
FACULTY OF SCIENCE

Statistical Mechanics of
the Kompaneets
Equation

Guilherme Eduardo FREIRE OLIVEIRA

Supervisor: Prof. Dr. Christian Maes
Instituut voor Theoretische Fysica,
KU Leuven

Thesis presented in

fulfillment of the requirements

for the degree of Master of Science

in Physics

Academic year 2020-2021

ar
X

iv
:2

10
7.

07
54

9v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

5 
Ju

l 2
02

1



© Copyright by KU Leuven
Without written permission of the promoters and the authors it is forbidden to re-

produce or adapt in any form or by any means any part of this publication. Requests
for obtaining the right to reproduce or utilize parts of this publication should be ad-
dressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11
bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01.

A written permission of the promoter is also required to use the methods, products,
schematics and programs described in this work for industrial or commercial use, and
for submitting this publication in scientific contests.



Acknowledgments

Six years ago, I started my journey in Physics and I remember, as if it were yesterday,
the fascination and enthusiasm with which I crossed the doors of the Institute for Exact
Sciences of my beloved Federal University of Minas Gerais. Since then, so much has
happened and I have had the tremendous opportunity to not only meet, but also work
with incredible scientists, with whom I have made works which I am deeply proud of.

I believe that learning, evolving and improving is an essential part of life and that
great moments should be marked with great joy and celebration. So, I would like to
toast this work, which was so kindly elaborated and which marks such an important
professional step for me, especially by thanking the people who were crucial in achieving
this landmark.

Therefore, I would like to thank my dear mother, Cleide, whose tenderness was always
present, giving me encouragement in moments of restlessness; to my dear father, Rogério,
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aconteceram, e tive a tremenda oportunidade de, não só conhecer, mas também trabalhar
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mordiais à conquista desse marco.
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querida Júlia, cuja doçura, apoio e afeto elevava meu coração, me fazendo sempre contin-
uar seguindo em frente.

Finalmente, eu não poderia nunca deixar de agradecer ao meu orientador, professor
Christian Maes, cuja orientação brilhante e ex́ımia fez-se essencial para o desenvolvimento
deste trabalho; ao meu colega Kasper Meerts, pelas discussões frut́ıferas; à minha querida
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Summary

As an important subject in non-equilibrium Statistical Mechanics, we study in this
thesis the relaxation to equilibrium of a photon gas in contact with an non-relativistic
and non-degenerate electron bath. Photons and electrons interact via the Compton effect,
establishing thermal equilibrium of radiation with matter as pointed out by A.S. Kompa-
neets in (Kompaneets, 1957). The evolution of the photon distribution function is then
described by the eponymous partial differential equation, here viewed as the diffusion
approximation to the relativistic Boltzmann equation that describes the system.

Being one of the few examples where this diffusion approximation can be performed
in great detail, yielding the Bose-Einstein distribution as stationary solution, the Kom-
paneets equation also provides the description of the so-called Sunyaev-Zeldovich effect,
which is the change of apparent brightness of the cosmic microwave background (CMB)
radiation.

There are many ways of deriving this equation, but one of them, which was proposed by
Kompaneets in 1957 stands out for its directness and simplicity, explaining the reason why
it is preferred by many references and included even in astrophysics textbooks. However,
we point out in this work that there are some inconsistencies regarding this traditional
derivation of the Kompaneets equation that were repeated by all the references we could
find that follow the original framework of 1957, in such way that performing all the
required calculations will lead you to the wrong equation.

These inconsistencies effectively break the conservation of photon-number that should
happen at the level of the Boltzmann equation and we could not find any work which
explicitly mentions or solves this problem. Remarkably enough, in his original work,
Kompaneets does not mention the problem and manages to avoid it by invoking the
strong and indirect argument that the equation should have the form of a continuity
equation, with current vanishing for the Bose-Einstein distribution. References tend to
repeat his argument, but here we show that there is no reason why this should work, i.e.,
we believe that the success of such procedure lies in a mathematical coincidence.

Therefore, this thesis will be divided in two parts: in the first we will be interested in
how to deal with these inconsistencies, building the necessary basis in which the diffusion
approximation to the Boltzmann equation is consistently performed, while also conversing
with some history. In the second part, we will be interested in possible extensions to the
famous equation and beyond reviewing some existing extensions, we will also show that a
new setup involving a master equation of a random walk with suitable chosen transition
rates in the photon reciprocal space furnishes not only Kompaneets equation but also a
first generalization to a system of bosons under a possible driving. We believe that our
framework may serve as an interesting point of departure to further extensions involving
non-equilibrium conditions never, or mildly, considered in literature.
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Resumo

Como um importante assunto em Mecânica Estat́ıstica de não-equiĺıbrio, nós estu-
damos nesta tese a relaxação ao equiĺıbrio de um gás de fótons em contato com um banho
térmico de elétrons não-relativ́ısticos e não-degenerados. Fótons e elétrons interagem
através do efeito Compton, estabelecendo equiĺıbrio térmico da radiação com a matéria,
como indicado por A.S. Kompaneets em (Kompaneets, 1957). A evolução temporal da
função de distribuição dos fótons é, então, descrita pela epônima equação diferencial, aqui
vista como a aproximação difusiva da equação de Boltzmann relativ́ıstica do sistema.

Sendo um dos poucos exemplos no qual essa aproximação pode ser feita em grande
detalhe, fornecendo a distribuição de Bose-Einstein como solução estacionária, a equação
de Kompaneets também descreve o efeito Sunyaev-Zeldovich, responsável pela mudança
do brilho aparente da radiação cósmica de fundo.

Existem muitas maneiras de encontrar essa equação, mas uma delas, a proposta por
Kompaneets em 1957, destaca-se por ser direta e simples, explicando a razão pela qual
é preferida por tantas referências e até mesmo inclúıda em livros-texto de astrof́ısica.
Entretanto, apontamos nesse trabalho que existem algumas inconsistências acerca dessa
tradicional derivação da equação, que são repetidas por todas as referências que seguem
o trabalho original de 1957 que pudemos encontrar, de tal maneira que, ao desenvolver
todos os cálculos, a equação encontrada está errada.

Essas inconsistências de fato quebram a conservação do número de fótons, que deve
ocorrer no ńıvel da equação de Boltzmann, e não conseguimos encontrar nenhum trabalho
que explicitamente mencione ou resolva isso. Notavelmente, Kompaneets, em seu trabalho
original, não apenas deixa de mencionar, como também consegue desviar do problema ao
invocar o argumento forte e indireto de que a equação deve ter a forma de uma equação de
continuidade, cuja corrente se anula para a distribuição de Bose-Einstein, e as referências
tendem a repetir o seu argumento. No entanto, aqui mostramos que não existe nenhuma
razão para que isso funcione, isto é, acreditamos que o sucesso desse procedimento reside
em uma coincidência matemática.

Essa tese será dividida em duas partes: na primeira, lidaremos com essas incon-
sistências, construindo a base necessária para que a aproximação de difusão da equação
de Boltzmann seja desenvolvida de forma consistente, ao mesmo tempo em que conver-
saremos com um pouco de história. Na segunda, estaremos interessados em posśıveis
extensões da famosa equação e, além de revisar algumas já existentes, mostraremos que
considerando a equação mestra de uma caminhada aleatória com taxas de transição apro-
priadas no espaço rećıproco dos fótons fornece, não apenas a equação de Kompaneets,
mas também uma primeira generalização para bósons sob o efeito de um posśıvel campo.
Acreditamos que a nossa descrição pode servir como um interessante ponto de partida para
outras extensões, envolvendo condições de não-equiĺıbrio nunca, ou pouco, consideradas.
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Vulgarising Summary

The study of nature involves, in several aspects, the understanding of processes which
are out of thermal equilibrium. As a matter of fact, this absence of equilibrium can
come through many different ways, and, in order to better understand some ideas, let us
consider a container with a partition in the middle and a gas that occupies one half of it
while the other half is empty.

When we remove the partition, the gas will expand until it occupies the entire con-
tainer, moment in which its state no longer is dependent on time. This is an instance
of non-equilibrium, the so-called relaxation to equilibrium: initially, at the moment we
remove the partition, the gas is no longer in equilibrium (in fact, if it were, its state would
not evolve in first place), but it expands to occupy the other half of the container, when
equilibrium is established again.

In this thesis, we will exactly study this problem of relaxation to equilibrium and,
unlike the previous example, we will investigate a gas mixture of photons and electrons.
Here, the electrons play the same role as the container, which is to provide conditions for
reaching equilibrium. On the other hand, we will be interested in the photons (which will
be seen here, strangely as it may sound, as particles), studying how the time evolution of
a central object, called the distribution function, looks like.

The equation that describes this precise time evolution of the photon distribution
function was proposed long time ago by Aleksandr Kompaneets (Kompaneets, 1957),
who was the first to point out that radiation (photons) requires contact with matter
(here, the electrons) for the establishment of equilibrium. It is useful, then, to think of
electrons as a reservoir, a sea, which is in equilibrium with a certain temperature. The
photons will then interact (collide) with these electrons through an interaction we call the
Compton effect, establishing after some time thermal equilibrium for radiation.

We are particularly interested in possible extensions of this equation and, therefore,
this thesis is divided in two parts: in the first part, we propose how to solve a series
of systematic inconsistencies on the derivation of the equation which appear in several
references, including the original one. Traditionally, the problem is solved using a strong,
indirect argument about the form of the equation, and here we show that this is not
necessary, as long as we deal with these inconsistencies. In the second part, we show
that, starting from an entirely different framework, it is possible to recover and extend
the equation for some systems, and we believe this description to be useful for future
generalizations.
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Resumo de Divulgação

O estudo da natureza envolve, em vários aspectos, o entendimento sobre processos
que estão fora de equiĺıbrio térmico. De fato, essa falta de equiĺıbrio pode vir através de
diversas maneiras diferentes e, para entendermos a ideia, vamos supor um recipiente com
uma divisória no meio e um gás que ocupa uma metade, enquanto a outra está vazia.

Quando abrirmos a divisória do meio, o gás irá expandir-se até ocupar todo o recipi-
ente, momento no qual seu estado não irá mais depender do tempo. Este é um exemplo
de um tipo de não-equiĺıbrio, a relaxação ao equiĺıbrio: inicialmente, a partir do momento
que retirarmos a divisória, o gás não estará mais em equiĺıbrio (pois se estivesse, seu estado
não evoluiria) e evolui para ocupar a outra metade, estabelecendo equiĺıbrio novamente.

Nesta tese de mestrado, estudaremos exatamente este problema de relaxação ao equiĺı-
brio e, diferentemente do exemplo anterior, estudaremos uma mistura gasosa de fótons
e elétrons. Aqui, os elétrons fazem o mesmo papel do recipiente, que é o de fornecer
condições para equiĺıbrio ser atingido. Por outro lado, estaremos interessados nos fótons
(que serão vistos, por mais estranho que pareça, como part́ıculas) e queremos estudar
como se dá a evolução temporal de um objeto central, chamado de função de distribuição.

A equação que fornece essa precisa evolução temporal da distribuição do gás de fótons
foi proposta, há muito tempo atrás, por Aleksandr Kompaneets (Kompaneets, 1957),
que foi o primeiro a apontar que radiação (os fótons) precisa do contato com a matéria
(aqui, os elétrons) para que equiĺıbrio seja estabelecido. É útil, portanto, pensar nos
elétrons como um reservatório, como um mar, que está em equiĺıbrio e que possui uma
certa temperatura. Os fótons, então, interagem (colidem) com esses elétrons através de
uma interação que chamamos de efeito Compton, estabelecendo após um certo tempo o
equiĺıbrio térmico da radiação.

Estamos particularmente interessados em posśıveis extensões dessa equação e, por-
tanto, esta tese é dividida em duas partes: na primeira parte, propomos como resolver
uma série de inconsistências sistemáticas, acerca da derivação da equação, que aparecem
em diversas referências, incluindo a original. Tradicionalmente, o problema é resolvido
empregando um argumento forte e indireto sobre a forma da equação e aqui mostramos
que isso não é necessário, desde que lidemos com essas inconsistências. Na segunda parte,
mostramos que é posśıvel reencontrar e estender a equação para alguns sistemas partindo
de uma descrição totalmente diferente, acreditamos que essa descrição é útil para futuras
generalizações.
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Chapter 1

Introduction

Over the past decades, the interest in non-equilibrium phenomena has increased enor-
mously. From bacteria motion to supernova explosions, it has become clear that non-
equilibrium is an inherent aspect of nature and, as such, must not be neglected in the
ultimate description of reality. The analysis of macroscopic equilibrium systems is well
known in modern Statistical Mechanics, J.W. Gibbs (Gibbs, 2009), one of the pioneers,
fundamentally classified these systems in his Theory of Ensembles, which quickly became
the modern tool in a wide range of applications. However, no such generalized descrip-
tion exists for non-equilibrium systems, simply because their behavior is much richer,
and one often has to proceed analyzing case by case. In this thesis, we are interested
in one instance of non-equilibrium behavior, usually appearing in systems initially out of
equilibrium, but that given enough time, relax to it.

Relaxation to equilibrium is a vast topic in Statistical Mechanics, but one recurring
protagonist in its treatment is the so-called Boltzmann equation, an integro-differential
equation that gives the spatio-temporal evolution of a central object called the distribution
function. Although this equation is applicable to many systems, we are particularly
interested here in the relaxation of a photon gas to equilibrium, forming the well-known
Bose-Einstein distribution.

As part of his research to build the soviet hydrogen bomb1, the soviet physicist
A.S. Kompaneets was interested in the equilibrium properties of radiation, being one
of the first to point out (Kompaneets, 1957) that, since Maxwell’s equations are linear,
radiation cannot reach thermal equilibrium alone, thus, needing to exchange energy with
matter particles. By considering photons initially out of equilibrium but in contact with
an electron bath in thermal equilibrium, Kompaneets writes down the Boltzmann equa-
tion of a gas mixture of photons and electrons interacting via Compton effect (Compton,
1923), and proposes to carry an expansion up to second order in the photon energy shift.
Integrating out the electron bath, Kompaneets finds an expression for the time evolution
of the photons

ω2∂n

∂t
(t, ω) =

neσT c

mec2

∂

∂ω
ω4

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
(1.1)

where T is the temperature of the electron bath, σT ≈ 0.66 b is the total Thomson cross

1As we mention in (Oliveira et al., 2021), the famous Kompaneets equation arose from Kompaneets’
research for the nuclear program of URSS in 1949. After the equation turned out to be useless for their
purpose, the results were declassified and published in 1957 (Peebles et al., 2009; Longair, 2010).
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CHAPTER 1. INTRODUCTION 2

section and ne,me are the electron density and mass, respectively.
The above equation, which was named after him, expresses the time evolution of the

(dimensionless) photon occupation number distribution function n(t, ω). Formally, Kom-
paneets procedure is what is called diffusion approximation or Kramers-Moyal expansion
(Kramers, 1940) to the Boltzmann equation, yielding a Fokker-Planck version of this
integro-differential equation.

The Kompaneets equation (1.1) has the structure of a continuity equation in the
photon number

N ∝
∫ ∞

0

dωω2n(t, ω)

i.e., it is photon-number conserving2 with current

∂n

∂t
(t, ω) =

1

ω2

∂

∂ω

(
ω2 jt(ω)

)
jt(ω) =

neσT c

mec2
ω2

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
(1.2)

vanishing when n(t, ω) is given by the Bose-Einstein distribution

n(t, ω) = neq(ω) =
1

exp(β~ω)− 1
.

As we will see, for the derivation of (1.1) it is assumed that electrons are non-relativistic
(kBT � mec

2) and that photons are soft, meaning that their energy is very small com-
pared to the rest energy of the electron, but of the same order as the bath energy
(~ω ∼ kBT � mec

2). Therefore, in that sense, the Kompaneets equation can also be
regarded as the non-relativistic limit of the Boltzmann equation.

Apart from being one of the few examples where the Kramers-Moyal expansion to the
Boltzmann equation can be performed in great detail, (1.1) not only provides a concrete
example of relaxation to the Bose-Einstein distribution, but is also actively used in the
study of astrophysical plasma, in the analysis of the Sunyaev-Zeldovich effect, which is a
distortion of the cosmic microwave background (CMB) radiation by Compton scattering
of hot electrons during its passage through clusters of galaxies (Sunyaev & Zeldovich,
1969; Sunyaev & Zeldovich, 1972; Burigana, 2007).

As we observed in (Oliveira et al., 2021), the reader can easily realize that there exist
many derivations of the Kompaneets equation in literature and that many authors have
repeated or presented their best approach to this equation. However, we are motivated
here by the appearance of systematic inconsistencies in many references, including Kom-
paneets’ original paper (Kompaneets, 1957). These inconsistencies mainly come from
subtleties in performing the diffusion approximation to the Boltzmann equation correctly,
also starting from an ab initio consistent description. The derivation of (1.1) as Kom-
paneets originally proposed is very didactically appealing and we believe that it is worth
revisiting this traditional approach, so that part of this thesis will be devoted in clarifying
these subtleties and inconsistencies that are rarely mentioned (and that a careful reader
would stumble upon) even in textbook references.

2In fact, we should not expect differently, since Compton interaction is an elastic photon-electron
scattering which preserves photon number.
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Apart from talking to history we are also interested in possible extensions of (1.1),
motivated by the interesting hypothesis (Baiesi et al., 2020) that the primordial plasma
is away from equilibrium, yielding corrections to the Kompaneets equation due to the
non-equilibrium nature of the electron bath. In that case, it is no longer true that the
Bose-Einstein distribution is the solution of (now extended) (1.1) and we should expect
departures from it. In fact, the hypothesis in (Baiesi et al., 2020) is based on recent
observations of deviations to the CMB spectrum in the low frequency regime that are yet
not well understood (Fixsen et al., 2011; Seiffert et al., 2011; Bowman et al., 2018). As
neq(ω) is used to obtain Planck spectrum (see for example Chapter 4), we should expect
that corrections in (1.1) yield also corrections to the stationary radiation spectrum. The
other part of this thesis will then be devoted to the review of existing extensions, while
proposing a framework for new possible extensions of the Kompaneets equation.

1.1 A brief historical review

We reproduce here, in a slightly modified fashion, the historical review we have made
in (Oliveira et al., 2021).

In 1923, the famous physicist Wolfgang Pauli published a paper (Pauli, 1923) analyzing
the conditions for thermal equilibrium of photons in an electron bath interacting via
Compton scattering. Identifying what is called today detailed balance, Pauli could retrieve
the equilibrium distribution of radiation, known as the Planck spectrum, and was probably
one of the first to lay the grounds for a description involving a master equation. However,
Pauli did not manage to write the equation for the evolution of the photon distribution
function, a task only performed a couple of years later by Kompaneets (Kompaneets,
1957). In 1964, Dreicer more carefully elaborates the Fokker-Planck approximation to the
Boltzmann equation of a photon-electron system, also not displaying the time evolution of
the photon distribution (Dreicer, 1964). Exactly one year later, Weymann writes a partial
differential equation for the photon distribution function using Dreicer’s formalism, but
not showing any details of the calculation (Weymann, 1965). Somewhat remarkable to
note is that, although Weymann’s and Dreicer’s papers come after Kompaneets’, they do
not cite the latter work.

Not much later, in 1969, Sunyaev and Zeldovich concretely applies the equation found
by Kompaneets to treat distortions of the CMB spectrum due to hot electrons, an effect
named after them (Sunyaev & Zeldovich, 1969; Sunyaev & Zeldovich, 1972). It did not
take much time for physicists start looking into the first relativistic corrections to the
Kompaneets equation, as the Sunyaev-Zeldovich effect would require the description of
higher energy ranges. A first extension was done by Copper (Cooper, 1971) and later
treated also by (Barbosa, 1982; Itoh et al., 1998; Itoh, N. & Nozawa, S., 2004; Nozawa &
Kohyama, 2009; Nozawa et al., 2010; Brown & Preston, 2012; Nozawa & Kohyama, 2015).
Normally, relativistic corrections are performed starting from the so-called manifestly
covariant Boltzmann equation. Although a more careful distinction and description of two
equivalent versions of the kinetic equation will be given in due time, it is worth noting
that the problems we will mention here do not happen with this manifestly covariant
approach, making it simpler in some sense. On the other hand, it is also true that
textbook references such as (Katz, 1987; Rybicki & Lightman, 2008) tend to avoid this
description as it usually requires more background from the reader, such that revisiting
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problems with the traditional set up is worthwhile.
To derive (1.1), it is traditionally assumed that the electron bath is distributed accord-

ing to the (equilibrium) Maxwell-Boltzmann statistics. However, (Barbosa, 1982) pointed
out that one could obtain Kompaneets equation by using any isotropic distribution and
a suitable definition of temperature, being one of the first to relax the condition of equi-
librium to the electron bath. This was later also mentioned in (Brown, 1990; Brown &
Preston, 2012). As far as we know, this was one of the first extensions of Kompaneets
equation to the non-equilibrium case. In Chapter 6 we will turn to less standard exten-
sions, also making the connection of our framework to the already mentioned results of
literature. There, it will become clear that, starting from Kompaneets’ traditional ap-
proach to conclude the same as in the mentioned references, one extra constraint must be
required on the electron distribution.

The condition that the photons are soft (~ω ∼ kBT � mec
2) may also be relaxed

provided that we treat (~ω � kBT ), which is called down-Comptonization regime, specif-
ically. In fact, this regime should not be confused with the relativistic one because it is
usually assumed that kBT � mec

2 for the electron bath. Down-Comptonization first ap-
peared in (R. R. Ross et al., 1978) in the so-called Ross-McCray equation, where radiative
transfer of X-ray photons is treated. The equation derived in (R. R. Ross et al., 1978),
however, does not yield the Bose-Einstein distribution as stationary solution and should
be regarded only as an asymptotic limit of such extended Kompaneets equation. More
recent and careful treatments can be found in (Liu, D.-B. et al., 2004; Zhang & Chen,
2015), where an extra term is found in (1.1).

1.2 Problems with some derivations

In order to understand the main problems with the traditional setup mentioned be-
fore, we must first understand the derivation of this equation as proposed originally by
Kompaneets (since the details of the derivation itself will be made in Chapter 4, this
section will be devoted to a more conceptual approach, such that details will be omitted
sometimes for a better qualitative understanding). In his original paper, Kompaneets
proposes to start from the Boltzmann kinetic equation for an electron-photon gas

∂n

∂t
(ω) =

∫
d3p dw [n(ω′)f(p′)(1 + n(ω))− n(ω)f(p)(1 + n(ω′))] (1.3)

while performing an expansion up to second order in ∆, the photon energy shift

∆ :=
~(ω − ω′)
kBT

.

However, upon writing (1.3) Kompaneets is vague about the format of the kinetic
equation, specially because an expression of the rate dw is not explicitly given. The
rate appearing in (1.3) must be related to the cross section of the specific interaction, in
such way that a careful examination of his paper suggests that Kompaneets is using the
following expression for rate

dw = c
dσTh

dΩrest

dΩrest (1.4)
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where
dσTh

dΩrest

=
3σT
16π

(
1 + cos2 θrest

)
(1.5)

is the Thomson scattering cross section evaluated in the rest frame of the electron. By
performing the above-mentioned expansion, Kompaneets is left with an equation involving
two integrals

∂n

∂t
= F

(
n,
∂n

∂ω

)
I1(∆) +G

(
n,
∂n

∂ω
,
∂2n

∂ω2

)
I2(∆2) (1.6)

i.e., the first integral is proportional to the shift while the second is proportional to the
shift squared. Above, F and G are some expression on n and its derivatives, which are
omitted for now. Kompaneets’ strategy is then to compute the second integral only,
while the first integral is fixed upon invoking the strong argument that (1.6) should be
a continuity equation in the photon number. By using that the current should vanish
in equilibrium for the Bose-Einstein distribution, the form of the current itself can be
exactly found to be (1.2) and the value of I1(∆) is completely fixed by this procedure.

As far as we know, the value of I1(∆) was never computed without recurring to
this argument and there is a strong tendency in literature to follow Kompaneets recipe
to avoid the first integral. For example, (Katz, 1987; Liu, D.-B. et al., 2004; Rybicki &
Lightman, 2008; Zhang & Chen, 2015) follow Kompaneets’ set up, also using the Thomson
cross section. We will highlight here that it is not possible to find Kompaneets equation
by using the rate (1.4), while performing the diffusion approximation as Kompaneets
originally proposed. As we will see, the problem lies precisely in the consistency of this
particular description, for example, upon writing (1.5) we are fixing the electron rest
frame, but the diffusion approximation as Kompaneets is proposing is not done in this
frame, rather it is done in the frame where the electron distribution is isotropic, given by
Maxwell-Boltzmann distribution3.

This also suggests that we must search for a covariant expression of the rate and (1.5)
is no longer valid. We will also see that when it comes to that, an important prefactor
must be add to (1.4) to account correctly for the microscopic behavior of the Boltzmann
equation. This prefactor is usually called Møller flux or Møller velocity factor and it is the
relativistic kinematic correction that accounts for the flux of particles in the relativistic
Boltzmann equation. The Thomson differential cross section will also be replaced by
the covariant expression of the full relativistic Klein-Nishina differential cross section for
Compton scattering.

The derivation of Kompaneets equation has already been called “distinctly non-trivial”
(Longair, 2010) and we hope to clarify a number of issues regarding its derivation in this
thesis. On a more theoretical aspect, the problem we highlight is interesting and an
important example of how inconsistencies can break conservation of photon number, i.e.,
the Boltzmann equation should be, from the start, photon number conserving, but if we
would follow Kompaneets recipe while computing the integrals, we would be left with a
non-conserving equation in the photon number. We also feel that these features are not
fully explored in literature.

3Hence, an observer seeing an electron gas distributed according to Maxwell-Boltzmann cannot use a
cross section expressed in the electron rest frame, as there will be a probability of finding electrons with
any velocity. Conversely, if we choose to express the cross section in the rest frame of the electron, we
cannot use Maxwell-Boltzmann, as the scattering centers (the electrons) will be standing still.
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In the heart of the problem, Chapter 2 will be devoted to the study of the Boltzmann
relativistic equation, where we will see how to dialogue between both versions (covariant
and the manifestly covariant) of the same kinetic equation. Chapter 3 is aimed to the
understanding of central objects appearing in the Boltzmann equation, these are transi-
tion rates, scattering matrices and scattering cross sections. In Chapter 4 we will show
how to consistently perform the diffusion approximation to the Boltzmann equation in
two ways (i) as Kompaneets traditionally proposed and (ii) starting from the manifestly
covariant formalism. Chapter 5 approaches the Kompaneets equation from a new setup,
which enables further extensions. There, a random walk in a bosonic reciprocal space
is considered and we show that suitable chosen transition rates yield not only Kompa-
neets equation but also an extension to more general boson systems. An overview of less
standard extensions to the Kompaneets equation is done in Chapter 6, while we will go
through the conclusions of our work in Chapter 7.

