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Abstract: Extracting the latent underlying structures of complex nonlinear local and
nonlocal flows is essential for their analysis and modeling. In this work we attempt to

provide a consistent framework through Koopman theory and its related popular discrete
approximation – dynamic mode decomposition (DMD). We investigate the conditions to
perform appropriate linearization, dimensionality reduction and representation of flows in

a highly general setting.
The essential elements of this framework are Koopman Eigenfunction (KEF), for which
existence conditions are formulated. This is done by viewing the dynamic as a curve in

state-space. These conditions lay the foundations for system reconstruction, global
controllability, and observability for nonlinear dynamics.

We examine the limitations of DMD through the analysis of Koopman theory and propose
a new mode decomposition technique based on the typical time profile of the dynamics.
An overcomplete dictionary of decay profiles is used to sparsely approximate the flow.
This analysis is also valid in the full continuous setting of Koopman theory, which is
based on variational calculus. We demonstrate applications of this analysis, such as
finding KEFs and their multiplicities, dynamics reconstruction and global linearization.
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List of abbreviations

DMD Dynamic Mode Decomposition
EDMD Extended DMD
KDMD kernel DMD
KEF Koopman Eigenfunction
KEFal Koopman Eigenfunctional
KMD Koopman Mode Decomposition
PDE Partial Differential Equation
ROA Region of Attraction
S-DMD Symmetric DMD
SVD Singular Value Decomposition
TV Total Variation

1 Introduction

Knowing the latent space of certain data allows one to represent it concisely
and to differentiate between signal and clutter parts. Recovering this space in a
data-driven manner is a long-standing research problem. Data resulting from
dynamical systems is represented commonly as spatial structures (modes) that
are attenuated or enhanced with time. A common technique in linear flows is
separation of variables. It is assumed that a solution 𝑢(𝑥, 𝑡) of a linear flow can
be expressed as,

𝑢(𝑥, 𝑡) = 𝑋 (𝑥)𝑇 (𝑡). (1.1)

That is, the solution is a multiplication of a function of the spatial variable 𝑥 and
a function of the temporal variable 𝑡. In this study we examine, from various
angles, the following paradigm: a nonlinear flow can be well approximated (or
even exactly expressed) by a linear combination of variable separated functions,

𝑢(𝑥, 𝑡) ≈
𝑚∑︁
𝑖=1

𝑋𝑖 (𝑥)𝑇𝑖 (𝑡). (1.2)

In this context, the spatial structures 𝑋𝑖 are referred to as modes and 𝑇𝑖 are
time-profiles. For such an approximation, if the error is negligible and 𝑚 is
small, we obtain a significant simplification of the system. This enables better
understanding and modeling, allowing accurate interpolation and prediction of
the dynamics.

The theory of Koopman argues that for many nonlinear systems data measure-
ments evolve as if the dynamical system is linear (in some infinite dimensional
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space). A well-known algorithm to approximate these measurements is Dynamic
Mode Decomposition (DMD) of Schmid (2010). In this work, we formulate
sufficient and necessary conditions for the existence of these measurements.
These findings highlight certain flaws of DMD. Finally, we suggest a new mode
decomposition to overcome some of these problems, originated in an algorithm
for general spectral decomposition of Gilboa (2018).

In many dynamical processes, there are measurements of the observations that
evolve linearly, or approximately so, see Otto and Rowley (2021). A theoretical
justification for that can be traced back to the seminal work of Koopman (1931).
These measurements are referred to as Koopman Eigenfunctions (KEFs). An
algorithm was proposed by Mezić (2005), Koopman Mode Decomposition
(KMD), to reconstruct the dynamics using spatial structures, termed as modes,
which are the coefficients of Koopman eigenfunctions. Since KEFs evolve as if
they were observations in a linear dynamical system, KMD can interpret the
original dynamics as a linear one.

This decomposition might be infinite-dimensional. In Schmid (2010) DMD
it was suggested to approximate KMD in a finite domain. If the KEFs mea-
surements are linear combinations of the observations then DMD yields the
Koopman mode accurately. As noted in Kutz et al. (2016a), DMD can be inter-
preted as an exponential data fitting algorithm. In the more general nonlinear
case, DMD may not reveal well the underlying modes and the dynamics.

Recently the authors and colleagues have formalized this insight in Cohen
et al. (2021a), in the context of homogeneous flows, referring to it as the DMD
paradox. As the step-size approaches zero, dynamic reconstruction with DMD
results in positive mean squared error, but, paradoxically, with zero DMD error.
In general, this paradox exists in any dynamical system whose KEFs are not
linear combinations of the observations. This phenomenon becomes extreme
when the system is zero homogeneous, as shown in Cohen et al. (2021b). Such
cases are common in gradient flows of one-homogeneous functionals, such as
local or nonlocal TV-flows, Andreu et al. (2001), Gilboa and Osher (2009).
In that case, the dynamics is only in 𝐶0 almost everywhere and exponential
decay is a very crude and inaccurate approximation. For such flows, lifting the
observations to a finite higher dimensional space does not solve the problem
(see for example Korda and Mezić (2018); Williams et al. (2015a)).

This alleged contradiction between KMD and DMD leads us to examine the
fundamentals of Koopman theory. We follow the general solution of a KEF with
respect to time and analyze the mapping between the state-space and the time
variable. The existence of this mapping depends on the smoothness properties
of the dynamics.

As a direct result, we introduce a new method that overcomes the DMD
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limitations for smoothing-type processes. These findings, with some adaptations,
are valid in the full continuous settings, as discussed by Kutz et al. (2016b);
Mauroy (2021).

Main Contributions

We formulate the conditions for the existence of a KEF. If it exists, there is
an infinite set of KEFs. We distinguish between different types of eigenfunction
groups and analyze their multiplicity. We show that certain multiplicities are
crucial to obtain dynamics reconstruction, controllability, and observability
(Section 4). These conclusions are extended to the full continuous setting. Con-
ditions for the existence of Koopman Eigenfunctionals (KEFals) are presented
(Section 5). Following these insights, we suggest an alternative algorithm for
finding Koopman modes induced by fitting time profiles that best characterize
the dynamics. This algorithm overcomes some inherent limitations of DMD
(Section 6). We attempt to bridge between nonlinear spectral decomposition
and KMD. Specifically, we show that spectral Total Variation (TV) of Gilboa
(2014) and its generalizations yield Koopman modes. Throughout this work,
we illustrate the theory with simple toy examples. Additional examples and
experiments are given in Section 7 . In the following section, we provide the
essential definitions and notations.

2 Preliminary

In this section, we present some background on Koopman operators, its
eigenfunctions and eigenfunctionals and the related DMD framework. We
note certain properties of variational calculus which are relevant to Section 5.
In addition, we outline the work of Gilboa (2018) and Katzir (2017), where
nonlinear flows are decomposed through a dictionary of decay profiles. We
adapt this method for the extraction of Koompan modes in Section 6.

2.1 Koopman theory

2.1.1 Discrete spatial setting

We consider a dynamical system in a semi-discrete setting, expressed as,
𝑑

𝑑𝑡
𝒙(𝑡) = 𝑃(𝒙(𝑡)), 𝒙(0) = 𝒙0, 𝑡 ∈ 𝐼, (2.1)
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where 𝒙 ∈ ℝ𝑁 is a state vector, 𝑃 : ℝ𝑁 → ℝ𝑁 is a (nonlinear) operator, and
𝐼 = [𝑎, 𝑏] ⊆ ℝ+ is a time interval. Let 𝑔 : ℝ𝑁 → ℝ be a measurement of 𝒙. The
Koopman operator 𝐾 𝜏

𝑃
is a linear operator that acts on the infinite-dimensional

space of measurements 𝑔(𝒙) of the state, defined by Koopman (1931); Mezić
(2005),

𝐾 𝜏
𝑃 (𝑔(𝒙(𝑠))) = 𝑔(𝒙(𝑠 + 𝜏)), 𝑠, 𝑠 + 𝜏 ∈ 𝐼, (KO)

where 𝜏 > 0. The Koopman operator is linear, namely it admits,

𝐾 𝜏
𝑃 (𝛼𝑔(𝒙(𝑠)) + 𝛽 𝑓 (𝒙(𝑠))) = 𝛼𝐾 𝜏

𝑃 (𝑔(𝒙(𝑠))) + 𝛽𝐾 𝜏
𝑃 ( 𝑓 (𝒙(𝑠))),

for all measurements 𝑔 and 𝑓 and for all constants 𝛼 and 𝛽. In addition, the
Koopman operators {𝐾 𝜏

𝑃
}𝜏≥0 admits a semigroup property, more formally,

𝐾
𝜏2
𝑃

◦ 𝐾 𝜏1
𝑃

= 𝐾
𝜏1+𝜏2
𝑃

,

where ◦ denotes the composition operator. An eigenfunction of the Koopman
operator, 𝜑(𝒙), admits,

𝐾 𝜏
𝑃 (𝜑(𝒙(𝑠))) = 𝜑(𝒙(𝑠 + 𝜏)) = 𝜂𝜏𝜑(𝒙(𝑠)), 𝑠, 𝑠 + 𝜏 ∈ 𝐼, (2.2)

for some 𝜂 ∈ ℂ. Due to the semigroup attribute of the Koopman operator, the
following limit exists,

lim
𝜏→0

𝐾 𝜏
𝑃
(𝜑(𝒙(𝑠))) − 𝜑(𝒙(𝑠))

𝜏
= lim

𝜏→0

𝜑(𝒙(𝑠 + 𝜏)) − 𝜑(𝒙(𝑠))
𝜏

=
𝑑

𝑑𝑡
𝜑(𝒙(𝑡))

����
𝑡=𝑠

.

(2.3)
This limit can be explained by the relations of the Koopman operator and Lie
derivatives, see Brunton et al. (2021). It can be shown (see for instance Mauroy
et al. (2020), p. 10) that a KEF admits,

𝑑

𝑑𝑡
𝜑(𝒙(𝑡)) = 𝜆 · 𝜑(𝒙(𝑡)), ∀𝑡 ∈ 𝐼, (2.4)

for some 𝜆 ∈ ℂ. The relation between 𝜂 in Eq. (2.2) and 𝜆 in Eq. (2.4) is 𝜂 = 𝑒𝜆.
The solution of this linear ODE is given by,

𝜑(𝒙(𝑡)) = 𝜑(𝒙(𝑎))𝑒𝜆𝑡 , ∀𝑡 ∈ 𝐼 . (KEF)

Koopman Mode Decomposition

Koopman Mode Decomposition (KMD) is a spatiotemporal mode decompo-
sition of dynamical systems based on KEFs. Namely, the state space 𝒙 can be
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expressed as (Mezić (2005)),

𝒙(𝑡) =
∞∑︁
𝑖=1

𝒗𝑖𝜑𝑖 (𝑡), (2.5)

where 𝜑𝑖 (𝑡) is a KEF and 𝒗𝑖 is the corresponding vector, referred to as Koopman
mode. When the dynamic is nonlinear the decomposition may have infinite
elements. In practice, a finite approximation method is used. The most common
one is DMD, as explained in Section 2.2.

2.1.2 Full continuous setting

Let 𝑢 : 𝐿 ⊂ ℝ × 𝐼 ⊆ ℝ+ be the solution of the following PDE,

𝑢𝑡 (𝑥, 𝑡) = P(𝑢(𝑥, 𝑡)), 𝑢(𝑥, 0) = 𝑓 (𝑥). (2.6)

We assume that 𝑢 belongs to a Hilbert space H with an inner product, 〈𝑣, 𝑢〉
and its associated norm



 · 

 =
√︁
〈·, ·〉, P : H → H is a (nonlinear) operator.

Let 𝑄 : H → ℝ be a proper, lower-semicontinuous functional. The Koopman
operator, 𝐾 𝑡

P , in the sense of PDE, is defined by Nakao and Mezić (2020),

𝐾 𝜏
P (𝑄(𝑢(𝑥, 𝑠))) = 𝑄(𝑢(𝑥, 𝑠 + 𝜏)), 𝑠, 𝑠 + 𝜏 ∈ 𝐼 . (2.7)

An eigenfunctional, 𝜙, of the Koopman operator is a functional admitting the
following,

𝐾 𝜏
P (𝜙(𝑢(𝑥, 𝑠))) = 𝜙(𝑢(𝑥, 𝑠 + 𝜏)) = 𝜂

𝜏𝜙(𝑢(𝑥, 𝑠)), 𝑠, 𝑠 + 𝜏 ∈ 𝐼 . (2.8)

By letting 𝜏 → 0 an eigenfunctional of the Koopman operator admits the
following ODE,

𝑑

𝑑𝑡
𝜙(𝑢(𝑥, 𝑡)) = 𝜆𝜙(𝑢(𝑥, 𝑡)), (2.9)

for some 𝜆 ∈ ℂ. The relation between 𝜂 in Eq. (2.8) and 𝜆 in Eq. (2.9) is 𝜂 = 𝑒𝜆.
Thus, a Koopman Eigenfunctional (KEFal) is of the form,

𝜙(𝑢(𝑥, 𝑡)) = 𝜙(𝑢(𝑥, 𝑎))𝑒𝜆𝑡 , ∀𝑡 ∈ 𝐼 . (KEFal)

Koopman Mode Decomposition. In the same manner as in the semi-discrete
setting , we formulate the solution of the PDE, Eq. (2.6), with KEFals (Nakao
and Mezić (2020)). Namely, the solution 𝑢(𝑥, 𝑡) can be expressed as,

𝑢(𝑥, 𝑡) =
∞∑︁
𝑖=1

𝑑𝑖 (𝑥)𝜙𝑖 (𝑢), (2.10)
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where 𝜙𝑖 (𝑢) is a KEFal and 𝑑𝑖 (𝑥) is the spatial mode. One way to approximate
these spatial modes, is by the method introduced by Nathan Kutz et al. (2018).

