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ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF

K3 SURFACES

EVA BAYER-FLUCKIGER

Abstract. The aim of this paper is to give necessary and sufficient con-
ditions for an integral polynomial to be the characteristic polynomial of a
semi-simple isometry of some even unimodular lattice of given signature.
This result has applications to automorphisms of K3 surfaces; in particu-
lar, we show that every Salem number of degree 4, 6, 8, 12, 14 or 16 is the
dynamical degree of an automorphism of a non-projective K3 surface.

0. Introduction

Let r, s > 0 be integers such that r ≡ s (mod 8); this congruence condition is
equivalent to the existence of an even, unimodular lattice with signature (r, s).
When r, s > 1, such a lattice is unique up to isomorphism (see for instance
[S 77], chap. V); we denote it by Λr,s. In [GM 02], Gross and McMullen raise
the following question (see [GM 02], Question 1.1) :

Question. What are the possibilities for the characteristic polynomial F (X) =
det(X − t) of an isometry t ∈ SO(Λr,s) ?

The aim of this paper is to answer this question for semi-simple isometries.

The condition t ∈ SO(Λr,s) implies that F (X) = Xdeg(F )F (X−1), hence F
is a symmetric polynomial (cf. §2). Let 2n = deg(F ), and let 2m(F ) be the
number of roots of F outside the unit circle. As shown in [GM 02], we have
the further necessary conditions :

(C 1) |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are squares.

(C 2) r > m(F ), s > m(F ), and if moreover F (1)F (−1) 6= 0, then

m(F ) ≡ r ≡ s (mod 2).

Gross and McMullen prove that if F ∈ Z[X ] is an irreducible, symmetric and
monic polynomial satisfying condition (C 2) and such that |F (1)F (−1)| = 1,
then there exists t ∈ SO(Λr,s) with characteristic polynomial F (see [GM 02],
Theorem 1.2). They speculate that conditions (C 1) and (C 2) are sufficient for
a monic irreducible polynomial to be realized as the characteristic polynomial
of an isometry of Λr,s; this is proved in [BT 20], Theorem A. More generally,
Theorem A of [BT 20] implies that if a monic, irreducible and symmetric
polynomial F satisfies conditions (C 1) and (C 2), then there exists an even,
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unimodular lattice of signature (r, s) having an isometry with characteristic
polynomial F . This is also the point of view of the present paper - we treat
the definite and indefinite cases simultaneously.

On the other hand, Gross and McMullen show that these conditions do
not suffice in the case of reducible polynomials (see [GM 02], Proposition 5.2);
several other examples are given in [B 20]. Another example is the following :

Example 1. Let F (X) = (X4 − X2 + 1)(X − 1)4, and let (r, s) = (8, 0);
conditions (C 1) and (C 2) hold, but there does not exist any positive definite,
even, unimodular lattice of rank 8 having an isometry with characteristic
polynomial F ; note that this amounts to saying that the lattice E8 does not
have any isometry with characteristic polynomial F .

All these examples are counter-examples to a Hasse principle. Indeed, the
first result of the present paper is that conditions (C 1) and (C 2) are sufficient
locally. If p is a prime number, we say that a Zp-lattice (L, q) is even if
q(x, x) ∈ 2Zp for all x ∈ L; note that if p 6= 2, then every lattice is even, since
2 is a unit in Zp. The following is proved in Theorem 7.2 and Proposition 7.1 :

Theorem 1. Let F ∈ Z[X ] be a monic, symmetric polynomial of even degree.

(a) Condition (C 1) holds if and only if for all prime numbers p, there exists

an even, unimodular Zp-lattice having a semi-simple isometry with character-

istic polynomial F .

(b) The group SOr,s(R) contains a semi-simple element having characteristic

polynomial F if and only if condition (C 2) holds.

The next result is a necessary and sufficient condition for the local-global
principle to hold. We start by defining an obstruction group (see §11). Let us
write F (X) = F1(X)(X − 1)n+(X + 1)n− and assume that n+ 6= 2, n− 6= 2; in
this case, the group only depends on the polynomial F ; we denote it by XF .

Let us now assume that condition (C 2) holds, and let t ∈ SOr,s(R) be a
semi-simple isometry with characteristic polynomial F ; such an isometry exists
by part (b) of the above theorem (or Proposition 7.1). Assume moreover that
condition (C 1) also holds. In §14, we define a homomorphism

ǫt : XF → Z/2Z

and prove the following (see Theorem 14.1) :

Theorem 2. The isometry t ∈ SOr,s(R) preserves an even, unimodular lattice

if and only if ǫt = 0.