Finally, it is important to mention that this thesis project yielded the submitted paper
(Oliveira et al., 2021) such that notation, some ideas and words contained in this work
will be used, specially when it comes to Chapters 4, 5 and 6. However, the discussion
presented in this thesis is much more comprehensive to that in (Oliveira et al., 2021),
for example, some sections are transformed into chapters, where useful and extra details
will be worked out, while new sections are created and subjects that are not addressed in
(Oliveira et al., 2021) are added to enrich and illustrate our discussion (e.g. Chapter 2
and 3). To attain clarity and precision, we will mention whenever (Oliveira et al., 2021)
is used explicitly.



Chapter 2

The relativistic Boltzmann equation

The Boltzmann equation is one of the pillars of Kinetic Theory. Under reasonable as-
sumptions, it gives the spatio-temporal evolution of a central object called the distribution
function. When considering this equation, one usually has in mind a recipient containing
a gas of several identical particles. These particles evolve according to some dynamics
and collide among themselves, redistributing their momenta over the phase-space, while
changing the form of their distribution function over time. Of course there may be more
than one kind of particle and, in that case, one usually talks about a gas mixture. This
chapter will be devoted to the study of this equation, since it is essential to the correct
derivation of the Kompaneets equation. As it is usually more natural to do so, we will
start with the standard version of this equation, which we refer here as the covariant (or
standard) relativistic Boltzmann equation. The second part we will develop the manifestly
covariant formalism, while in the last section we will establish the connection between the
two descriptions. It will become clear then what the precise meaning is and how (1.3) can
be correctly expressed. In order to simplify the notation, we will use the Einstein summa-
tion convention. The signature of the metric will be fixed to η = diag(+1,−1,−1,−1).
Four-vectors will be denoted as p while three-vectors will be boldfaced, p.

This chapter is inspired by the nice works of (van Weert et al., 1973; Cercignani &
Kremer, 2002; Bellac et al., 2010; van Hees, 2020), but does not follow any of these
references in particular. It is true that the Boltzmann equation is a classical topic in
Statistical Mechanics and, as such, it is often difficult to present this topic in a completely
original manner. However, we have the perception that some topics are underdeveloped
in literature, e.g., gas mixtures or the equivalence between the two descriptions of this
equation, so that we will address these subjects here as well. Moreover, whenever possible
we will search to clarify points that are sometimes not mentioned or left to the reader.

2.1 On invariance, covariance and manifest covari-

ance

In the sections that follow, we will heavily use some jargons which are common in
Theory of Relativity. Since sometimes these words can be misleading and somewhat
confusing, considering also that some textbooks interchangeably use some definitions (e.g.,
covariance and invariance), we will briefly go over what we mean when some specific word
is being used.

7
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It should be sufficient to keep in mind Special Relativity only. Hence, whenever
we use the word transformation or some of its variations, we actually mean Lorentz
transformations. Similarly, whenever reference frame is used, it should be understood as
inertial reference frame.

A quantity is said to be Lorentz invariant when it remains unchanged under Lorentz
transformations. This means that in any inertial reference frame1 the quantity is given
by the same (scalar) value. This is precisely the case of constants (e.g, mass, charge or
particle number) and scalar four-products like

A ·B

where A and B are four-vectors in Minkowski space. However, there might be quantities
which are Lorentz invariant but that is not clear at first glance, this is the example of

dA

A0

i.e, a four-vector measure in three dimensional space divided by its time-component. In
that case, we must prove that such quantities are indeed Lorentz invariant and we will
do so for a couple of examples in next section. Since this is typically a property of scalar
quantities, we will sometimes call them Lorentz scalars to avoid cumbersome repetitions.

Lorentz covariance refers to one of the principles of Relativity, that the laws of physics
remain the same in any inertial reference frame. We expect, of course, that quantities like
momentum or energy transform under the change of reference frame, nevertheless, the
laws of physics, which are precisely some differential equation combining quantities that
might transform, remain the same. This means the laws are so nice that, even though
their building blocks change and transform, both sides of the equation transform in the
same way, leaving the equation unchanged.

For example, we know that electric and magnetic fields do transform non-trivially
under Lorentz transformations, however, Maxwell’s equations are Lorentz covariant (or,
simply, covariant), i.e., even though E and B transform, the equation is built in such
way that both sides transform exactly in the same manner. In turn, this means that if
the laws of Electromagnetism hold in one inertial frame, it holds in any inertial frame.
Covariance is the basis of the principle of relativity.

As we will see, the relativistic Boltzmann equation is Lorentz covariant. In fact, the
relativistic Boltzmann equation is an example of an equation which is not only covariant,
but also invariant. This particularly happens because both sides are scalar quantities,
however, we will refrain from using the term invariant for equations whenever possible.

Finally, we have seen that laws of physics are covariant, but sometimes quantities
appearing there transform non-trivially (like in the case of Maxwell’s equations). The
natural question then is: can we write the same content of a given equation in a way that
covariance is clear from the start? The answer is what we call manifest covariance, i.e.,
we say that a covariant equation is written in a manifestly covariant way if all quantities
appearing there are tensors and, as such, are clearly Lorentz covariant quantities at first
glance. The textbook example is again Maxwell’s equation, but now written in terms of
the electromagnetic field tensor Fµν .

1Recall that Lorentz transformations are our way of connecting different frames of reference.
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Making connection to the next sections, there will be two representations of the rel-
ativistic Boltzmann equation, the covariant or standard, and the manifestly covariant
one. As we have seen, the case of the Boltzmann equation is parallel to the example of
Maxwell’s equations, in which two different representations that have exactly same con-
tent exist. Indeed, the difference in being covariant or manifest covariant is just a matter
of how we choose to write things.

2.2 The standard representation of the relativistic

Boltzmann equation

2.2.1 Elements of relativistic kinetic theory

The kinematics of a relativistic particle of mass2 m is characterized by a set of variables,

x = (ct,x) p =

(
E

c
,p

)
which together completely determines the state of the particle in the phase-space Γ,
expressed by the combined set of coordinates

µ = (x, p)

of course the four-momentum length is constrained by the well-known relation p2 = (p0)
2−

p2 = (mc)2.
Suppose that we now have a gas of N identical particles, then, the one-particle distri-

bution function f is defined such that

f(x, p)dxdp = f(t,x,p)dxdp (2.1)

expresses the particle density in the phase-space volume dµ = dxdp. That is sometimes
referred to as a coarse grained description, where the volume is taken to be large enough
compared to the microscopic scale but small enough to be treated as infinitesimal when
compared to the macroscopic scale. One can think of the distribution function as the
histogram of particles which have phase-space variables around (x,p), therefore we can
write informally

f(x, p) ≈ 1

N
{# particles having (xi,pi) ' (x,p) at time t}

then, as the particle number N becomes very large (or, N ↑ ∞), the law of large numbers
takes over, guaranteeing that, with probability 1, f(x, p) becomes truly the density in
phase-space.

Upon writing (2.1), we are assuming that such description is possible, which of course
does not have to be the case. The precise mathematical justification of it, which is related
to formalizing the approximation above, is something important, but not subject of the
present work. Yet, it is worth observing that to know the exact distribution of all particles
in phase-space would be very difficult because we would have to consider N (a number of

2For a photon, the mass is of course zero.
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order 1023) copies of Γ and to define f (which is now a function of 6N + 1 coordinates)
such that it expresses the combined density of particles. Thus, the situation is enormously
simplified if one considers a description using only the one-particle distribution function,
seeking, then, a justification on the law of large numbers. The procedure in which the
(classical) Boltzmann equation is derived from a N-body Hamiltonian dynamics is called
the Boltzmann-Grad limit (Golse, 2013).

By integrating out the momentum, we are left with the density of particles

ρ(t,x) =

∫
f(t,x,p)dp (2.2)

which corresponds to the following normalization3 for the distribution function

N =

∫
f(t,x,p)dxdp (2.3)

if we have a dynamical quantity Q(x,p) (e.g., energy) defined over phase-space we can
define its average in a very natural way by using the one-particle distribution function

〈Q(t)〉 :=

∫
Q(x,p)f(t,x,p)dxdp (2.4)

The representation of the distribution function is also not unique. In fact, suppose we
have some relation

x = Aa

p = Bb

for some constants A and B, then, we can change variables to find

fab(t, a,b) = (AB)3 f(t,x,p) (2.5)

this is very convenient if we want to express the distribution function using wave vectors,
for example, instead of momentum.

It is useful to keep track of invariant quantities, that is, quantities which do not change
upon performing a Lorentz transformation. Therefore, let us begin by considering

dtdx =
1

c
dx,

and claiming that this measure is Lorentz invariant, which in turn means that measuring
volume and time in some frame while multiplying the result together yields a Lorentz
scalar quantity, even though volume and time are separately not invariant. In order to
check the claim, we observe that, in another inertial frame K ′, this measure transforms
as

dx = | det(J)|dx′.
Under Lorentz transformations, four-vectors transform as

V ′
α

= Λα
µV

µ

3Some references choose to normalize the distribution function to unity. In that case, we must divide
f by total number of particles N .
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where Λα
µ are the matrix elements related to the transformation in this particular basis.

Thus, it is easy to realize that J = Λ, i.e., the Jacobian of the transformation is just the
matrix of the Lorentz transformation, but since

| det(Λ)| = 1

for any Lorentz transformation (Carroll, 2020), we readily have

dx = dx′ =⇒ dtdx = dt′dx′

so that the measure in the whole Minkowski space is invariant4. In fact, this holds for
any four-measure.

Another invariant quantity which will be useful is

dp

p0

that is the momentum measure divided by the time component of the momentum.
Let us then follow (Cercignani & Kremer, 2002) and prove the result for a very general

four-vector satisfying
AµAµ = C

where C is a constant. Denote K as the frame where the components of vector A is
unprimed, while K ′ is the frame where the four-vector A is given by

(
A0′,A′

)
. We shall

suppose now that K ′ is moving with speed |v| in the x-direction as measured from K,
see Figure 2.1. This assumption is not needed and it is made here only to simplify the
calculations. In fact, the Lorentz transformation matrix from a frame K to a frame K ′,
moving with arbitrary velocity v as measured from K can be found in Appendix A.

Figure 2.1: Frames K and K ′. Seen from K, the primed frame is moving with velocity v
along the x-direction. This figure is inspired by (Cercignani & Kremer, 2002).

Because the length of the four-vector A is fixed, we can regard the time component
as a function of the spatial components A0 = A0(A). The Lorentz transformation of the
components of A from K to K ′ is given by

A0′ = γv

(
A0 − |v|

c
A1

)
, A1′ = γv

(
A1 − |v|

c
A0

)
, A2′ = A2, A3′ = A3 (2.6)

4In fact, this is the same as stating that, multiplying measurements of volume and time as measured
in some frame, yields a Lorentz scalar quantity.
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or, similarly, in matrix form
A0′

A1′

A2′

A3′

 =


γv −γv |v|c 0 0

−γv |v|c γv 0 0
0 0 1 0
0 0 0 1



A0

A1

A2

A3

 (2.7)

where

γv =
1√

1− |v|2
c2

is the Lorentz factor associated with v.
Hence, if we change the reference system, the measure will change as

dA′ = | det(J)|dA (2.8)

where J is the Jacobian of the transformation

J =
∂A′

∂A

which by using (2.6) is given by

J =

γv
(

1− |v|
c
∂A0

∂A1

)
−γv |v|c

∂A0

∂A2 −γv |v|c
∂A0

∂A3

0 1 0
0 0 1

 (2.9)

Observe that, differently than before, the Jacobian is not simply the Lorentz transforma-
tion matrix because we are, in fact, working in the three dimensional space (so not in the
whole Minkowski space) and regarding time components as functions of the three-vectors.
Therefore, we can write

det(J) = γv

(
1− |v|

c

∂A0

∂A1

)
(2.10)

In order to calculate the partial derivative we use the relation AµAµ = C, yielding

Aµ
∂Aµ

∂A1
= 0 =⇒ A0

∂A0

∂A1
+ A1 = 0

which substituting back in (2.10) gives

det(J) =
1

A0

γv

(
A0 +

|v|
c
A1

)
=
A0′

A0
(2.11)

where we used that A0 = A0 and A1 = −A1 because of our metric tensor. Hence,

γv

(
A0 +

|v|
c
A1

)
=⇒ γv

(
A0 − |v|

c
A1

)
= A0′ (using (2.6)).

Now we substitute that back in (2.8), to find

dA′

A0′ =
dA

A0
(2.12)
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this proves the desired result and we note that

dp′

p0′ =
dp

p0

is found by taking A = p.
The final observation we make here is that the distribution function as defined above

is a Lorentz scalar quantity. In fact, since the number of observed particles is a Lorentz
invariant quantity we have that

f(t,x,p)dxdp

is a Lorentz scalar. Now, let us suppose that we are in the rest frame K ′ (denoted here
with primes) of the particle we are observing, which has four-momentum p′. The four-
momentum in this frame is of course given by p′ = (mc, 0). Let us perform a Lorentz
transformation to some other frame K where the particle has four-momenta p = (p0,p)
and is moving with velocity v. By our last result,

dp =
p0

mc
dp′ = γvdp′

where γv is the Lorentz factor. Similarly, the volume change is calculated using the
invariance of the four-measure, yielding

dx = dx′ =⇒ dx =
dτ

dt
dx′ =

1

γv
dx′

where we have used the proper time dτ = dt/γv. Using all of this gives

dxdp =
1

γv
dx′ γvdp′ = dx′dp′ (2.13)

so that the phase-space measure is Lorentz invariant. Since the phase-space and number of
particles are invariant, it follows that the distribution function is also a Lorentz invariant
quantity. As a matter of fact and, as we will see, this will reflect in the covariance of the
Boltzmann equation itself, meaning that we can perform calculations, approximations
and express it in any inertial frame of reference.

2.2.2 Free evolution of the distribution function

Our task now is to find a compact expression to the evolution of f . Observe that the
number of particles at time t in the volume element dµ(t) is given by

N(t) = f(t,x,p)dµ(t) (2.14)

we expect this number to change as the state of the particle evolves according to some
dynamics. Then, we have for a small evolution in time

N(t+ dt) = f(t+ dt,x + dx,p + dp)dµ(t+ dt)

which gives for dN = N(t+ dt)−N(t),

dN = f(t+ dt,x + dx,p + dp)dµ(t+ dt)− f(t,x,p)dµ(t) (2.15)
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let us first examine the evolution of the phase-space volume. We have

dµ(t+ dt) = | det(J)|dµ(t)

where J is the Jacobian of the transformation

J =
∂(x + dx,p + dp)

∂(x,p)

We calculate this Jacobian observing that

dx =
cp

p0
dt (2.16)

dp = Fdt (2.17)

where we used

v =
cp

p0
and

dp

dt
= F (2.18)

above, F = F(t,x,p) should be regarded as an external force (e.g., electromagnetic)
acting on the particle.

Thus we have

J =

(
1 dt

[
cp · ∂

∂p

(
1
p0

)
+ 3c

p0

]
dt
[
∂
∂x
· F
]

1 + dt ∂
∂p
· F

)
yielding

det(J) = 1 + dt
∂

∂p
· F +O(dt2) (2.19)

plugging that back in (2.15) gives up to second order in time

dN =

[
f(t+ dt,x + dx,p + dp)

(
1 + dt

∂

∂p
· F
)
− f(t,x,p)

]
dµ(t) (2.20)

Now, we Taylor expand the distribution function

f(t+dt,x+dx,p+dp) = f(t,x,p)+

(
∂f

∂t
(t,x,p) +

cp

p0
· ∂f
∂x

(t,x,p) + F · ∂f
∂p

(t,x,p)

)
dt+O(dt2)

giving for the first parcel in (2.20)

f(t,x,p)+

(
∂f

∂t
(t,x,p) +

cp

p0
· ∂f
∂x

(t,x,p) + F · ∂f
∂p

(t,x,p) + f(t,x,p)
∂

∂p
· F
)

dt+O(dt2)

substituting that back in (2.20) yields the expression up to second order in time

dN

dt
=

[
∂f

∂t
+
cp

p0
· ∂f
∂x

+
∂

∂p
· (fF)

]
dµ(t) (2.21)

if there is no collision among particles, this term should vanish. This only means that
in absence of interactions, the distribution function will evolve freely as dictated by the
dynamics of the system.

It is often convenient to express (2.21) in terms of the proper time dτ . Since dt is
measured in the frame where the particle has velocity v, the proper time is given by
dt = γvdτ such that (2.21) can be written as

dN

dτ
= γv

[
∂f

∂t
+
cp

p0
· ∂f
∂x

+
∂

∂p
· (fF)

]
dµ(t) (2.22)
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2.2.3 Collision term

Boltzmann idea was then to give an expression for the rate of change (2.21) involving
interactions (or collisions) among particles. This suggests that we may decompose the
change into two terms: a gain term, expressing particles which are scattered into the
volume element dµ(t) and a loss term, expressing particles initially in this volume element,
but that scatters away from it. Hence

dN

dt
=

dN+

dt
− dN−

dt
(2.23)

where first parcel in the r.h.s represents the gain term, while second parcel represents the
loss term. In order to calculate these two terms, we shall use Boltzmann’s Stoßzahlansatz5.
This set of assumptions solves something called the Boltzmann hierarchy (Spohn, 1984),
enabling a closed compact expression for the evolution of f .

Boltzmann’s Stoßzahlansatz.

• The distribution function varies slowly in a time interval ∆t which is large
compared to the duration of the collision δt but small compared to the time
in between collisions (“mean free time”, τ)

δt� ∆t� τ,

i.e., to leading approximation collisions are effectively instantaneous and par-
ticles are only under each other’s influence during the collision itself.

In that sense, the partial derivative should be actually understood as

∂f

∂t
≈ ∆f

∆t

becoming meaningless to consider an infinitesimal time dt. Then, in that
case, Boltzmann equation should not be considered an exact equation (Bellac
et al., 2010). However, we shall suppose that ∆t is still very small compared
to the time we can measure, in such way that taking it to be infinitely small
is justified.a

The second inequality (∆t� τ) serves not only to give meaning to the partial
derivative with respect to time, but also to ensure that we can account for one
collision episode solely. Otherwise (if ∆t ∼ τ for example), we would have to
account for repeated binary scatterings, as particles collides more rapidly.

In particular, this reasoning cannot be true if the interactions considered are
long-ranged (e.g., Coulomb interactions), since in that case the collision time
would be actually infinite. Hence, we shall restrict ourselves to short-ranged,
local interactions.

aIn fact, the same reasoning applies to the coarse-grained description of the cell dµ = dxdp,
in order to write things such as ∂f

∂x ,
∂f
∂p meaningfully.

5In German, this word means collision-number assumption (van Hees, 2020).
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• The probability of a scattering event involving more than two particles is
very small and, thus, is neglected. Hence, it suffices to consider only binary
collisions of particles. This is particularly a good approximation for a gas
which is very dilute.

• Correlations among particles are neglected. In particular, this means that
the two-particle correlation function can be factorized into a product of one-
particle distribution functions, this is referred to as molecular chaos hypothesis

f (2)(t,x1,p1; x2,p2) = f(t,x1,p1)f(t,x2,p2) (2.24)

As mentioned, Boltzmann’s Stoßzahlansatz is a very good approximation to rarefied
gases (Golse, 2013).

Loss term

The loss term represents every collision scheme which depopulates dµ = dxdp. In-
voking our first assumption, this leads to transitions between states expressed by pairs of
momenta. Then, the loss term is given by collisions starting from states having at least
one of the momenta given by p, i.e., a general collision scheme given by

p1 + p2 → p′1 + p′2

where we relabeled p → p1 for notation convenience. Let us denote ρ1 and ρ2 as the
density of particle 1 and 2 that participate in the collision in their own frame of reference,
respectively. This means that in the frame where we see the collision scheme above (where
the particles have initial velocities v1 and v2, see Figure 2.2) we have

γv1ρ1 = f(t,x,p1)dp1 and γv2ρ2 = f(t,x,p2)dp2 (2.25)

Above equalities come from the definition of the distribution function and the observation
that ρ, being a density, transforms as the inverse of the volume. Since the volume is
contracted by a factor of γ, the density is expanded by the same factor.

Figure 2.2: Loss term collisions as seen in laboratory frame. In this frame we see general
collisions with scheme p1 + p2 → p′1 + p′2. Particle 1 momentum is fixed to p1 while
particle 2 momentum varies within the possible range to account for every collision that
leads to depopulate dxdp1.
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Now, let us fix the reference frame in the particle 1. In this frame, the velocity before
the collision of particle 1 is zero, while particle 2 has velocity given by vrel

12, the relative
(relativistic) velocity with respect to particle 1. The density of particle 2 seen in this
reference frame is also given analogously as we found before, but now with contraction
related to the relative velocity, i.e,

γvrel12
ρ2

hence, the flux of particle 2 seen in the rest frame of particle 1 is given by

F12 = γvrel12
ρ2|vrel

12| (2.26)

In order to count the number of collisions, we must introduce the scattering cross
section. The idea is the following: particle 2 is moving with velocity vrel

12 in the rest frame
of 1. We define the z-axis in the direction of this vector and denote dΩ12 as the solid
angle having the z-axis in the direction of vrel

12. The likeness of the interaction to happen
will be encoded in the differential cross section

dσ12 =
dσ

dΩ12

dΩ12

the subscript indicates that the solid angle is calculated (for now) in the rest frame of
particle 1. The quantity dσ12 defines an area around the vector vrel

12, which can be thought
as the area where the particle 2 will be scattered away by particle 1. If the area is large
(then dσ is large) means that the interaction is more probable, while if the area is small,
the interaction is less likely6.

The cross section defined in such way, when multiplied by the flux of incoming particles,
gives the number of collisions per unit of time and unit of target density (that is, particle
1) per unit of volume cell considered, or more precisely

F12
dσ

dΩ12

dΩ12 = γvrel12
ρ2|vrel

12|
dσ

dΩ12

dΩ12

where we used (2.26). We multiply this quantity by the density of target particles ρ1 and
the volume element to obtain the total number of collisions per unit time in the volume,
yielding

dn−
dτ

= ρ1dxrest γvrel12
ρ2|vrel

12|
dσ

dΩ12

dΩ12 (2.27)

where dτ is the proper time as measured in the rest frame of particle 1. Similarly, we
recall that dxrest is also measured in the rest frame of 1.

Our task now is to express this quantity in terms of the distribution function7, using
(2.25). We first rewrite (2.27) in the following way

dn−
dτ

= γv1ρ1 γv2ρ2

γvrel12

γv1γv2
|vrel

12|
dσ

dΩ12

dΩ12 dxrest (2.28)

6In fact, dσ12 has units of area and it is constructed as such to represent the probability of having an
interaction/collision. Imagine, for example, two billiard balls: let us “stand” on one of the balls while the
other comes to strike us. The differential cross section for this collision will be related to the (sectional)
area we see from the ball coming to us, in such way that if this area is large, it will be more probable
that it hit us.

7We are now using the molecular chaos hypothesis of Boltzmann’s Stoßzahlansatz.
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using (2.25) this is written as

dn−
dτ

= f(t,x,p1)dp1 f(t,x,p2)dp2

γvrel12

γv1γv2
|vrel

12|
dσ

dΩ12

dΩ12 dxrest (2.29)

Finally, it is convenient to simplify Equation (2.29) with the aid of the following
identity

γvrel12

γv1γv2
|vrel

12| =
√

(v1 − v2)2 − 1

c2
(v1 × v2)2 =: vM12 (2.30)

which will be demonstrated in Appendix A. This factor is called Møller velocity or, some-
times, Møller flux (Cercignani & Kremer, 2002; Cannoni, 2017; van Hees, 2020) and, as we
have seen, it is necessary for consistent kinematic description of the relativistic Boltzmann
equation. As we pointed out in (Oliveira et al., 2021), this factor is commonly neglected
in literature (see for example (Iwamoto, 1983; Chen et al., 1994; Tong et al., 2010)). It
is worth noting that in the classical Boltzmann equation this factor is replaced by the
relative velocity of the particles

|v1 − v2|

in that sense, the Møller velocity can also be thought as the relative speed8 which accounts
correctly for the flux of particles in a relativistic treatment (Terrall, 1970). In fact, when
the velocities are co-linear (which is the case when we work in the center of momentum
frame, for example), the second parcel inside the square root vanishes and we are left with
the classical expression.

Using the Møller velocity we rewrite (2.29) in a compact way

dn−
dt

= f(t,x,p1)f(t,x,p2) vM12
dσ

dΩ12

dΩ12 dp1 dp2 dxrest (2.31)

Now, expressing all quantities in the initial frame (depicted in Figure 2.2), where
particle 1 has initial velocity given by v1, yields

dn−
dτ

= f(t,x,p1)f(t,x,p2) vM12 dσ dp2 dp1 dx (2.32)

where we have used that dxrest = γv1dx and dτ = 1
γv1

dt. At this point it is important to

note that the cross section appearing in (2.33)

dσ =
dσ

dΩ
dΩ

must now be expressed in the frame of Figure 2.2. From the discussion so far it is not clear
that this can be done, i.e, we do not know how differential cross sections transform, but
the result will follow from the dynamical reversibility condition of the differential cross
section. We will develop that in great detail in Section 2.2.4, where will become clear that
dσ is Lorentz invariant.