2.2 Dynamic Mode Decomposition (DMD)

DMD extracts the main spatial structures in the dynamics, Schmid (2010).
Backed by Koopman theory, DMD is a principal method to approximate the
Koopman modes. It is a data driven method, based on snapshots (mostly,
uniformly in time) of the dynamics, 𝒙𝑘 = 𝒙(𝑡𝑘 ). The main steps in DMD and
its extensions (e.g. Exact DMD Tu et al. (2013), tlsDMD Hemati et al. (2017),
fbDMD Dawson et al. (2016), S-DMD Cohen et al. (2021a), and optimized
DMD Askham and Kutz (2018)) are:

1. Coordinates representation - finding the main structures in the dynamics.
2. Dimensionality reduction - choosing the dominant parts of the dynamics.
3. Linear mapping - finding a linear mapping in the reduced dimensional space.

We describe these steps in detail in Appendix A. The result of DMD and
its variants is sets of modes, {𝝓𝑖}, eigenvalues {𝜇𝑖}, and coefficients {𝛼𝑖},
where 𝑖 = 1, .. , 𝑟 and 𝑟 is the reduced dimension. In the DMD framework, the
dynamics is approximated by,

𝒙̃𝑘 ≈
𝑟∑︁
𝑖=1

𝛼𝑖𝜇
𝑘
𝑖 𝝓𝑖 . (2.11)

2.3 General Spectral Decomposition

One of the main goals of signal analysis is to represent a signal sparsely,
yet precisely. We focus here on approximating a solution to a PDE, (2.6), by a
decomposition of the form,

𝑢(𝑥, 𝑡) ≈
𝐿∑︁
𝑖=1

ℎ𝑖 (𝑥)𝑎𝑖 (𝑡), (2.12)

where {ℎ𝑖 (·)}𝐿𝑖=1 are spatial functions and {𝑎𝑖 (𝑡)}𝐿𝑖=1 are their respective time
profiles. The time profiles are typical to the operator P and for homogeneous
operators can be expressed analytically, see Cohen and Gilboa (2018). In the
semi-discrete setting, the approximate solution of Eq. (2.1) can be expressed as,

𝒙(𝑡) ≈
𝐿∑︁
𝑖=1

𝒗𝑖𝑎𝑖 (𝑡), (2.13)
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where {𝒗𝑖}𝐿𝑖=1 are spatial structures and {𝑎𝑖 (𝑡)}𝐿𝑖=1 are the corresponding time
profiles. Note that in some cases (e.g. linear diffusion or TV flow, as shown in
Burger et al. (2016)) Eqs. (2.12) and (2.13) reach equality for finite or infinite
𝐿.

This is the basis of the general spectral decomposition suggested in the thesis
of Katzir (2017) and summarized in the book of Gilboa (2018) (chapter 9).
The initial condition of Eq. (2.6) is reconstructed with spatial structures that
decay according to a known time profile. More formally, given the solution,
𝑢(𝑥, 𝑡), the spatial structures are the vectors of the minimizer of the following
optimization problem,

min
H



U −HD


2
F (2.14)

where U is a matrix of the sampled solution in time and space, H is a matrix
containing (in its columns) the main spatial structures, and D is a dictionary of
decay profiles. One can formulate these matrices as

U =


𝑢(𝑥1, 𝑡0) · · · 𝑢(𝑥1, 𝑡𝑀 )

...
...

𝑢(𝑥𝑁 , 𝑡0) · · · 𝑢(𝑥𝑁 , 𝑡𝑀 )

 ,H =


ℎ1 (𝑥1) · · · ℎ𝑟 (𝑥1)
...

...

ℎ1 (𝑥𝑁 ) · · · ℎ𝑟 (𝑥𝑁 )

 ,
D =


𝑎1 (𝑡0) · · · 𝑎1 (𝑡𝑀 )
...

...

𝑎𝑟 (𝑡0) · · · 𝑎𝑟 (𝑡𝑀 )

 ,
(2.15)

where U ∈ ℝ𝑁×(𝑀+1) , H ∈ ℝ𝑁×𝑟 , and D ∈ ℝ𝑟×(𝑀+1) . The optimization
problem, Eq. (2.14), fits also the form the of semi-discrete setting in the
dynamics of Eq. (2.1), where it is sampled in the time axis. We can formulate
the following optimization problem,

𝑋 −VD



2
F , (2.16)

where the matrix 𝑋 contains the samples of the dynamics

𝑋 =
[
𝒙0 𝒙1 · · · 𝒙𝑀

]
∈ ℝ𝑁×(𝑀+1) , (2.17)

the matrix V contains the main spatial structure of the dynamic (Eq. (2.13))

V =
[
𝒗1 𝒗2 · · · 𝒗𝑟

]
∈ ℝ𝑁×𝑟 , (2.18)

and the dictionary, D, remains unchanged.
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2.4 Variational Calculus

Brezis chain rule

Let 𝑄 be a functional over some Banach space and 𝜕𝑄 be its variational
derivative. Under the regime of the PDE, Eq. (2.6), we can formulate the time
derivative of the functional, 𝑄(𝑢(𝑡)), through the “chain rule of Brezis” Brezis
(1973) as,

𝑑

𝑑𝑡
𝑄(𝑢(𝑥, 𝑡)) = 〈𝜕𝑄(𝑢), 𝑑

𝑑𝑡
𝑢(𝑥, 𝑡)〉 = 〈𝜕𝑄(𝑢),P(𝑢(𝑥, 𝑡))〉. (2.19)

Fréchet Differentiability

The operator P : H → H is Fréchet differentiable at 𝑢 if there exists a
bounded linear operator L, such that,

lim
‖ℎ ‖→0



P(𝑢 + ℎ) − P(𝑢) − L(ℎ)




ℎ

 = 0 (2.20)

holds from any ℎ ∈ H . In this case, P(𝑢 + ℎ) can be expanded in the Landau
notation as

P(𝑢 + ℎ) = P(𝑢) + L(ℎ) + 𝑜(ℎ), (2.21)

where lim‖ℎ ‖→0



𝑜(ℎ)

/

ℎ

 = 0.

Proper Operator

The operator P( 𝑓 (𝑥)) is proper if it gets a finite value for any 𝑓 (𝑥) ∈ H and
for any 𝑥 ∈ [0, 𝐿].

Region of Attraction (ROA)

Let 𝒙∗ be an equilibrium point of the dynamical system in Eq. (2.1). The
region of attraction is the largest set in ℝ𝑁 that admits the following property:
if the initial condition of the dynamics is from the set, then the system converges
to 𝒙∗ (see e.g. Valmorbida and Anderson (2017)). More formally,

RA(𝒙∗) = {𝑥𝑖𝑛𝑖𝑡 ∈ ℝ𝑁 |𝒙(𝑡 = 0) = 𝑥𝑖𝑛𝑖𝑡 , lim
𝑡→∞

𝒙(𝑡) = 𝒙∗}. (2.22)
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3 Motivation for this work

This monograph follows an earlier research, attempting to directly apply
Koopman operator theory for homogeneous smoothing flows. In Cohen et al.
(2021a) we investigated the use of Dynamic Mode Decomposition (DMD) for
common nonlinear flows emerging in image processing, such as TV-flow and
𝑝-Laplacian flows. We found out that DMD cannot be naively applied to
decompose these flows and presented in detail certain flaws of this procedure.

DMD has become a very common tool in dynamical system analysis. This
decomposition provokes interest in many domains of research, such as fluid
dynamics, video processing, epidemiology, neuroscience, and finance, see Kutz
et al. (2016a). A main advantage is its simplicity and its ability to simplify
complex processes by a few modes, in many cases.

DMD invokes well-established tools of dimensionality reduction, and can
often reveal the main spatial components of the dynamic. However, the algorithm
entails some fundamental problems in recovering nonlinear systems. Moreover,
its drawbacks are emphasized when the dynamic is stable and we use the DMD
expansions such as, Azencot et al. (2019), where the inverse dynamic is taken
into account. Below we show some examples where DMD is failing.

3.1 DMD paradox

The DMD paradox was firstly introduced in Cohen et al. (2021a). We recap
here the findings about this DMD flaw. Let 𝑃(·) be a 𝛾-homogeneous operator
(𝛾 ∈ ℝ) over some Banach space B, i.e. 𝑃(𝑎𝑣) = 𝑎 |𝑎 |𝛾−1 𝑃(𝑣) for any 𝑎 ∈ ℝ

and 𝑣 ∈ B. Let 𝜙 ∈ B be an eigenfunction of 𝑃, admitting 𝑃(𝜙) = 𝜆𝜙 for a real
valued 𝜆. Then, the solution of the PDE (Cohen and Gilboa (2018, 2020))

𝑑

𝑑𝑡
𝑢 = 𝑃(𝑢), 𝑢(𝑡 = 0) = 𝜙, (3.1)

is given by

𝑢(𝑡) =
{
𝜙

[
(1 + 𝜆(1 − 𝛾)𝑡)+

] 1
1−𝛾 𝛾 ≠ 1

𝜙𝑒𝜆𝑡 𝛾 = 1
(3.2)

where (·)+ = max{·, 0}. Under some conditions, the eigenvalue 𝜆 is negative
for any non-trivial eigenfunction 𝜙. Therefore, this solution gets the steady state
in finite time when 𝛾 ∈ [0, 1). The time 𝑇𝑒𝑥𝑡 for which the dynamic vanishes is

𝑇𝑒𝑥𝑡 =
1

𝜆(𝛾 − 1) . (3.3)
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The decay profile is a fundamental characteristic of signal processing frameworks
related to eigenfunctions of 𝛾-homogeneous operators, 𝛾 ∈ [0, 1). This
decomposition generalizes the one based on gradient flows of one-homogeneous
functionals, see Bungert et al. (2019a); Burger et al. (2016); Cohen and Gilboa
(2020); Gilboa (2013, 2014). The decay profile depends on the homogeneity
order 𝛾 (see Fig. 3.1). The decay varies from a truncated linear function for
zero-homogeneous operators through truncated polynomial functions when
𝛾 ∈ [0, 1), to exponential function for one-homogeneous operators and finally
to hyperbolic functions when 𝛾 > 2.

Figure 3.1 decay profile.

The finite extinction time, inherent in flows where 𝛾 ∈ [0, 1), reveals an
unavoidable error in DMD reconstruction. Sampling the solution with fixed
step size 𝑑𝑡, we get a one dimensional data matrix. Thus, the only valid DMD is
when the dimensionality reduction is maximal (𝑟 = 1). In that case, the DMD
error (for details, see Appendix A, Eq. (A-5)) converges to zero as 𝑑𝑡 → 0.
However, the reconstruction error (Eq. (A-13) is bounded from below. A
solution to this problem, as suggested in Cohen et al. (2021a), is to formulate a
time rescaled PDE by homogeneity normalization and to apply DMD on that
flow. However, this solution is not valid for zero homogeneous flows other than
very simple cases, leading to another flaw in DMD.

3.2 Discontinuous Dynamical Systems

The analytic solution of (3.1) for 𝛾 = 0 is known when the Banach space
is ℝ𝑁 . Applying the homogeneity normalization on zero homogeneous flow,
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we find discontinuity in the dynamical modes. Thus, DMD is not valid when
the modes vanishes in finite time. The time rescale of (3.1) and the relation of
DMD to zero-homogeneous decomposition is detailed in Cohen et al. (2021b).

3.3 Eigenvalue Multiplication

DMD is an exponential data fitting algorithm, Askham and Kutz (2018).
Thus, DMD can recover precisely the dynamics only when the typical decay
profile of the system is exponential. However, even for the limited case of
exponential decays, DMD is not guaranteed to recover the dynamics. Let us
consider a dynamic with a solution of the form

𝑢(𝑡) = 𝑣
(
𝑒𝜆1𝑡 + 𝑒𝜆2𝑡

)
. (3.4)

This solution cannot be reconstructed by a linear decomposition since the mode
𝑣 is associated with two eigenvalues ,𝜆1 and 𝜆2.

The rest of this monograph attempts to propose a comprehensive solution
to the aforementioned problems. We analyze the conditions for the existence
of Koopman eigenfunctions and formulate the KMD modes. Since DMD is
an approximation of KMD, if the KEFs do not exist the approximation with
DMD is meaningless. After formulating the DMD limitations we propose an
alternative mode decomposition, which coincides with KMD modes in a much
broader setting.

4 Koopman Eigenfunctions and Modes

Koopman theory provides a linear representation to nonlinear dynamics by
defining a new coordinate system. These coordinates are the measurements in
the state-space termed as Koopman eigenfunctions. Necessary and sufficient
conditions for their existence are formulated here. Since the eigenfunctions
are not unique, we define the Koopman family, an infinite set of Koopman
eigenfunctions. We also define a useful notion, referred to as the ancestors of a
Koopman family. This allows the reconstruction of the dynamical system, under
certain conditions. Moreover, it allows to considerably enlarge the Region of
Attraction (ROA) of the system. The above conclusions are consequences of
the attributes of the dynamics, 𝑃, and its solution, 𝒙(𝑡), discussed and analyzed
below.
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4.1 Koopman Eigenfunctions

We first set the necessary degree of smoothness of 𝑃, required to develop the
theory. This setting is highly non-restrictive and accommodates most useful
linear and nonlinear dynamics, for both local and nonlocal settings. We refer to
the operator 𝑃 in the dynamical system (2.1).