Example 2. Let F (X) = (X4 −X2 + 1)(X − 1)4; we have XF ≃ Z/2Z. If
t1 ∈ SO4,4(R), we have ǫt1 = 0, and if t2 ∈ SO8,0(R), then ǫt2 6= 0. Hence Λ4,4

has a semi-simple isometry with characteristic polynomial F , but the lattice
E8 does not have such an isometry.

Corollary 1. Let G ∈ Z[X ] be a monic, irreducible, symmetric polynomial

such that |G(1)| is not a square, and suppose that |G(−1)| is a square. Let
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m > 4 be an even integer, and set

F (X) = G(X)(X − 1)m.

Assume that condition (C 2) holds for F . Then every semi-simple isometry

t ∈ SOr,s(R) with characteristic polynomial F preserves an even, unimodular

lattice.

Indeed, Condition (C 1) holds for F since |G(−1)| is a square, and one can
check that XF = 0; therefore Theorem 2 implies the corollary.

For polynomials F without linear factors, Theorem 2 is proved in [B 20],
Theorem 27.4. However, it turns out that including linear factors is very
useful in the applications to K3 surfaces, which we now describe.

The second part of the paper gives applications to automorphisms of K3
surfaces, inspired by a series of papers of McMullen (see [McM 02], [McM 11],
[McM 16]).

Recall that a monic, irreducible, symmetric polynomial S ∈ Z[X ] of degree
> 4 is a Salem polynomial if S has exactly two roots outside the unit circle,
both positive real numbers. A real number is called a Salem number if it is
the unique real root > 1 of a Salem polynomial; it is an algebraic unit.

If T : X → X is an automorphism of a complex K3 surface, then T ∗ :
H2(X ,C) → H2(X ,C) respects the Hodge decomposition

H2(X ,C) = H2,0(X )⊕H1,1(X )⊕H0,2(X );

since dim(H2,0) = 1, the automorphism T ∗ acts on it by multiplication
with a complex number, denoted by δ(T ); we have |δ(T )| = 1. Moreover,
T ∗ : H2(X ,Z) → H2(X ,Z) preserves the intersection pairing. The above
properties imply that the characteristic polynomial of T ∗ is a product of at
most one Salem polynomial and of a finite number of cyclotomic polynomials,
it satisfies condition (C 1), and δ(T ) is a root of this polynomial.

Moreover, assume that the characteristic polynomial is equal to SC, where
S is a Salem polynomial of degree d with 4 6 d 6 22 and C is a product of
cyclotomic polynomials; then X is projective if and only if δ(T ) is a root of C
(see [R 17], Theorem 2.2). Such a polynomial is called a complemented Salem

polynomial (see Definition 15.1).

Let F be a complemented Salem polynomial, and let δ be a root of F . We
wish to decide whether F is the characteristic polynomial of an isomorphism
T ∗ as above, with δ(T ) = δ. We start with the simplest case, where the
cyclotomic factor is a nontrivial power of X − 1.

Theorem 3. Let S be a Salem polynomial of degree d with 4 6 d 6 18 and

let δ be a root of S with |δ| = 1. Let

F (X) = S(X)(X − 1)22−d,
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assume that condition (C 1) holds for F , and that |S(1)| is not a square. Then

there exists a non-projective K3 surface X and an automorphism T : X → X
such that

• F is the characteristic polynomial of T ∗|H2(X ).

• T ∗ acts on H2,0(X ) by multiplication by δ.

This is proved using Corollary 1, as well as some results of McMullen
([McM 11], Mc3) and Brandhorst ([Br 20]). For polynomials S with |S(1)| = 1,
see Theorem 15.4; in this case, the answer depends on the congruence class of
d modulo 8.

The dynamical degree of an automorphism T : X → X is by definition the
spectral radius of T ∗; since the characteristic polynomial of T ∗ is the product of
a Salem polynomial and of a product of cyclotomic polynomial, the dynamical
degree is a Salem number. We say that a Salem number is realizable if α is
the dynamical degree of an automorphism of a K3 surface.

Let α be a Salem number of degree d with 4 6 d 6 20, and let S be
the minimal polynomial of α. In §16 we prove an analog of Theorem 3 for
F (X) = S(X)(X+1)2(X−1)20−d or S(X)(X2−1)(X−1)20−d, and show that
if d = 4, 6, 8, 12, 14 or 16, then α is realizable (see Corollary 16.7).