8However, it should not be confused with the relativistic relative velocity (see Appendix A). An
evident contrast can easily be seen when calculating this quantity for a photon-electron scattering: while
the modulus of the photon relative velocity is, of course, c, the Møller factor depends on the electron
velocity and it is given by (2.66). In fact, as mentioned by (Weinberg, 1995) the Møller velocity can even
exceed the speed of light.
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Equation (2.32) gives the total number of particles per unit of proper time that par-
ticipates in the collision scheme (p1,p2)→ (p′1,p

′
2) which are scattered around the solid

angle element dΩ, leading to depopulate the number of particles with momentum p1.
However, in the Boltzmann equation, we should account for all possible collisions that
depopulate state p1. We can account for that by integrating over all possible incoming
momenta for particle 2 and all possible scattering solid angle dΩ. This yields for the loss
term in the Boltzmann equation

dN−
dt

=

∫
p2

∫
Ω

f(t,x,p1)f(t,x,p2) vM12 dσ dp2 dp1 dx (2.33)

Gain term

Similarly, the gain term represents all possible collisions starting from some initial
momenta, leading to populate dµ = dxdp1 with particles of momentum p1. Analogously,
this corresponds to the following collisions

p′1 + p′2 → p1 + p2

To calculate this term we proceed in a very similar fashion as we did for the loss term.
However, we must work in the reference frame of particle 1, which has now a pre-collisional
momentum giving by p′1. As we will see, this term is a bit more subtle than the former.
Since now the collision promotes transitions (p′1,p

′
2) → (p1,p2), we should prime every

quantity appearing in (2.33). As the collision still happens at position x, the distribution
functions should still be evaluated at this coordinate point, but care must be taken, as
quantities such as the cell volume and the time are now measured in the pre-collision rest
frame of 1, which is different than before. We can then write for the gain term

dN+

dt′
=

∫
p′
2

∫
Ω′
f(t,x,p′1)f(t,x,p′2) v′M12 dσ′ dp′2 dp′1 dx′ (2.34)

where, similarly to the loss term, all quantities are expressed in the frame which particle
1 had initial velocity given by v′1.

The first observation we shall make is that the differential cross section appearing in
(2.34) does not need to be the same as the one in (2.33). The cross section appearing in
(2.34) is the cross section of the reverse collision process to that in (2.33). Stating that
those two cross section are the same indicates that we have dynamical reversibility, i.e.,
that the chances of the process happening in one direction is the same as happening in
the reverse direction. This does not need to be true and has profound implications to the
Boltzmann equation.

In fact, a more precise definition of dynamical reversibility will be given in next section.
Here it is worth noting that it comes from the laws of the interactions we are considering,
so, for example, if the interaction is electromagnetic we expect that reversibility holds and,
in that case, the cross section is also Lorentz-invariant. In particular, this also means that
the Boltzmann equation is particle-number preserving, leading to a Boltzmann equation
which is also a master equation. This feature is hardly mentioned in literature mostly
because in the vast majority of physical processes, dynamical reversibility is true. In
the manifestly covariant formalism, this feature will be related to the unitarity of the
scattering matrix.
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The second observation we address is that we do not integrate the incoming momentum
of particle 1, p′1. The reason is because conservation of energy-momentum bounds the
incoming states (p′1,p

′
2) to the outgoing states (p1,p2), such that the set of momenta

(p1,p2,p
′
1,p

′
2) is not independent and our only degrees of freedom are expressed in the

incoming momentum of particle9 2 and the scattering solid angle Ω′. Making contrast with
the standard, or (simply) covariant formalism, the manifestly covariant version treats the
momenta (p′1,p

′
2,p2) as (free) labels, we then integrate them in the Boltzmann equation

and conservation of energy-momentum is taken care of by introducing a delta-function in
the transition rates.

2.2.4 Dynamical reversibility and time evolution of the distri-
bution function

To express the gain and loss term in a compact way (the so-called Boltzmann collision
functional), we need to explore the symmetries of our interaction. This only means that
we will express (2.34) in quantities computed in the pre-collisional rest frame of particle
1, but now referring to the collision scheme (p1,p2)→ (p′1,p

′
2), i.e., in the frame where

it has initial momentum p1.
More precisely, this corresponds to start with the collision

p′1 + p′2 → p1 + p2

and perform a Lorentz transformation to reverse the incoming states to the outgoing
states. This Lorentz transformation is a composition of parity and time reversal trans-
formations (see Figure 2.3).

Figure 2.3: A sequence of parity (P ) and time reversal (T ) transformation leads to the
inversion of the collision in and out states as viewed from the new reference frame. This
figure is inspired by (Bellac et al., 2010).

In that new frame, the initial momentum of particle 1 is p1 and similarly for particle
2.

By doing that, one must express (2.34) in this frame, where above collision is reversed
(it is the same collision, however). Therefore, consider again the gain term

dN+ =

∫
p′
2

∫
Ω′
f(t,x,p′1)f(t,x,p′2) v′M12 dσ′ dp′2 dp′1 dx′ dt′ (2.35)

9We choose to integrate the particle 2 just because our initial convention is to express the evolution
of the distribution function of particle 1.
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where we have written it in a slightly different manner. We have seen that the product
dx′ dt′ is a Lorentz scalar quantity and we can write

dx′ dt′ = dx dt

so that
v′M12 dσ′ dp′2 dp′1 dx′ dt′ = v′M12 dσ′ dp′2 dp′1 dx dt

In general, for relativistic particles we have v′M12 6= vM12 (Cercignani & Kremer, 2002),
but we can still rewrite the Møller velocity in a very suggestive way (see Appendix A)

vM12 = |vrel
12|
p1 · p2

p0
1p

0
2

(2.36)

hence

v′M12 dσ′ dp′2 dp′1 = |vrel′

12 |p′1 · p′2 dσ′
dp′2
p0

2
′

dp′1
p0

1
′

the scalar product and the relative velocity are also a Lorentz scalar quantity. In fact,
the relative velocity can be written as

|vrel′

12 | = c

√
1− m4c4

(p′1 · p′2)2
(2.37)

thus making clear its invariance. Above relation will be calculated in Appendix A also.
Finally, we have seen that

dp′1
p0

1
′ =

dp1

p0
1

dp′2
p0

2
′ =

dp2

p0
2

which enables us to write

|vrel′

12 |p′1 · p′2 dσ′
dp′2
p0

2
′

dp′1
p0

1
′ = |vrel

12|p1 · p2 dσ′
dp2

p0
2

dp1

p0
1

The final ingredient we need is the invariance of the cross section. For this we define

Dynamical reversibility (strong form). We call the strong form of dynamical
reversibility when the differential cross section of the reverse collision process is the
same as the direct process, i.e.

dσ = dσ′ (2.38)

This means that the interaction in place preserves Lorentz symmetry and, thus, is
Lorentz invariant. In particular, this is why we omit the solid angle dependence
sometimes. In fact, to be more precise we should write

dσ =
dσ

dΩ
dΩ

where the solid angle is measured in the same frame of reference we express the
Boltzmann equation in.
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It could be the case that the strong form of dynamical reversibility10 does not hold
when we consider more than one species of particles (van Hees, 2020), keeping that in
mind we also define

Dynamical reversibility (weak form). We call the weak form of dynamical
reversibility when the total cross section of the reverse collision process is the same
as the direct process, i.e. ∫

Ω

dσ =

∫
Ω′

dσ′ (2.39)

As we will see, for the cross section we are interested, i.e., the Klein-Nishina cross sec-
tion, the strong form of dynamical reversibility always hold. Using dynamical reversibility
we have ∫

Ω′
v′M12 dσ′ dp′2 dp′1 dx′ dt′ =

∫
Ω

vM12 dσ dp2 dp1 dx dt

which is sufficient to rewrite (2.35) as

dN+

dt
=

∫
p2

∫
Ω

f(t,x,p′1)f(t,x,p′2) vM12 dσ dp2 dp1 dx (2.40)

Finally, we combine (2.21), (2.33) and (2.35) to write{
∂f1

∂t
+
cp1

p0
1

· ∂f1

∂x
+

∂

∂p1

· (f1F)

}
dp1 dx =

{∫
p2

∫
Ω

vM12 dσ (f1′f2′ − f1f2) dp2

}
dp1 dx

(2.41)

with shorthand notation

fi := f(t,x,pi) and fi′ := f(t,x,p′i)

Standard relativistic Boltzmann equation. By looking (2.41) we can write

∂f1

∂t
+
cp1

p0
1

· ∂f1

∂x
+

∂

∂p1

· (f1F) =

∫
p2

∫
Ω

dp2 vM12 dσ (f1′f2′ − f1f2) (2.42)

We will choose to call above equation the standarda relativistic Boltzmann equation
in order to differentiate it from its other representation appearing in next section.
However, sometimes we will, straightforwardly enough, simply call it the relativistic
Boltzmann equation. This equation gives the spatio-temporal evolution of the distri-
bution function of a gas with many identical particles. Above, the prime momenta
are implicitly related to the unprimed ones by energy-momentum conservation.

aWe note here that in (2.42), quantities are not expressed in a manifestly covariant way. As
a matter of fact, the nomenclature is just a matter of how we choose to write things as we have
seen in Section 2.1.

10Some references call this property detailed balance. We reserve this word, however, to apply it in the
traditional set up of master equations.
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This equation is Lorentz covariant (although not manifestly) and particle-number
preserving by construction. In particular, the differential cross section appearing in
(2.42) satisfies dynamical reversibility.
Being covariant, we can choose to compute quantities, express, solve or perform
approximations to (2.42) in any inertial reference frame as long as we are consistent.

It is worth noting that some readers might find a factor of 1/2 in front of (2.42) when
looking into different references. This is because we are dealing with identical particles
and one is counting collisions which leads to (p1,p2) and (p2,p1) as distinct11. This
prefactor can be absorbed in the definition of cross section itself and we choose to do
so. By doing that, the Boltzmann equation for a gas mixture has the same structure of
(2.42), also without the prefactor 1/2.

2.3 The manifestly covariant relativistic Boltzmann

equation

Now that we have seen how to derive the standard version of the relativistic Boltzmann
equation, it is straightforward to generalize our result by rewriting it in a manifestly
covariant way. For this, we shall look how to write quantities in a invariant way.

Let us begin with the phase-space measure, where we have seen previously that the
quantity

dp

p0

with p0 =
√

p2 + (mc)2, is a Lorentz scalar quantity, and thus, is invariant by Lorentz
transformations. Since the distribution function is also Lorentz invariant, we must find a
way of expressing the left hand side (2.21) in a manifestly covariant way.

We first rewrite (2.21) by using the relation γv1 = p0
1/mc

dN

dt
=
mc

p0
1

γv1

[
∂f1

∂t
+
cp1

p0
1

· ∂f1

∂x
+

∂

∂p1

· (f1F)

]
dµ(t) (2.43)

the first two terms can be put in closed dot product

γv1

[
∂f1

∂t
+

p1

E1

· ∂f1

∂x

]
= γv1

∂f1

∂t
+ γv1

cp1

p0
1

· ∂f1

∂x

=
p0

1 c

mc

∂f1

∂x0
+

p1

m
· ∂f1

∂x

=
1

m
pµ1
∂f1

∂xµ
(2.44)

where we used Einstein’s summation convention and the four-vectors p1 = (p0
1,p1) and

x = (ct,x).

11Of course that if the particles are identical these two states are the same and one must deal with the
overcounting.
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To work the last term, we define the Minkowski-four-force vector, defined in terms of
the proper time

dp1

dτ
= K

since p2
1 = (mc)2, we have

p1 ·
dp1

dτ
= p1 ·K = 0

above equation also guarantees that

K0 =
p1

p0
1

·K (2.45)

By looking at our definition of the force vector F (2.18)

K = γv1F (2.46)

the four-force above is defined in the whole Minkowski space. The four-momentum length
is constraint by the mass, so that we have the zeroth component as a function of the
momentum three vector p0

1 = p0
1(p1), therefore, when differentiating K with respect to

p1 we have to use the chain rule, treating p0
1 and p1 as independent variables12

∂

∂p1

→ ∂p0
1

∂p1

∂

∂p0
1

+
∂

∂p1

where
∂p0

1

∂p1

=
p1

p0
1

this yields for the last term in (2.43)

γv1
∂

∂p1

· (f1F) = γv1

(
p1

p0
1

∂

∂p0
1

+
∂

∂p1

)
·
(
f1
mcK

p0
1

)
= γv1

(
mc

p0
1

∂

∂p0
1

(
f1

p1 ·K
p0

1

)
+
mc

p0
1

∂

∂p1

· (f1K)

)
= γv1

(
mc

p0
1

∂

∂p0
1

(
f1K

0
)

+
mc

p0
1

∂

∂p1

· (f1K)

)
=
∂ (f1K

µ)

∂pµ1
(2.47)

where in second line we used the independence inside the sign of the partial derivatives,
while using (2.45) in third line. We have also used the expression of the Lorentz factor in
last line. Equation (2.43) is rewritten by using (2.44) and (2.47) in a manifestly covariant
way (in terms of the scalar four product) as

dN

dt
= c

[
pµ1
∂f1

∂xµ
+m

∂ (f1K
µ)

∂pµ1

]
dµ(t)

p0
1

(2.48)

12In fact, this transforms the three-divergence in a four-divergence. After the calculation is done, we can
set p0 = E/c again. As an example, suppose we have f(x, y) with y = y(x), then, the total variation with

respect to x is calculated by the bi-dimensional operator
(
∂
∂x + ∂y

∂x
∂
∂y

)
. This treats (x, y) as independent

variables (inside the sign of the partial derivative of course) and when the partial derivatives are done we
use the relation y = y(x).
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To calculate the collision term, we now define the covariant transition rate per unit of
volume, such that the gain and loss terms are given by

dN+ =

∫
p2,p′

1,p
′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′ f1f2W (p1, p2 → p′1, p

′
2)

dp1

p0
1

dxdx0 (2.49)

dN− =

∫
p2,p′

1,p
′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′ f1′f2′W (p′1, p

′
2 → p1, p2)

dp1

p0
1

dx′dx0′ (2.50)

where we integrated all the degrees of freedom apart from p1.
The number of scattered particles (left hand side of (2.49) and (2.50)) is invariant

quantity. We also have seen that the product dxdt or dx′dt′, together with the momen-
tum measure divided by its time-component and the distribution function, are Lorentz
invariant. This makes the transition rates W , as defined above, a Lorentz invariant quan-
tity as well. Of course that, as we will see in Section 2.5, this transition rate is related to
the scattering cross section, motivating the definitions

Dynamical reversibility (strong form). We call the strong form of dynamical
reversibility when the transition rate per unit of volume of the reverse collision
process is the same as the direct process, i.e.

W (p1, p2 → p′1, p
′
2) = W (p′1, p

′
2 → p1, p2) (2.51)

Dynamical reversibility (weak form). We call the weak form of dynamical
reversibility when the transition rate per unit of volume of the reverse collision
process is the same as the direct process in the following sense∫

p′
1,p

′
2

dp′1
p0

1
′

dp′2
p0

2
′ W (p1, p2 → p′1, p

′
2) =

∫
p′
1,p

′
2

dp′1
p0

1
′

dp′2
p0

2
′ W (p′1, p

′
2 → p1, p2) (2.52)

Since by construction our rate respects Lorentz symmetry, dynamical reversibility
holds as well and we shall use it as before. In particular, it is related to the unitarity of
the scattering matrix, a very general result from Quantum Field Theory (see, for example,
(van Hees, 2020) for a proof of this fact).

Exploring the invariance of dxdt and dx′dt′ analogously than before, we can write the
collision term as

dN+

dt
− dN−

dt
=

∫
p2,p′

1,p
′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′ W (p1, p2 → p′1, p

′
2) (f1′f2′ − f1f2) dx

dp1

p0
1

(2.53)

As mentioned already, the manifestly covariant formalism, differently than before, treats
all the other momenta as (dummy) labels which we have to integrate. Of course not all
momenta are possible, the possible ones are given by combinations in which conservation
of energy-momentum holds. Therefore, we conclude that, in the definition of the transition
rates, there will be a delta-function, which guarantees four-momentum conservation.
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Finally we write using (2.43) and (2.53)

Manifestly covariant relativistic Boltzmann equation. The equation below

pµ1
∂f1

∂xµ
+m

∂ (f1K
µ)

∂pµ1
=

∫
p2,p′

1,p
′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′ W (p1, p2 → p′1, p

′
2) (f1′f2′ − f1f2)

(2.54)
found by using (2.43) together with (2.53) is traditionally called the manifestly
covariant relativistic Boltzmann equation, which is written in way that explores
Lorentz invariance of quantities, making covariance manifest.
The transition rates W is related to the differential cross section (see Section 2.5)
and satisfies dynamical reversibility, ensuring particle-number conservation. In par-
ticular, the structure of this equation is similar to a master equation in the distribu-
tion function, where the transition rates represent a jump-process in phase-space,
which is viewed here as a collision process among the particles.
As before, we note the possible appearance of the factor 1/2 in front of the collision
term (right hand side), related to fact we are treating identical particles. Of course
this prefactor does not exist for the equation of a gas mixture and we can omit it
in (2.54) by incorporating it in our definition of the rates.

Our last discussion for this section will show how the transition rates are defined by
using the so-called scattering amplitude. There are two main ingredients in place: the
transition amplitude and conservation of energy-momentum. The first ingredient is dealt
with by using the scattering matrix. For example, suppose we start from an initial binary
state 〈i| = 〈p1p2|13, evolving to the (also binary) final state |f〉 = |p′1p′2〉, the amplitude
for this transition is given by the squared element of the transition matrix M

M(p1, p2 → p′1, p
′
2) = | 〈p′1p′2|M |p1p2〉 |2. (2.55)

As a matter of fact, this is a common procedure in QFT, where one finds the ampli-
tude of a scattering process by considering the transition matrix M. The exact precise
treatment of such problem is important, but beyond the scope of the present work. Nev-
ertheless, we will briefly scratch the surface of scattering theory in Chapter 3, presenting
the main elements to treat such problems. Here, it suffices to know that such matrix
exists and that it yields the transition probability per unit of time in going from an initial
to a final momenta state.

Hence, considering the two points above we conclude that the transition rates should
be proportional to

W (p1, p2 → p′1, p
′
2) ∝M(p1, p2 → p′1, p

′
2)δ(4)(p1 + p2 − p′1 − p′2) (2.56)

the proportionality factor is a constant related to our convention in defining the distribu-
tion function (see next section). Following the definition from (van Hees, 2020), we can

13These are momenta states in what is called a Fock space. A Fock space is analogous to a Hilbert
space, where the states are now particles, having some value of momentum.
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express the isotropic14 transition rates as

W (p1, p2 → p′1, p
′
2) =

1

16(2π)6
M(p1, p2 → p′1, p

′
2)(2π)4δ(4)(p1 + p2 − p′1 − p′2) (2.57)

In Section 2.5 we will see how we go to a scattering cross section description by using
the definition (2.57). This will make the link of the two representations of the Boltzmann
equation.

2.4 Degenerate gases and mixtures

In this section we will treat two extensions of the Boltzmann equation. First we will
account for degeneracy of particles, which will lead to the Boltzmann-Uehling-Uhlenbeck
equation (Uehling & Uhlenbeck, 1933). This equation has a small modification in the
collision functional to account for the quantum nature of the particle, that is, whether
the particle is a fermion or a boson. The second extension will be related to gas mixtures,
where we will account for collisions among different particles.

When going from a classical to a quantum description, one usually divides the mo-
mentum cell measure by the term (2π~)3

dxdp→ dx
dp

(2π~)3

this term is only natural when counting the number of (quantum) states that fit inside
a box with some volume L3. In fact, this is a well-known result in Statistical Mechanics
and we invite the reader to check, for example, (Bellac et al., 2010).

This suggests that, for particles with no spin, dx dp
(2π~)3

is the number of available states
in dxdp. If we want to describe particles having spins, the states grows by a number gs,
which is sometimes called degeneracy factor. Thus, we have

gsdx
dp

(2π~)3

as the number of available states, where gs is given by (see for example (Cercignani &
Kremer, 2002))

gs =

{
2s+ 1 if m 6= 0

s if m = 0

where s is the particle spin.
If we have a distribution function f representing the particle density, we can write

fdxdp = density of particles

f
(2π~)3

gs
dxdp = density of occupied states

14We note in Chapter 3 that, since we consider unpolarized radiation, it is sufficient to consider isotropic
transition amplitudes.



CHAPTER 2. THE RELATIVISTIC BOLTZMANN EQUATION 28

i.e., the density of occupied states is the distribution function per number of states.
Therefore, we can define

n(t,x,p) :=
(2π~)3

gs
f(t,x,p) (2.58)

which we call the occupation number distribution function.
Representing the density of occupied states, we can now make the following statistical

argument, to extend the collision term of the Boltzmann equation. Suppose, then, a
collision (p1,p2) → (p′1,p

′
2), fermions will only make this transition if both states are

unoccupied. Since (1 − n) represents the fraction of unoccupied states we should make
the following change in the Boltzmann collision term

f1f2 → f1f2

(
1− (2π~)3

gs
f1′

)(
1− (2π~)3

gs
f2′

)
and

f1′f2′ → f1′f2′

(
1− (2π~)3

gs
f1

)(
1− (2π~)3

gs
f2

)
to account for Pauli exclusion principle. Likewise, for bosons we should replace the minus
sign by a plus sign. We note here that this argument should not be taken too serious
at this point. The complete argument should be sketched by working in symmetrized or
antisymmetrized Fock spaces, identifying in there the transition rates corresponding to a
jump process in reciprocal space. We shall do that in Chapter 5, where it will become
clear that the rates should have an extra factor of (1 + εn) according to the quantum
nature of the particle (ε = +1 for bosons or ε = −1 for fermions). Fortunately, the
correction is the same as we find here, so that this qualitatively hand-waving argument is
worthy at this point.
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Relativistic Boltzmann-Uehling-Uhlenbeck equation. By replacing the col-
lision term as we noted above, we can write the standard relativistic Boltzmann-
Uehling-Uhlenbeck equation as

∂f1

∂t
+
cp1

p0
1

· ∂f1

∂x
+

∂

∂p1

· (f1F) =∫
p2

∫
Ω

dp2 vM12 dσ

(
f1′f2′

(
1 + ε

(2π~)3

gs
f1

)(
1 + ε

(2π~)3

gs
f2

)
−f1f2

(
1 + ε

(2π~)3

gs
f1′

)(
1 + ε

(2π~)3

gs
f2′

))
(2.59)

or, its manifestly covariant representation

pµ1
∂f1

∂xµ
+m

∂ (f1K
µ)

∂pµ1
=∫

p2,p′
1,p

′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′ W (p1, p2 → p′1, p

′
2)

(
f1′f2′

(
1 + ε

(2π~)3

gs
f1

)(
1 + ε

(2π~)3

gs
f2

)
−f1f2

(
1 + ε

(2π~)3

gs
f1′

)(
1 + ε

(2π~)3

gs
f2′

))
(2.60)

where ε = 1 for bosons, while ε = −1 for fermions

At this point it is worth making the observation that some careful readers may find
versions of the relativistic Boltzmann equation which have the prefactor gs

(2π~)3
in front of

the right hand side of the equation (the collision term). This is related to the convention
of expressing the time evolution of what we defined as the occupation number distribution
function instead of the distribution function itself. So that, a straightforward calculation
yields, for example

∂n1

∂t
+
cp1

p0
1

· ∂n1

∂x
+

∂

∂p1

· (n1F) =
gs

(2π~)3

∫
p2

∫
Ω

dp2 vM12 dσ
(
n1′n2′ (1 + +εn1) (1 + εn2)

− n1n2 (1 + εn1′) (1 + εn2′)
)

(2.61)

for the distribution n defined as (2.58). Following our programme of expressing the time
evolution of the distribution function f instead of n, we shall use the equation on f . This
in turn will lead to simplifications when describing gas mixtures, as the degeneracy factor
is different for different gases. Yet, we note here that some references denote n as f , which
can arise some confusions, for example (Uehling & Uhlenbeck, 1933; Torres-Rincon, 2013;
van Hees, 2020) are using f for what we call n, but as long as we are consistent and
clear, this should not be a problem. As (Cercignani & Kremer, 2002) points out, when

replacing (2π~)3

gs
f → f this new distribution function (which we denote by n) becomes the

probability that the state is occupied rather than the probability density of particles in
phase-space and one must also change (2.2), as well as (2.3).
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2.4.1 Gas mixtures

Now we shall turn our attention to gas mixtures. The Boltzmann equation for mixtures
was treated in a classical context, for example, in (J. Ross & Mazur, 1961), while in
a relativistic context by (Cercignani & Kremer, 2002). Therefore, suppose we have a
container with several different types of particles, for example, one can keep in mind a
mixture of electrons and photons. If the particles only collide among themselves, one
usually talks about an inert mixture. On the other hand, if the particles not only collide,
but also transform, one usually refers to as a reacting mixture. Here, the reaction can be
either chemical or nuclear in nature. Let us begin with inert mixtures with k different
species of particles. In that case, there will be two types of collisions

p1
i + p2

i � p′1
i
+ p′2

i
collisions among identical particles

p1
i + p2

j � p′1
i
+ p′2

j
collisions among different particles

for i, j ∈ {1, . . . , k}.
We will use superscripts to denote quantities referring to the i-th particle. For example,

pi denotes the momentum of the i-th particle, while f i(t,x,p) denotes its distribution.
Then, the relativistic Boltzmann equation for the i-th component (i ∈ {1, . . . , k}) will
have extra terms related to collisions among different particles and we can write

∂f i1
∂t

+
cp1

i

p0i
1

· ∂f
i
1

∂x
+

∂

∂p1
i
·
(
f i1F

)
=

k∑
j=1

C(f i, f j) (2.62)

where we used the shorthand notation for the collision functional

C(f i, f j) =

∫
p2

j

∫
Ωij

dp2
j vijM12 dσij

(
f1′

if2′
j

(
1 + εi

(2π~)3

gis
f i1

)(
1 + εj

(2π~)3

gjs
f j2

)
−f i1f

j
2

(
1 + εi

(2π~)3

gis
f1′

i

)(
1 + εj

(2π~)3

gjs
f2′

j

))
(2.63)

Since in next section we will show the equivalence of both descriptions, the choice of
(2.59) over (2.60) is merely arbitrary. Above, particles i and j have respective degeneracy
gi and gj, being either bosons ε = +1, fermions ε = −1 or classical/non-degenerate ε = 0.
The collision

p1
i + p2

j � p′1
i
+ p′2

j

have scattering cross section dσij and the related Møller velocity is given by

vijM12 =

√
(v1

i − v2
j)2 − 1

c2
(v1

i × v2
j)2

Naturally, in light of last discussions, we assume that dynamical reversibility holds
separately for every collision. Now, suppose that instead of this inert mixture, we have a
reacting mixture, i.e., we consider a gas with the same k components as before, but now,
besides colliding, the i-th particle undergoes q different (reversible) reactions

i+ al � bl + cl with l ∈ {1, . . . , q}
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where al, bl, cl is one of the k different species. The collision term in the Boltzmann
equation will again have extra terms related to the reaction, thus, the natural extension
of the collision functional is

Cr−mix(f
i) =

k∑
j=1

C(f i, f j) +

q∑
l=1

C l
reac(f

i) (2.64)

where the last parcel is the collision term due to the l-th reaction

C l
reac(f

i) =

∫
pal

∫
Ωial

dpal vialM dσialreac (fblfcl − fifal) (2.65)

since the final states are always different particles, there is no enhancement or inhibition
due to Quantum Mechanics in the reaction functional. The Møller velocity is of course
given by

vialM =

√
(vi − val)2 − 1

c2
(vi × val)2

the reactive cross section dσialreac is the natural extension of the inert scattering cross
section. As pointed out by (Cercignani & Kremer, 2002), this cross section follows a form
of dynamical reversibility given by∫

Ωial
vialM dσialreacdpidpal =

∫
Ωial

vblclM dσblclreacdpbldpcl

which connects the cross section of the forward reaction

i+ al → bl + cl

to that of the backward reaction

i+ al ← bl + cl

As an example, we shall consider an inert mixture of electrons and photons.