Assumption 4.1 (Piecewise Continuous 𝑃). The operator 𝑃 : ℝ𝑁 → ℝ𝑁 is in
𝐶0 a.e. with zero Dirac measures.

This leads to the following Lemma.

Lemma 4.2 (Continuous solution 𝒙(𝑡)). If the operator 𝑃 in Eq. (2.1) admits
Assumption 4.1 then the solution, 𝒙, is in 𝐶1 a.e.

Proof. The solution of the dynamics is

𝒙(𝑡) = 𝒙(𝑎) +
∫ 𝑡

𝑎

𝑃(𝒙(𝜏))𝑑𝜏. (4.1)

The solution, 𝒙(𝑡) ∈ 𝐶1 𝑎.𝑒. since 𝑃 ∈ 𝐶0 𝑎.𝑒. and does not contain Dirac
measures. �

The solution, 𝒙(𝑡), 𝑡 ∈ 𝐼 ⊂ ℝ+, maps from the time range 𝐼 to ℝ𝑁 . It can be
interpreted as a parametric curve in ℝ𝑁 , where its tangential velocity is 𝑃(𝒙).
Let us denote the image of 𝒙(𝑡) as X. The image is the path in ℝ𝑁 where the
system passes along the interval 𝐼. In Fig. 4.2 an illustration of the solution of
a dynamical system is shown. Using the Kinematics analogy, we can say the
dynamics is a mass going from 𝒙(𝑎) to 𝒙(𝑏) with the instantaneous velocity,
𝑃(𝒙(𝑡)), for every 𝑡 ∈ 𝐼. We note that Lemma 4.2 holds also if Assumption 4.1
is limited to X.

A Koopman eigenfunction is a measurement of the solution 𝒙 that admits
Eq. (2.4) on the curve X. As recently was stated in Bollt (2021), a Koopman
eigenfunction can be formulated as an exponential function, where its argument
is the inverse mapping from X to 𝐼 . The formal definition of the mapping is as
follows.

Definition 4.3 (Time state-space mapping). Let 𝒙(𝑡) be the solution of the
dynamical system (2.1) where 𝑡 ∈ 𝐼. Let 𝜉 : X → 𝐼 be a time state-space
mapping from 𝒙 to 𝑡,

𝑡 = 𝜉 (𝒙). (4.2)
1The curve image is taken from https://mathinsight.org/definition/simple_curve
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Figure 4.2 The dynamic solution is represented as a curve1

This mapping is possible if the curve X is simple and open. Necessary
conditions of a curve to be simple are discussed, for instance, in Chuaqui (2018)
and the references therein.

Lemma 4.4 (Differentiation of time state-space mapping ). Let the conditions
of Lemma 4.2 hold. If the time state-space mapping, 𝑡 = 𝜉 (𝒙), exists then it
admits the following,

∇𝜉 (𝒙)𝑇 𝑃(𝒙) = 1 𝑎.𝑒. in X. (4.3)

Proof. The mapping 𝜉 (𝒙) is in 𝐶1 a.e. in X since 𝒙(𝑡) ∈ 𝐶1 𝑎.𝑒. in 𝐼. The time
derivative of the mapping is,

1 =
𝑑

𝑑𝑡
𝑡 =

𝑑

𝑑𝑡
𝜉 (𝒙) = ∇𝜉 (𝒙)𝑇 𝑑𝒙

𝑑𝑡
= ∇𝜉 (𝒙)𝑇 𝑃(𝒙). (4.4)

This expression is valid almost everywhere. �

We now turn to discuss necessary and sufficient conditions for the existence
of a nontrivial Koopman eigenfunction (that is, a nonzero function which admits
Eq. (2.4) with 𝜆 ≠ 0).

Proposition 4.5 (Condition for the inexistence of a Koopman eigenfunction).
If there is an equilibrium point in 𝐼 then a nontrivial Koopman eigenfunction
does not exist.
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Proof. Let 𝑡0 ∈ 𝐼 be an equilibrium point and 𝜑(𝒙(𝑡)) be a Koopman eigen-
function. Then, 𝒙(𝑡) = 𝑐𝑜𝑛𝑠𝑡, ∀𝑡 ∈ [𝑡0, 𝑏]. Therefore, Eq. (2.4) does not hold
for nontrivial 𝜑 for any 𝜆 ≠ 0. �

Remark 4.6 (Finite support time dynamics). Let 𝑃(𝒙) define a dynamic for
which the solution has a finite support in time. Namely, there is an extinction
time point, 𝑇𝑒𝑥𝑡 , for which 𝑃(𝒙(𝑡)) = 0, ∀𝑡 ≥ 𝑇𝑒𝑥𝑡 . Then, if 𝑇𝑒𝑥𝑡 ∈ 𝐼, a
Koopman operator 𝐾 𝜏

𝑃
has no eigenfunctions. We observe here that the time

interval 𝐼 is crucial for the existence or inexistence of eigenfunctions.

From a differential geometry perspective, as noted above, 𝒙(𝑡) forms a curve
where its tangential velocity is 𝑃(𝒙). The absence of an equilibrium point
is equivalent to nonzero velocity. This type of parametric curves, where the
velocity is always nonzero, is called regular. The Koopman eigenfunction does
not exist for non-regular curves.

Lemma 4.7 (Koopman Eigenfunctions induced by a time state-space mapping).
Let the conditions of Lemma 4.2 hold and 𝒙(𝑡) be the solution of Eq. (2.1). If
there exists a time state-space mapping, 𝑡 = 𝜉 (𝒙), then a Koopman eigenfunction
exists a.e. in 𝐼.

Proof. The mapping, 𝑡 = 𝜉 (𝒙), is in 𝐶1 a.e. in X since 𝒙(𝑡) is in 𝐶1 a.e. in 𝐼.
Given that mapping, we define the following function,

𝜑(𝒙) = 𝑒𝛼𝜉 (𝒙)+𝛽 . (4.5)

This function is in 𝐶1 a.e. in X. The time derivative of this function is,
𝑑

𝑑𝑡
𝜑(𝒙(𝑡)) = 𝑑

𝑑𝜉
𝑒𝛼 ·𝜉 (𝒙)+𝛽∇𝜉 (𝒙)𝑇 𝑑

𝑑𝑡
𝒙 = 𝛼𝜑(𝒙(𝑡))∇𝜉 (𝒙)𝑇 𝑃(𝒙(𝑡)). (4.6)

According to Lemma 4.4, ∇𝜉 (𝒙)𝑇 𝑃(𝒙(𝑡)) = 1 a.e.. Thus, the function in Eq.
(4.5) admits Eq. (2.4) for any value of 𝛽, where the corresponding eigenvalue is
𝜆 = 𝛼. �

Theorem 4.8 (Sufficient condition for the existence of a Koopman eigenfunction).
Let the conditions of Lemma 4.2 hold and one of the entries of the vector 𝑃(𝒙(𝑡))
is either positive or negative ∀𝑡 ∈ 𝐼. Then, Koopman eigenfunctions exist a.e.
in the time interval 𝐼.

Proof. If one of the entries in 𝑃(𝑥(𝑡)) is either positive or negative for all 𝑡 ∈ 𝐼
then this entry is monotone and therefore injective. Then, the curve X is simple
and open (see Courant and John (2012) pages 45, 177 and 207). Therefore,
the time state-space mapping, 𝜉 (𝒙), exists. Following Lemma 4.7, Koopman
eigenfunctions can be expressed by (4.5). �
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The simple example below illustrates the connections between the equilibrium
point, finite time dynamics and time state-space mapping.

Example 4.9 (Finite time support). Let us consider the following dynamics,
𝑑

𝑑𝑡
𝑥 = −2𝑥

1
2 , 𝑥(0) = 1. (4.7)

The solution is

𝑥(𝑡) =
{
(1 − 𝑡)2 𝑡 ∈ [0, 1]
0 𝑡 > 1

. (4.8)

For 𝐼 = [0, 1], the time state-space mapping is,

𝑡 (𝑥) = 1 −
√
𝑥, 𝐼 = [0, 1], (4.9)

and using (4.5) with 𝛼 = 1, 𝛽 = 0, we can express a Koopman eigenfunction by,

𝜑(𝑥) = 𝑒1−
√
𝑥 . (4.10)

Now, let us repeat this example with a different time interval. Let 𝐼 = [0, 1.5],
containing the extinction time 𝑇𝑒𝑥𝑡 = 1. Note that, first, the time mapping, Eq.
(4.9), does not hold in the entire interval, and the eigenfunction 𝜑 does not
admit 𝑑

𝑑𝑡
𝜑(𝑥) = 𝜑(𝑥) since 𝜑(𝑥) is a nonzero constant for 𝑡 ∈ [1, 1.5].

4.1.1 Extended DMD induced from time state-space mapping

One of the methods to increase the accuracy of the classic DMD is by
enriching the state-space vector with nonlinear measurements of the coordinates
𝒙, see Williams et al. (2015b). It is shown that this approach indeed improves
accuracy, however - the theoretical justification is vague. In addition - the
enriching method may become somewhat heuristic. We can interpret this
approach as the Taylor expansion of Koopman eigenfunctions. This provides
both justification and a clear method for supplying additional measurements.
Let us expand the Koopman eigenfunction, 𝜑(𝒙) = 𝑒 𝜉 (𝒙) , by a Taylor series,

𝜑(𝒙) = 𝑒 𝜉 (𝒙) =
∞∑︁
𝑗=0

𝜉 (𝒙) 𝑗
𝑗!

.
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We can approximate this expression by taking only finite number of elements
from this sum,

𝑒 𝜉 (𝒙) ≈
𝑀∑︁
𝑗=0

𝜉 (𝒙) 𝑗
𝑗!

.

Thus, Eq. (2.4) can be approximated as

𝑑

𝑑𝑡

𝑀∑︁
𝑗=0

𝜉 (𝒙) 𝑗
𝑗!

≈
𝑀∑︁
𝑗=0

𝜉 (𝒙) 𝑗
𝑗!

. (4.11)

In matrix notation, this approximation can be reformulated as,

𝑑

𝑑𝑡


1

𝜉 (𝒙)
...

𝜉 (𝒙)𝑀
𝑀 !


≈ 𝐴


1

𝜉 (𝒙)
...

𝜉 (𝒙)𝑀
𝑀 ! ,


(4.12)

where any matrix 𝐴 with a left-eigenvector
[
1 · · · 1

]
can be an optional

solution to Eq. (4.12) for which Eq. (4.11) holds. In addition, taking 𝑀 to
infinity, 𝐴 gets the form

[𝐴]𝑖, 𝑗 =

{
1 𝑖 = 𝑗 + 1
0 𝑒𝑙𝑠𝑒

where [𝐴]𝑖, 𝑗 is the 𝑖, 𝑗 th entry of 𝐴.

4.2 Koopman Family

The KEF is of the form 𝜑(𝑡) = 𝑒𝛼𝑡+𝛽 , Eq. (4.5). This form of solution is
unique following a standard existence and uniqueness theorem of ODE’s. The
exponential parameters, 𝛼 and 𝛽, are dictated by the eigenvalue and the initial
condition. Without these restrictions, there are infinite KEFs for any dynamical
system.

From a different angle, viewing the state-space 𝒙 as a curve gives a compelling
interpretation of the multiplicity of Koopman eigenfunctions. A curve can
be reparameterized in different manners. Changing the parameters, 𝛼 and 𝛽,
amounts to reparameterization by translation and scaling. This insight leads us
to the following lemma, which extends the identities presented in Bollt (2021).
We show that any mathematical manipulation on a KEF which maintains the
form of Eq. (4.5) generates a new KEF.
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Lemma 4.10 (Multiplicities of Koopman eigenfunctions). If 𝜑1, 𝜑2 are Koop-
man eigenfunctions with the corresponding eigenvalues 𝜆1, 𝜆2 then:

1. The function 𝑎 · 𝜑1, 𝑎 ∈ ℝ (𝑎 ≠ 0) is an eigenfunction with eigenvalue
𝜆1.

2. The function (𝜑1)𝛼, 𝛼 ∈ ℂ (𝛼 ≠ 0) is an eigenfunction with eigenvalue
𝛼𝜆1.

3. For any 𝑛, 𝑚 ∈ ℝ the function (𝜑1)𝑛 (𝜑2)𝑚 is an eigenfunction with
eigenvalue 𝑛𝜆1 + 𝑚𝜆2.

4. The function (𝜑1)
𝜆
𝜆1 + (𝜑2)

𝜆
𝜆2 is an eigenfunction with eigenvalue 𝜆.