The aim of §17 is to prove that the second smallest known Salem number,
λ18 = 1.1883681475..., is not realizable as the dynamical degree of an auto-
morphism of a non-projective K3 surface. By contrast, McMullen proved that
λ18 is the dynamical degree of an automorphism of a projective K3 surface
(see [McM 16], Theorem 8.1).

I thank Marie José Bertin, Serge Cantat, Curt McMullen, Chris Smyth and
Yuta Takada for very useful comments and suggestions.

1. Equivariant Witt groups

We start by recalling some notions and results from [BT 20], §3 and §4.

The equivariant Witt group

Let K be a field, let A be a K-algebra and let σ : A → A be a K-linear
involution. An A-bilinear form is a pair (V, b) consisting of an A-module V
that is a finite dimensional K-vector space, and a non-degenerate symmetric
K-bilinear form b : V × V → K such that b(ax, y) = b(x, σ(a)y) for all a ∈ A
and all x, y ∈ V .

The associated Witt group is denoted by WA(K) (see [BT 20], §3). If M is a
simple A-module, we denote by WA(K,M) the subgroup of WA(K) generated
by the classes of A-bilinear forms (M, b). Every class in WA(K) is represented
by an A-bilinear form whose underlining A-module is semisimple, and we have

WA(K) = ⊕
M
WA(K,M),
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where M ranges over the isomorphism classes of simple A-modules (see
[BT 20], Corollary 3.11 and Theorem 3.12).

Discrete valuation rings and residue maps

Let O be a discrete valuation ring with field of fractions K, residue field
and uniformizer π. Let (A, σ) be an O-algebra with involution, and set
AK = A ⊗O K, Ak = A ⊗O k. An A-lattice in an AK bilinear form V is
an A-submodule L which is finitely generated as an O-module and satisfies
KL = V . If L is an A-lattice, then so is its dual

L♯ = {x ∈ V | b(x, L) ⊂ O}.
We say that L is unimodular if L♯ = L and almost unimodular if πL♯ ⊂ L ⊂ L♯.
If L is almost unimodular, then b induces an Ak-bilinear form L♯/L×L♯/L → k
(see [BT 20], definition 4.1).

An AK-bilinear form is said to be bounded if it contains an A-lattice. We
denote by W b

AK
(K) the subgroup of WAK

(K) generated by the classes of
bounded forms. The following result is proved in [BT 20] :

Theorem 1.1. (i) Every bounded AK-bilinear form contains an almost uni-

modular A-lattice L.

(ii) The class of L♯/L in WAk
(k) only depends on the class of V in WA(K).

(iii) The map ∂ : WAK
(K) → WAk

(k) given by [V ] → [L♯/L] is a homomor-

phism.

(iv) V contains a unimodular A-lattice if and only if V is bounded and

∂[V ] = 0 in WAk
(k).

Proof. See [BT 20], Theorem 4.3.

2. Symmetric polynomials and Γ-modules

We recall some notions from [M 69] and [B 15]. Let K be a field. If f ∈ K[X ]
is a monic polynomial such that f(0) 6= 0, set f ∗(X) = f(0)Xdeg(f)f(X−1); we
say that f is symmetric if f ∗ = f . Recall the following definition from [B 15] :

Definition 2.1. Let f ∈ k[X ] be a monic, symmetric polynomial. We say
that f is of

• type 0 if f is a product of powers of X − 1 and of X + 1;

• type 1 if f is a product of powers of monic, symmetric, irreducible polynomials
in k[X ] of even degree;

• type 2 if f is a product of polynomials of the form gg∗, where g ∈ k[X ] is
monic, irreducible, and g 6= ±g∗.

The following is well-known :

Proposition 2.2. Every monic symmetric polynomial is a product of polyno-

mials of type 0, 1 and 2.
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Proof. See for instance [B 15], Proposition 1.3.

Let J be the set of irreducible factors of F , and let us write F =
∏
f∈J

fnf .

Let I1 ⊂ J be the subset of irreducible factors of type 1, and let I0 ⊂ J be
the set of irreducible factors of type 0; set I = I0 ∪ I1. For all f ∈ I, set
Mf = [K[X ]/(f)]nf . Set M0 = ⊕

f∈I0
Mf , and M1 = ⊕

f∈I1
Mf . If f ∈ J such

that f 6= f ∗, set Mf,f∗ = [K[X ]/(f)⊕K[X ]/(f ∗)]nf , and let M2 = ⊕
(f,f∗)

Mf,f∗ ,

where the sum runs over the pairs (f, f ∗) with f ∈ J and f 6= f ∗. Set

M = M0 ⊕M1 ⊕M2.