Example: an electron-photon mixture. Suppose we have an inert mixture
of electrons and photons interacting via Compton effect with no external force acting
on the system. If we consider that the cross section for photon-photon interaction is
vanishingly small (which is a reasonable approximation up to leading order)15, we can
write the relativistic Boltzmann equation for the photon distribution function as

∂fγ
∂t

+ cn̂ · ∂fγ
∂x

=∫
p

∫
Ω

dp vγeM dσγe
(
fγ′fe′

(
1 +

(2π~)3

gγ
fγ

)(
1− (2π~)3

ge
fe

)
−fγfe

(
1 +

(2π~)3

gγ
fγ′

)(
1− (2π~)3

ge
fe′

))
15In fact, photon-photon scattering does exist but its cross section is, at best, of order ≈ 10−7 b, thus

requiring an enormous flux of particles. In particular, note the difference in the order of magnitude when
comparing with the Klein-Nishina cross section ≈ 10−1 b. Moreover, we expect photon-photon scattering
to become more ”relevant” for energies of order TeV, which considering the range of energies we are
working (� mec

2 ≈ 0.5MeV) is negligible (d’Enterria & da Silveira, 2013).
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where γ and e refer to the photons and electrons, respectively. Above, we have used
Eγ = ~ω and slightly different notation for more clarity. We are now looking to the
following collision scheme

p + k � p′ + k′

where the photon momentum is given by k = n̂~ω/c
For this system, the Møller velocity is given by

vγeM =

√
(v − cn̂)2 − 1

c2
(v × cn̂)2

= c

√(v

c

)2

− 2
v

c
· n̂ + 1−

(v

c
× n̂

)2

= c

√(v

c

)2

− 2
v

c
· n̂ + 1−

(v

c

)2

+
(v

c
· n̂
)2

= c

√
1− 2

v

c
· n̂ +

(v

c
· n̂
)2

= c
(

1− v

c
· n̂
)

(2.66)

If we now consider that the electrons can be treated as a non-degenerate gas, we can
express the equation above as

∂nγ
∂t

+ cn̂ · ∂nγ
∂x

= c

∫
p

∫
Ω

dp
(

1− v

c
· n̂
)

dσγe (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.67)

where we used definition (2.58) for the photon distribution function.
As we will see, (2.67) will be the starting point of the Kompaneets equation.

2.5 Equivalence of the relativistic Boltzmann equa-

tion representations

In this section we will show the equivalence of the two representations of the Boltzmann
equation. Since we are most interested in this equation for an electron-photon system
interacting via Compton effect, it is sufficient for us that we prove the equivalence for
(2.67). However, it is worth noting that our calculation is adaptable for any system.

The equivalence of these two representations is done in (van Hees, 2020) for a single
particle gas. However, it is is readily extended by linearity for an arbitrary mixture by
using ours and (van Hees, 2020) result, i.e., the equivalence holds term by term in the
collision functional (2.63) or (2.64).

Let us begin with the Boltzmann equation for a mixture of photons and electrons as
calculated in last section, but now we use the covariant formalism.

kµ
∂nγ
∂xµ

=

∫
p,k′,p′

dp

p0

dk′

k0′
dp′

p0′ W
γe(p, k → p′, k′) (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.68)
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where the four-vectors are given by

k =

(
~ω
c
,k

)
; k′ =

(
~ω′

c
,k′
)

p =

(
E

c
,p

)
; p′ =

(
E ′

c
,p′
)

corresponding to the collision scheme

p+ k � p′ + k′

In order to show the equivalence, we shall use definition (2.57), while computing the
integrals in the outgoing degrees of freedom (primed indices). As we shall see in next
chapter, the transition amplitude, represented in (2.57) by the squared matrix element
for an photon-electron scattering

MKN(p, k → p′, k′) =
∣∣〈p′k′|MKN |pk〉

∣∣2
is related to the so-called Klein-Nishina scattering cross section by the following relation

MKN(p, k → p′, k′) = 16π
(
s− (mec)

2
)2 dσ

dt

KN

(s, t) (2.69)

where s and t are called the Mandelstam variables defined as

s := (p+ k)2 = 2p · k + (mec)
2

t := (k − k′)2 = −2k · k′

u := (p′ − k)2 = −2p′ · k + (mec)
2

where we also added the definition of the Mandelstam variable u (which is not independent
from s and t)16. These variables are clearly Lorentz invariant and completely describe the
collision. Since these variables are also collision invariants, we expect that it is possible to
express the full differential cross section in terms of them if dynamical reversibility holds.
As a matter of fact, we shall assume that as well (Silvester, 2014; Millar, 2014; van Hees,
2020), check also Chapter 3.

By the definition of t, we have

t = −2k0k0′(1− n̂ · n̂′)

where we defined the unit vector

n̂(′) :=
k(′)

k0(′)
=

c

~ω
k(′)

which enables the expression of the scattering angle cos θ = n̂ · n̂′. This yields for the
derivative of t with respect to θ

dt = 2k0k0′d cos θ

=
1

π
k0k0′dΩ

16By using energy-momentum conservation p + k = p′ + k′, there is one extra relation for each of the
Mandelstam variables s, t, u (see Chapter 3). However, we shall forget for the moment about energy-
momentum conservation.
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Above, we used the solid angle differential, which is given by dΩ = 2πd cos θ since the
scattering respects azimuthal symmetry (that is indeed the case if we have unpolarized
photons as we do). Hence, (2.57) is given in terms of the cross section

W γe(p, k → p′, k′) =
1

4

(s− (mec)
2)

2

k0k0′
dσγe

dΩ
(s, t)δ(4)(p+ k − p′ − k′) (2.70)

We have the freedom to work in any intertial frame because of Lorentz covariance and
the calculation is simplified if we work in the center of momentum frame, see Figure 3.1.
In this frame, the total momentum is always zero and the four vectors are given by

kcm =

(
~ωcm

c
,kcm

)
; k′cm =

(
~ω′cm

c
,k′cm

)
pcm =

(
Ecm

c
,−kcm

)
; p′cm =

(
E ′cm

c
,−k′cm

)
therefore, the relativistic Boltzmann equation yields

kµcm

∂nγ
∂xµcm

=

∫
dpcm

p0
cm

dk′cm

2k0′
cm

dp′cm

2p0′
cm

(s− (mec)
2)

2

k0
cmk

0′
cm

dσγe

dΩcm

(s, t)δ(4)(pcm + kcm − p′cm − k′cm)

(nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.71)

where all quantities are computed in this particular frame of reference (including the
distribution functions). We shall calculate the outgoing degrees of freedom, i.e., the
following integral

Iout =

∫
dk′cm

2k0′
cm

dp′cm

2p0′
cm

(s− (mec)
2)

2

k0
cmk

0′
cm

dσγe

dΩcm

(s, t)δ(4)(pcm + kcm − p′cm − k′cm)

(nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.72)

Let us reduce the four-delta function by using the following identity, which holds in
any frame of reference

dp′cm

2p0′
cm

=

∫
p0′cm

d4p′cmδ(p
′2
cm − (mec)

2) (2.73)

we integrate the four-momentum p′ while using the four-delta to set

p′cm = pcm + kcm − k′cm =⇒ p′
2
cm − (mec)

2 = 2 (pcm · kcm − k′cm · (pcm + kcm))

where we used that the unprimed electron is on its mass shell p2
cm = (mec)

2

Then, we can rewrite the above integral as

Iout =

∫
dk′cm

2k0′
cm

(s− (mec)
2)

2

k0
cmk

0′
cm

dσγe

dΩcm

(s, t)δ(2(k′cm · (pcm + kcm)− pcm · kcm))

(nγ′fe′ (1 + nγ)− nγfe (1 + nγ′))
(2.74)



CHAPTER 2. THE RELATIVISTIC BOLTZMANN EQUATION 35

At this point, it is convenient to express things in a Lorentz invariant way in order to
keep track of convenient quantities. Therefore, keeping that in mind, we shall express the
total energy in the center of momentum frame using the Mandelstam s-variable

s = (pcm + kcm)2 = (p0
cm + k0

cm)2 =⇒ p0
cm + k0

cm =
√
s (2.75)

as well as k0
cm

s− (mec)
2

2
= pcm · kcm = k0

cm

√
s =⇒ k0

cm =
s− (mec)

2

2
√
s

(2.76)

where we used in both expressions that pcm = −kcm.
Thus, the argument of the delta function is simplified by using the expression of the

four-momenta together with calculations above, yielding

k′cm · (pcm + kcm) = k0′
cm(p0

cm + k0
cm) = k0′

cm

√
s

pcm · kcm =
s− (mec)

2

2

which enables the expression of the delta function

δ(2(k′cm · (pcm + kcm)− pcm · kcm)) = δ

(
2
√
s

(
k0′

cm −
s− (mec)

2

2
√
s

))
=

1

2
√
s
δ

(
k0′

cm −
s− (mec)

2

2
√
s

)
(2.77)

where we used the delta function identity

δ(ax) =
1

|a|
δ(x)

Finally, we plug that back in the integral, while using the expression of k0
cm to yield

Iout =

∫
dk′cm

k0′
cm

2

(s− (mec)
2)

2

dσγe

dΩcm

(s, t)δ

(
k0′

cm −
s− (mec)

2

2
√
s

)
(nγ′fe′ (1 + nγ)− nγfe (1 + nγ′))

(2.78)

we use now spherical coordinates to compute the final integral. By aligning the z-axis

with the incoming photon direction, we have dk′cm = k0′
cm

2
dk0′

cmdΩcm. The integral over
the delta function is trivial, yielding 1 and imposing energy-momentum conservation, also
implicitly determining the primed quantities inside the distribution function argument in
terms of the electron-photon incoming states (unprimed labels), we have

Iout =
(s− (mec)

2)

2

∫
Ωcm

dΩcm
dσγe

dΩcm

(s, t) (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.79)

since
(s− (mec)

2)

2
= pcm · kcm

this yields for the Boltzmann equation

kµcm

∂nγ
∂xµcm

=

∫
pcm

∫
Ωcm

dp

p0
cm

(pcm · kcm) dΩcm
dσγe

dΩcm

(s, t) (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′))
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this equation is expressed in the center of momentum frame. Therefore, we now explore
invariance and observe that, because quantities are expressed in a manifestly covariant way
(including the cross section, which is a Lorentz invariant quantity because of dynamical
reversibility), we can transform the equation back to the original frame, where the collision
is given by

p+ k � p′ + k′

resulting in

kµ
∂nγ
∂xµ

=

∫
p

∫
Ω

dp

p0
(p · k) dσγe (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.80)

Finally, we rearrange terms to find

∂nγ
∂t

+ cn̂ · ∂nγ
∂x

= c

∫
p

∫
Ω

dp
p · k
p0k0

dσγe (nγ′fe′ (1 + nγ)− nγfe (1 + nγ′)) (2.81)

where we identify the Møller velocity (see Appendix A, Equation (A.21))

c
p · k
p0k0

= c
(p0k0 − p · k)

p0k0
= c

(
1− v

c
· n̂
)

while using the relations
k

k0
= n̂ and

p

p0
=

v

c

This proves the equivalence of the two representations of the relativistic Boltzmann
equation in the context of a photon-electron inert mixture. As mentioned before, our
calculation is adapted to work in more general systems, including in gases having a single
particle component (see for example (van Hees, 2020)).



Chapter 3

Scattering cross sections

In this chapter we shall see how to express scattering cross sections by using the
scattering matrix formalism from Quantum Field Theory. There are many good books
or reviews written about that and we do not intend here to explore this subject very
deeply. The interested reader can find more detailed discussions, for example, in (Jauch
& Rohrlich, 1976; Peskin & Schroeder, 1995; Weinberg, 1995; Silvester, 2014; Millar,
2014; Cannoni, 2017), these works will also be used to guide us throughout this chapter.
It is also true that this subject is very vast and, while this is a very general formalism,
which covers also many types of scattering processes, we will focus here in Compton
scattering, giving rise to the so-called Klein-Nishina cross section. For us, it will be
sufficient to consider (e.g. for the photon) unpolarized states, hence, we shall not be
concerned about complications arising from having polarization, which can be important
for some applications. Therefore, quantities appearing here will be regarded as averaged
over all polarization states. Finally, in last section we will be interested in how to express
this particular cross section in a way that explores its Lorentz invariance. In this chapter,
we shall also follow the convention of using natural units ~ = c = 1 in order to simplify
notation.

3.1 From scattering matrices to cross-sections

Scattering experiments are our main source of knowledge to understand the processes
that govern elementary particles. When dealing with them, we usually have in mind some
set of incoming states, also called in states, which interact, resulting in outgoing states,
also called out states. In the lab frame1 this corresponds to the general collisional scheme

p1 + p2 → {pf} = p′1 + p′2

where we restrict ourselves to binary collisions only. On one hand, we have seen in Chapter
2 that the main protagonist which links measurable quantities in the laboratory with the

1We note here that it is a common procedure in many references to refer as the lab frame the frame
where one of the particles (here we are thinking about binary states) is at rest. We shall differentiate
this frame, by calling it rest frame. The lab frame will then be the frame where the collision is being
performed in laboratory, and, thus, particles are allowed to have very general momenta, see Figure 3.3
for example.

37
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probability of having collisions is the scattering cross section, defined as

σ =
Rf

F
(3.1)

where

Rf = number of scattering events with binary final state per unit volume per unit time

and F is the incident flux of particles.
The cross section defined in such way is called the total cross section, the word total

only means that we are looking at all possible collisions that lead to a set of binary states.
The differential cross section is then defined by looking at collisions that lead to the
specific labeled out state f = (p′1, p

′
2), i.e

dσ =
dRf

F
(3.2)

where

dRf = number of scattering events with final state f = (p′1, p
′
2) per unit volume per unit time

In fact, according to our reasoning, it is worth thinking about differentials above as
differentials over the final momenta

d2σ

dp′1dp′2
.

On the other hand, in and out states are linked by the so-called scattering or S-matrix.
The idea is as follows: we start with the two particles infinitely far apart at time t = −∞,
so they are free particles2, we bring them close together while they interact via some
interaction described by your theory (e.g., electromagnetic interactions). Finally, after
they interact, the particles move away from each other again, so that at t = +∞ they are
infinitely far apart and free again. Therefore, the overlap of in and out states is given by
the elements of the S-matrix

Sfi = lim
t→∞
〈p′1p′2|U(t,−t) |p1p2〉 (3.3)

where
U(t,−t) = exp (−iH(2t))

is the time evolution operator, see for example (Peskin & Schroeder, 1995). The brackets
representing the momenta state should be regarded, as we mentioned in Chapter 2, as
truly quantum mechanical states in some Fock space of particles having some value of
momentum. As mentioned in this reference, the scattering matrix has the structure of

S = 1 + iT

where we have defined the matrix T , which represents the transition part of S, i.e, the
S-matrix has an identity component, which expresses that particles can miss each other,

2For more detailed discussions and clarification of jargon, like asymptotically free particles, we refer
the reader to (Peskin & Schroeder, 1995; Weinberg, 1995).
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even when some interaction is taking place, whereas T encodes the information related to
have a transition mediated by the interaction. Since energy-momentum must be conserved
there will always be a delta-function in the definition of T , such that we can define from
T the transition matrix M

〈p′1p′2|T |p1p2〉 = (2π)4δ(4)(p1 + p2 − p′1 − p′2) 〈p′1p′2|M |p1p2〉 (3.4)

Now we must relate the elements of the matrix M with the rate for having transitions
i → f , i.e, scattering events (p1, p2) → (p′1, p

′
2). Using the definition of the differential

cross section, we are looking into scattering events that leads to the final state f = (p′1, p
′
2).

Thus, in order to define a differential transition probability, we must use the infinitesimal
volume element in momentum space dp, writing

dRf =
dp′1

(2π)32E ′1

dp′2
(2π)32E ′2

M(p1, p2 → p′1, p
′
2)(2π)4δ(4)(p1 + p2 − p′1 − p′2) (3.5)

where we have defined the transition amplitude

M(p1, p2 → p′1, p
′
2) := | 〈p′1p′2|M |p1p2〉 |2

Above, the extra factors of 2π and E comes from the normalization of the one-particle
states (see for example (Cannoni, 2017)), where

〈p|p′〉 = (2π)3 2E δ(3)(p− p′)

so that we always divide the measure by (2π)3 2E to have the result normalized.
According to (Silvester, 2014; Millar, 2014; Cannoni, 2017), the invariant incident flux

of particles is given by3,4

F = 4
√

(p1 · p2)2 −m2
1m

2
2 (3.6)

This enables us to write for the differential scattering cross section

dσ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

dp′1
(2π)32E ′1

dp′2
(2π)32E ′2

M(p1, p2 → p′1, p
′
2)(2π)4δ(4)(p1+p2−p′1−p′2)

(3.7)
The equation above is far from being trivial, but should not confuse the reader. Recall

that we started from a suitable definition for the cross section, that is the transition rate
per flux (3.1), where we gave meaning to the transition rate Rf and the incident flux
F in terms of the incoming momenta and the transition part, T , of the S-matrix. We
have also seen that the term differential in the cross section definition is actually related
to restricting our final state to some labeled pair of out states (p′1, p

′
2), where we must,

then, drop the integration over the final states, giving meaning to dRf in (3.2). The exact

3The reader may note that the expression given in (Peskin & Schroeder, 1995) (and others), for
example, is slightly different from the one we give (there, F = 4E1E2|v1 − v2|). As carefully discussed
by (Cannoni, 2017), this flux is not Lorentz invariant and only holds for collinear velocities (this should
require the use of the center of momentum frame or rest frames, for instance.). However, this expression
is invariant under boosts along the z-direction.

4The task of deriving a Lorentz invariant expression for the flux which holds in any inertial reference
frame is, as (Cannoni, 2017) notes, not so straightforward and was first proposed by Møller in (Møller,
1945).
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derivation of (3.7) is something important but not subject of the present work, however,
we invite the reader to check (Peskin & Schroeder, 1995; Weinberg, 1995; Srednicki, 2007)
for more details. The construction of (3.7) involves working in the language of Quantum
Field Theory, where we can construct quantum states to the particles in some Fock space.
It is worth noting, however, that once an equation such as (3.7) is established, we can
start deriving expressions for the differential cross section, after calculating the transition
amplitude M of course. That is the subject of next section.

3.2 Klein-Nishina cross section

In this section we shall deal with scattering of photons and electrons, following mainly
(Jauch & Rohrlich, 1976; Silvester, 2014; Millar, 2014). As usual, we denote the collision
scheme as

p+ k → p′ + k′

Let us then begin by recalling the definition made in Chapter 2 of the Mandelstam vari-
ables

s := (p+ k)2 = 2p · k +m2
e (3.8)

= (p′ + k′)2 = 2p′ · k′ +m2
e

t := (k − k′)2 = −2k · k′ (3.9)

= (p′ − p)2 = −2p · p′ + 2m2
e

u := (p′ − k)2 = −2p′ · k +m2
e (3.10)

= (p− k′)2 = −2p · k′ +m2
e

as we mentioned, these are Lorentz invariant quantities which explore the collisional
degrees of freedom. For each Mandelstam variable, as we noted before, there is an extra
relation obtained by using energy-momentum conservation (that is the second line in each
of the definition). Since in the definition of the differential cross section, (3.7), we have
energy-momentum conservation guaranteed by the four-delta, we can use either expression
for each of the Mandelstam variables.

The transition amplitude M can be calculated to leading order5 by drawing the tree-
level Feynman diagrams. After taking the average over all polarization states of the
photon (recall that we are disregarding polarization), the transition amplitude for Comp-
ton scattering can be written in terms of the Mandelstam variables (see (Silvester, 2014;
Millar, 2014)) as

MKN(s, u) = 12πm2
eσT

{(
2m2

e

s−m2
e

+
2m2

e

u−m2
e

)2

+ 2

(
2m2

e

s−m2
e

+
2m2

e

u−m2
e

)
−u−m

2
e

s−m2
e

− s−m2
e

u−m2
e

}
(3.11)

5Note that now we are using the jargon of Quantum Field Theory, where one usually performs some-
thing called perturbative expansion to calculate these amplitudes to some desired order in the interaction
coupling. The terms appearing in this expansion are represented by the so-called Feynman diagrams of
the theory, see (Peskin & Schroeder, 1995; Weinberg, 1995).
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where me is the mass of the electron and σT is the total Thomson cross section as we have
seen previously. Upon using the Mandelstam variables in expression above we already
have in mind energy-momentum conservation. As matter of fact, recall that in definition
(3.7) of differential cross section we have the delta-function to impose energy-momentum
conservation, so that at the level of cross sections, this conservation always holds. There-
fore, in the transition amplitude (3.11), we can use either expression in (3.8), (3.9) and
(3.10) for the Mandelstam variables. Expressing s, u-variables in terms of momenta we
find

MKN(p, k → p′, k′) = 12πm2
eσT

{(
m2
e

p · k
− m2

e

p · k′

)2

+ 2

(
m2
e

p · k
− m2

e

p · k′

)
+
p · k′

p · k
+
p · k
p · k′

}
(3.12)

or

MKN(p, k → p′, k′) = 12πm2
eσT

{(
m2
e

p′ · k′
− m2

e

p′ · k

)2

+ 2

(
m2
e

p′ · k′
− m2

e

p′ · k

)
+
p′ · k
p′ · k′

+
p′ · k′

p′ · k

}
(3.13)

by using the second line in (3.8), (3.10). From (3.12) and (3.13) we clearly see dynamical
reversibility holding, since starting from (3.12) and performing the relabels to invert the
in and out states: p→ p′ and k → k′, we would end up with (3.13), so that

MKN(p, k → p′, k′) = MKN(p′, k′ → p, k) (3.14)

as expected. This, of course, leads to the dynamical reversibility of the transition rates as
defined in (2.57). More generally, dynamical reversibility is a property inherited from the
unitarity of the S-matrix, as we mentioned previously and as shown in (van Hees, 2020).

Finally, we can write the differential cross section as

dσKN =
1

2(s−m2
e)
MKN(s, u)

dp′

(2π)32E ′
dk′

(2π)32ω′
(2π)4δ(4)(p+ k − p′ − k′) (3.15)

where we have rewritten the flux6 (3.6) in terms of the Mandelstam variable s.
Our task now is to write equation (3.15) in terms of more physical quantities. Recall

that our ultimate goal is to find an expression in terms of the scattering solid angle

dσKN =
dσ

dΩ

KN

dΩ

However, as we have seen it is useful to express things in a Lorentz invariant way, so
that we not only explore the Lorentz invariance of the cross section but also have an easy
point of departure to dialogue between different reference frames. The natural way of
doing that is to use the Mandelstam variable t instead of the scattering solid angle Ω

dσKN =
dσ

dt

KN

dt

6Since p · k > 0, we do not need to worry about a possible absolute value that may appear in the flux.
In fact it is easy to see the inequality if we move to the center of momentum frame. In this frame it
can be shown that pcm · kcm = (Ecm + ωcm)ωcm, which is a positive quantity. Now, since s is a Lorentz
invariant, it must be also positive in any other frame.
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from its expression (3.9), t is clearly related to the scattering solid angle, k · k′.
To simplify (3.15) we must eliminate the delta-function and we can do this by going

to the total cross section

σKN =

∫
dp′

(2π)32E ′
dk′

(2π)32ω′
1

2(s−m2
e)
MKN(s, u)(2π)4δ(4)(p+ k − p′ − k′) (3.16)

where we compute some integrals while using the delta function to reduce the degrees
of freedom of the measure. As we have seen, the total cross section is a Lorentz invari-
ant quantity, so that we can perform this integral in any convenient frame of reference.
Mimicking what we have done in Section 2.5, we shall work in the center of momentum
frame

Figure 3.1: The center of momentum frame of the photon-electron scattering. In this
frame the total momentum is zero, i.e., pcm + kcm = 0 = p′cm + k′cm.

Using again identity (2.73), we can perform the integral over the electron momentum,
yielding

σKN =
1

4(2π)2

∫
dk′cm

ω′cm

MKN(s, u)

(s−m2
e)
δ(2(k′cm · (pcm + kcm)− pcm · kcm)) (3.17)

moving to spherical coordinates and aligning our z-axis in the direction of the incom-
ing photon, we have dk′cm = dΩcm ω

′
cm

2 dω′cm. On the other hand, the delta-function is
simplified, yielding

δ(2(k′cm · (pcm + kcm)− pcm · kcm)) =
1

2
√
s
δ

(
ω′cm −

s−m2
e

2
√
s

)
where we used (2.77) from Section 2.5. Using all that in (3.17) and performing the integral
over the radial direction enables the expression

σKN =
1

16(2π)2

∫
dΩcm

MKN(s, u)

s
(3.18)

Looking at (3.9), we have

dt = 2ωcmω
′
cmd cos θcm

=
1

π
ωcmω

′
cmdΩcm

=
1

π
ω2
cmdΩcm
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where we have used that d cos θcm = 1
2π

dΩcm because of azimuthal symmetry and that

ωcm = ω′cm

because of conservation of energy-momentum. In fact we can check this by observing that
energy-momentum conservation yields

p+ k = p′ + k′ =⇒ p′2 = (p+ k − k′)2

m2
e = m2

e + 2p · k − 2p · k′ − 2k · k′

(3.19)

so that

p+ k = p′ + k′ =⇒ p · k = p · k′ + k · k′ (3.20)

but it holds that
pcm + kcm = 0 = p′cm + k′cm

in the center of momentum frame, so that we can write

pcm · kcm = Ecmωcm + ω2
cm

pcm · k′cm = Ecmω
′
cm + kcm · k′cm

kcm · k′cm = ωcmω
′
cm − kcm · k′cm

yielding
ωcm = ω′cm (3.21)

in (3.20). Substituting dΩcm back in (3.18) we can write

σKN =
1

16π

1

4

∫
dt
MKN(s, u)

s ω2
cm

=
1

16π

∫
dt
MKN(s, u)

(s−m2
e)

2
(3.22)

where we used that

ωcm =
s−m2

e

2
√
s

as we find using the definition of s or looking at (2.76) in Section 2.5. Finally, we invoke
the Fundamental Theorem of Calculus to write

dσ

dt

KN

=
1

16π(s−m2
e)

2
MKN(s, u) (3.23)

where the transition amplitude is given by (3.11).
This expression is Equation (2.69) in Section 2.5, which was the starting point for

showing the equivalence between both descriptions of the relativistic Boltzmann equation.
Here, we have seen how to start from the natural definition of the differential cross section,
while reducing the degrees of freedom with the four-delta to find an expression in terms
of the Mandelstam variables for the Klein-Nishina differential cross section. The above
expression explicitly exhibits the Lorentz invariance of dσKN (since all quantities are
expressed in terms of s, u, t).
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From (3.23) we can calculate the differential cross section in any inertial frame of
reference7 and, in order to do that, we just need to express the Mandelstam variables
in the frame we are interested. To see how that works, let us move to the electron rest
frame8. In this frame, the observer sees the collision

Figure 3.2: Photon-electron scattering as seen in the rest frame of the electron. In this
frame, the initial electron momentum is zero prest = 0.