Proof. This can be shown by,

1. Using the linearity of the Koopman operator.
2. Writing the time derivative of (𝜑1)𝛼 explicitly we get,

𝑑

𝑑𝑡

[
𝜑𝛼

1
]
= 𝛼(𝜑1)𝛼−1𝜆1𝜑1 = 𝛼𝜆1𝜑

𝛼
1 . (4.13)

3. Similarly,
𝑑

𝑑𝑡
[(𝜑1)𝑛 (𝜑2)𝑚] = (𝜑2)𝑚𝑛(𝜑1)𝑛−1𝜆1𝜑1 + (𝜑1)𝑛𝑚(𝜑2)𝑚−1𝜆2𝜑2

= (𝑛𝜆1 + 𝑚𝜆2) (𝜑1)𝑛 (𝜑2)𝑚.
(4.14)

4. Finally,
𝑑

𝑑𝑡

[
(𝜑1)

𝜆
𝜆1 + (𝜑2)

𝜆
𝜆2

]
=
𝜆

𝜆1
(𝜑1)

𝜆
𝜆1

−1
𝜆1𝜑1 +

𝜆

𝜆2
(𝜑2)

𝜆
𝜆2

−1
𝜆2𝜑2

= 𝜆

[
(𝜑1)

𝜆
𝜆1 + (𝜑2)

𝜆
𝜆2

]
.

(4.15)

�

Discussion

The multiplicities presented in Lemma 4.10 are translation and scaling of
the time variable. Case 1 in this Lemma is a translation of the time axis and the
rest of the cases are scaling. To distinguish between eigenfunctions which are
generated from other eigenfunctions and “new” independent ones, we introduce
the concepts of Koopman family and its ancestors.
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Definition 4.11 (Koopman family). Let {𝜑𝑖}𝑛𝑖=1 be a finite set of KEFs. Let
𝑘𝑃 ({𝜑𝑖}𝑛𝑖=1) be the infinity uncountable set of KEFs generated by the finite set,
recursively, according to the four options stated in Lemma 4.10. Let us define
𝑘𝑚
𝑃
({𝜑𝑖}𝑛𝑖=1) = 𝑘𝑃 (𝑘𝑚−1

𝑃
({𝜑𝑖}𝑛𝑖 )). We term K𝑃 ({𝜑𝑖}𝑛𝑖 ) = ∪∞

𝑚=1𝑘
𝑚
𝑃
({𝜑𝑖}𝑛𝑖=1)

as the Koopman family of {𝜑𝑖}𝑛𝑖=1.

Definition 4.12 (Ancestors of a Koopman family). Let {𝜑∗
𝑖
}𝑚
𝑖=1 be a finite set

of KEFs. This set is an ancestor set of the Koopman family K𝑃 ({𝜑𝑖}𝑛𝑖=1) if the
following conditions hold:

1. 𝜑 ∈ K𝑃 ({𝜑𝑖}𝑛𝑖 ) ⇐⇒ 𝜑 ∈ K𝑃 ({𝜑∗𝑖 }𝑚𝑖 ).
2. 𝜑∗

𝑗
∉ K𝑃 ({𝜑∗𝑖 }𝑚𝑖=1,𝑖≠ 𝑗

) for any 𝑗 = 1, 2, · · · , 𝑚.

Note that the subscript 𝑃 is for the dynamical system.

4.2.1 Koopman Eigenfunction Vector

A vector of Koopman eigenfunctions is denoted by,

𝝋(𝒙) =
[
𝜑1 (𝒙) · · · 𝜑𝐿 (𝒙)

]𝑇
, (4.16)

where 𝐿 can be finite or infinite. The Jacobian matrix of this vector is,

𝜕

𝜕𝒙
𝝋(𝒙) =


∇𝜑1 (𝒙)𝑇

...

∇𝜑𝐿 (𝒙)𝑇

 = J (𝝋). (4.17)

Theorem 4.13 (Linear dynamic in Koopman family). Let the conditions of
Theorem 4.8 hold. The dynamical system 𝑃 can be represented as a linear
one with a vector of Koopman eigenfunctions, where the time derivative of this
vector is,

𝑑

𝑑𝑡
𝝋(𝒙) = J (𝝋)𝑃(𝒙) = Λ𝝋(𝒙), 𝑎.𝑒. (4.18)

where Λ is a diagonal matrix with the corresponding eigenvalues.

Proof. We would like to prove first the existence of a 𝐿 dimensional KEF. From
Theorem 4.8 there exists a KEF. From Lemma 4.10 if there exists a KEF, there
are infinite set of KEFs, therefore, at least 𝐿 eigenfunctions. According to the
definition of the Koopman eigenfunction, the time derivative is,
𝑑

𝑑𝑡
𝝋(𝒙) =

[
𝑑
𝑑𝑡
𝜑1 (𝒙), · · · , 𝑑

𝑑𝑡
𝜑𝐿 (𝒙)

]𝑇
=

[
𝜆1𝜑1 (𝒙), · · · , 𝜆𝐿𝜑𝐿 (𝒙)

]𝑇
= Λ𝝋(𝒙).

(4.19)
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On the other hand, applying the chain rule we get,

𝑑

𝑑𝑡
𝝋(𝒙) =


∇𝜑1 (𝒙)𝑇

...

∇𝜑𝐿 (𝒙)𝑇


𝑑

𝑑𝑡
𝒙(𝑡) = J (𝝋)𝑃(𝒙). (4.20)

Note that 𝜑𝑖 (𝒙) ∈ 𝐶1, (𝑎.𝑒.), so the expressions above are valid only almost
everywhere. �

4.2.2 Reconstructing the dynamics

The ability to reconstruct the dynamics is based on the relations between the
vectors 𝝋 and 𝒙. In classical control theory, this is referred to as observability.
Here, we suggest to examine the notion of observability by computing the
rank of the Jacobian matrix J (𝝋), Eq. (4.17). The rows of this matrix are
the gradients of the KEFs. The following lemma shows that the gradient of a
member of a Koopman family originates with its ancestors.

Lemma 4.14 (KEF gradients of a family). Let K𝑃 ({𝜑∗𝑖 }𝑚𝑖=1) be the Koopman
family of an ancestor set, {𝜑∗

𝑖
}𝑚
𝑖=1. Let 𝜑 be a KEF in K𝑃 ({𝜑∗𝑖 }𝑚𝑖=1). Then, the

gradient of 𝜑, ∇𝜑, is a linear combination of the gradients of the ancestor set
for any 𝑡 ∈ 𝐼.

Proof. Let KG be the linear span, defined by

KG = 𝑠𝑝𝑎𝑛

({
∇𝜑∗𝑖

}𝑚
𝑖=1

)
=

{
𝑚∑︁
𝑖=1

𝑎𝑖∇𝜑∗𝑖 , ∀𝑎𝑖 ∈ ℂ

}
. (4.21)

Let 𝜑 be in K𝑃 ({𝜑∗𝑖 }𝑚𝑖=1). According to Definition 4.11, there exist recursive
steps leading from the ancestors {𝜑∗

𝑖
}𝑚
𝑖=1 to 𝜑. Now, by induction we show that

∇𝜑 ∈ KG. Let us assume that from the ancestors to 𝜑 there is one step. Namely,
𝜑 is generated using 𝜑∗

𝑖
, 𝜑∗

𝑗
, according to the four cases of Lemma 4.10. The

gradient of 𝜑 is a linear combination of the gradients of 𝜑∗
𝑖

and 𝜑∗
𝑗
. For cases 1

,2 and 4, the linearity is straightforward. For case 3, 𝜑 = (𝜑∗
𝑖
)𝑛 (𝜑∗

𝑗
)𝑙 , we have,

∇𝜑 = ∇
(
𝜑∗𝑖

)𝑛 (
𝜑∗𝑗

) 𝑙
= 𝑛

(
𝜑∗𝑖

)𝑛−1
(
𝜑∗𝑗

) 𝑙
∇
(
𝜑∗𝑖

)
+ 𝑙

(
𝜑∗𝑖

)𝑛 (
𝜑∗𝑗

) 𝑙−1
∇
(
𝜑∗𝑗

)
=

[
∇
(
𝜑∗
𝑖

)
∇
(
𝜑∗
𝑗

)] [
𝑛
(
𝜑∗
𝑖

)𝑛−1 (𝜑∗
𝑗
)𝑙

𝑙
(
𝜑∗
𝑖

)𝑛 (𝜑∗
𝑗
)𝑙−1

]
.

(4.22)

For any 𝑡 ∈ 𝐼 the vector
[
𝑛
(
𝜑∗
𝑖

)𝑛−1 (𝜑∗
𝑗
)𝑙 𝑙

(
𝜑∗
𝑖

)𝑛 (𝜑∗
𝑗
)𝑙−1

]𝑇
is constant. There-
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fore, the gradient of 𝜑 is in KG. Now we assume there exist 𝑘 steps from
the ancestors to 𝜑. Let 𝜑1 and 𝜑2 be generated by 𝑘 − 1 steps. The induction
assumption holds, meaning, their gradients are in KG. Now, there is one step
from 𝜑1 and 𝜑2 to 𝜑. As shown, ∇𝜑 is a linear combination of the gradients
of its generators, ∇𝜑1,∇𝜑2. But these vectors belong to KG by the induction
assumption. Therefore, ∇𝜑 ∈ KG. �

The multiplicity of Koopman eigenfunctions results from either arithmetical
manipulations (Def. 4.11) or the existence of several time state-space mappings
(Def. 4.3). The main difference is the rank of the Jacobian, J (𝝋). Given a
vector of KEFs, adding another Koopman eigenfunction from the Koopman
family of the KEFs in the vector – does not increase the rank of the Jacobian.
However, adding a Koopman eigenfunction from another time state-space
mapping does. The Jacobian matrix rank is related to system controllability and
observability (see for example Brunton and Kutz (2019); Evangelisti (2011)).
In the following, we formulate the connections between the rank of the Jacobian
matrix, the size of the ancestor set, and time state-space mappings.

Definition 4.15 (Full observability in the context of Koopman theory). Consider
the dynamical system Eq. (2.1) where 𝒙 ∈ ℝ𝑁 . The system is fully observable
if the state-space can be revealed from the KEFs and the initial condition.

Proposition 4.16 (Sufficient conditioin for full observability). Consider the
dynamical system (2.1) where 𝒙 ∈ ℝ𝑁 . Let us denote the Koopman family of
all Koopman eigenfunctions of the dynamics as K𝑃 . An ancestor set of K𝑃 is
denoted as {𝜑∗

𝑖
}𝑛
𝑖=1. The system is fully observable if 𝑁 ≤ 𝑛.

Proof. According to Lemma 4.13, for any vector of KEFs the following equation
holds,

J (𝝋)𝑃(𝒙) = Λ𝝋(𝒙), (𝑎.𝑒.). (4.23)

Let us choose a vector of ancestors, i.e.

𝝋∗ (𝒙) =
[
𝜑∗1 (𝒙) · · · 𝜑∗𝑛 (𝒙)

]𝑇
. (4.24)

According to Lemma 4.14 the rank of the Jacobian matrix is full and equal to 𝑁 .
Since the matrix J (𝝋)𝑇 J (𝝋) is invertible, the dynamics, 𝑃, can be revealed
according to the following relation,

𝑃(𝒙) =
(
J (𝝋)𝑇 J (𝝋)

)−1
J (𝝋)𝑇Λ𝝋(𝒙), (𝑎.𝑒.). (4.25)

That is, we use the Moore-Penrose inverse. The state-space can now be calculated
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as,

𝒙(𝑡) = 𝒙0 +
∫ 𝑡

𝑎

(
J (𝝋(𝜏))𝑇 J (𝝋(𝜏))

)−1
J (𝝋(𝜏))𝑇Λ𝝋(𝜏)𝑑𝜏. (4.26)

�

Corollary 4.17 (Full observability for a monotone dynamics). If each entry in
𝑃 is either positive or negative for any 𝑡 in 𝐼 then each entry of the state-space
is monotone (and injective). We can formulate 𝑁 different time state-space
mappings from X to 𝐼 (Theorem 4.8). These mappings induce 𝑁 different KEFs
and according to Proposition 4.16 the system is fully observable.

Remark 4.18 (Sufficient condition for dynamic reconstruction). If each of the
entries of 𝑃 is either positive or negative for all 𝑡 in 𝐼 then the dynamics can be
reconstructed as

𝑃(𝒙) = J−1 (𝝋)Λ𝝋(𝒙). (4.27)

According to Corollary 4.17, if each of the entries of 𝑃 is either positive or
negative in 𝐼 then the Jacobian matrix is 𝑁 × 𝑁 and is full rank, therefore –
invertible. Using Theorem 4.13 we reach Eq. (4.27).

Remark 4.19 (Global controllability). Reconstructing the dynamical system
enables us to enlarge the Region of Attraction (ROA), Eq. (2.22). Given the
nonlinear dynamics,

𝑑

𝑑𝑡
𝒙(𝑡) = 𝑃(𝒙(𝑡)) + 𝒖, (4.28)

we can cancel the nonlinearity with the ancestors of a Koopman family 𝝋(𝒙) if
the dynamics is fully observable. In order to reach a stable system for any point
𝒙 we define the following input 𝒖,

𝒖 = J−1 (𝝋)Λ𝝋(𝒙) + 𝒘, (4.29)

where the first element cancels the nonlinearity of the system (Remark 4.18)
and the second term brings the system to any desired point in ℝ𝑁 . Note that we
assume there are no singular points in 𝑃.