Let Γ be the infinite cyclic group, and let γ be a generator of Γ. Setting
γ(m) = Xm for all m ∈ M endows M with a structure of semi-simple
K[Γ]-module; we say that M is the semi-simple K[Γ]-module associated to

the polynomial F .

Let us write F = F0F1F2, where Fi is the product of the irreducible factors
of type i of F . We have F0 = (X−1)n

+

(X+1)n
−

for some integers n+, n− > 0.

Set M+ = [K[X ]/(X − 1)n
+

and M− = [K[X ]/(X + 1)n
−

. The K[Γ]-module
M0 splits as

M0 = M+ ⊕M−.

3. Isometries of quadratic forms

We recall some results from [M 69] and [B 15]. Let K be a field of character-
istic 6= 2, let V be a finite dimensional K-vector space, and let q : V ×V → K
be a non-degenerate quadratic form. An isometry of (V, q) is by definition an
isomorphism t : V → V such that q(tx, ty) = q(x, y) for all x, y ∈ V . Let
t : V → V be an isometry, and let F ∈ K[X ] be the characteristic polyno-
mial of t. It is well-known that F is a symmetric polynomial (see for instance
[B 15], Proposition 1.1). The following property is also well-known :

Lemma 3.1. If t : V → V is an isometry of the quadratic form (V, q) and if

the characteristic polynomial F of t satisfies F (1)F (−1) 6= 0, then

det(q) = F (1)F (−1) in K×/K×2.

Proof. See for instance [B 15], Corollary 5.2.

Recall that Γ is the infinite cyclic group, and let σ : K[Γ] → K[Γ] be the
K-linear involution such that σ(γ) = γ−1 for all γ ∈ Γ. An isometry t : V → V
endows V with a K[Γ]-module structure, and if moreover t is semi-simple with
characteristic polynomial F , then this module is isomorphic to the semi-simple
K[Γ]-module M = M(F ) associated to the polynomial F (see §2). Hence M
also carries a non-degenerate quadratic form, that we also denote by q. Note
that (M, q) is a K[Γ]-bilinear form, and gives rise to an element [M, q] of the
Witt group WK[Γ](K). To simplify notation, set WΓ(K) = WK[Γ](K).

Let us write M = M0 ⊕M1 ⊕M2 as in §2, and let qi denote the restriction
of q to M i; this gives rise to an orthogonal decomposition (M, q) = (M0, q0)⊕
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(M1, q1) ⊕ (M2, q2), and (M2, q2) is hyperbolic, hence its class in WΓ(K) is
trivial (see for instance [M 69], Lemma 3.1). With the notation of §2, we have
the further orthogonal decompositions

(M0, q0) = ⊕
f∈I0

(Mf , qf) and (M1, q1) = ⊕
f∈I1

(Mf , qf),

where qf is the restriction of q to Mf (see for instance [M 69], §3, or [B 15],
Propositions 3.3 and 3.4). Note that if f ∈ I0, then f(X) = X − 1 or X + 1,
and we have the orthogonal decomposition (M0, q0) = (M+, q+) ⊕ (M−, q−),
with q+ = qX−1 and q− = qX+1.

4. Local fields and unimodular Γ-lattices

Let K be a non-archimedean local field of characteristic 0, let O be its ring
of integers, and let k be its residue field. If a ∈ O, set v(a) = 1 if vK(a) is odd,
and v(a) = 0 if vK(a) is even or a = 0 (in other words, v(a) is the valuation
of a (mod 2) if a 6= 0, and v(0) = 0).

Theorem 4.1. Let F ∈ O[X ] be a monic, symmetric polynomial. There

exists a unimodular O-lattice having a semi-simple isometry with characteristic

polynomial F if and only if one of the following holds

(i) char(k) 6= 2, and v(F (1)) = v(F (−1)) = 0.

(ii) char(k) = 2, and v(F (1)F (−1)) = 0.

We start with a preliminary result, and some notation.

Notation 4.2. Let E0 be an étale K-algebra of finite rank, and let E be
an étale E0-algebra which is free of rank 2 over E0. Let σ : E → E be
the involution fixing E0. If λ ∈ E×

0 , we denote by bλ the quadratic form
bλ : E × E → K such that bλ(x, y) = TrE/K(λxσ(y)).

Proposition 4.3. Let E0 be an étale K-algebra of finite rank, and let E be

an étale E0-algebra which is free of rank 2 over E0. Let σ : E → E be

the involution fixing E0. Let α ∈ E×

0 be such that ασ(α) = 1, and that the

characteristic polynomial f of α over K belongs to O[X ]. Let deg(f) = 2d,
and assume that f(1)f(−1) 6= 0. Let u+, u− ∈ O×.