Therefore we can write for the four-momenta

krest = (ωrest,krest) ; k′rest = (ω′rest,k
′
rest)

prest = (Erest, 0) = (me, 0) ; p′rest = (E ′rest,p
′
rest)

yielding for the Mandelstam variables

s = 2Erestωrest +m2
e =⇒ (s−m2

e) = 2meωrest

t = −2ωrestω
′
rest(1− n̂rest · n̂′rest)

u = −2Erestω
′
rest +m2

e =⇒ (u−m2
e) = −2meω

′
rest

where n̂rest = krest/ωrest (analogously for n̂′rest) and we define the rest frame scattering
angle n̂rest · n̂′rest = cos θrest.

Thus, the transition amplitude (3.11) can be written as

MKN
rest = 12πm2

eσT

{(
me

ωrest

− me

ω′rest

)2

+ 2

(
me

ωrest

− me

ω′rest

)
+
ω′rest

ωrest

+
ωrest

ω′rest

}
(3.24)

To find the differential cross section in terms of the scattering angle we must change
variables

t→ Ωrest

looking the t-variable expression we see that it depends on ω′rest and, differently than
in Section 2.5 and before, energy-momentum conservation is taking place now, so that
ω′rest = ω′rest(Ωrest).

Let us then start with (3.20) while expressing quantities in the rest frame of the
electron to find a relation for ω′rest. Equation (3.20) can be written as

meωrest = meω
′
rest + ωrestω

′
rest(1− cos θrest) =⇒ ω′rest =

ωrest

1 + ωrest

me
(1− cos θrest)

(3.25)

7This is a common trick in Special Relativity, where we write things in a Lorentz invariant way to
extend the definition of quantities to any inertial frame of reference.

8We emphasize again that some references call this the laboratory frame.
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this is the well-known Compton formula when the electron is initially at rest. Using that
in t we have

t =
−2ω2

rest(1− cos θrest)

1 + ωrest

me
(1− cos θrest)

which yields
dt

d cos θrest

=
2ω2

rest(
1 + ωrest

me
(1− cos θrest)

)2 = 2ω′
2
rest (3.26)

Since we are dealing with unpolarized photons, the scattering respects azimuthal sym-
metry

dΩrest = 2πd cos θrest

and we write for dt

dt =
1

π
ω′

2
restdΩrest (3.27)

Using that and s in (3.23) gives the differential cross section in terms of the scattering
solid angle

dσ

dΩ

KN

rest
=

1

16π24m2
e

(
ω′rest

ωrest

)2

MKN
rest (3.28)

Finally, we observe that a slight rearrange of (3.25) yields

me

ωrest

− me

ω′rest

= (1− cos θrest) (3.29)

and we recognize the first and second parcel appearing in (3.24). Thus, simplifying terms
in (3.28) and (3.24) we find the famous Klein-Nishina differential cross section in the rest
frame of the electron (Klein & Nishina, 1994)

dσ

dΩ

KN

rest
=

3σT
16π

(
ω′rest

ωrest

)2 [
ω′rest

ωrest

+
ωrest

ω′rest

− sin2 θrest

]
(3.30)

When the scattering is non-relativistic (ωrest � me), the Compton shift is negligible
(ωrest ≈ ω′rest) and (3.30) gives

dσ

dΩ

Th

rest
=

3σT
16π

(
1 + cos2 θrest

)
(3.31)

this is the Thomson differential cross section in the rest frame of the electron, usually
referred in literature (Jauch & Rohrlich, 1976) as the non-relativistic limit of the Klein-
Nishina differential cross section, as we have seen here.

Now that we have witnessed how expression (3.23) works, it only remains to show how
we can express the Klein-Nishina differential cross section in the very general frame we
call laboratory frame, that is the frame where the observer sees the collision
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Figure 3.3: Photon-electron scattering as seen in the lab frame. In this frame, particles
are allowed to have any value of (initial) momenta.

The four-momenta are now given by

k = (ω,k) ; k′ = (ω′,k′)

p = (E,p); p′ = (E ′,p′)

the generality of this frame allows particles to have any initial momenta (of course final
momenta are bound by energy-momentum conservation) and will give rise to the covariant
version (sometimes we will also call it the frame-independent version) of the Klein-Nishina
differential cross section, which holds in any inertial frame of reference.

As before we can express the Mandelstam variables as

s = 2Eω(1− v · n̂) +m2
e

t = −2ωω′(1− n̂ · n̂′)
u = −2Eω′(1− v · n̂′) +m2

e

where we have defined the scattering angle according to the following scheme

Figure 3.4: Collision scheme in the laboratory frame, highlighting the scattering angle
θ and angles of the incoming electron momentum with the incoming photon, α, and
outgoing photon, α′.

Thus, n̂ · n̂′ = cos θ, with n̂(′) = k(′)/ω(′) the unit vector along the direction of the
photon movement.

The outgoing photon frequency is not independent from the incoming one, they are
connected, of course, by conservation of energy-momentum. Hence, using (3.20), we write

Eω(1− v · n̂) = Eω′(1− v · n̂′) + ωω′(1− n̂ · n̂′)
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or, rearranging terms

ω′ =
ω(1− v · n̂)

1− v · n̂′ + ω
E

(1− n̂ · n̂′)
(3.32)

Restoring, for a brief moment, SI units we can express above equation as

ω′ − ω =
cp · (n̂′ − n̂)− ~ω(1− n̂ · n̂′)

γvmec2 [1− p · n̂′/γvmec+ (~ω/γvmec2)(1− n̂ · n̂′)]
ω (3.33)

where we used the initial momentum of the electron instead of the velocity. Of course
that in SI units they are related by

v

c
=

cp

γvmec2

(3.33) is the Compton shift equation (Longair, 2010), less well-known to the case where
the electron is not initially at rest. Expression (3.33) will be important in Chapter 4 and
5.

It is also interesting to note that (3.32) and (3.33) both hold in any inertial reference
frame, so that, in this sense, it is a frame-independent expression. As a matter of fact,
(3.32) and (3.33) are both Lorentz invariant expressions, due to the invariance of (3.20)
(recall that the four-product is clearly a Lorentz invariant quantity). Quantities with
the same property as (3.32) and (3.33), that is the property of finding expressions for
different frames by simply writing quantities in that particular frame, we sometimes refer
to as frame-independent9.

So, for example, if we require v = 0, setting the Lorentz factor to γv = 1, so that we
are in the rest frame of the electron, (3.32) and (3.33) reduce to (3.25). Similarly we can
do that for the center of momentum frame to find (3.21).

Now going back to (3.23) and using (3.32), the t variable can be written as

t =
−2ω2(1− |v| cosα)(1− cos θ)

1− |v| cosα′ + ω
E

(1− cos θ)
(3.34)

where we have used the definition of the angle between the incoming electron-incoming
photon α, incoming electron-outgoing photon α′ (see Figure 3.4). To find the derivative
with respect to the scattering angle, we must note that α′ is not independent from θ, in
fact, if φ is the angle between the planes formed by k,p and k,k′ we have (see (Jauch &
Rohrlich, 1976))

cosα′ = cosα cos θ + sinα sin θ cosφ

using that in (3.34) and rearranging terms similarly as before enables the expression

dt

d cos θ
= 2

[
ω(1− |v| cosα)

1− |v| cosα′ + ω
E

(1− cos θ)

]2

= 2ω′
2

(3.35)

leading to

dt =
1

π
ω′

2
dΩ.

9Of course that, formally, this is just a manifestation of Lorentz invariance or covariance. Nevertheless,
frame-independence avoids the, sometimes confusing, jargon.
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Using dt and s we can write for (3.23)

dσ

dΩ

KN

=
1

16π2

1

4E2

(
ω′

ω

)2
1

(1− v · n̂)2
MKN(s, u) (3.36)

while the transition amplitude is given substituting s and u. For now, we write as before

MKN = 12πm2
eσT

{(
m2
e

p · k
− m2

e

p · k′

)2

+ 2

(
m2
e

p · k
− m2

e

p · k′

)
+
p · k′

p · k
+
p · k
p · k′

}
(3.37)

By using (3.32) we can write the prefactor in front of the transition amplitude in (3.36)
as

1

16π2

1

4E2

(
ω′

ω

)2
1

(1− v · n̂)2
=

1

16π2

1

4m2
e

[
1

γv(1− v · n̂′ + ω
E

(1− n̂ · n̂′))

]2

(3.38)

On the other hand, substituting the four-momenta and (3.32) in the transition ampli-
tude gives for each parcel in (3.37)

p · k′

p · k
+
p · k
p · k′

= 1 +
ω(1− n̂ · n̂′)
E(1− v · n̂′)

+
1− v · n̂′

1− v · n̂ + ω
E

(1− n̂ · n̂′)
(3.39)

m2
e

p · k
− m2

e

p · k′
= − 1− n̂ · n̂′

γ2
v(1− v · n̂)(1− v · n̂′)

(3.40)

Replacing (3.39) and (3.40) in (3.36) results in

MKN = 12πm2
eσT

{
1+

[
1− (1− n̂ · n̂′)

γ2
v(1− v · n̂)(1− v · n̂′)

]2

+
ω2(1− n̂ · n̂′)2

E2(1− v · n̂′)(1− v · n̂′ + ω
E

(1− n̂ · n̂′))

}
(3.41)

Finally, we substitute (3.38) and (3.41) in (3.36) to find

dσ

dΩ

KN

=
3σT
16π

1

γ2
v(1− v · n̂′ + ω

E
(1− n̂ · n̂′))2

{
1 +

[
1− (1− n̂ · n̂′)

γ2
v(1− v · n̂)(1− v · n̂′)

]2

+
ω2(1− n̂ · n̂′)2

E2(1− v · n̂′)(1− v · n̂′ + ω
E

(1− n̂ · n̂′))

}
(3.42)

Above expression is the covariant10 representation of the Klein-Nishina cross section.
It is frame-independent in the same sense as (3.32), so that finding the expression for
this differential cross section in any particular frame is as easy as writing a subscript in
the quantities appearing in (3.42), while expressing them in the particular frame. To see
how this works, let us move to the rest frame of the electron. Now, every quantity in

10In light of our discussion of Chapter 2, the full differential cross section, dσ is Lorentz invariant, while
the differential cross section in terms of the solid angle, dσ

dΩ , is “only” covariant. This happens because
we expect the scattering angle to transform non-trivially between different frames.
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(3.42) must have the subscript “rest”. We know that vrest = 0, γv = 1, E = me while
dΩ→ dΩrest and so on. This enables writing (3.42) as

dσ

dΩ

KN

rest
=

3σT
16π

1

(1 + ωrest

me
(1− cos θrest))2

{
1 + cos2 θrest +

ω2
rest(1− cos θrest)

2

m2
e(1 + ωrest

me
(1− cos θrest))

}
Now we use (3.25) and (3.29) to find

dσ

dΩ

KN

rest
=

3σT
16π

(
ω′rest

ωrest

)2{
1 + cos2 θrest +

ωrestω
′
rest

m2
e

(
me

ωrest

− me

ω′rest

)2}
(3.43)

where a rearranging is in order to find (3.30). Therefore, as we have checked, it is very
straightforward to find the expression for the differential cross section in any inertial frame
of reference, while starting from (3.42). Again, this is just a consequence of the Lorentz
invariance of (3.23) in the same way that (3.32) is a consequence of the Lorentz invariance
of (3.20). As we state in (Oliveira et al., 2021), expression (3.42) for the Klein-Nishina
cross section, to which we refer here sometimes as the frame-independent version, appears
in (Barbosa, 1982), but a derivation is not shown there. Jauch and Rohrlich (Jauch &
Rohrlich, 1976) give a derivation, but only express the differential cross section in terms
of the scattering matrix. Since we could not find any other reference which contains the
exact equation (3.42) we have chosen to dedicate this chapter to this discussion. However,
we also note here that once established the correct (and not so enlightening) expression
above, we only need the first few orders of its expansion.

A dimensional analysis can be done in (3.42) to find, in SI units, the expression

dσ

dΩ

KN

=
3σT
16π

1

γ2
v

(
1− p · n̂′/γvmec+ ~ω

γmec2
(1− n̂ · n̂′)

)2

{
1 +

[
1− (1− n̂ · n̂′)

γ2
v(1− p · n̂/γvmec)(1− p · n̂′/γvmec))

]2

+

(
~ω

γvmec2
(1− n̂ · n̂′)

)2

(1− p · n̂′/γvmec)(1− p · n̂′/γvmec+ ~ω
γvmec2

(1− n̂ · n̂′))

}
(3.44)

this is the expression for the Klein-Nishina differential cross section we will use in Chapter
4. As we will see, (3.44) is the correct and natural way of expressing the cross section which
appears in the relativistic Boltzmann equation. The reason is simply due to the fact that,
in (3.44), photons and electrons are allowed to have any initial value of momenta, while
final momenta is obtained from the initial by energy-momentum conservation. Thus, to
be viewed truly as a differential transition probability for repeated scattering processes (as
is the case of the Boltzmann equation) we must describe any possible collision scheme11

and (3.44) exactly accounts for that (see also the discussion in Section 4.4 and Chapter
7).

11And not only the ones in which the electron is initially at rest, as it would be the case if we would
use the expression for the differential cross section in the rest frame of the electron (3.30).



Chapter 4

The Kompaneets equation

In this chapter we are going to turn our attention to the derivation of the Kompaneets
equation, while showing how to perform the diffusion approximation as Kompaneets origi-
nally proposed consistently. In fact, this was already shown by us in (Oliveira et al., 2021),
so that many times we will use the notation, words and ideas from this paper. However,
it is possible that the reader may find a slightly different exposition of the subject in
this present work. In particular, our framework is more direct than that of (Kompaneets,
1957; Dreicer, 1964; Weymann, 1965; Katz, 1987; Rybicki & Lightman, 2008) because we
do not use in the derivation itself that the Planck distribution is the stationary solution
of the relativistic Boltzmann equation.

The diffusion approximation to the Boltzmann equation of an electron-photon gas to
yield the Kompaneets equation can also be proven rigorously by requiring certain condi-
tions on the possible differential cross sections, this was done by (Escobedo & Mischler,
2001). However, Escobedo and Mischler do not explicitly link these conditions to the
Thomson/Klein-Nishina cross section nor do they address the same problems we treat
here.

4.1 Diffusion approximation to the standard Boltz-

mann equation

As originally proposed by Kompaneets (Kompaneets, 1957), let us consider an inert
mixture of photons and electrons, interacting via Compton effect. We shall assume that
the occupation number distribution function of the photons is isotropic and homogeneous

n(t,x,k) = n(t, ω)

Similarly, we also assume that the electrons distribution function is homogeneous and
isotropic, given according to Maxwell-Boltzmann at temperature T

f(t,x,p)d3p = fEq(|p|)d3p = ne(2πmekBT )−3/2 exp

(
−
p2
x + p2

y + p2
z

2mekBT

)
d3p (4.1)

where ne,me is the density of electrons and the electron mass, respectively. We also have
chosen to drop the subscripts for a simpler notation.

50
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Then, we can write the relativistic Boltzmann equation (2.67) of this system as

∂n

∂t
(t, ω) = c

∫
p

∫
Ω

dp
(

1− v

c
· n̂
)

dσγe

(n(t, ω′)fEq(|p′|) (1 + n(t, ω))− n(t, ω)fEq(|p|) (1 + n(t, ω′)))
(4.2)

where we already assumed non-degeneracy of the electron gas.
As we have seen, dynamical reversibility makes this a master-type equation, with the

number of photons

N = 2

∫
dk

(2π~)3
n(t,k) =

1

π2c3

∫
dω ω2n(t, ω) (4.3)

being conserved. Above, the factor of 2 comes from the degeneracy factor of photons.
As the correct cross section, we shall use the general frame-independent expression of

the Klein-Nishina differential cross section

dσγe = dΩ
dσ

dΩ

KN

(p, n̂,Ω) (4.4)

where

dσ

dΩ

KN

(p, n̂,Ω) =
3σT
16π

1

γ2
v

(
1− p · n̂′/γvmec+ ~ω

γmec2
(1− n̂ · n̂′)

)2

{
1 +

[
1− (1− n̂ · n̂′)

γ2
v(1− p · n̂/γvmec)(1− p · n̂′/γvmec))

]2

+

(
~ω

γvmec2
(1− n̂ · n̂′)

)2

(1− p · n̂′/γvmec)(1− p · n̂′/γvmec+ ~ω
γvmec2

(1− n̂ · n̂′))

}
(4.5)

is the covariant expression of the Klein-Nishina differential cross section we have found
and discussed in Chapter 3.

Upon writing (4.5), we have in mind this very general frame of reference (see Figure
3.3) in which the observer sees the collision scheme

p +
~ω
c

n̂ 
 p′ +
~ω′

c
n̂′

defining the scattering angle cos θ = n̂ · n̂′.
Since this frame of reference is the one where the observation (or experiment) is taking

place, we use the convention of calling it the lab frame (see Chapter 3). As we shall see,
it would be inconsistent for this set up to use the cross section evaluated in the rest frame
of the electron, for example.

Let us assume, exactly as phrased in (Oliveira et al., 2021) and as Kompaneets orig-
inally proposed, that: (i) the electrons are in thermal equilibrium at temperature T ; (ii)
the photons are soft, meaning that their energy is very small compared to the rest energy
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of the electron (~ω � mec
2), but of same order of the electron bath energy (~ω ∼ kBT )

; (iii) electrons are non-relativistic (|p| � mec or kBT � mec
2) and non-degenerate. By

combining (ii) and (iii) we conclude also that energy is transferred in small amounts only,
permitting the continuum (or diffusion) approximation1.

Points (ii) and (iii) suggest an expansion in terms of the energy shift. For this purpose
we define the dimensionless energy shift

∆ :=
~(ω′ − ω)

kBT

by looking at the Compton shift (3.33), we have

∆(ω,p) =
~ω
kBT

cp · (n̂′ − n̂)− ~ω(1− n̂ · n̂′)
γmec2 [1− p · n̂′/γmec+ (~ω/γmec2)(1− n̂ · n̂′)]

(4.6)

It will be convenient to make the following natural change of variables

ω → x :=
~ω
kBT

ω′ → x′ :=
~ω′

kBT

returning to the relativistic Boltzmann equation (4.2) and using the variables above, we
can express the photon occupation number distribution function up to second order in
the energy shift as

n(x′, t)(1 + n(x, t)) = n(x, t)(1 + n(x, t)) + (1 + n(x, t))
∂n

∂x
∆ + (1 + n(x, t))

∂2n

∂x2

∆2

2
(4.7)

n(x, t)(1 + n(x′, t)) = n(x, t)(1 + n(x, t)) + n(x, t)
∂n

∂x
∆ + n(x, t)

∂2n

∂x2

∆2

2
(4.8)

As we will see in next chapter, this diffusion approximation is nothing more than an
instance of a continuous Kramers-Moyal expansion. Now, by using conservation of energy
in the electron distribution

E ′ = E −∆ kBT

we can express the distribution function evaluated in the outgoing momentum in terms
of the incoming electron momentum and the energy shift only

fEq(|p′|) = fEq(|p|)
(

1 + ∆ +
∆2

2

)
(4.9)

Let us now take (4.7)–(4.8) and (4.9) to substitute back in (4.2), obtaining a very
concise expression for the spatio-temporal dynamics of the photon occupation number

∂n

∂t
=

[
∂n

∂x
+ n(1 + n)

]
I1(x) +

[
1

2

∂2n

∂x2
+ (1 + n)

(
n

2
+
∂n

∂x

)]
I2(x) (4.10)

1In fact, the transfer of energy depends both on the incoming ω and p as dictated by the Compton
formula (4.6) and, to the lowest order, it is proportional to the product of both.
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where,

I`(x) = c

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ

KN

(p, n̂,Ω) fEq(|p|)∆` (4.11)

the calculation of these integrals, with ` = 1, 2, will be done in Appendix B. These integrals
will be referred, from now on, as the first (I1(x)) and second (I2(x)) Kompaneets’ integrals,
and they yield the result

I1(x) =
neσT c kBT

mec2
x(4− x) (4.12)

I2(x) =
neσT c kBT

mec2
2x2 (4.13)

By plugging that back in (4.10) and performing some standard manipulations we are
left with

x2∂n

∂t
(x, t) =

neσT c kBT

mec2

∂

∂x
x4

{
∂n

∂x
(x, t) + n(x, t)(1 + n(x, t))

}
(4.14)

which is the Kompaneets equation in terms of the dimensionless variable x. We could, of
course, substitute back x = ~ω/kBT to find

ω2∂n

∂t
(t, ω) =

neσT c

mec2

∂

∂ω
ω4

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
(4.15)

as desired.

4.2 Diffusion approximation to the manifestly covari-

ant Boltzmann equation

In this section we shall demonstrate how to perform the diffusion approximation to
the relativistic covariant Boltzmann equation. This section will follow closely the work
of (Brown & Preston, 2012). We will also follow Brown’s convention of using natural
units, thus, throughout this section ~ = c = kB = 1. By doing that, the four-momenta
participating in the collision are

k = (ω,k) ; k′ = (ω′,k′)

p = (E,p) ; p′ = (E ′,p′)

where we are looking at the scheme

p+ k 
 p′ + k′

We begin by writing the Boltzmann equation for an inert mixture of photons and
electrons interacting via Compton effect, this is just equation (2.68), where we assume
isotropy and homogeneity as before, yielding

ω
∂n

∂t
(t, ω) =

∫
dp

E

dk′

ω′
dp′

E ′
W γe(p, k → p′, k′)

(
n(t, ω′)fEq(p

′) (1 + n(t, ω))

− n(t, ω)fEq(p) (1 + n(t, ω′))
)

(4.16)
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Upon integrating the electron bath, we can write this equation as a Boltzmann-master
equation for the photons only

ω
∂n

∂t
(t, ω) =

∫
dk′

ω′
(W (k′ → k)n(t, ω′) (1 + n(t, ω))−W (k → k′)n(t, ω) (1 + n(t, ω′)))

(4.17)

where the rates are now given by

W (k′ → k) =

∫
dp

E

dp′

E ′
W γe(p, k → p′, k′)fEq(p

′) (4.18)

W (k → k′) =

∫
dp

E

dp′

E ′
W γe(p, k → p′, k′)fEq(p) (4.19)

Following the discussion in Section 4 of our work (Oliveira et al., 2021), we can slightly
rewrite Equation (4.19) to find

W (k → k′) =

∫
dp

E

dp′

E ′
W γe(p, k → p′, k′)fEq(p

′)
fEq(p)

fEq(p′)
(4.20)

and, if the electrons are in thermal equilibrium with inverse temperature β = 1/T , we
verify that

fEq(p)

fEq(p′)
= e−β(E−E′) = e−β(ω′−ω), (4.21)

where the last equality follows from conservation of energy in the collisions.
Inserting (4.21) into (4.20) yields the dynamical reversibility relation2 for the photon

transition rates (4.18), (4.19)

W (k′ → k)

W (k → k′)
= e−β(ω−ω′) (4.22)

We shall use now Definition (2.57) of the transition rates to write

W γe(p, k → p′, k′) =
1

16(2π)6
MKN(p, k → p′, k′)(2π)4δ(4)(p+ k − p′ − k′)

where MKN(p, k → p′, k′) is the Compton effect scattering amplitude, which we have seen
in Chapter 3 that it is given by

MKN(p, k → p′, k′) = 12πm2
eσT

{(
m2
e

p · k
− m2

e

p · k′

)2

+ 2

(
m2
e

p · k
− m2

e

p · k′

)
+
p · k′

p · k
+
p · k
p · k′

}
(4.23)

This enables the expression of (4.18) and (4.19) in terms of the scattering amplitude

W (k′ → k) =
1

4(2π)2

∫
dp

2E

dp′

2E ′
MKN(p, k → p′, k′)δ(4)(p+ k − p′ − k′)fEq(p′)

W (k → k′) =
1

4(2π)2

∫
dp

2E

dp′

2E ′
MKN(p, k → p′, k′)δ(4)(p+ k − p′ − k′)fEq(p)

2Sometimes also called the detailed balance relation for the transition rates as noted in Chapter 2.
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At this point, it is convenient to rewrite equation (4.17) as

∂n

∂t
(t, ω) =

∫
ω′

2
dω′

(
W (ω′ → ω)n(t, ω′) (1 + n(t, ω))−W (ω → ω′)n(t, ω) (1 + n(t, ω′))

)
(4.24)

while also defining the isotropic transition rates

W (ω′ → ω) =
1

ωω′

∫
dΩW (k′ → k) (4.25)

W (ω → ω′) =
1

ωω′

∫
dΩW (k → k′) (4.26)

where in the integration of the photon outgoing momenta, we have aligned our z-axis
in the direction of its incoming momentum, so that the solid angle dΩ is actually the
scattering solid angle3.