Remark 4.20 (Reconstructing the dynamic - limitations). The recovery of
the system, as described by Eq. (4.25) and (4.27), is valid for a given initial
condition 𝑥0. In order to obtain a full recovery of the system, the properties of
the initial condition should be taken into account. These subject exceeds the
frame of this work and requires further research.
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4.2.3 Reconstruction conservation laws

Dynamic reconstruction and conservation laws (such as energy, momentum
etc.) are perhaps the most crucial tasks in dynamical system analysis, in general,
and controlling systems in particular. Data driven algorithms to reveal the
dynamic (governing laws) and the conservation laws, based on the Koopman
operator theory have been studied by Rudy et al. (2017); Brunton et al. (2016);
Schmidt and Lipson (2009); Kaiser et al. (2018); Langley et al. (1981). The
common approach argues that the conservation laws are related to the null part
of the Koopman spectrum. Namely, the Koopman eigenfunctions related to
eigenvalue zero are or may be formulations of the conservation laws. In a similar
manner, the dynamic can be reconstructed based on the nontrivial Koopman
eigenfunctions.

We propose an alternative view. As discussed above, the relevant KEFs to
system reconstruction are indeed not in the null part of the Koopman spectrum.
However, from our perspective, after recovering the dynamical system (the
governing laws) via KEFs the conservation laws naturally emerge from these
nontrivial KEFs.

Let 𝜑(𝑥) be an eigenfunction, namely Eq. (2.4) holds for some 𝜆. We
consider the measurement ln (𝜑(𝑥)). By using Eq. (2.2), we can express the
time derivative of this measurement as,

𝑑

𝑑𝑡
ln (𝜑(𝒙)) = 𝜆𝜑(𝒙)

𝜑(𝒙) = 𝜆.

On the other hand, with the chain rule we get,

𝑑

𝑑𝑡
ln (𝜑(𝒙)) =

𝑑
𝑑𝑡
𝜑(𝒙)
𝜑(𝒙) =

∇𝜑(𝒙)𝑇 𝑑
𝑑𝑡
𝒙

𝜑(𝒙) =
∇𝜑(𝒙)𝑇 𝑃(𝒙)

𝜑(𝒙) .

Then, for any Koopman eigenfunction (an intrinsic coordinate) we can formulate
the following conservation law,

∇𝜑(𝒙)𝑇 𝑃(𝒙)
𝜑(𝒙) = 𝜆. (4.30)

This result coincides with Eq. (4.3), by using Lemma 4.4 and formulating a
KEF by a time state-space mapping, Eq. (4.5), with 𝛼 = 𝜆. In other words,
when a time state-space mapping 𝜉 exists, an alternative formulation to the
conservation law of Eq. (4.30) is,

1 =
𝑑

𝑑𝑡
𝑡 =

𝑑

𝑑𝑡
𝜉 (𝒙) = ∇𝜉 (𝒙)𝑇 𝑑𝒙

𝑑𝑡
= ∇𝜉 (𝒙)𝑇 𝑃(𝒙). (4.31)
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We illustrate this with the following two examples.

Example 4.21 (Free Fall). Let 𝑥1 (𝑡) and 𝑥2 (𝑡) be the height and the velocity of
a mass in a free fall, respectively. The dynamical system is,

𝑑

𝑑𝑡

[
𝑥1
𝑥2

]
=

[
𝑥2
−𝑔

]
,

where the initial condition is
[
ℎ 0

]𝑇 . The solution is[
𝑥1
𝑥2

]
=

[
ℎ − 1

2𝑔𝑡
2

−𝑔𝑡

]
.

The time state-space mappings are,[
𝑡1
𝑡2

]
=

[√︃
2(ℎ−𝑥1)

𝑔

− 𝑥2
𝑔

]
.

The induced conservation laws, using Eq. (4.30) are as follows.
Conservation law #1

1 =
𝑑

𝑑𝑥1
𝑡1 (𝑥1) ·

𝑑

𝑑𝑡
𝑥1 = − 1

2
√︃

2(ℎ−𝑥1)
𝑔

2
𝑔
· 𝑥2

One can reformulate this to the energy conservation law,

𝑔𝑥1 +
1
2
𝑥2

2 = ℎ𝑔.

Conservation law #2
𝑑

𝑑𝑥2
𝑡2 (𝑥2) ·

𝑑

𝑑𝑡
𝑥2 = −1

𝑔
· (−𝑔) = 1

The conservation law #2 is due to the constant acceleration, 𝑔.

Example 4.22 (Pure rolling down an incline). On an inclined plane with a slope
of angle 𝛼, a solid cylinder with mass 𝑚, radius 𝑅, and rotational inertia 𝐼𝑐𝑚 is
released from rest. The location along the plane is denoted by 𝑥1 and its velocity
by 𝑥2. The dynamical system is,

𝑑

𝑑𝑡

[
𝑥1
𝑥2

]
=

[
𝑥2

𝑔𝑠𝑖𝑛𝛼

1+ 𝐼𝑐𝑚
𝑚𝑅2

]
(4.32)
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with the initial condition 𝒙 = [0, 0]𝑇 . The solution is,

𝑥1 (𝑡) =
1
2
𝑔𝑠𝑖𝑛𝛼

1 + 𝐼𝑐𝑚
𝑚𝑅2

𝑡2,

𝑥2 (𝑡) =
𝑔𝑠𝑖𝑛𝛼

1 + 𝐼𝑐𝑚
𝑚𝑅2

𝑡.

(4.33)

The time mappings are

𝑡1 (𝑥1) =

√︄
2

1 + 𝐼𝑐𝑚
𝑚𝑅2

𝑔𝑠𝑖𝑛𝛼
𝑥1,

𝑡2 (𝑥2) =
1 + 𝐼𝑐𝑚

𝑚𝑅2

𝑔𝑠𝑖𝑛𝛼
𝑥2.

(4.34)

Conservation law #1

1 =
𝑑

𝑑𝑥1
𝑡1 (𝑥1)

𝑑𝑥1
𝑑𝑡

=

√︄
2

1 + 𝐼𝑐𝑚
𝑚𝑅2

𝑔𝑠𝑖𝑛𝛼

1
2√𝑥1

𝑥2 (4.35)

We can reformulate it as,
1
2
𝑚𝑥2

2︸︷︷︸
𝐸𝐾

+ 1
2
𝐼𝑐𝑚

( 𝑥2
𝑅

)2︸        ︷︷        ︸
𝐸𝑅

−𝑚𝑔𝑥1𝑠𝑖𝑛𝛼︸        ︷︷        ︸
𝐸𝑃

= 0 (4.36)

getting, as expected, that the sum of the energies (Kinetic, Rotational, and
Potential) is zero.

Conservation law #2 In the same manner as in Example 4.21, conservation
law #2 is a result of constant acceleration.

4.3 Koopman Mode Decomposition

The Koopman mode decomposition leverages this infinite family to recon-
struct the observations from the Koopman eigenfunctions (Mezić (2005)). The
reconstruction is a linear combination of Koopman eigenfunctions. For instance,
the 𝑖th entry of 𝒙 is assumed to be reconstructed as (Brunton et al. (2021)),

𝑥𝑖 (𝑡) =
∞∑︁
𝑗=1
𝑣𝑖, 𝑗𝜑 𝑗 (𝒙(𝑡)), (4.37)
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where 𝑣𝑖, 𝑗 is a scalar. Then, the state-space can be written as,

𝒙(𝑡) =
∞∑︁
𝑗=1

𝒗 𝑗𝜑 𝑗 (𝒙(𝑡)), (4.38)

where 𝒗 𝑗 is an 𝑁 dimensional vector whose entries are the coefficients of the
𝑗 th Koopman eigenfunction, namely 𝒗 𝑗 =

[
𝑣1, 𝑗 · · · 𝑣𝑁 , 𝑗

]𝑇 . Substituting
the solution of 𝜑(𝒙), Eq. (KEF), we get,

𝒙(𝑡) =
∞∑︁
𝑗=1

𝒗 𝑗𝜑 𝑗 (𝒙(𝑎))𝑒𝜆 𝑗 𝑡 . (4.39)

The infinite triplet {𝒗 𝑗 , 𝜑 𝑗 , 𝜆 𝑗 }∞𝑗=1 is the Koopman mode decomposition, where
{𝒗 𝑗 }∞𝑗=1 are the Koopman modes, {𝜑 𝑗 }∞𝑗=1 are the KEFs, and {𝜆 𝑗 }∞𝑗=1 are the
Koopman eigenvalues. Note that the maximal index argument in the sum of Eq.
(4.38) is not necessarily infinity. For example, it is enough to have one mode
to reconstruct the linear dynamics initiated with one of its eigenvectors. In
matrix notations, let 𝑉 be a matrix whose column vectors are the corresponding
Koopman modes. The state-space can be expressed as,

𝒙(𝑡) = 𝑉𝝋(𝒙(𝑡)). (4.40)

Thus, the dynamical system has a linear representation with the measurements
{𝜑 𝑗 (𝒙)}∞𝑗=1, Kaiser et al. (2021).

Example 4.23 (KMD of Zero Homogeneous Dynamics). Let us consider the
following dynamical system

𝑑

𝑑𝑡
𝒙 = 𝑃(𝒙), 𝒙(𝑡 = 0) = 𝒗, 𝐼 = [0,−1/𝜆) (4.41)

where𝑃 is a zero homogeneous operator (admitting𝑃(𝑎·𝒙) = 𝑠𝑖𝑔𝑛(𝑎)𝑃(𝒙), ∀𝑎 ∈
ℝ), 𝒗 and 𝜆 are a nonlinear eigenvector and the corresponding eigenvalue of 𝑃,
respectively, i.e. they admit the nonlinear eigenvalue problem 𝑃(𝒗) = 𝜆𝒗. We
assume a stable system, where 𝜆 < 0. More background on such problems is
presented in Gilboa (2018). Then, the solution of the ODE is,

𝒙(𝑡) = 𝒗 (1 + 𝜆𝑡) , 𝑡 ∈ 𝐼 . (4.42)

A KEF can be formulated by the time state-space mapping as,

𝜑(𝑡) = 𝑒𝑡 = 𝑒
〈𝒙,𝒗〉
‖𝒗‖2

−1

𝜆 . (4.43)

We would like now to express the solution (4.42) with Koopman eigenfunctions.
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To express the function 𝑡 we have to apply the natural logarithm, ln, on the
Koopman eigenfunction. With Taylor series one can express it as,

𝑡 = ln(𝜑(𝒙)) =
∞∑︁
𝑛=1

(−1)𝑛+1 (𝜑(𝒙) − 1)𝑛
𝑛

. (4.44)

Then, the solution of (4.42) can be written as,

𝒙(𝑡) = 𝒗

(
1 + 𝜆

∞∑︁
𝑛=1

(−1)𝑛+1 (𝜑(𝒙) − 1)𝑛
𝑛

)
. (4.45)

By expanding the terms (𝜑 − 1)𝑛 we get an infinite polynomial with respect to
the KEF 𝜑. KMD emerges naturally.

Discussion

According to this example, since there is only one mode and its decay profile
is not exponential, there can be many KEFs for one Koopman mode. The
multiplicity of eigenvalues for one mode is related to the limitations of DMD.
Since DMD recovers only linear dynamics it cannot handle well one eigenvector
with multiple eigenvalues.

We can now formulate the relation between Koopman modes and the
dynamical system.

Proposition 4.24 (The Jacobian and Koopman modes). Let 𝝋(𝒙) be a vector
of Koopman eigenfunctions and J (𝝋(𝒙)) be its Jacobian matrix. In addition,
let 𝑉 be defined as in (4.40). Then, 𝑃(𝒙) is a right eigenvector of the matrix
𝑉 · J (𝝋(𝒙)) with eigenvalue one.

Proof. The time derivative of Eq. (4.40) is given by,
𝑑

𝑑𝑡
𝒙 = 𝑉

𝑑

𝑑𝑡
𝝋(𝒙)

𝑃(𝒙) = 𝑉J (𝝋(𝒙))𝑃(𝒙).
(4.46)

�

Example 4.25 (Nonlinear system). Given the following system,

𝑑

𝑑𝑡

[
𝑥1
𝑥2

]
=

[
𝑥1

𝑥2 − 𝑥2
1

]
,

[
𝑥1 (0)
𝑥2 (0)

]
=

[
1
1

]
. (4.47)
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The solution is, [
𝑥1
𝑥2

]
=

[
1 0
2 −1

] [
𝑒𝑡

𝑒2𝑡

]
. (4.48)

The time state-space mappings are,

𝑡 = ln(𝑥1),

𝑡 =
1
2

ln(2𝑥1 − 𝑥2).
(4.49)

By choosing 𝛼 = 1, 𝛽 = 0 ,the Koopman eigenfunctions, following (4.5), are,

𝜑1 (𝒙) = 𝑥1,

𝜑2 (𝒙) =
√︁

2𝑥1 − 𝑥2.
(4.50)

The state-space,
[
𝑥1 𝑥2

]𝑇 , can be reconstructed by these eigenfunctions as,[
𝑥1
𝑥2

]
=

[
𝜑1 (𝒙)

2𝜑1 (𝒙) − 𝜑2 (𝒙)2

]
=

[
1 0
2 −1

] [
𝜑1 (𝒙)
𝜑2 (𝒙)2

]
= 𝑉𝝋(𝒙). (4.51)

We observe there are two modes, [1, 2]𝑇 and [0,−1]𝑇 , which evolve linearly
under the nonlinear system (4.47). In addition, 𝑉J (𝝋(𝒙)) = 𝐼2×2, hence, 𝑃(𝒙)
is an eigenvector for any 𝒙.

