weeks window - 25 June to 08 July, 2020. We selected h = 42 and w = 400 for the prediction

Fig. 15: Cumulative case prediction for four weeks window - 25 June to 15 July, 2020. We selected h = 42 and w = 600 for the prediction
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Fig. 16: Reproduction number prediction - 01 July to July 15, 2020

during those 34 days, the reproduction number is R0 is 2.5.
However, disease spread is a dynamic incident; hence R0

keeps evolving with time. We estimated effective reproduction
number Rt by using the predicted case counts obtained from
the model. For the computation we used a python module
called epyestim [46]. The county-wise prediction errors are
shown in the last column of the Table I, while county-wise
prediction results are shown in 16. We observe that in Figure
16 in most of the cases, estimated results diverged from
the original R after the first week of the window. However,
the overall prediction error was 10.63%, and the difference
between actual and predicted R(t) was around 0.2 even in the
worst cases. It implies that the proposed model is also useful
for forecasting the dynamic reproduction number, which is an
important parameter for any epidemiological modeling.

VI. CONCLUSIONS

This paper developed a novel framework for data assimila-
tion and uncovering interconnections between human activity
and mobility (HAM) and disease spread. The study exploits
recent advances in Koopman operator theory to understand
the relationship between epidemic dynamics and HAM. The
proposed framework results in a locally linear model (unlike
SEIR and other traditional mechanistic models) for disease
spread where HAM acts as an external influence. It is a
purely data-driven model which does not need any parameter
estimation. Although the approach is data-driven, the frame-
work should not be confused with black-box machine learning
models. A case study was performed for COVID-19 spread

in Florida. The obtained linear model successfully predicted
new cases and R0 over the next few weeks window. There
are a few shortcomings in the study which can be improved
in future studies. Firstly, the study considers local HAM data
(i.e., within each county) - and does not consider inter-county
HAM data. In other words, it does not consider the impact of
global mobility. The HAM is a complex phenomenon, and it is
challenging to consider every aspect of it in the modeling. For
example, HAMs such as private parties, spring break traveling,
usage of face masks, long-term travel, etc. Secondly, the study
was focused on the early phase of COVID-19 spread. It will
be interesting to study how are HAM and disease spread were
related during the later stages of the pandemic.

FloatBarrier
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