Making the usual assumptions that the photons are soft and the electrons are non-
relativistic distributed according to (4.1), we can perform, similarly than before, the con-
tinuum Kramers-Moyal expansion in the energy shift of these rates. Since this expansion
is highly non trivial, we shall address it in Appendix C, yielding

W (ω′ → ω) =
neσT
me

{(
me +

7

4
T

)
δ(ω′ − ω)

ωω′
− δ′(ω′ − ω) + Tδ′′(ω′ − ω)

}
+O

(
(ω′ − ω)

3
)

(4.27)

W (ω → ω′) =
neσT
me

{(
me +

7

4
T

)
δ(ω − ω′)
ωω′

− δ′(ω − ω′) + Tδ′′(ω − ω′)
}

+O
(

(ω − ω′)3
)

(4.28)

where the primes denote the (formal) derivative of the delta-function with respect to shift
ω′ − ω.

Finally, we insert that back in Equation (4.24). After computing the delta-function
integrals (see Appendix C), we find the Kompaneets equation expressed in natural units

ω2∂n

∂t
(t, ω) =

neσT
me

∂

∂ω
ω4

{
T
∂n

∂ω
(t, ω) + [1 + n(t, ω)]n(t, ω)

}
(4.29)

a dimensional analysis is in order to easily retrieve (1.1).

4.3 The structure of the Kompaneets equation

Reproducing in this paragraph, as mentioned in our work (Oliveira et al., 2021), the
Kompaneets equation is composed by two terms inside the brackets in the right hand
side: the first parcel is purely a diffusive term due to Doppler shift experienced by the
photons in the reference frame of the electrons. The drift term (second parcel), describes
stimulated emission and the Compton recoil. The so-called Comptonization, i.e., the
redistribution of photon energies scattered by electrons consists of two terms indeed, both
suppressed by the same factor of mec

2, the diffusion, because the electron is moving so

3This is the same trick we used in Section 2.5.
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slowly (depending on kBT/mec
2) that the Doppler shift is almost negligible, and the drift,

because it is divided by the reduced Compton frequency ωc = mec
2/~ ≈ 7.76× 1020 Hz,

so that there is barely any recoil.
This equation has also a structure of a continuity equation in the photon number (4.3)

dN

dt
∝
∫ ∞

0

dω ω2∂n

∂t
(t, ω) =

∫ ∞
0

dω
∂

∂ω
{ω2jt(ω)} = 0 (4.30)

so that the photon number is conserved as it should be (remember that Compton scat-
tering preserves number of photons). Such behavior is not surprising since we start from
a relativistic Boltzmann equation which is ab initio constructed to preserve number of
particles.

The current vanishes in equilibrium and it is easy to check that if we take

n(t, ω) = nEq(ω) =
1

exp (β~ω)− 1

the current is identically zero
jt(ω) ≡ 0,

since in this case a straightforward calculation gives

kBT
∂

∂ω
nEq(ω) = −~ [1 + nEq(ω)]nEq(ω).

If we were to calculate, for example, higher order corrections to this equation, we would
expect extra terms in the current. However, as (Brown & Preston, 2012) showed, these
relativistic corrections would still retain the structure of a continuity equation, with all
extra terms vanishing separately in equilibrium for the Bose-Einstein distribution.

As a matter of fact, the full current vanishing for the Bose-Einstein distribution is
indeed a manifestation of detailed balance in the Boltzmann equation, where we readily
see that requiring

nEq(ω
′)fEq(|p′|) (1 + nEq(ω)) = nEq(ω)fEq(|p|) (1 + nEq(ω

′))

implies

nEq(ω)

(1 + nEq(ω))
= eβ(E−E′) nEq(ω

′)

(1 + nEq(ω′))
=⇒ nEq(ω)

(1 + nEq(ω))
= eβ(~ω′−~ω) nEq(ω

′)

(1 + nEq(ω′))
(4.31)

which leads to the Bose-Einstein distribution naturally

eβ~ω
nEq(ω)

(1 + nEq(ω))
= constant = eβµ = 1 (4.32)

where we used the chemical potential of photons µ = 0.
However, a more general argument in the context of a non-equilibrium electron bath

should not rely on this fact, because in this case we cannot guarantee Equation (4.31),
such that a derivation which does not depend on the equilibrium solution from the start
is worthwhile.
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From the occupation number distribution function of photons we can calculate various
important quantities, one of which is the spectral energy density

Eγ(t, ω) ∝ ~
(ω
c

)3

n(t, ω),

when the Bose-Einstein (equilibrium) distribution is reached, this spectral density will
form the well-know black-body radiation spectrum. If we were to modify Kompaneets
equation to yield a different equilibrium solution other than Bose-Einstein, the equilibrium
spectral density will no longer be Planckian and we would naturally expect departures
from the black-body spectrum. Such modification could be, for example, due to a non-
equilibrium electron bath, which, in nature, should modify the spatio-temporal dynamics
of the Kompaneets equation. See for example (Baiesi et al., 2020) for an interesting
realization of this. For a more detailed discussion of various aspects of the Kompaneets
equation, we invite the reader to also check (Shirk, 2006).

As we also mention in (Oliveira et al., 2021), the long time behavior of the Kompaneets
equation is very interesting (see e.g (Procopio & Burigana, 2009; Burigana et al., 2010)
for a numerical code) and we will briefly mention here a feature often omitted in many
references, that is the Bose-Einstein condensation. Suppose that we start with a gas hav-
ing N0 photons, that is, at t = 0, N(t = 0) = N0. We observe now that the Bose-Einstein
distribution is solely determined by the parameter β, i.e., the (inverse) temperature of
the electron bath, so that, from the start, the number of photons that “fits” under the
Bose-Einstein curve is fixed by the temperature of the electron bath, and this number is
given by

NBE(β) =
1

π2c3

∫
dω ω2nEq(ω)

Therefore, a simple reasoning leads us to conclude that if N0 > NBE(β), the remaining
photons N0−NBE(β) cannot disappear, since Kompaneets equation is number preserving.
In fact, they will form a Bose-Einstein condensate at ω = 0. For a very detailed and
rigorous description of such interesting phenomenon, see (Escobedo & Mischler, 2001;
Levermore et al., 2016). For us, it suffices to note here, in addition, that depending on
the initial number of photons, the limiting photons as t ↑ ∞ will have a Bose-Einstein
distribution component (neq(ω)), as well as a condensate (for ω = 0).

4.4 The importance of a consistent description

In this section we shall address the consistency problems in many derivations, e.g.,
(Katz, 1987; Liu, D.-B. et al., 2004; Rybicki & Lightman, 2008; Zhang & Chen, 2015)
of the Kompaneets equation, including his original paper (Kompaneets, 1957). These
problems were already mentioned in Chapter 1 but here we discuss it in a more detailed
manner.

Before we start, it is worth emphasizing that these problems mainly (or only) occur in
the standard description of the Boltzmann equation while working with the set up pro-
posed by Kompaneets in 1957. To understand why is that, we first observe that problems
in consistency have two sources: (i) the negligence of the Møller velocity factor and (ii) the
consistency in expressing quantities (in particular the scattering cross section) in some
inertial frame of reference. As we have seen, the Møller prefactor is hidden inside the
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transition rates in the manifestly covariant formalism and, the use of scattering matrices,
usually comes with the preference of working manifestly covariant, so that none particular
frame is chosen to express the transition rates. The use of these rates also visualizes the
scattering process as a jump process, thus, we are in fact examining transitions

(k, p) � (k′, p′)

regarding momenta truly as states. This automatically deals with the problem of the
frame of reference, not only because we are manifestly covariant and not choosing any
particular frame of reference, but also because we will now have the actual transition
amplitudes among these states.

On the other hand, the use of differential scattering cross sections introduces yet
another problem, that is: in which frame of reference should we express it? The above-
mentioned references use the electron rest frame, but this cannot be consistent with using
Maxwell-Boltzmann for the distribution of electrons as we will find electrons with any
possible velocity and consistency is lost. In order to be viewed as a transition probability
for general transitions like in the instance of the scattering matrix, we should use a cross
section written in a very arbitrary frame of reference, where photons and electrons are
also allowed to have arbitrary momenta, (4.5) being this expression. Then, we have the
freedom to look at any possible collision and not only collisions in which the electrons are
initially at rest, making this the correct description of the differential transition probability
appearing in the Boltzmann equation.

As we have constructed to work as such, both descriptions of the Boltzmann equation
hold in any inertial frame of reference. Thus, we have the freedom to solve, work and
perform approximations to this equation as long as we express consistently the quantities
appearing in (4.2) or (4.16) in the frame of reference in which we are working. In the
calculations done in this work, this is the lab frame, which is the frame where the electrons
are distributed according to Maxwell-Boltzmann and where the observer sees multiple
general photon-electron collisions of the type

p +
~ω
c

n̂ 
 p′ +
~ω′

c
n̂′

The reader should also note that it is not possible to go from the lab frame to a frame
where all electrons are standing still by making Lorentz transformations, so that if one
decides to use the Klein-Nishina cross section evaluated in the electron rest frame, one
must be very careful in how to express the electron distribution function. In any case,
the set up as proposed by Kompaneets will fail and a new set up should be proposed,
avoiding, if possible, repeating scatterings4. To our best knowledge, the only person who
worked out the correct derivation of the Kompaneets equation while using a cross section
evaluated in the electron rest frame in a completely original manner is the Nobel laureate
J. Peebles in his book (Peebles et al., 2009). Being a completely different approach, his
derivation is not comparable to the one proposed by Kompaneets and that we address
here.

4We can see from the construction of the Boltzmann equation, that it deals with repeating scatterings
among the particles. This type of description should be avoided if one decides to work in a frame where
the electron is initially at rest simply because the first collision will make the electron move and, as a
matter of logic, the next collision will no longer see this electron at rest.
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To illustrate the discussion, let us consider the Boltzmann equation written in the
following way

∂n

∂t
(t, ω) = c

∫
p

∫
Ω

dp dw (n(t, ω′)fEq(|p′|) (1 + n(t, ω))− n(t, ω)fEq(|p|) (1 + n(t, ω′)))

(4.33)

where we have included the cross section and the Møller prefactor in the differential
transition probability

dw =
(

1− v

c
· n̂
)

dσγe

Now, let us we repeat the whole diffusion approximation exactly as done in Section
4.1, but now using the differential transition probability used by Kompaneets in 1957

dw = dΩrest
dσ

dΩ

Th

rest

where
dσ

dΩ

Th

rest
=

3σT
16π

(
1 + cos2 θrest

)
is the Thomson differential cross section evaluated in the reference frame of the electron.
So that we are not only expressing the cross section in a reference frame where the electron
is at rest but also neglecting the Møller velocity factor.

The diffusion approximation can be carried in the same way as previously done and
one will find (4.10), but now with Kompaneets’ first and second integral defined with the
rate above. If those integrals are computed in the same way we do in Appendix B, one
will find

I1(x) =
neσT c kBT

mec2
x(1− x) (4.34)

I2(x) =
neσT c kBT

mec2
2x2 (4.35)

instead of (4.12) and (4.13). As we mentioned in (Oliveira et al., 2021), to the best of
our knowledge that first Kompaneets integral was never computed. As a matter of logic,
as we have seen in the previous sections, it is not possible with solely the Thomson cross
section (which ultimately leads to (4.34)) to find (4.14), the Kompaneets equation.

Suppose now that instead of the rate above, we use

dw = dΩrest
dσ

dΩ

KN

rest

where
dσ

dΩ

KN

rest
=

3σT
16π

(
ω′rest

ωrest

)2 [
ω′rest

ωrest

+
ωrest

ω′rest

− sin2 θrest

]
is the Klein-Nishina differential cross section but now evaluated in the rest frame of the
electron as we have seen in Chapter 3.
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By performing the diffusion approximation again with this rate, one finds

I1(x) =
neσT c kBT

mec2
x(5− x) (4.36)

I2(x) =
neσT c kBT

mec2
2x2 (4.37)

these two results illustrate point (ii) above, where we mentioned that it is necessary
to use a scattering cross section expressed in a consistent way (that is, in a covariant
or frame-independent manner) to carry the diffusion approximation, i.e., we cannot use
cross sections evaluated in the rest frame of the electron while using electrons distributed
according to Maxwell-Boltzmann statistics.

To illustrate point (i) above, where we claim that the Møller velocity plays a crucial
role for microscopic consistency, let us consider the following rate

dw = dΩ
dσ

dΩ

KN

where the differential cross section is given by the correct expression (4.5), while the
Møller prefactor is neglected as well. Then, one finds in the diffusion approximation, the
following values for the integrals

I1(x) =
neσT c kBT

mec2
x(3− x) (4.38)

I2(x) =
neσT c kBT

mec2
2x2 (4.39)

So that only when the Møller prefactor is indeed added to the rate dw we can have
the correct result, having the factor 4 in the first integral5. As we have seen in Chapter 2,
this factor naturally appears when deriving the standard relativistic Boltzmann equation
and accounts for the correct description of the flux of particles when seen in the rest
frame of the electron. Moreover, in the lab frame, where we are observing the gases and
seeing many collisions of photons and electrons, the electrons cannot be taken as they
were at rest, simply because that is not what we are observing by using (4.1). Thus, we
should address transitions having electrons and photons with any possible momenta in
the Boltzmann equation and that is what (4.5) accounts for.

As stated in (Oliveira et al., 2021), it is very surprising, perhaps, that none of these
effects are seen on I2(x), i.e., I2(x) is always given by the same value, whence making
it possible to employ the indirect argument used traditionally (including in Kompaneets’
original paper) to fix the value of I1(x), but this, however, is just a mathematical coinci-
dence.

It is possible in the derivation of the Kompaneets equation to use the Thomson cross
section together with the Møller factor (of course), because seen the Thomson cross section
as the non-relativistic regime of the Klein-Nishina, it should satisfy, in the light of Chapter
2, dynamical reversibility as well. We would need, however, an expression analogous to

5As a matter of fact, we note here that adding the Møller prefactor adds an extra factor of neσT c kBT
mec2

x
to the first integral, so that using cross sections evaluated in the rest frame of the electron would still
yield wrong result even when this factor is accounted on the rates. This observation only confirms point
(ii) above.
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(4.5) for this cross section and we could not find such thing in literature. It is also true
that transforming cross sections to arbitrary frames is a very difficult task, but since QFT
enables a recipe to calculate cross sections in a manifestly covariant way, we can benefit
from that to easily find complicated expressions such as (4.5), motivating its use instead
of trying to generalize the Thomson cross section to an arbitrary frame.

As a matter of completeness, we shall demonstrate next that photon number can only
be conserved if Kompaneets’ integrals are given by (4.12) and (4.13). For that goal, let
us assume that the diffusion approximation yields

I1(x) =
neσT c kBT

mec2
x(M − x) (4.40)

I2(x) =
neσT c kBT

mec2
2x2 (4.41)

for some M ∈ N. Then, we can rewrite Equation (4.10) in the following way

x2∂n

∂t
(x, t) =

neσT c kBT

mec2

1

xM−4

∂

∂x
xM
{
∂n

∂x
(x, t) + n(x, t)(1 + n(x, t))

}
(4.42)

by looking (4.3), the rate in time of the photon number N is proportional to the integral
of the term on the left hand side so that

dN

dt
∝
∫ ∞

0

dx

xM−4

∂

∂x
xM
{
∂n

∂x
(x, t) + n(x, t)(1 + n(x, t))

}
(4.43)

integrating by parts and using that the current must vanish at infinity faster than any
power of x, we have

dN

dt
∝ (M − 4)

∫ ∞
0

dx x3jt(x) (4.44)

where jt(ω) is the current appearing the Kompaneets equation (1.2). Thus, we can only
guarantee that the integral on the right side identically vanishes when M = 4, as desired.
This demonstrates that Kompaneets equation is photon number conserving only when
the first Kompaneets’ integral is indeed proportional to x(4− x).



Chapter 5

Master-equation for a boson system

In this chapter we shall obtain the Kompaneets equation from a completely new set up.
This will be done considering a random walk in the reciprocal space of the photon. The
transition rates will be suitable chosen, in accordance with the discussion done in Section
4.2. From our set up, it is easy to conclude that Kompaneets equation can be generalized
for a more general boson gas, including also some forcing due to the environment where
the bosons are performing the transitions. What follows is divided in two sections, in
the first section we shall write down the corresponding master equation for our system
while in the second section we will perform the Kramers-Moyal expansion to retrieve the
generalized Kompaneets equation. This part follows closely our work (Oliveira et al.,
2021), so that throughout this whole chapter, the reader will find, almost integrally, the
reproduction of the ideas and writings contained in Sections 2 and 3 of this work.

5.1 Detailed balance with stimulated emission

Following (Oliveira et al., 2021), let us consider a gas of photons (for now), where
photons undergo a transition in the reciprocal space of wave vectors. The transition rates
for this jump process arising within a quantum many-particle system are derived from one-
particle Green’s functions (Kadanoff, 2018). Here we take photons with a symmetrized
Fock space taking the tensor product over three-dimensional harmonic oscillators with
wave vector k corresponding to frequency ω. An elementary transition is the annihilation
of a photon with wave vector k while creating a photon with wave vector k′. When the
photons are in weak contact with a thermal bath at inverse temperature β, each transition
creates a flux in reciprocal space with an expectation given by

j(k→ k′) = b(k,k′) eβ(~ω−~ω′)/2
∣∣〈f|a†k′ak|i〉

∣∣2 (5.1)

where b(k,k′) = b(k′,k) is symmetric and left unspecified for the moment as a param-
eter of dynamical activity. We have taken that to lowest order the matrix element will
contain a single term annihilating and creating a photon a†k′ak. Writing n(k) for the
occupation/level at wave vector k, we put

|i〉 = | . . . n(k) . . . n(k′) . . .〉

for the initial state. The only non-zero matrix element will between that initial |i〉 and
the final state

|f〉 = | . . . n(k)− 1 . . . n(k′) + 1 . . .〉

62
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Since on each of the Hilbert spaces a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n + 1〉, we

find that ∣∣∣〈f |a†k′ak|i〉
∣∣∣2 = (1 + n(k′))n(k)

Therefore (5.1) becomes

j(k→ k′) = b(k,k′)w(k,k′)n(k) (5.2)

w(k,k′) := eβ(~ω−~ω′)/2 (1 + n(k′))

In above definition of the transition rates, we observe in connection with the discussion
done in Section 4.2, that the exponential prefactor is very natural to require, as it expresses
dynamical reversibility of the transition rates (4.22). Thus, by adding this factor, we make
sure that our set up is indeed compatible to the context of a Boltzmann-master equation,
as we have seen previously.

In classic texts on Markov processes, (5.2) makes the sink term into k′ from k and one
would write a master equation for the probability of occupying the various wave vectors.
The source term is j(k′ → k). Ignoring however correlations between the occupations at
different wave vectors, we can write the master equation directly for the (now expected)
occupation numbers

∂

∂t
nt(k) =

∑
k′

b(k,k′)
[
eβ(~ω−~ω′)/2 (1 +nt(k

′))nt(k)− eβ(~ω′−~ω)/2 (1 +nt(k))nt(k
′)
]

(5.3)

As such, the evolution equation (5.3) does not need to be photon number-preserving,
i.e., it does not follow directly that∑

k

∂

∂t
nt(k) =

∑
k,k′

b(k,k′)[w(k′,k)nt(k
′)− w(k,k′)nt(k)] = 0 (5.4)

unless b(k,k′) = b(k′,k) is indeed symmetric. Only then, (5.3) is a continuity equation.
Secondly, detailed balance requires that j(k → k′) − j(k′ → k) = 0 for all k,k′, or (for
symmetric b(k,k′) always)

w(k,k′)n(k) = w(k′,k)n(k′) or

eβ(~ω−~ω′)/2 (1 + n(k′))n(k) = eβ(~ω′−~ω)/2 (1 + n(k))n(k′)

=⇒ eβ~ω
n(k)

1 + n(k)
= constant = eβµ (5.5)

which implies that in equilibrium

n(k) =
1

eβ~ω − 1

by assuming that the chemical potential equals zero, µ = 0. Note that we have only used
(5.2) for an environment in thermal equilibrium where the temperature may refer to an
electron gas or anything else. The “anything else” would solely show in the prefactor
b(k,k′) for the kinetics (5.3). In that sense. the evolution given by (5.3) represents a
general Kompaneets equation, before any diffusion approximation. Observe also that, in
the same way, (4.17) is the continuum analog to the master equation (5.3), where the
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symmetric prefactor is recognized to be due to the electron bath and, thus, accounted
inside the transition rates given in (4.17).

At this point it is useful to note that our framework is constructed as such to be
compatible to the description at the level of the Boltzmann equation. Therefore, all the
important (and necessary) ingredients to obtain the correct description of the Kompaneets
equation such as dynamical reversibility of the rates and detailed balance are used to
indicate that we are following the right direction.

5.2 Discrete Kramers-Moyal expansion

In this section, we shall perform the diffusion approximation to the previous framework
of the photon master equation, reproducing as it is done in Section 3 of our work (Oliveira
et al., 2021). First we observe that the previous section considers jumps in the space of
wave vectors k. We associate in the present section an energy U(k) to the system and we
expand the master equation (5.3) for small energy changes k→ k′, that, as we have seen,
is again the Kramers-Moyal or diffusion approximation.

Let us start in one dimension, where we consider a lattice mesh δ > 0 for x ∈ δZ.
The x = k1 denotes now the first component of the (rescaled) wave vector. We imagine a
walker hopping on that lattice of wave vectors, to nearest neighbor sites with transition
rates

w(x, x± δ) = (1 + n(x± δ))B
(
x± δ

2

)
exp

{
−β

2
(U(x± δ)− U(x))± βδ

2
f

(
x± δ

2

)}
(5.6)

Here, n is the instantaneous number of walkers; its presence in the rates represents
the stimulated emission. The function B > 0 is an inhomogeneous activity rate and β is
the inverse temperature of a medium enabling the hopping. There is also a driving force1

f and a potential U which are added following the condition of local detailed balance at
fixed environment inverse temperature β = (kBT )−1 (Maes, 2020). At this moment we
do not dwell on the physical meaning of the driving f and we do not restrict ourselves to
photons but to bosonic systems more generally; see also Chapter 6. The rate (5.2) is a
special case of (5.6), where f ≡ 0 and the photon energy U = ~ω. Abusing notation, we
also incorporate the symmetric activity b(k,k′) in the rates as the prefactor B.

For fixed δ the master equation as in (5.3) becomes

∂nt
∂t

(x) + jt(x, x+ δ)− jt(x− δ, x) = 0 for (5.7)

jt(x, x+ δ) = nt(x)w(x, x+ δ)− nt(x+ δ)w(x+ δ, x)

jt(x− δ, x) = nt(x− δ)w(x− δ, x)− nt(x)w(x, x− δ)

We expand this last equation to second order in δ; see Appendix D. The result is

∂

∂t
nt = δ2

{
(βBg′ + βB′g) (1 + n)n+ (βBg +B′)n′ + 2βBgnn′ +Bn′′

}
(5.8)

1Note we are in reciprocal space here so that δ is an inverse length and f is measured in multiples of
~ c.
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with g(x) := U ′(x)− f(x). That can be written more explicitly as a continuity equation,

∂nt
∂t

(x) = δ2 ∂

∂x

{
B(x)

(
∂nt
∂x

(x) + βg(x)
(
1 + nt(x)

)
nt(x)

)}
(5.9)

in which we recognize the structural elements of the Kompaneets equation (1.1).

We can indeed redo that in three dimensions, on δZ× δZ× δZ. Taking the same rates
in all directions as before with 3-dimensional “force” f , the diffusion approximation now
reads

∂tnt = δ2 ∇∇∇ · j (5.10)

with in Cartesian coordinates (x`, ` = 1, 2, 3) for j =
∑

` j`x̂`,

j` = B

(
∂n

∂x`
+ βg` (1 + n)n

)
(5.11)

for g` := ∂U
∂x`
− f`.

Moving finally to the setup for the Kompaneets equation we enter frequency space by
assuming that nt = n(t, ω), g = g(ω), D = D(ω) with frequency ω = c

√∑
` x

2
` for speed

of light c. This means that we rewrite (5.10) in spherical coordinates, with ω as radial
variable:

ω2∂n

∂t
(t, ω) = c δ2 ∂

∂ω

{
ω2B(ω)

(
c
∂n

∂ω
(t, ω) + β g(ω)

(
1 + n(t, ω)

)
n(t, ω)

)}
(5.12)

That is an extended Kompaneets equation, to be compared with (1.1), where the
energy change and the driving combine into g(ω) := c∂U

∂ω
(ω)− f(ω).

Making the choices

c2δ2B(ω) =
kBT

mec2
neσT c ω

2, g(ω) = ~ c (5.13)

the above equation (5.12) becomes exactly the one of Kompaneets (1.1).
Note that neσT c = τ−1 is the average collision rate, as before. That shows that the

full structure of the Kompaneets equation is obtained as the diffusion approximation to a
master equation with stimulated emission, and this holds whenever the limiting activity
and drift obey (5.13). Justifications for the choices (5.13) come from the physical nature
of the process considered in the Kompaneets equation. The photon energy is U(ω) = ~ω
and there is no driving f ≡ 0, making indeed g = c∂U

∂ω
= ~c. In order to understand the

first equality in (5.13), we note that c2δ2B(ω) appears as the diffusion constant D(ω) in
(5.12). The shift in frequency for a photon undergoing Compton scattering determines
that diffusion constant as the conditional average squared shift

D(ω) =

〈
(ω′ − ω)2

2τ

∣∣∣∣ω〉 (5.14)

this shift follows from (3.33).
In the low-temperature regime where Compton scattering is relevant, under the as-

sumption that the electrons and the photons are of comparable energy much less than
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mec
2, most of the momentum is carried by the electrons, meaning |p| � ω/c. Hence we

can replace the term between the brackets in the denominator of (3.33) by unity, and
only retain the first term in the numerator

ω′ − ω ≈ p · (n̂′ − n̂)

mec
ω (5.15)

We can assume the square of projection of the scattering vector n̂′− n̂ on the momen-
tum vector p to average out to a constant of magnitude 1, which we will hereafter ignore.
Continuing then the calculation for (5.14) yields

D ∝
〈
|p|2

2m2
ec

2

ω2

τ

〉
=

1

mec2

〈
|p|2

2me

〉
ω2

τ
∝ kBT

mec2

ω2

τ
(5.16)

where the temperature T gives the average kinetic energy of the electron distribution. We
thus recover the first equality in (5.13).