We have shown above the strong relation between time state-space mapping
and Koopman eigenfunctions. The following proposition states a limitation
between the two notions.

Proposition 4.26 (Existence of Koopman eigenfunctions with no time state-s-
pace mapping). The state-space mapping is not a necessary condition for the
existence of Koopman eigenfunctions.

Proof. This can be shown by the following simple example. Let us consider the
linear system,

𝑑

𝑑𝑡
𝒙 = 𝐴𝒙, 𝒙(𝑡 = 0) = 𝒙0, (4.52)

where 𝐴 is an 𝑁 ×𝑁 matrix. For simplicity, we assume the eigenvalues, {𝜆𝑖}𝑁𝑖=1,
are unique and the eigenvector set, {𝒗𝑖}𝑁𝑖=1, is orthonormal. Then, the solution
of this system of equations can be written as,

𝒙(𝑡) =
𝑁∑︁
𝑖=1

𝑏𝑖𝒗𝑖𝑒
𝜆𝑖 𝑡 , (4.53)
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where the vector 𝒃 =
[
𝑏1 · · · 𝑏𝑁

]𝑇 is chosen according to the initial
condition. To form the Koopman eigenfunctions and, correspondingly, the
Koopman mode, one should formulate the time state-space mapping. For each
eigenvector and eigenvalue of 𝐴 there is a mapping, expressed as,

𝑡𝑖 (𝑥) =
1
𝜆𝑖

ln

(
𝒗𝑇
𝑖
𝒙

𝑏𝑖

)
. (4.54)

Thus, the Koopman eigenfunctions are,

𝜑𝑖 (𝒙) = 𝑒𝑡𝑖 (𝒙) =
(
𝒗𝑇
𝑖
𝒙

𝑏𝑖

) 1
𝜆𝑖

. (4.55)

This expression can be simplified by applying Def. 4.11, yielding the following
system,

𝑑

𝑑𝑡


𝒗𝑇1 𝒙
...

𝒗𝑇𝑛 𝒙

 =


𝜆1

. . .

𝜆𝑛



𝒗𝑇1 𝒙
...

𝒗𝑇
𝑁
𝒙

 . (4.56)

Note that if the eigenvector, 𝒗𝑖 , is complex then the time state-space mapping,
Eq. (4.54), does not exist since it is not well defined. In this case, to create a
time state-space mapping, we have to choose one branch from the ln function.
However, the Koopman eigenfunction, Eq. (4.55), has a unique value since the
exponent cancels the ambiguity of the ln function. It shows that a Koopman
eigenfunction can exist in cases where the time state-space mapping does
not. �

5 Koopman Theory for PDE

Let us generalize the results above to the continuous setting of Koopman
theory, following Nakao and Mezić (2020). We consider the solution of Eq.
(2.6), based on the following assumptions.

Assumption 5.1 (Proper Operator). The operator P( 𝑓 (𝑥)) in Eq. (2.6) is
proper.

Lemma 5.2 (Continuous 𝑢). If the operator P in Eq. (2.6) admits Assumption
5.1 then the solution is continuous in 𝑡.

This is quite standard in the theory of PDEs. Basically, letting 𝑢(𝑥, 𝑡) to be
the solution of Eq. (2.6), we can write a first order Taylor expansion for the
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variable 𝑡 as,

𝑢(𝑥, 𝑡 + 𝑑𝑡) = 𝑢(𝑥, 𝑡) + P(𝑢(𝑥, 𝑡)) · 𝑑𝑡 + 𝑜(𝑑𝑡). (5.1)

Since the value of P(𝑢(𝑥, 𝑡)) is finite, we get |𝑢(𝑥, 𝑡 + 𝑑𝑡) − 𝑢(𝑥, 𝑡) | → 0 as
𝑑𝑡 → 0.

Assumption 5.3 (Fréchet Differentiability). The operator P is Fréchet differen-
tiable a.e. in H .

If P admits Assumption 5.3 then the solution 𝑢(𝑥, 𝑡) is in 𝐶1 a.e. with
respect to 𝑡 (see e.g. Venturi and Dektor (2021)).

Definition 5.4 (Time mapping). Let 𝑢(𝑥, 𝑡) be the solution of the dynamical
system (2.6) where 𝑡 ∈ 𝐼. Let Ξ(𝑢) (Ξ is capital 𝜉) be a functional mapping
from the solution 𝑢 to 𝑡, i.e.

𝑡 = Ξ(𝑢). (5.2)

Lemma 5.5 (Differentiation of time mapping ). Let the Assumptions 5.1 and
5.3 hold. If the time mapping, 𝑡 = Ξ(𝑢), exists then it admits the following,

〈𝜕Ξ(𝑢(𝑥, 𝑡)),P(𝑢(𝑥, 𝑡))〉 = 1 𝑎.𝑒. in 𝑡 ∈ 𝐼 . (5.3)

Proof. The mapping Ξ(𝑢(𝑥)) is in 𝐶1 a.e. in 𝑡 ∈ 𝐼 since 𝑢(𝑥, 𝑡) ∈ 𝐶1, 𝑎.𝑒.
with respect to 𝑡 in 𝐼. Based on the Brezis chain rule, the time derivative of the
mapping is,

1 =
𝑑

𝑑𝑡
𝑡 =

𝑑

𝑑𝑡
Ξ(𝑢) = 〈𝜕Ξ(𝑢(𝑥, 𝑡)), 𝑑

𝑑𝑡
𝑢(𝑥, 𝑡)〉 = 〈𝜕Ξ(𝑢(𝑥, 𝑡)),P(𝑢(𝑥, 𝑡))〉.

(5.4)
And this expression is valid almost everywhere. �

Proposition 5.6 (Condition for the inexistence of a Koopman eigenfunctional).
If there is an equilibrium point in 𝐼 then a nontrivial Koopman eigenfunctional
does not exist.

Proof. Let 𝑡0 ∈ 𝐼 be an equilibrium point and 𝜙(𝑢(𝑥, 𝑡)) be a Koopman
eigenfunctional. Then, 𝑢(𝑥, 𝑡) = 𝑐𝑜𝑛𝑠𝑡, ∀𝑡 ∈ [𝑡0, 𝑏]. Therefore, Eq. (2.9) does
not hold for nontrivial 𝜙 for any 𝜆 ≠ 0. �

Remark on dynamics with finite time support

Remark 4.6 is valid also for dynamics of the form of Eq. (2.6). Namely,
if there exits a time point, 𝑇𝑒𝑥𝑡 ∈ 𝐼, for which P(𝑢(𝑥, 𝑡)) = 0,∀𝑡 > 𝑇𝑒𝑥𝑡 , then
there is no Koopman eigenfunctional for this dynamics.
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Lemma 5.7 (Koopman eigenfunctionals induced by a time state-space mapping).
Let the Assumptions 5.1 and 5.3 hold and 𝑢(𝑥, 𝑡) be the solution of Eq. (2.6). If
there exists a time mapping, 𝑡 = Ξ(𝑢), then a Koopman eigenfunctional exists.

Proof. Given the mapping, 𝑡 = Ξ(𝑢), we define the following functional,

𝜙(𝑢) = 𝑒𝛼Ξ(𝑢)+𝛽 . (5.5)

The time derivative of this functional is,
𝑑

𝑑𝑡
𝜙(𝑢(𝑥, 𝑡)) = 𝑑

𝑑Ξ
𝑒𝛼 ·Ξ(𝑢 (𝑥,𝑡))+𝛽

𝑑

𝑑𝑡
Ξ(𝑢(𝑥, 𝑡)) = 𝛼𝜙(𝑢(𝑥, 𝑡))〈𝜕Ξ(𝑢(𝑥, 𝑡)), 𝑑

𝑑𝑡
𝑢(𝑥, 𝑡)〉

= 𝛼𝜙(𝑢(𝑥, 𝑡))〈𝜕Ξ(𝑢(𝑥, 𝑡)),P(𝑢(𝑥, 𝑡))〉.
(5.6)

According to Lemma 5.5, 〈𝜕Ξ(𝑢(𝑥, 𝑡)),P(𝑢(𝑥, 𝑡))〉 = 1 a.e.. Thus, the function
in Eq. (5.5) admits Eq. (KEFal) for any value of 𝛽, where the corresponding
eigenvalue is 𝜆 = 𝛼. �

Theorem 5.8 (Sufficient condition for the existence of a Koopman eigenfunc-
tional). Let the Assumptions 5.1 and 5.3 hold, let 𝑢(𝑥, 𝑡) be the solution of
Eq. (2.6), and let there be a real function 𝑓 : 𝐼 → 𝐿, for which 𝑢( 𝑓 (𝑡), 𝑡) is
monotonic with respect to 𝑡. Then, Koopman eigenfunctionals exist in the time
interval 𝐼.

Proof. Let us define the following monotonic function,

𝑔(𝑡) =
∫ 𝐿

0
𝑢(𝑥, 𝑡)𝛿(𝑥 − 𝑓 (𝑡))𝑑𝑥, (5.7)

where 𝛿 is the Dirac delta. Then, the time mapping is

𝑡 = Ξ(𝑢) = 𝑔−1
(∫ 𝐿

0
𝑢(𝑥, 𝑡)𝛿(𝑥 − 𝑓 (𝑡))𝑑𝑥

)
. (5.8)

According to Lemma 5.7 there exits a eigenfunctional, which can be expressed
by Eq. (5.5). �
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6 Mode Decomposition based on Time State-Space Mapping

6.1 Bridging between nonlinear spectral decomposition and KMD

Let us recall the dynamical system and its suggested form of solution. We
consider the following PDE,

𝑢𝑡 = 𝑃(𝑢), (6.1)

where 𝑃 is a nonlinear operator, 𝑢(𝑡 = 0) = 𝑓 . The solution of this PDE is
approximated as

𝑢(𝑥, 𝑡) ≈
𝑚∑︁
𝑖=1

𝑋𝑖 (𝑥)𝑇𝑖 (𝑡). (6.2)

We would like to mention two principal PDEs for which this approximation
is precise (reaches equality). The first one is linear diffusion and the second
is TV-flow (see the studies on spectral TV of Gilboa (2014), Burger et al.
(2016), Bungert et al. (2019b)). In both cases, the temporal term 𝑇𝑖 (𝑡) are
the typical decay profiles of the operator which is dictated by its homogeneity.
Whereas the decay profile of linear diffusion is exponential, that of TV-flow
is linear. This was generalized by Cohen and Gilboa (2018, 2020), where it
is shown there is a smooth transition between exponential and linear decay
for 𝛾-homogeneous operators, 𝛾 ∈ [0, 1)), see Fig. 3.1. These profiles can
be calculated by analyzing an evolution initiated with a single (nonlinear)
eigenfunction 𝑓 , admitting 𝑃( 𝑓 ) = 𝜆 𝑓 . In this case it is simple to check that the
evolution is structure preserving. That is, the spatial structure of 𝑓 is maintained
and only its contrast changes throughout the evolution. We thus get a separation
of variables and can deduce the time profile. It was shown in Bungert and
Burger (2019) that the typical decay profile is also the asymptotic behavior of
the dynamic (at a time point just before extinction).

In Gilboa (2014), Burger et al. (2016) it was suggested to perform a decom-
position of the signal 𝑓 by identifying phase transitions of the piecewise linear
dynamics of TV, or of gradient flows of one-homogeneous functionals in general.
This was performed simply by taking the second time derivative of the flow,
where the time-weighted expression 𝜙(𝑥, 𝑡) = 𝑡𝑢𝑡𝑡 (𝑥, 𝑡) was referred to as a
spectral component, admitting a simple reconstruction formula, 𝑓 =

∫ ∞
0 𝜙(𝑡)𝑑𝑡.

In Gilboa (2014) it was shown that not only the initial condition but the entire
solution 𝑢(𝑥, 𝑡) can be expressed as a weighted integration of the spectral
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components,

𝑢(𝑥, 𝑡) =
∫ ∞

0
𝐻 (𝑡, 𝜏)𝜙(𝑥, 𝜏)𝑑𝜏,

where 𝐻 (𝑡, 𝜏) = ((𝜏 − 𝑡)/𝜏)+. Comparing 𝜙(𝑥, 𝜏) to 𝑋𝑖 and 𝐻 (𝑡, 𝜏) to 𝑇𝑖 (𝑡) we
get an expression similar to (6.2), in an integral form. In Burger et al. (2016)
it was shown that for the discrete one dimensional TV-flow the number of
components is finite and we can express the solution 𝑢 by a sum of weighted
spectral components. One can expand the linear decay profile to an infinite
some of Koopman eigenfunctions, as done in Eq. (4.45). Hence we can observe
that the nonlinear spectral components 𝜙 are actually Koopman modes! These
relations and connections are planned to be further investigated in a future work.

When the evolution is TV-flow, the set {𝜙} is referred to as spectral TV
decomposition. In Cohen and Gilboa (2020) the idea was generalized to
nonlinear decompositions of 𝛾-homogeneous functionals, 𝛾 ∈ [1, 2) . The
typical decay profile is a truncated polynomial with fractional degree almost for
every value of 𝛾. Thus, the decomposition was based on fractional calculus,
which made this process less accessible numerically.

To bypass the use of fractional calculus it was suggested to apply DMD on
the gradient descent of the respective homogeneous functional. As discussed
earlier, it was shown that recovering the dynamic with DMD yields an inherent
error, Cohen et al. (2021a). A time rescaling method was proposed to improve
the DMD decomposition. It was shown theoretically that an evolution of a single
eigenfunction is constructed accurately and for general signals improvement in
the decomposition was achieved. However, a major problem of phase changes
in the flow, due to extinction of modes, was not addressed. This is most
inherent in flows based on zero-homogeneous operators, common in signal and
image processing. Alternative recent methods were suggested to improve DMD,
however none of them tackles well phase transitions in the flow. These methods
use machine learning principles in the design of advanced DMD algorithms,
such as Extended DMD (EDMD) Williams et al. (2016, 2015a,b) and kernel
DMD (KDMD) Kawahara (2016). Several learning-based approaches suggested
to build a data-driven dictionary to reconstruct the dynamics sparsely Bollt
(2021); Li et al. (2017); Pan et al. (2021); Rudy et al. (2017). These works focus
on learning the spatial structures that approximate Koopman modes. In other
words, these algorithms aim at finding measurements that evolve linearly under
the dynamical system.

Since DMD is primarily investigated in the context of fluid dynamics,
oscillatory flows are more common, and less attention was directed to smoothing
or decaying flows, which are most common in image and signal processing. We
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thus aim at extending the Koopman tools to this type of processes. System
reconstruction based on finding spatial structures has some limitations, most
notably for processes with finitely decaying modes, since the reconstruction
of KEFs may be infinite-dimensional. The reconstruction of a KEF as a
polynomial of the observation, as in Example 4.9, contains an infinite vector of
measurements, which is highly intractable numerically.

Our approach is based on the assumption that the observed dynamic has a
typical monotone decay profile within a given time interval. Thus, instead of
focusing on measurements that decay exponentially, the focus of our algorithm
is on finding spatial structures that decay according to a predefined family of
profiles. Let us recall the generalized spectra which was introduced by Katzir
(2017) and Gilboa (2018). This work focused on a decomposition induced by
the typical decay profile of the respective operator. The spatial structures are
deduced from a dictionary containing an overcomplete set of decay profiles.
More formally, given a nonlinear dynamic,

𝑑𝒙

𝑑𝑡
= 𝑃(𝒙),

with a typical decay profile, 𝑎(𝑡), we extract the spatial structure from the
solution, 𝒙(𝑡), with the following optimization problem,

min argV {


𝑋 −VD




F}, 𝑠.𝑡.min



V


0

where 𝑋 , V and D are defined in Eqs. (2.17), (2.18), and (2.15), respectively.
In the rest of this section we show that if the decay profile is monotone then
the spatial structures resulting from the general spectral decomposition are the
Koopman modes of KMD.

6.2 Generalized dynamic mode decomposition

Spatiotemporal mode decomposition based on a monotone decay profile

Let us assume the dynamics induces a known typical monotone profile for
different spatial structures in the data. The profile, denoted as 𝑎𝜆𝑖 (𝑡), varies
according to the spatial structure, 𝒗𝑖 , and depends on a parameter 𝜆𝑖 . In addition,
we assume that the solution can be approximate as,

𝒙(𝑡) =
𝑁∑︁
𝑖=1

𝒗𝑖 · 𝑎𝜆𝑖 (𝑡) + 𝑒 (6.3)

where 𝑒 is a small error term.
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Given the time sampling point set {𝑡𝑖}𝑀0 (not to be confused with time
state-space mapping), we define the overcomplete dictionary,

D =


𝑎𝜆0 (𝑡0) · · · 𝑎𝜆0 (𝑡𝑀 )

...

𝑎𝜆𝐿 (𝑡0) · · · 𝑎𝜆𝐿 (𝑡𝑀 )

 , (6.4)

where 𝐿 is large enough. An atom of this dictionary is a row. Since the time
profile 𝑎𝜆𝑖 (𝑡) is monotone there exists an inverse function for each atom, denoted
as,

𝑡 = 𝜉 (𝑎𝜆𝑖 (𝑡)). (6.5)

In matrix formulation, for a discrete time setting, this can be written as,

𝒕 = 𝝃 (D), (6.6)

where 𝒕 ∈ ℝ(𝐿+1)×𝑀 . It is assumed that there exists a (sparse) mode matrix 𝑉
which can approximate the samples of the system 𝑋 using the dictionary by,

𝑋 = 𝑉D + 𝑒, (6.7)

where 𝑋 =
[
𝒙0 · · · 𝒙𝑀

]
and 𝑒 is a small error term.

Dimensionality Reduction

Following the assumption of DMD, we would like to obtain a sparse
representation of modes. This problem has been thoroughly investigated
and can be formulated as Mairal et al. (2014b),

min
𝑉



𝑋 −𝑉D


2
F , 𝑠.𝑡.



𝑉


0 ≤ 𝑟, (6.8)

where


𝑉



0 < 𝑟 indicates the requirement that only up to 𝑟 columns in 𝑉 are not
zero. This problem is NP-hard and the sparsity constraint is relaxed to solving
the following minimization problem,

min
𝑉



𝑋 −𝑉D


2
F + 𝜆



𝑉


1. (6.9)

The solution of (6.9) is the minimizer of the left term when the nonzero entries
in each mode are at least 𝜆 (see algorithm 6 p. 153 in Mairal et al. (2014b)).

In general, there are several well known algorithms to recover the modes
when the dictionary is known (see Elad (2010)). We note that our problem
is somewhat more difficult than the common signal processing case since the
atoms in the dictionary are highly coherent (strongly correlated). Here, we
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apply the implementation from Mairal et al. (2014a) for the Lasso algorithm
(Eq. (6.9)) with a fine-tuning post-processing stage (B) to solve this problem.
The output of this algorithm is 𝑉̂ and D̂, where each column in the matrix 𝑉̂
contains a mode and D̂ has the corresponding atoms, taken from the dictionary
D. The entire dynamics can be approximated as,

𝑋 ≈ 𝑉̂D̂, (6.10)

where ≈ denotes equality in the sense of Eq. (6.9).

Approximation of Koopman eigenfunctions

Given the modes 𝑉̂ and the data matrix 𝑋 and assuming 𝑉̂𝑇 𝑉̂ is invertible,
one can express the dictionary as

D̂ ≈ (𝑉̂𝑇 𝑉̂)−1𝑉̂𝑇 𝑋. (6.11)

This reconstruction of the dictionary is necessary to be in the argument of the
time state-space mapping, Eqs. (6.5) and (6.6), as follows,

𝒕 = 𝝃 (D̂) = 𝝃 ((𝑉̂𝑇 𝑉̂)−1𝑉̂𝑇 𝑋). (6.12)

Thus, we can express with the dynamic measurements an exponential function.
According to Eq. (4.5), the KEFs are given by,

𝝋(𝑋) = 𝑒𝒕 (𝑋 ) = 𝑒𝝃 ( (𝑉̂
𝑇 𝑉̂ )−1𝑉̂ 𝑇 𝑋 ) . (6.13)

We summarize this algorithm in Algo. 1.

Algorithm 1 Koopman Mode Approximation
1: Inputs:

Data sequence {𝒙𝑘 }𝑁0 and typical profile 𝑎𝜆 (𝑡) .
2: Find modes 𝑉̂ and dictionary D̂ (for example invoke Algo 2).
3: Formulate the decay profiles with the modes 𝑉̂ and the data 𝑋 , Eq. (6.11).
4: Formulate the time state-space mapping, Eq. (6.12).
5: Outputs:

Extract KEFs from the observations by Eq. (6.13).

Relation between spatiotemporal mode decomposition and KMD

The definition of KMD is to express the state-space vector as spatiotemporal
mode decomposition where the temporal terms are exponential functions (KEFs).
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This can be done easily by extracting the time variable 𝑡 from Eq. (6.13) and
plugging it in Eq. (6.3). Then, the typical decay profile 𝑎𝜆𝑖 (𝑡) can be expressed
using a Taylor series (under sufficient smoothness conditions). By variation of
parameter, the KMD is obtained (see Example 4.23).

Note that the above presentation is only intended to show a possible algorith-
mic path that is implied by our analysis. We limit the scope of our discussion
here and leave for future work important issues, such as spectrum and system
reconstruction accuracy, dimensionality reduction, robustness to noise, and
prediction capacity, for more details on these concepts see Gavish and Donoho
(2014); Lu and Tartakovsky (2020).

7 Examples

In this section, we apply the theory to a few examples. We examine the
following: system reconstruction; global controllability; mode decomposition
based on a dictionary of monotone profiles; and finding eigenfunctionals in
partial differential equations.

Example 7.1 (System Reconstruction and Global Controllability). This example
is based on Mauroy et al. (2020) (p. 10). Given the system,

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑃(𝑥) + 𝑢 = 𝑥 − 𝑥3 + 𝑢, (7.1)

we would like to obtain global controllability via a Koopman eigenfunction
according to Remark 4.19. Note that there are three equilibrium points −1, 0
and 1 with ROAs: RA(−1) = (−∞, 0), RA(0) = {0}, and RA(1) = (0,∞),
respectively. The solution of this equation is,

𝑡 (𝑥) = ln
(

𝑥
√

1 − 𝑥2

)
+ 𝐶. (7.2)

According to Theorem 4.8 one of the Koopman eigenfunctions is,

𝜑(𝑥) = 𝑒𝑡 (𝑥) = 𝑥
√

1 − 𝑥2
. (7.3)

We set the input 𝑢 to,

𝑢 = −J (𝜑)−1𝜑 + 𝑤, (7.4)

where 𝑤 is the input after feedback linearization. The Jacobian matrix is simply
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the derivative of 𝜑 with respect to 𝑥,

J (𝜑) =
(
1 − 𝑥2

)− 3
2
, (7.5)

yielding,

𝑢 = −J (𝜑)−1𝜑 + 𝑤 = −
(
1 − 𝑥2

) 3
2 𝑥
√

1 − 𝑥2
+ 𝑤 = −𝑥(1 − 𝑥)2 + 𝑤. (7.6)

Substituting this input in the dynamical system, Eq. (7.1), we get the following,
𝑑

𝑑𝑡
𝑥(𝑡) = 𝑃(𝑥) + 𝑢 = 𝑥 − 𝑥3 + 𝑢 = 𝑥 − 𝑥3 − 𝑥(1 − 𝑥)2 + 𝑤 = 𝑤. (7.7)

This system is linear and controllable.

Example 7.2 (Total Variation eigenfunctional). A very common PDE in image
processing is the gradient descent flow with respect to the total-variation (TV)
functional Bellettini et al. (2002), which for smooth functions 𝑢 can be expressed
as,

𝐽𝑇𝑉 (𝑢(𝑥)) = 〈|∇𝑢(𝑥) | , 1〉. (7.8)

The gradient descent flow for this non-smooth convex functional is defined by,

𝑢𝑡 = P ∈ −𝜕𝐽𝑇𝑉 (𝑢), 𝑢(𝑡 = 0) = 𝑢0, (7.9)

where 𝜕𝐽𝑇𝑉 (𝑢) denotes the subdifferential of TV at 𝑢. The flow is known also
as the 1-Laplacian flow. When 𝑥 ∈ ℝ the solution is piece-wise linear, at any
time interval I𝑗 the solution admits, Cohen et al. (2021b),

𝑢(𝑥, 𝑡) = ℎ1, 𝑗 (𝑥) + ℎ2, 𝑗 (𝑥)𝜆 𝑗 𝑡. (7.10)

In addition, it was shown by Burger et al. (2016); Cohen et al. (2021b) that
the two modes are orthogonal, ℎ1, 𝑗 ⊥ ℎ2, 𝑗 . Thus, at each interval there are
two eigenfunctionals, the trivial one and the second one, corresponding to the
linearly evolving mode,

𝜙(𝑢) = 𝑒
〈ℎ2, 𝑗 ,𝑢〉
‖ℎ2, 𝑗 ‖2𝜆 𝑗 . (7.11)

Example 7.3 (Nonlinear PDE # 2). Let the solution of Eq. (2.6) be,

𝑢(𝑥, 𝑡) = 𝑣1 (𝑥) · 𝑎1 (𝑡) + 𝑣2 (𝑥) · 𝑎2 (𝑡). (7.12)

The solution 𝑢(𝑥, 𝑡) and the spatial structures 𝑣𝑖 (𝑥), 𝑖 ∈ {1, 2}, are depicted in
Fig. 7.3. The decay profile is of the form of 𝑎𝑖 (𝑡) = (1+𝜆𝑖𝑡)+, where 𝜆1 = 1/10
and 𝜆2 = 1/30. DMD yields the decomposition depicted in Fig. 7.4. The
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(a) 𝑢 (𝑥, 𝑡) (b) 𝑣1 (c) 𝑣2

Figure 7.3 (a) The solution of Eq. (7.12). On the right, the spatial structures
(modes), 𝑣1 (b) and 𝑣2 (c). They evolve with linear decay at a rate of 𝜆1 = 1/10

and 𝜆2 = 1/30, respectively.

modes are complex and each of them is depicted in two graphs, the real and the
imaginary parts (Fig. 7.4a). It demonstrates the limitations of DMD in systems
with typical dynamics which are not exponential.

(a) Dynamic Mode Decomposition. Two plots on the left: real and imaginary values of the first
DMD mode, compared to 𝑣1 (dashed). Two plots on the right: real and imaginary values of the

second DMD mode, compared to 𝑣2 (dashed).