A crucial property of the Doppler effect that we used to compute (5.14) and to arrive
at (5.13) is that the shift in frequency is linear in the frequency itself, as seen in (5.15).
On the other hand, because the shift in the electron’s energy equals the same expression,
were we to consider the opposite situation of an electron in a photon bath (in contact with
other matter at temperature T ), the average squared energy shift would be proportional
to the square of the momentum instead, hence only linear in the energy. Together with
the electronic density of states going as the square root of the energy, this allows us to
write down the electronic version of the Kompaneets equation immediately

E1/2 ∂f

∂t
(E, t) = b

∂

∂E
E3/2

{
kBT

∂f

∂E
(E, t) + f(E, t)

}
. (5.17)

for some rate b ∝ cσT
Uγ
mec2

, where Uγ is the energy density of the photon gas. We
neglect the fermionic nature of the electron, since we presume non-degeneracy of the
electron gas. For verification, a derivation of this equation can be found in (Iwamoto,
1983). For applications to highly dense states of fermionic matter, the Pauli exclusion
is significant and departures from (5.17) are expected. In such a regime however, the
long-range Coulomb interactions become relevant and one must be very careful on how
to perform the diffusion approximation.

As we have seen here and noted in (Oliveira et al., 2021), the description given by (5.3)
involves the photon occupation only and the electron bath is integrated out, remaining
present only via the bath temperature. Similarly, the dynamics (5.6) effectively treats
the electron bath via temperature, mobility and possible driving f . In that sense, the
description provided by the Boltzmann equation, which explicitly describes the electrons
and how they modify the photon distribution via Compton effect, is one level finer.



Chapter 6

Extensions and generalized
Kompaneets equations

In this chapter, we shall turn our attention to generalizations of the Kompaneets
equation. These generalizations usually come in three ways, by relaxing the condition of
equilibrium to the electron bath, by considering other sources of interactions or by going
further in the diffusion approximation (what we have been calling a relativistic extension).
This discussion was made in Section 6 of our work (Oliveira et al., 2021), but here we
shall give a more complete discussion to that appearing in this reference. Finally, we will
close this chapter by looking at the example of a less standard generalization, proposed
by (Baiesi et al., 2020) and that effectively changes the equilibrium distribution of this
(now modified) Kompaneets equation.

6.1 Relaxation of the equilibrium condition

The relaxation of the equilibrium condition to the electron bath was pointed out in
(Barbosa, 1982; Brown, 1990; Peebles et al., 2009; Brown & Preston, 2012), provided that
the distribution of the electrons is isotropic, but we could not find any reference which
concludes the same by using the same framework as proposed by Kompaneets in 1957,
i.e., starting from the standard relativistic kinetic equation and performing the diffusion
approximation in the energy shift ∆. Therefore, here we follow (Oliveira et al., 2021) to
observe that by assuming: (i) isotropy of the distribution of the electrons,

f(t,p)d3p = f(t, |p|)d3p (6.1)

and (ii) that f decays faster than |p|3, i.e.,

lim
|p|→∞

|p|3f(t, |p|) = 0 (6.2)

we find Kompaneets equation (1.1) with an effective temperature

Teff :=
〈|p|2〉
3kBme

where

ne 〈|p|2〉 =

∫
d3p |p|2 f(|p|)
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the details of the derivation can be found in Appendix B.
Observe that it is not so strange to recover the equilibrium (relaxation to) Planck

distribution in the diffusion approximation. This can either mean two things: (i) that
non-equilibrium features hide in higher order terms or (ii) that a formalism starting from
a Boltzmann equation washout the non-equilibrium degrees of freedom of the electron
bath, as photons only “feel” the integrated bath.

We note here that differently from (Barbosa, 1982; Brown, 1990; Brown & Preston,
2012), we find the necessity of requiring the asymptotic behavior (6.2) of the electronic
distribution function. Not surprisingly, this generalization can be also addressed starting
from the manifestly covariant formalism and we refer the reader to (Brown & Preston,
2012) for that.

6.2 (Non-)relativistic extensions and relaxation of isotropy

condition

Relativistic extensions were mentioned in great detailed in Section 1.1 and some refer-
ences to that include (Cooper, 1971; Barbosa, 1982; Itoh et al., 1998; Itoh, N. & Nozawa,
S., 2004; Nozawa & Kohyama, 2009; Nozawa et al., 2010; Brown & Preston, 2012; Nozawa
& Kohyama, 2015). It is interesting to note that while most of the references work with
the manifestly covariant formalism, Barbosa uses a more kinematic approach, similar to
a Fokker-Planck approximation. In the occasion of Section 1.1, we have also mentioned
that the soft condition for the photons can be relaxed to include down-Comptonization
(Liu, D.-B. et al., 2004; Zhang & Chen, 2015), a non-relativistic extension1 that includes
the regime (~ω � kBT ).

The condition of isotropy to the distribution function of the photons can also be
relaxed and was addressed by (Buet et al., 2018; Pitrou, 2020). In that case, the diffusion
approximation to retrieve a Kompaneets-like equation is much more involved and one
usually uses spherical harmonics or symmetric-and-trace-free (STF) tensors to express
the distribution function. Such extension is adapted to recognize spectral distortions due
to some anisotropy, e.g., polarized photons.

6.3 Bremsstrahlung, radiative Compton and Doppler

shift

As we have noted in (Oliveira et al., 2021), there are also more processes for the
electron-photon system that could impact the spatio-temporal dynamics of the photon
occupation number. Beyond Compton scattering we could have considered contributions
due to Bremsstrahlung and radiative (or double) Compton scattering, for example. In fact,
in his original paper (Kompaneets, 1957), Kompaneets already calculates contributions
due to Bremsstrahlung. Further references include (Hu, 1995; Rybicki & Lightman, 2008;
Longair, 2010).

1As before, we note that the electron bath is still treated non-relativistically (kBT � mec
2), so that

this extension should no be regarded as relativistic.
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Due to the radiative nature of these processes it is not true any longer that photon
number is conserved and we cannot describe them by a Boltzmann-master equation. If
those processes are taken into account, we can write the time evolution of the occupation
number as

∂n

∂t
=
∂n

∂t

∣∣∣∣
C

+
∂n

∂t

∣∣∣∣
Br

+
∂n

∂t

∣∣∣∣
DC

(6.3)

where
∂n

∂t

∣∣∣∣
C

=
1

ω2

neσT c

mec2

∂

∂ω
ω4

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
is the change due to Compton scattering which appears in the Kompaneets equation.

The other contributions, due to Brehmsstralung and double Compton scattering are
found to be (Kompaneets, 1957; Blumenthal & Gould, 1970; Lightman, 1981; Hu, 1995)

∂n

∂t

∣∣∣∣
Br

=
neσT c

mec2
g(ω)Y

e−β~ω

ω3

[
1− n(t, ω)

(
eβ~ω − 1

)]
(6.4)

∂n

∂t

∣∣∣∣
DC

=
neσT c

mec2

(
4α~2

3π

)
1

ω3

[
1− n(t, ω)

(
eβ~ω − 1

)]
I(t) (6.5)

with definitions

g(ω) =

{
ln
(
2.2kBT~ω

)
if ~ω ≤ kBT√

kBT
~ω ln(2.2) if ~ω > kBT

Y =
αc3

8

√
(mec2)3

2πkBT

∑
i

niZ
2
i

I(t) =

∫
dω′ ω′

4
[1 + n(t, ω′)]n(t, ω′)

where α is the fine-structure constant and ni is the number density of ions with atomic
number Zi.

However, as mentioned in (Blumenthal & Gould, 1970; Zel'dovich, 1975), in low-
density plasmas, Compton scattering is the dominant mechanism which enables energy
exchange.

It is also possible to generalize the relativistic Boltzmann equation to include curved
space-times due to some gravitational field. This is done for example in (Cercignani &
Kremer, 2002; Bernstein, 2004). In that case, the equation takes the following format

pµ1
∂f1

∂xµ
− Γσµνp

µ
1p

ν
1

∂f1

∂pσ1
=

∫
p2,p′

1,p
′
2

dp2

p0
2

dp′1
p0

1
′

dp′2
p0

2
′
√
gW (p1, p2 → p′1, p

′
2) (f1′f2′ − f1f2) (6.6)

where we have not taken into account external forces. Above, −g is the determinant of
the metric tensor and Γσµν are the Christoffel symbols of the Levi-Civita affine connection.
By using this expression, one can include the study of the Kompaneets equation in a
cosmological context, see for example (Hu, 1995; Bernstein, 2004; Procopio & Burigana,
2009; Burigana et al., 2010). Then, the contribution of the cosmic expansion (red shift)
must be taken into consideration, appearing as a convective term in the equation

∂n

∂t
(t, ω)− Ṙ

R
ω
∂n

∂ω
(ω, t) =

1

ω2

neσT c

mec2

∂

∂ω
ω4

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
(6.7)
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where Ṙ
R

is the Hubble parameter (sometimes also defined with a instead of R). For
more details on the above equation, the reader can refer to (Hu, 1995; Bernstein, 2004).
This extension to the Kompaneets equation, however, does not change the equilibrium
distribution of photons2 and should only modify the temperature of the distribution,
which now evolves with time (Bernstein, 2004).

A less standard generalization involving curved space-times is that of a turbulent red-
shift (caused by a turbulent fluctuation of the metric in the background). As we mentioned
in (Oliveira et al., 2021), this could appear as an integrated Sachs-Wolfe effect for a
random gravitational potential field and would give an additional diffusion in frequency,
but we have not seen that being carried out yet.

6.4 Further generalizations

As we have seen, one generalization of the Kompaneets equation is found in Chapter 5,
where we showed an extension to a more general boson system with energy U and possibly
driven by a force f . We believe that such generalization may be relevant in many contexts,
one example could arise in the context of solid state physics, where phonon-electron
interactions may take place with a possible drive.

Being an interesting instance where non-equilibrium features effectively changes the
equilibrium distribution of a Kompaneets-like equation, we briefly discuss here the gen-
eralization contained in (Baiesi et al., 2020). In this work, the authors exploit the recent
observations of (Fixsen et al., 2011; Seiffert et al., 2011; Bowman et al., 2018), where
systematic deviations of the CMB spectrum is observed at low frequencies3, something
referred to as space roar. Observing that such phenomenon is not well understood in the
scientific community, (Baiesi et al., 2020) assumes the primordial plasma to be out of
equilibrium and that, as logical consequence, we should expect natural departures from
the Bose-Einstein equilibrium distribution, being the new equilibrium distribution the
stationary solution of the following modified Kompaneets equation

ω2∂n

∂t
(t, ω) =

neσT c

mec2

∂

∂ω
ω4

{
kBT

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
+
neσT c

mec2

∂

∂ω
ω4

{
1

(ξ + 1)

(ω0

ω

)ξ
kBT

∂n

∂ω
(t, ω)

}
(6.8)

where ω0 and ξ are free parameters.
Therefore, the solution of the above equation is imprinted by the non-equilibrium

features of the primordial plasma. The overall effect of non-equilibrium is to promote
another source of diffusion in frequency space, increasing the occupancy of photons at low
frequency, which leads to a slightly modified black-body spectrum. According to (Baiesi
et al., 2020), when the ξ parameter is taken close to 3, the spectral density of radiation
is in good agreement with the observed data from (Fixsen et al., 2011; Bowman et al.,
2018).

2This is why we still see a blackbody radiation spectrum to the CMB, despite the expansion of the
universe.

3As we have mentioned previously, we can retrieve Planck’s law of the black body radiation from
the stationary solution of the Kompaneets equation. The spectral density is, thus, proportional to
∝ ω3nEq(ω), cf. Section 4.3.
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The modification introduced by (Baiesi et al., 2020) is based on statistical and kinetic
arguments, in which stochastic acceleration in frequency space due to non-equilibrium
dynamical activity introduces an extra source of diffusion, with diffusivity inversely pro-
portional to the squared of photon frequency. In order to introduce this modification as a
correction based on first principles we must treat the non-equilibrium degrees of freedom
of the primordial plasma, understanding also how these degrees of freedom are transferred
to the photons. In any case, it would be natural to expect that, not only matter (e.g,
electrons) is turbulent in the early Universe, but also the metric4 and one must include
the combined dynamics of a turbulent metric space, matter and radiation, which would
lead to corrections in the transition rates due to turbulent gravity, for example.

Finally, as another example of less standard generalizations, it is worth mentioning
here that the Kompaneets formalism is very general and useful, yielding fruitful results
even in neutrino physics. In that context, (Suwa et al., 2019; Wang & Burrows, 2020) have
recently applied the diffusion approximation as proposed by Kompaneets to a neutrino
gas.

4Recall that Einstein’s equation couples them, such that a turbulent motion of matter induces a
turbulent geometry and vice versa.



Chapter 7

Conclusion

The topic of non-equilibrium in Statistical Mechanics is a rich and vast subject. In
such context, we have addressed in this work the phenomenon of relaxation to equilibrium,
where a gas initially out of equilibrium relax to it upon contact with a thermal bath. We
have seen that one protagonist in this study is the so-called Boltzmann equation and, in
Chapter 2, we have developed in great detail the relativistic version of it. This equation
is essential to derive the Kompaneets equation, a partial differential equation that models
the spatio-temporal dynamics of the occupation number distribution function of a photon
gas in contact with a non-relativistic, non-degenerate electron bath in thermal equilibrium.
Radiation then reaches equilibrium by undergoing the process of Comptonization, i.e, the
redistribution of photon frequency due to Compton interaction with the electrons.

The standard and traditional way of deriving the Kompaneets equation was proposed
and carried by Kompaneets himself in his original paper from 1957 (Kompaneets, 1957),
where he proposes to perform a diffusion approximation to the Boltzmann equation in
terms of the energy shift ∆. However, we have addressed and pointed out both in here
and (Oliveira et al., 2021) that there exist some inconsistencies regarding this derivation
which are repeated in many textbook and recent references (Katz, 1987; Liu, D.-B. et
al., 2004; Rybicki & Lightman, 2008; Zhang & Chen, 2015). As mentioned, this happens
because the diffusion approximation to the standard relativistic Boltzmann equation has
some particularities and, because the set up proposed by Kompaneets is very didactic
and useful, many references tend to repeat what he has done, avoiding also an approach
starting from the manifestly covariant Boltzmann equation as it usually requires more
background from the reader.

We feel that these inconsistencies are very useful to highlight when the Boltzmann
equation fails to yield a conservation that it is, from the start, constructed to respect
(this is particle number conservation) and that these problems are neither fully explored
nor clarified in literature in such way that we found useful to rederive the Kompaneets
equation with the traditional set up, while pointing the problems that a careful reader
may encounter.

Therefore, in Chapter 2, we have shown what is the correct and natural way of ex-
pressing (1.3), which clarifies what should be the correct expression of Equation (1) in
(Kompaneets, 1957). Then, when it comes to that matter, we have seen that a prefactor
appears in the Boltzmann equation, called Møller velocity factor, and, while it is essential
to the correct description of the equation, it is a common inaccuracy in many references
to neglect it, e.g. (Iwamoto, 1983; Chen et al., 1994; Tong et al., 2010). In Section
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2.3, we have also seen that there exists another description of the Boltzmann equation,
which is written in a manifestly covariant way, that is, of course, the manifestly covariant
relativistic Boltzmann equation. In Section 2.5, we have shown the equivalence of both
descriptions so it becomes clear that, starting from a relativistic Boltzmann equation while
being consistent, the Kompaneets equation (1.1) can be regarded as the non-relativistic
approximation of either version of the Boltzmann equation, as they are equivalent.

Chapter 3 was devoted to the study of cross sections in different inertial frames and
scattering matrices. Then, we have seen how to obtain the very general expression of
the full relativistic Klein-Nishina cross section (4.5). Although not so enlightening, this
expression explores Lorentz invariance and, as such, holds in any frame of reference,
explaining the reason why we refer to it sometimes as the frame-independent expression
of the Klein-Nishina cross section. Being one of the sources of inconsistency, we have seen
that is very important to have a cross section defined in this precise way and the reason, as
we mentioned, is simple: in the lab frame, where the gas mixture is being observed, we see
electrons and photons with any possible velocity (this is of course compatible with using
the Maxwell-Boltzmann distribution for the electrons), therefore, we need an expression
of the cross section which accounts for collisions having any kind of possible momenta
combination and not only collisions in which the electron is initially at rest (this is the
cross section evaluated in the rest frame of the electron, as we have seen).

In Chapter 4, we have shown how to perform consistently the diffusion approxima-
tion to the Boltzmann equation, retrieving the well-known Kompaneets equation. In the
first section, we started from the standard (or covariant) version of the kinetic equation
and employed the traditional set up as proposed by Kompaneets. There, we have also
addressed the two inconsistencies found in this framework, that is the subject of Sec-
tion 4.4, where we thoroughly discussed the importance of expressing the cross section
in a frame-independent way, while also accounting for the Møller velocity. As we men-
tioned in (Oliveira et al., 2021), these inaccuracies are traditionally solved by employing
Kompaneets’ indirect reasoning (Kompaneets, 1957), invoking the strong (but correct)
assumption that (4.10) should have the form of a continuity equation and that the cur-
rent should vanish for the Bose-Einstein distribution. However, we have also observed in
Section 4.3 that assuming the Bose-Einstein distribution as the equilibrium solution to
the differential equation may fail in a non-equilibrium context.

As we observed (Oliveira et al., 2021), this procedure fixes the value of I1(x), while
I2(x) is calculated using the Thomson differential cross section (1.5) and evaluating the
integral in the exactly same manner as we do (but neglecting the Møller velocity). This
indirect procedure is remarkable as it relies on computing correctly I2(x) from a wrong
setup. We believe this feature to be just a mathematical coincidence, i.e., there is no way
to know from the start, within Kompaneets’ set up of 1957, that I2(x) given by (4.13) is
the correct value. Also remarkably is that we could not find any reference which mentions
these problems. The other part of Chapter 4 follows more closely the work of (Brown
& Preston, 2012) and it is devoted to the derivation of the Kompaneets equation while
starting from the manifestly covariant formalism.

Looking for extensions to the famous equation, we have proposed in Chapter 5 a
new model, where a Kramers-Moyal expansion of suitable chosen transition rates of a
random walk in reciprocal space of photons yields the Kompaneets equation from a totally
different set up as ever consider in literature. We have seen then that it is also possible
to generalize this equation to more general boson systems, where they can possibly be
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under the influence of a driving as well. Further generalizations are found in Chapter
6, where we have examined the interesting hypothesis proposed by (Baiesi et al., 2020),
which yields the Kompaneets equation with an extra correction due to non-equilibrium
features in the primordial plasma.

Being one of the few examples where the diffusion approximation to the Boltzmann
equation can be done in great detail, the Kompaneets equation is subject of great interest
in Statistical Mechanics and we hope that our work serves, not only to clarify a number
of issues encountered in literature, but also to guide a new reader along the vast literature
that concerns this equation. Finally, we believe that the extension we propose may serve
as a point of departure to further generalizations and we hope that it finds fruitful grounds
even beyond systems we considered.



Appendix A

Relativistic relative velocity and
Møller velocity

This Appendix will be devoted to the discussion about relativistic relative velocity
and the Møller velocity which appears in the Boltzmann equation. Here we will follow
mostly (Cercignani & Kremer, 2002) and (Cannoni, 2017).

Suppose we have two particles, particle 1 and 2, which have respective velocities given
by v1 and v2 as measured in the frame K. Suppose that we move to the rest frame of 1,
which we denote by K1 (see Figure A.1), in this new frame, the velocity of 1 is zero and
2 have velocity given by vrel

12, that is the relative velocity of 2 with respect to 1.

Figure A.1: Frames K and K1. In frame K, particles 1 and 2 have velocities given by
v1 and v2, respectively, while in frame K1 (which is the rest frame of 1), particle 2 has
velocity vrel

12.

As we have seen in Chapter 2, the transformation matrix between two frames that are
moving with velocity v along the x-direction with respect to each other is given by (2.7)

Λx =


γv −γv |v|c 0 0

−γv |v|c γv 0 0
0 0 1 0
0 0 0 1

 (A.1)

Similar expressions exist if the movement is along y- or z-direction (note that there
is nothing special about the x-axis so we could have relabeled it to work as y- or z-axis
and the transformation would be found easily). If now one of the frames is moving with
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arbitrary velocity v given by
v = (v1, v2, v3)

we can similarly find the transformation matrix. First let us observe that above implies

ct′ = x0′ = γv

(
x0 − v1

c
x1

)
; x1′ = γv

(
x1 − v1

c
x0

)
; x2′ = x2;

where we used that |v| = v1 in the case of a movement in the direction of x. For a
movement in an arbitrary direction as seen in Figure A.2 below

Figure A.2: Frames K and K ′. Frame K ′ is moving with velocity v relative to K.

it is easy to see that we should replace

x0′ = γv

(
x0 − v1

c
x1

)
→ γv

(
x0 − v · x

c

)
(A.2)

because now we can decompose the movement for each direction. The spatial coordinates,
in turn, can be decomposed in

x = x‖ + x⊥ (A.3)

i.e., parallel and perpendicular directions of motion according to the vector v. So that,
being more specific, we can write

x‖ = (x · v̂)v̂ =
(x · v)

|v|2
v

x⊥ = x− x‖

Lorentz contractions do not affect distances perpendicular to v so that

x′⊥ = x⊥ =⇒ x′⊥ = x− (x · v)

|v|2
v

relates the perpendicular component of x′ as measured in the frame K ′ (primed vectors)
with respect to quantities measured in K (unprimed).
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Now, the parallel component can be found with the similar reasoning we have done
for the time-component, yielding

x′‖ = γv

(
x‖ −

vx0

c

)
this gives the transformation from K to K ′

x′ = γv

(
(x · v)

|v|2
v − vx0

c

)
+ x− (x · v)

|v|2
v (A.4)

x0′ = γv

(
x0 − v · x

c

)
(A.5)

or, working out the algebra and writing it in a matrix form
x0′

x1′

x2′

x3′

 = Λv


x0

x1

x2

x3

 (A.6)

where

Λv =


γv −γv v

1

c
−γv v

2

c
−γv v

3

c

−γv v
1

c
1 + (γv − 1)v

1v1

|v|2 (γv − 1)v
1v2

|v|2 (γv − 1)v
1v3

|v|2

−γv v
2

c
(γv − 1)v

2v1

|v|2 1 + (γv − 1)v
2v2

|v|2 (γv − 1)v
2v3

|v|2

−γv v
3

c
(γv − 1)v

3v1

|v|2 (γv − 1)v
3v2

|v|2 1 + (γv − 1)v
3v3

|v|2

 (A.7)

is the matrix for a Lorentz transformation between frames moving with respect to each
other with an arbitrary velocity v.

Now, we identify frame K ′ with K1, that is the rest frame of 1. Hence, if x2 are the
space-time coordinates of 2 given in K, while x′2 is the space-time coordinates of 2 as
measured in K ′ = K1, the rest frame of 1, we can write

dx2

dt
= v2 (velocity of 2 measured in K) (A.8)

dx′2
dt′

= vrel
12 (velocity of 2 measured in K ′ = K1) (A.9)

using Equation (A.4) (after rearranging it slightly) for the rule in which coordinates
transforms between frames and observing that K1 is moving with velocity v1 with respect
to K we can write

x′2 = x2 − v1t+ (γv1 − 1)
v1

|v1|2
(
(x2 · v1)− |v1|2t

)
(A.10)

t′ = γv1

(
t− v1 · x2

c2

)
(A.11)

Now, looking at relations (A.8) and (A.9), while using above equations, enables the
expression (after some algebra)

vrel
12 =

1

γv1(1− v1 · v2/c2)

[
v2 − v1 + (γv1 − 1)

v1

|v1|2
(
v1 · v2 − |v1|2

)]
(A.12)
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that is the relativistic relative velocity of particle 2 with respect to 1 for arbitrary particle
velocities. The modulus of the relative velocity can be very easily calculated following
(Cercignani & Kremer, 2002) and observing that in frame K1 the four-momenta of 1 and
2 are given by

p′1 = (m1c, 0) , p′2 = (γvrel12
m2c, γvrel12

m2v
rel
12)

where m1(m2) is the mass1 of particle 1(2), so that

p′1 · p′2 = γvrel12
m1m2c

2 =
m1m2c

2√
1− |v

rel
12|2
c2

(A.13)

of course that the inner product is Lorentz invariant, so that we can write more generally

p1 · p2 = γvrel12
m1m2c

2 =
m1m2c

2√
1− |v

rel
12|2
c2

=⇒ |vrel
12| = c

√
1− m2

1m
2
2c

4

(p1 · p2)2
(A.14)

this is relation (2.37) which appeared in Chapter 2 and which shows the Lorentz invariance
of the modulus of the relative velocity.

On the other hand, if we take p1 and p2 given in frame K, we have

p1 = (γv1m1c, γv1m1v1) ; p2 = (γv2m2c, γv2m2v2)

and, thus,

p1 · p2 = γv1γv2m1m2c
2
(

1− v1 · v2

c2

)
(A.15)

replacing that in (A.14) we have

|vrel
12| =

c

1− (v1 · v2)/c2

√(
1− (v1 · v2)

c2

)2

− (γv1γv2)
−2

=
c

1− (v1 · v2)/c2

√(
1− (v1 · v2)

c2

)2

−
(

1− |v1|2
c2

)(
1− |v2|2

c2

)
(A.16)

We observe that the square root argument can be rewritten in a more suggestive way(
1− (v1 · v2)

c2

)2

−
(

1− |v1|2

c2

)(
1− |v2|2

c2

)
=

1

c2

{
|v1|2 + |v2|2−2v1 · v2−

1

c2

(
|v1|2|v2|2 − (v1 · v2)2)}

which simplifies to(
1− (v1 · v2)

c2

)
−
(

1− |v1|2

c2

)(
1− |v2|2

c2

)
=

1

c2

{
(v1 − v2)2 − 1

c2
(v1 × v2)2

}
(A.17)

1Although we consider here massive particles, the discussion we present is very general, working also
for photons and electrons, for example. However, we note that, in this case, we can only work in the rest
frame of the electron.
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where we have used the identity

(a× b)2 = |a|2|b|2 − (a · b)2

Substituting (A.17) in (A.16) we can write

|vrel
12| =

1

1− (v1 · v2)/c2
vM12 (A.18)

where we have defined the Møller velocity

vM12 :=

√
(v1 − v2)2 − 1

c2
(v1 × v2)2 (A.19)

Since from (A.13) and (A.15) we have

γv1γv2

(
1− v1 · v2

c2

)
= γvrel12

it is readily seen that, using (A.18), we have

γv1γv2
vM12

|vrel
12|

= γvrel12
=⇒ vM12 =

γvrel12

γv1γv2
|vrel

12| (A.20)

which demonstrates Equation (2.30) in Chapter 2.
A final relation can be found if we observe that (A.15) implies(

1− v1 · v2

c2

)
=
p1 · p2

p0
1p

0
2

which, in turn, gives

vM12 = |vrel
12|
p1 · p2

p0
1p

0
2

(A.21)

after using (A.18). This is nothing more than Equation (2.36) we use in Chapter 2.



Appendix B

Kompaneets’ integrals

This Appendix is the integral reproduction of Appendix C of our work (Oliveira et al.,
2021).

B.1 Integral I1(x)

We need to compute

I1(x) = c

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
(p, n̂,Ω)fEq(|p|)∆ (B.1)

In what follows we omit the dependencies on the variables for simplicity. The leading
order is the second on the electron momenta and the expansion yields

16π

3σT

(
1− p

γmec
· n̂
)

dσ

dΩ
∆ =

xp · (n̂′ − n̂)

mec
(1 + cos2 θ)− x2kBT

mec2
(1− cos θ)(1 + cos2 θ)

+
x

(mec)2

{
(1 + 2 cos θ − cos2 θ)(p · n̂)2 + (3− 2 cos θ + 5 cos2 θ)(p · n̂′)2

− 4(p · n̂)(p · n̂′)(1 + cos2 θ)

}
(B.2)

where we used that p = γme v.
We first compute the integral over p in Cartesian coordinates, and then over the solid

angle. Since the distribution is isotropic, the first parcel yields a zero contribution, i.e.,∫
d3p p · (n̂′ − n̂)fEq(|p|) = 0 (B.3)

the integral over the momentum in the second parcel is readily done, yielding∫
d3p fEq(|p|) = ne

where we used (4.1). Observe moreover

(p · n̂)2 = p2
xn

2
x + p2

yn
2
y + p2

zn
2
z + cross terms in coordinates (similarly for n̂′)

(p · n̂)(p · n̂′) = p2
xnxn

′
x + p2

ynyn
′
y + p2

znzn
′
z + similar to above
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Cross terms in the coordinates yield zero contribution for the same reason as (B.3).
Squared terms give a similar contribution, being∫

d3p (p · n̂)2fEq(|p|) = I × n̂2 = I∫
d3p (p · n̂′)2fEq(|p|) = I × n̂′

2
= I∫

d3p (p · n̂)(p · n̂′)fEq(|p|) = I × n̂ · n̂′ = I cos θ

with I =

∫
d3p p2

x fEq(|p|) = neme kBT (B.4)

Using all that in I1(x) gives

I1(x) = c
3σT
16π

nekBT

mec2

(
−x2 + 4x

){
2π

∫ 1

−1

d cos θ(1− cos θ)(1 + cos2 θ)

}
and since

∫ 1

−1
dy(1− y)(1 + y2) = 8/3, we find as desired

I1(x) =
neσT c kBT

mec2
x(4− x) (B.5)

B.2 Integral I2(x)

We need to compute

I2(x) = c

∫
d3pdΩ

(
1− v

c
· n̂
) dσ

dΩ
(p, n̂,Ω)fEq(|p|)∆2 (B.6)

The expansion up to second order in the electron momentum yields

16π

3σT

(
1− p

γmec
· n̂
)

dσ

dΩ
∆2 =

(
x

mec

)2

(p · (n̂′ − n̂))2(1 + cos2 θ) (B.7)

using the exact same strategy as before, we have∫
d3p (p · (n̂′ − n̂))2fEq(|p|) = I × (n̂′ − n̂)2 = 2I(1− cos θ)

with I =

∫
d3p p2

x fEq(|p|) = neme kBT

This yields for I2(x)

I2(x) = c
3σT
16π

nekBT

mec2
2x2

{
2π

∫ 1

−1

d cos θ(1− cos θ)(1 + cos2 θ)

}
=
neσT c kBT

mec2
2x2 (B.8)

as desired.
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B.3 Nonequilibrium case

From now on, throughout this appendix only, we denote |p| = p for simplicity. In the
same spirit as before we define

x :=
~ω
ε
, ∆ :=

~(ω′ − ω)

ε

where ε is the characteristic energy of the electron bath, ε := 〈p2〉
3me

. We do the expansion
of the photon distribution, which gives the same as (4.7). The expansion in the electron
distribution, however, gives to the leading order

f(p′) = f(p)− meεf
′(p)

p
∆ +

(
−(meε)

2f ′(p)

p3
+

(meε)
2f ′′(p)

p2

)
∆2

2
(B.9)

with f ′(p) =
∂f

∂p
and so on

where we use the first assumption, that the electron distribution is isotropic, f(p) = f(p),
with normalization ∫

d3p f(t, p) = ne (B.10)

For the equilibrium case we have, of course, ε = kBT and f(t, p) = fEq(p) as in (4.1).
One checks that in this case

−
meεf

′
Eq(p)

p
= fEq(p)

(meε)
2f ′′Eq(p)

p2
−

(meε)
2f ′Eq(p)

p3
= fEq(p)

Plugging into (1.3) reads to the leading order

∂tn = ∂xnI1 (∆, f) +
∂xxn

2
I2

(
∆2, f

)
+ n(1 + n)I3

(
∆,

f ′

p

)
+ ∂xn(1 + n)I4

(
∆2,

f ′

p

)
+
n(1 + n)

2

(
I5

(
∆2,

f ′′

p2

)
+ I6

(
∆2,

f ′

p3

))
(B.11)

where

I1 (∆, f) = c

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆f

I2

(
∆2, f

)
= c

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆2f

I3

(
∆,

f ′

p

)
= −c(mε)

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆
f ′

p

I4

(
∆2,

f ′

p

)
= −c(meε)

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆2f

′

p

I5

(
∆2,

f ′′

p2

)
= c(meε)

2

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆2f

′′

p2

I6

(
∆2,

f ′

p3

)
= −c(meε)

2

∫
d3p dΩ

(
1− v

c
· n̂
) dσ

dΩ
∆2 f

′

p3
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First and second integral are computed in the exact same way as before and give

I1 (∆, f) =
neσT c

(mec)2

〈p2〉
3
x(4− x) (B.12)

I2

(
∆2, f

)
=

neσT c

(mec)2

〈p2〉
3

2x2 (B.13)

The other integrals are calculated integrating by parts and using the second assump-
tion limp→∞ p

3f(p) = 0.
To compute I4 we move to spherical coordinates d3p = p2dp dΩp. Using (B.7) the

integral over the electron momentum becomes∫
(p · (n̂′ − n̂))2f

′

p
d3p =

∫
dΩp|n̂′ − n̂|2 cos2 ζ

∫ ∞
0

p2f ′

p
p2dp

=

∫
dΩp|n̂′ − n̂|2 cos2 ζ

{
p3f

∣∣∣∣∞
0

− 3

∫ ∞
0

p2fdp

}
= −3

∫ ∫ ∞
0

dΩpdp |n̂′ − n̂|2 cos2 ζ p2f

= −3

∫
d3 p (p̂ · (n̂′ − n̂))2f

where we used (6.2), ζ for the angle between (n̂ − n̂′) and p̂ = p/p. The last integral is
computed in the very same fashion as we did for the equilibrium case. We find∫

d3 p (p̂ · (n̂′ − n̂))2f = 2ne(1− cos θ)
1

3

which after integrating the solid angle gives I4,

I4

(
∆2,

f ′

p

)
= c(meε)

(
x

mec

)2

σT2ne (B.14)

Looking at expressions (B.12), (B.13) and (B.14) motivates introducing

ε = kBTeff

〈p2〉 = 3mekBTeff

observe that these definitions are compatible with the equilibrium case. We get now

I1 (∆, f) =
neσT c kBTeff

mec2
x(4− x) (B.15)

I2

(
∆2, f

)
=
neσT c kBTeff

mec2
2x2 (B.16)

I4

(
∆2,

f ′

p

)
=
neσT c kBTeff

mec2
2x2 (B.17)

the other integrals are quite similar, to yield

I3

(
∆,

f ′

p

)
=
neσT c kBTeff

mec2
x(4− x) (B.18)

I5

(
∆2,

f ′′

p2

)
+ I6

(
∆2,

f ′

p3

)
=
neσT c kBTeff

mec2
2x2 (B.19)
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We substitute the values back in (B.11) to find

ω2∂n

∂t
(t, ω) =

neσT c

mec2

∂

∂ω
ω4

{
kBTeff

∂n

∂ω
(t, ω) + ~ [1 + n(t, ω)]n(t, ω)

}
(B.20)

which is the Kompaneets equation but with an effective (kinetic) temperature

Teff :=
〈p2〉

3mekB
.



Appendix C

Continuum expansion of the
transition rates

This Appendix will follow closely the derivation proposed by (Brown & Preston, 2012).
We shall also follow convention of Section 4.2 of using natural units ~ = c = kB = 1 in
order to simplify notation. Let us begin by looking at the transition rates appearing in
the Boltzmann equation as we have defined in Chapter 4

W (k′ → k) =
1

4(2π)2

∫
dp

2E

dp′

2E ′
MKN(p, k′ → p′, k)δ(4)(p+ k′ − p′ − k)fEq(p) (C.1)

W (k → k′) =
1

4(2π)2

∫
dp

2E

dp′

2E ′
MKN(p, k → p′, k′)δ(4)(p+ k − p′ − k′)fEq(p) (C.2)

where we have already relabel the electron momenta in first equation while using dynam-
ical reversibility

MKN(p′, k → p, k′) = MKN(p, k′ → p′, k)

Recall that the isotropic transition rates are defined as

W (ω′ → ω) =
1

ωω′

∫
dΩW (k′ → k) (C.3)

W (ω → ω′) =
1

ωω′

∫
dΩW (k → k′) (C.4)

with the transition amplitude given by (4.23).
Let us then use the same trick we have been using many times, that is (2.73), to

rewrite the primed electron momentum measure as

dp′

2E ′
=

∫
p0′

d4p′δ(p′
2 −m2

e)

now we integrate the outgoing electron momenta p′, using the four-delta to write

p′ = p+ k′ − k (conservation imposed by δ(4))

p′
2 −m2

e = 2p(k′ − k)− 2kk′
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yielding for (C.3)

W (ω′ → ω) =
1

4(2π)2ωω′

∫
dΩ

∫
dp

2E
fEq(p)MKN(p, k′ → p′, k)δ(2p(k′ − k)− 2kk′)

(C.5)

similarly, for (C.4) we have

W (ω → ω′) =
1

4(2π)2ωω′

∫
dΩ

∫
dp

2E
fEq(p)MKN(p, k → p′, k′)δ(2p(k−k′)−2k′k) (C.6)

The goal now, as in Appendix B, is to carry an expansion up to second order in the
electron momenta |p|, that is the diffusion approximation to the transition rates (C.5)
and (C.6). In fact, it will be more convenient this time to carry the expansion in terms
of the electron velocity v = p/E instead of momentum. We point out that, since p and
v are of same order, there is no harm in doing that. From now on, we shall require the
usual assumptions that are needed for the Kompaneets equation (check Chapter 4).

We first expand the Klein-Nishina transition amplitude up to second order in electron
velocity, which yields (see (Brown & Preston, 2012))

MKN(p, k → p′, k′) = 12πm2
eσT
{

(1 + cos2 θ)− 2|v|(1− cos θ) cos θ(cosα + cosα′)

+ |v|2(1− cos θ) (cosα + cosα′)
2 }

(C.7)

where α, α′ are the angles of the incoming electron with incoming and outgoing photons,
respectively, as we have defined in Chapter 3. Since this expression is symmetric on the
photon labels1, the same expansion holds for MKN(p, k′ → p′, k).

On the other hand, the argument of the one-dimensional Dirac delta can be written
as

p(k′ − k) = E{(ω′ − ω)− |v| ω′ cosα′ + |v| ω cosα}
p(k − k′) = E{(ω − ω′)− |v| ω cosα + |v| ω′ cosα′}
kk′ = ωω′ − ωω′ cos θ

Hence

δ(2p(k′ − k)− 2kk′) =
1

2E
δ

(
(ω′ − ω)− ωω′

E
(1− cos θ)− |v|(ω′ cosα′ − ω cosα)

)
(∗)

δ(2p(k − k′)− 2k′k) =
1

2E
δ

(
(ω − ω′)− ωω′

E
(1− cos θ)− |v|(ω cosα− ω′ cosα′)

)
(∗∗)

where the delta function identity

δ(ax) =
1

|a|
δ(x)

has been used.

1A relabel of the photon momenta, k → k′ would give same scattering angle θ and interchange α↔ α′,
thus not changing the expression.
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The energy shift, ω−ω′, is a small quantity, while ω being of the order as the electron
energy makes ω′ also of same order as the electron energy, that is O(|v|2). Thus, second
parcel in the expressions above is of order |v|4 while last parcel is of order |v|3.

Recalling that we divide by ωω′, it is sufficient to expand the delta in orders up to
|v|6. This will give all contributions up to |v|2 in the rates. Thus, performing the (formal)
(see (Aguirre, 2002)) expansion of the delta function yields up to order |v|6

(∗) =
1

2E

{
δ(ω′ − ω)− |v|(ω′ cosα′ − ω cosα)δ′(ω′ − ω) +

|v|2

2
(ω′ cosα′ − ω cosα)2δ′′(ω′ − ω)− ωω′

E
(1− cos θ)δ′(ω′ − ω)

}
(C.8)

(∗∗) =
1

2E

{
δ(ω − ω′)− |v|(ω cosα− ω′ cosα′)δ′(ω − ω′) +

|v|2

2
(ω cosα− ω′ cosα′)2δ′′(ω − ω′)− ωω′

E
(1− cos θ)δ′(ω − ω′)

}
(C.9)

where the primes indicate differentiation with respect to ω′ − ω.
It is possible to simplify above expressions if we substitute the dependence on the

angles α and α′ by their average under the electron distribution, observing that this
distribution is isotropic. In fact, this is equivalent as performing the integrals as we have
done previously in Appendix B, that approach is more direct, but now, since we have many
terms, it will be more convenient to proceed by observing that integrals which involve cosα
(and similarly for α′) are linear in the electron momentum and, thus, according to the
discussion in Appendix B this will always yield zero contribution, i.e.∫

dp

2E
fEq(p) cosα =

∫
dp

2E
fEq(p)p̂ · n̂ = 0

Similarly, for terms depending on cos2 α we have

cos2 α =

(
p

|p|
· n̂
)2

=
1

|p|2

{
p2
xn

2
x + p2

yn
2
y + p2

zn
2
z + cross terms

}
cross terms will not contribute for the same reason as before and we can write∫

dp

2E
fEq(p) cos2 α = Ixn

2
x + Iyn

2
y + Izn

2
z

with

Ix =

∫
dp

2E
fEq(p)

p2
x

|p|2

and similarly for y, z. Note that this is just one way of representing a similar integral to
that appearing in (B.4). On the other hand, observe that

Ix + Iy + Iz =

∫
dp

2E
fEq(p) =: If

and, since the distribution is isotropic,

Ix = Iy = Iz =⇒ Ix =
1

3
If
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thus, since n̂ is unitary, we can finally write∫
dp

2E
fEq(p) cos2 α =

∫
dp

2E
fEq(p)

1

3

of course that the exact same result holds for cos2 α′.
Analogously, for cosα cosα′ we have∫

dp

2E
fEq(p) cosα cosα′ = Ixnxn

′
x + Iynyn

′
y + Iznzn

′
z =

∫
dp

2E
fEq(p)

cos θ

3

Now, if we would make the change in the integrand∫
dp

2E
fEq(p)• →

∫
dp

2E
fEq(p)g(p)•

the results are the same for any function g which is isotropic (g(p) = g(|p|))2, i.e.∫
dp

2E
fEq(p)g(|p|) cosα = 0∫

dp

2E
fEq(p)g(|p|) cos2 α(′) =

∫
dp

2E
fEq(p)g(|p|)1

3∫
dp

2E
fEq(p) cosα cosα′ =

∫
dp

2E
fEq(p)g(|p|)cos θ

3

all this only means that, if isotropy holds, we can substitute the cosines by their average
inside the sign of the integral. If we denote their average under the electron distribution
as 〈•〉p we can schematically write

〈cosα〉p = 〈cosα′〉p = 0

〈cos2 α〉p = 〈cos2 α′〉p =
1

3

〈cosα cosα′〉p =
1

3
cos θ

Hence, up to order |v|6

〈MKN(p, k′ → p′, k)δ(2p(k′ − k)− 2kk′)〉p =

12πm2
eσT

2E

{[
1 + cos2 θ +

2|v|2

3

(
1− cos2 θ

)]
δ(ω′ − ω) +

2|v|2

3
cos θ

(
1− cos2 θ

)
(ω′ − ω) δ′(ω′ − ω)

+
|v|2

6
(ω2 + ω′2 − 2ωω′ cos θ)(1 + cos2 θ)δ′′(ω′ − ω)− ωω′

E
(1− cos θ)(1 + cos2 θ)δ′(ω′ − ω)

}
(C.10)

〈MKN(p, k → p′, k′)δ(2p(k − k′)− 2k′k)〉p =

12πm2
eσT

2E

{[
1 + cos2 θ +

2|v|2

3

(
1− cos2 θ

)]
δ(ω − ω′) +

2|v|2

3
cos θ

(
1− cos2 θ

)
(ω − ω′) δ′(ω − ω′)

+
|v|2

6
(ω2 + ω′2 − 2ωω′ cos θ)(1 + cos2 θ)δ′′(ω − ω′)− ωω′

E
(1− cos θ)(1 + cos2 θ)δ′(ω − ω′)

}
(C.11)

2The identification of such functions g will depend on which term of the expansion we are looking.
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We can still simplify expressions above slightly by observing the formal delta function
properties

zδ′(z) = −δ(z)

z2δ′′(z) = 2δ(z)

where the primes now denote integration with respect to z ∈ R. These properties only
make sense inside the sign of the integral and it is very straightforward to check them
using a smooth test function and integrating by parts. For example, first property follows
(suppose a, b > 0)∫ b

−a
f(z)[zδ′(z)]dz = [zf(z)δ(z)]

∣∣∣∣b
−a
−
∫ b

−a
[f(z) + zf ′(z)]δ(z)]dz

=

∫ b

−a
f(z)[−δ(z)]dz

similarly we can check second property.
Using these two properties in the expansion

〈MKN(p, k′ → p′, k)δ(2p(k′ − k)− 2kk′)〉p =

12πm2
eσT

2E

{[
1 + cos2 θ +

2|v|2

3
(1− cos θ)

(
1− cos2 θ

)
+
|v|2

3

]
δ(ω′ − ω)

+
|v|2ωω′

3
(1− cos θ)(1 + cos2 θ)δ′′(ω′ − ω)− ωω′

E
(1− cos θ)(1 + cos2 θ)δ′(ω′ − ω)

}
(C.12)

〈MKN(p, k → p′, k′)δ(2p(k − k′)− 2k′k)〉p =

12πm2
eσT

2E

{[
1 + cos2 θ +

2|v|2

3
(1− cos θ)

(
1− cos2 θ

)
+
|v|2

3

]
δ(ω − ω′)

+
|v|2ωω′

3
(1− cos θ)(1 + cos2 θ)δ′′(ω − ω′)− ωω′

E
(1− cos θ)(1 + cos2 θ)δ′(ω − ω′)

}
(C.13)

Let us recall now that the rates, up to second order in the electron momentum, are
given by

W (ω′ → ω) =
1

4(2π)2ωω′

∫
dΩ

∫
dp

2E
fEq(p)〈MKN(p, k′ → p′, k)δ(2p(k′ − k)− 2kk′)〉p

(C.14)

W (ω → ω′) =
1

4(2π)2ωω′

∫
dΩ

∫
dp

2E
fEq(p)〈MKN(p, k → p′, k′)δ(2p(k − k′)− 2k′k)〉p

(C.15)

there are three types of integrals over the solid that must be done, these are∫
dΩ(1 + cos2 θ) =

16π

3∫
dΩ(1− cos θ)(1− cos2 θ) =

8π

3∫
dΩ(1− cos θ)(1 + cos2 θ) =

16π

3
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By using these integrals while also simplifying the prefactors in (C.14) and (C.15)
results

W (ω′ → ω) = m2
eσT

∫
dp

E2
fEq(p)

{(
1 +

7

4

|v|2

3

)
δ(ω′ − ω)

ωω′
− δ′(ω′ − ω)

E
+
|v|2

3
δ′′(ω′ − ω)

}
(C.16)

W (ω → ω′) = m2
eσT

∫
dp

E2
fEq(p)

{(
1 +

7

4

|v|2

3

)
δ(ω − ω′)
ωω′

− δ′(ω − ω′)
E

+
|v|2

3
δ′′(ω − ω′)

}
(C.17)

The electron momentum integral can be calculated using the Maxwell-Boltzmann dis-
tribution (4.1). However, we must note that, differently than before, these integrals are
non-trivial and we must expand the energy up to second order in electron momentum also
(for a detailed derivation, valid even for more general isotropic distributions, we invite
the reader to (Brown & Preston, 2012)). Here we state the result∫

dp

E3
fEq(p) =

ne
m3
e∫

dp

E2

|v|2

3
fEq(p) =

ne
m3
e

T∫
dp

E2
fEq(p) =

ne
m2
e

giving

W (ω′ → ω) =
neσT
me

{(
me +

7

4
T

)
δ(ω′ − ω)

ωω′
− δ′(ω′ − ω) + Tδ′′(ω′ − ω)

}
(C.18)

W (ω → ω′) =
neσT
me

{(
me +

7

4
T

)
δ(ω − ω′)
ωω′

− δ′(ω − ω′) + Tδ′′(ω − ω′)
}

(C.19)

these are the rates we have seen in Section 4.2.
Before plugging these rates in the Boltzmann equation, we must make the final obser-

vation that first parcels in (C.18) and (C.19) will not contribute to the time evolution of
the distribution function, since in this case, the in term equals the out term (in fact, the
first term, which is proportional to the delta function itself, is only important to provide
the correct “normalization” of the transition rate).

Let us then return to the Boltzmann equation (4.24), where we use (C.18) and (C.19)
to write

∂n

∂t
(t, ω) =

neσT
me

∫
ω′

2
dω′{ (−δ′(ω′ − ω) + Tδ′′(ω′ − ω)))n(t, ω′) (1 + n(t, ω))

− (−δ′(ω − ω′) + Tδ′′(ω − ω′))n(t, ω) (1 + n(t, ω′)))}
(C.20)

where we already have disregarded the first component of the transition rates.
Let us make the following definitions in order to solve the integral

x := ω′ − ω
u(x) := n(t, x+ ω) (1 + n(t, ω)) ; H(x) := u(x)− v(x)

v(x) := n(t, ω) (1 + n(t, x+ ω)) ; G(x) := u(x) + v(x)
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Using the shift x in the rates

W (ω′ → ω) =
neσT
me

{(
me +

7

4
T

)
δ(x)

ω(ω + x)
− δ′(x) + Tδ′′(x)

}
W (ω → ω′) =

neσT
me

{(
me +

7

4
T

)
δ(x)

ω(ω + x)
+ δ′(x) + Tδ′′(x)

}
where we have used the properties of the delta function and its derivatives

δ(−x) = δ(x)

δ′(−x) = −δ′(x)

δ′′(−x) = δ′′(x)

Similarly, the Boltzmann equation can be easily rewritten in terms of the new defini-
tions, yielding

ω2∂n

∂t
(t, ω) =

neσTω
2

me

∫ ∞
−ω

(x+ ω)2dx {−δ′(x)G(x) + Tδ′′(x)H(x)} (C.21)

it is now a matter of straightforward calculation. Integrals give

IG = −
∫ ∞
−ω

dx (x+ ω)2δ′(x)G(x) =

∫ ∞
−ω

dx δ(x)
d

dx

[
(x+ ω)2G(x)

]
= 2ωG(0) + ω2G′(0)

IH =

∫ ∞
−ω

dx (x+ ω)2δ′′(x)H(x) =

∫ ∞
−ω

dx δ(x)
d2

dx2

[
(x+ ω)2H(x)

]
= 4ωH ′(0) + ω2H ′′(0)

replacing the defined functions:

IG = 4ω [1 + n(t, ω)]n(t, ω) + ω2 [1 + 2n(t, ω)]
∂n

∂ω
(t, ω)

IH = 4ω
∂n

∂ω
(t, ω) + ω2 ∂

2n

∂ω2
(t, ω)

substituting that back in (C.21) while performing standard manipulations leave us with
the Kompaneets equation in natural units

ω2∂n

∂t
(t, ω) =

neσT
me

∂

∂ω
ω4

{
T
∂n

∂ω
(t, ω) + [1 + n(t, ω)]n(t, ω)

}
(C.22)



Appendix D

Discrete expansion of the transition
rates

This Appendix is the integral reproduction of Appendix A of our work (Oliveira et
al., 2021).

The transition rates (5.6) can be expanded from

w(x, x± δ) =

(
1 + n± δn′ + δ2

2
n′′
)(

B ± δ

2
B′ +

δ2

8
B′′
)

exp

{
−β

2

(
±δ(U ′ − f) +

δ2

2
(U ′′ − f ′)

)}
w(x± δ, x) = (1 + n)

(
B ± δ

2
B′ +

δ2

8
B′′
)

exp

{
β

2

(
±δ(U ′ − f) +

δ2

2
(U ′′ − f ′)

)}
An expansion up to second order in δ yields

w(x, x± δ) = A(x)± δ

2
C(x) +

δ2

2
E(x) (D.1)

w(x± δ, x) = A(x)± δ

2
F (x) +

δ2

2
G(x) (D.2)

with short-hands

A(x) = B(1 + n)

C(x) = 2Bn′ − (βBg −B′)(1 + n)

E(x) =

(
1

4
(β2Bg2 +B′′)− 1

2
(βgB′ + βg′B)

)
(1 + n)− (βBg −B′)n′ +Bn′′

F (x) = (βBg +B′)(1 + n)

G(x) =

(
1

4
(β2Bg2 +B′′) +

1

2
(βgB′ + βg′B)

)
(1 + n)

g(x) := U ′(x)− f(x)

That gives to leading order in the master equation

∂tn = δ2 {(G(x)− E(x))n(x) + F (x)∂xn(x) + A(x)∂xxn(x)} (D.3)

substituting the short-hands we get (5.8).
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