(b) Reconstruction (c) Error 𝑢 (𝑥, 𝑡) − 𝑢̂ (𝑥, 𝑡)
Figure 7.4 Dynamic Mode Decomposition and Reconstruction. Top row:

First two DMD modes, compared to 𝑣𝑖 . Bottom row: Reconstruction through
Eq. (2.11) (left) and the corresponding error (right). We can observe the

dynamics is not reconstructed well and the error is significant.
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The decomposition resulted from Algo. 2 is depicted in Fig. 7.5. The modes
are shown in Fig. 7.5a and recover the modes accurately. The entire dynamics
reconstruction is given in Fig 7.5b with the corresponding error in Fig. 7.5c.
Having the modes, we can find the eigenfunctionals,

(a) Sparse Mode Decomposition - The modes resulting from
Algo. 2 (blue) and the actual modes of the dynamics (dashed red).

(b) Reconstruction (c) Error 𝑢 (𝑥, 𝑡) − 𝑢̂ (𝑥, 𝑡)
Figure 7.5 Sparse Mode Decomposition and Reconstruction (Algo. 2) - (a)
Sparse mode decomposition compared to the modes, 𝑣1 and 𝑣2. (b) Dynamic
reconstruction with Algo. 2 (Eq. (6.10)) (c) The corresponding error. Correct
modes are obtained yielding close to perfect reconstruction of the dynamics.

𝝓(𝑡) =
[
〈𝑣1, 𝑣1〉 〈𝑣1, 𝑣2〉
〈𝑣2, 𝑣1〉 〈𝑣2, 𝑣2〉

]−1 [
〈𝑣1 (𝑥), 𝑢(𝑥, 𝑡)〉
〈𝑣2 (𝑥), 𝑢(𝑥, 𝑡)〉

]
−

[
1
1

]
. (7.13)

They are depicted in Fig. 7.6. One can see that the eigenfunctionals are valid
until the vanishing points. The first mode vanishes at 𝑡 = 10 and the second at
𝑡 = 30.
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(a) Eigenfunctional #1 (b) Eigenfunctional #2

Figure 7.6 Eigenfuntionals - based on the monotone decay profile dictionary.
These are the eigenfunctionals formulated in Eq. (7.13).

8 Conclusion

This work investigates ways to broaden the use of tools from Koopman
theory for the analysis of local and nonlocal PDE’s emerging in image and
signal processing. We focus on evolution of smoothing processes with possible
phase transitions in the dynamics, inherent in zero-homogeneous operators.
We discuss necessary and sufficient conditions for the existence of Koopman
eigenfunctions. We examine KMD, system reconstruction, global linearity,
controllability, and observability through Koopman theory. These insights
highlight some limitations of DMD. With the technique of time state-space
mapping, we show how conservation laws emerge naturally from any KEF. In
addition, we justify the approximation of EDMD based on this mapping.

The classical DMD accurately evaluates KMD as long as KEFs are linear
combinations of the observations and KMD is finite-dimensional. However,
DMD has clear limitations in four different settings: 1) The typical decay profile
of the system is not exponential; 2) One Koopman mode is associated with
multiple eigenvalues; 3) There is an equilibrium point in the time interval 𝐼; 4)
Koopman modes do not exist for all 𝑡 in 𝐼. Another limitation emerges when the
dynamic 𝑃 is in 𝐶0 almost everywhere. In this case, some of the modes might
vanish at different times, as we see in the total-variation flow.

We suggest a new type of decomposition to overcome these fundamental
problems. It is based on inverse time state-space mapping of injective curves.
We implement this method using overcomplete dictionaries of monotone profiles,
typical to the dynamics. This decomposition coincides with a basic assumption
of DMD – a flow can be sparsely represented by a few dominant modes. We
show our decomposition yields Koopman modes. This work can lead to many
interesting connections between decomposition, signal representation, nonlinear
PDE’s and their relation to Koompan theory.
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List of Symbols

𝒙𝑖 The 𝑖 the sample of the state vector belongs to
ℝ𝑁

𝑋 Contains the samples of the dynamics 𝑋 =[
𝒙0 · · · 𝒙𝑀

]
belongs to ℝ𝑁×(𝑀+1)

U A matrix where U𝑖, 𝑗 = 𝑢(𝑥𝑖 , 𝑡 𝑗 )
𝐻 A auto-correlation matrix of the set {ℎ𝑖}𝑀𝑖=1
𝑯𝒖 A vector where 𝑯𝒖𝑖 = 〈ℎ𝑖 (𝑥), 𝑢(𝑥, 𝑡)〉
𝒉(𝑥) A vector 𝒉𝑖 (𝑥) = ℎ𝑖 (𝑥)
V Contains the main spatial structures {𝒗𝑖}
D A dictionary of a family of a decay profile
𝑃 A (nonlinear) function 𝑃 : ℝ𝑁 → ℝ𝑁 in 𝐶1

a.e.
𝑡 Time index where 𝑡 ∈ ℝ+

𝑔 This is an observation function of the state vector
𝒙, 𝑔 : ℝ𝑁 → ℝ

𝐾 𝜏
𝑃

The Koopman operator. The superscript denotes
the time parameter and the subscript denotes the
dynamical system

𝐼 An interval [𝑎, 𝑏] in the time axis
𝜑(𝒙(𝑡)) A Koopman eigenfunction
𝜆 A Koopman eigenvalue
∇ The gradient of a function
𝑇 denotes the transform
H A Hilbert space
P An (nonlinear) operator P : H → H
𝑄 A (nonlinear) proper, lower-semicontinuous

functional 𝑄 : H → ℝ

𝜙(·) A Koopman eigenfunctional
𝒗𝑖 A preserved spatial shape under the dynamics 𝑃
ℎ𝑖 (𝑥) A preserved spatial shape under the dynamics

P
𝑎𝑖 (𝑡) The time profile corresponding to the 𝑖th pre-

served spatial shape
𝛾, 𝛾 − 1 Denote the homogeneity degrees of a functional

and its variational derivative, respectively.
𝑋𝑀−1

0 , 𝑋𝑀
1 Data matrices [𝒙0, · · · , 𝒙𝑀−1], [𝒙1, · · · , 𝒙𝑀 ]

𝑈,Σ, 𝑉 Singular Value Decomposition (SVD) of 𝒙𝑁−1
0
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𝑈𝑟 , 𝑉𝑟 Sub-matrices of 𝑈,𝑉 containing the first 𝑟
columns

Σ𝑟 Sub-matrix of Σ containing the most significant
𝑟 eigenvalues of the SVD which are the diagonal
of Σ

X The curve in ℝ𝑁 representing the solution 𝒙
𝜉 (·) A mapping from the curve 𝒙(𝑡) to the time

variable 𝑡
𝝋(𝒙) A Koopman mode
J (𝝋(𝒙)) The Jacobian of Koopman mode 𝝋(𝒙)
Ξ A functional mapping from 𝑢(𝑥, 𝑡) to 𝑡
𝜙 An eigenfunctional
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Appendix A

The Dynamic Mode Decomposition steps

Coordinate representation

Given 𝑁 observations of the dynamical system, Eq. (2.1), we form the data
matrices as

𝑋𝑀−1
0 = [𝒙0, 𝒙1, · · · , 𝒙𝑀−1], 𝑋𝑀

1 = [𝒙1, 𝒙2, · · · , 𝒙𝑀 ] ∈ ℝ𝑁×𝑀 (A-1)

where 𝒙𝑘 = 𝒙(𝑡𝑘 ). To find the spatial structures the SVD is applied on the data
matrix,

𝑋𝑀−1
0 = 𝑈Σ𝑉∗. (A-2)

where 𝑉∗ is the conjugate transpose of 𝑉 . The columns of𝑈 span the column
space of 𝑋𝑀−1

0 . Thus, the spatial structures are represented by its coordinates

𝒄𝑘 = 𝑈∗𝒙𝑘 . (A-3)

Dimensionality reduction

Assuming the data is embedded in subspace spanned by the first 𝑟 columns
of𝑈. Then, the coordinates related to that subspace is

𝒄𝑟 ,𝑘 = 𝑈∗
𝑟 · 𝒙𝑘 . (A-4)

Linear mapping

Following the second assumption of the DMD, there is a linear mapping, 𝐹,
from 𝒄𝑟 ,𝑘 to 𝒄𝑟 ,𝑘+1. The linear mapping, 𝐹, minimizes the DMD error, given by

𝐹 = arg min
𝐹



𝐹 · 𝐶𝑀−1
𝑟 ,0 − 𝐶𝑀

𝑟,1



2
F , (A-5)

where


 · 

F denotes the Frobenius norm and

𝐶𝑀−1
𝑟 ,0 = 𝑈∗

𝑟 𝑋
𝑀−1
0 , 𝐶𝑀

𝑟,1 = 𝑈∗
𝑟 𝑋

𝑀
1 . (A-6)

The linear mapping, 𝐹, is the optimal linear mapping in the sense of the
DMD error, Eq. (A-4), and we write the coordinate dynamic as

𝒄𝑟 ,𝑘+1 ≈ 𝐹 · 𝒄𝑟 ,𝑘 . (A-7)
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Then, we can write the dynamic for all 𝑘 as

𝒄𝑟 ,𝑘 ≈ 𝐹𝑘 · 𝒄𝑟 ,0. (A-8)

Modes, eigenvalues, and coefficients

Now, we would like to summarize the discussion above and to depict the
dynamics as a linear system. In general, we can reconstruct a sample at step 𝑘
from its coordinates as

𝒙̃𝑘 = 𝑈𝑟 𝒄𝑟 ,𝑘 . (A-9)

In addition, if 𝐹 is diagonalizable it can be formulated as

𝐹 = 𝑊𝐷𝑊−1, (A-10)

where𝑊 contains the right eigenvectors of 𝐹, and 𝐷 is a diagonal matrix whose
entries are the eigenvalues of 𝐹.

Then, the dynamic can be simplified as

𝒙̃𝑘 ≈ 𝑈𝑟 · 𝐹𝑘 ·𝑈∗
𝑟 𝒙0 = 𝑈𝑟 ·𝑊𝐷𝑘𝑊−1 ·𝑈∗

𝑟 𝒙0 (A-11)

Now, let us define the modes, {𝜙𝑖}𝑟𝑖=1, eigenvalues,{𝜇𝑖}𝑟𝑖=1, and coefficients,
{𝛼𝑖}𝑟𝑖=1.

Modes are defined as Φ =
[
𝝓1 · · · 𝝓𝑟

]
= 𝑈𝑟𝑊 .

Eigenvalues are the diagonal entries of the matrix 𝐷, {𝜇𝑖}𝑟𝑖=1.

Coefficients are defined by 𝜶 =
[
𝛼1 · · · 𝛼𝑟

]𝑇
= 𝑊−1𝑈∗

𝑟 𝒙0.
We can now reconstruct the approximate dynamics as,

𝒙̃𝑘 ≈ Φ𝐷𝑘𝜶 =

𝑟∑︁
𝑖=1

𝛼𝑖𝜇
𝑘
𝑖 𝝓𝑖 . (A-12)

Reconstruction error

Many applications are satisfied with the above step for recovering the spatial
structures in the dynamics. However, for recovering the dynamic with DMD
another measurement must be considered. To assess the accuracy, not only the
“moving” from one sample to the next one should be taken under considerations
but also the dynamic in general. Namely, the criterion should be the summation
over the distance between 𝑥𝑘 and 𝑥𝑘 . For example, the summation over squared
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Euclidean distances is resulted in

𝐸𝑟𝑒𝑐 =

𝑀∑︁
𝑘=0



𝑥𝑘 − 𝑥𝑘

2 =


𝑋 − 𝑋̂



2
F (A-13)

which is Frobenius norm of the error.



46

Appendix B

Sparse Representation

The main focus should be put on the time profile of the dynamic since
the Koopman theory is based on that. In addition, we assume the dynamics
induces a family of monotonic time profiles, D, where they differ by their
parameters. For example, in linear systems, these functions are exponential, in
zero-homogeneous dynamical systems the functions are linear with different
slops.

We assume the typical decay profile is known and we find the nonzero mode
for example with the Lasso algorithm Mairal et al. (2014b). Then, we remove
the not relevant modes and the corresponding atoms in the dictionary. We
elaborate the algorithm in Algo. 2
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Algorithm 2 Sparse Representation
1: Inputs:

Data sequence {𝒙𝑘 }𝑀0 and decay dictionary D
2: Initialize:

SR = ∅
3: Find the sparse representation 𝑉 according to Mairal et al. (2014a).
4: Let I be the set of indices of the atoms in D sorted (from low to high)

according to the norm of the modes (column vectors of 𝑉).
5: Remove from I the indices for which the modes are zeros.
6: while True do
7: Define D̂ as a new dictionary containing the atoms with indices I.
8: Compute 𝑉̂ = 𝑋D̂𝑇 (D̂D̂𝑇 )−1

9: Compute the error


𝑋 − 𝑉̂D̂



2
F

10: Add the set I and its corresponding error to SR
11: Remove the first index in I.
12: if I is empty then
13: Break
14: end if
15: end while
16: Find in SR the set of indices I that yields the minimum error
17: Define D̂ as a new dictionary containing the atoms with indices I.
18: Compute 𝑉̂ = 𝑋D̂𝑇 (D̂D̂𝑇 )−1

19: Outputs:

𝑉̂ , D̂
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