Let V = V + ⊕ V − be a finite dimensional K-vector space, and let ǫ =
(ǫ+, ǫ−) : V → V be the isomorphism given by ǫ± : V ± → V ±, ǫ± = ±id. Set

n+ = dim(V +) and n− = dim(V −).

If char(k) 6= 2, assume that if n± = 0, then v(f(±1)) = 0.

If char(k) = 2, assume that if n+ = n− = 0, then v(f(1)) + v(f(−1)) = 0.

If moreover K = Q2, assume that

• n+ and n− are both even,

• if n+ = n− = 0, then (−1)df(1)f(−1) = 1 in Q×

2 /Q2
×2,

• if n± = 0, then v(f(±1)) = 0,

• u+u− = (−1)n, where 2n = dim(E ⊕ V ).
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Then there exists λ ∈ E×

0 and non-degenerate quadratic forms

q+ : V + × V + → K, q− : V − × V − → K

such that, for q = q+ ⊕ q−, we have

(i)

∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0

in WΓ(k).

(ii) If char(k) 6= 2 then det(q±) = u±f(±1) in K×/K×2.

(iii) If moreover K = Q2, then

• If n− 6= 0, then v(det(q−)) = v(f(−1)),

• If n+ 6= 0 and n− 6= 0, then det(q±) = u±f(±1) in Q×
2 /Q2

×2,

• det(E⊕V, b⊕q) = (−1)n, and (E⊕V, b⊕q) contains an even, unimodular

Z2-lattice.

Proof. The proof depends on the values of v(f(1)) and v(f(−1)). We are in
one of the following cases

(a) v(f(1)) = 0, v(f(−1)) = 0,

(b) v(f(1)) = 1, v(f(−1)) = 0,

(c) v(f(1)) = 0, v(f(−1)) = 1,

(d) v(f(1)) = 1, v(f(−1)) = 1.

The algebra E0 decomposes as a product of fields E0 =
∏
v∈S

E0,v. For all

v ∈ S, set Ev = E ⊗E0
E0,v.

Assume first that the characteristic of k is 6= 2. The algebra Ev is of one of
the following types

(sp) Ev = E0,v × E0,v;

(un) Ev is an unramified extension of E0,v;

(+) Ev is a ramified extension of E0,v, and the image α of α in the residue
field κv of Ev is 1;

(-) Ev is a ramified extension of E0,v, and the image α of α in the residue
field κv of Ev is −1.

This gives a partition S = Ssp ∪ Sun ∪ S+ ∪ S−.

Let γ be a generator of Γ, and let χ± : Γ → {±} be the character sending
γ to ±1.

Let us choose λ = (λv)v∈S in E×
0 =

∏
v∈S

E×
0,v such that for every v ∈ Sun, we

have ∂[Ev, bλv
, α] = 0 in WΓ(k); this is possible by [BT 20], Proposition 6.4.

The choices for v ∈ S+ and S− depend on which of the cases (a), (b), (c) or
(d) we are in. Let u be the image of u in k.
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Assume that we are in case (a) : then by hypothesis v(f(−1)) = v(f(1)) = 0.
For v ∈ S+ ∪ S−, we choose λv such that

∑
v∈S+

∂[Ev, bλv
, α] = 0 in W (k) = W (k, χ+) ⊂ WΓ(k), and

∑
v∈S−

∂[Ev , bλv
, α] = 0 in W (k) = W (k, χ−) ⊂ WΓ(k).

This is possible by [BT 20], Proposition 6.6; indeed, by [BT 20], Lemma 6.8
we have

∑
v∈S=

[κv : k] ≡ v(f(1)) (mod 2),
∑

v∈S−

[κv : k] ≡ v(f(−1)) (mod 2),

and v(f(1)) = v(f(−1)) = 0 by hypothesis; therefore ∂[E, bλ, α] = 0 in WΓ(k).
Taking for q± the zero form if n± = 0, and a unimodular form of determinant
u±f(±1) otherwise, we get

∂[E ⊕ V, bλ ⊕ q, (α, ǫ)] = 0

in WΓ(k). This implies (i) and (ii), and completes the proof in case (a).

Assume now that we are in case (b); then by hypothesis v(f(−1)) = 0 and
v(f(1)) = 1. For v ∈ S− we choose λv such that

∑
v∈S−

∂[Ev , bλv
, α] = 0 in W (k) = W (k, χ−) ⊂ WΓ(k). This is possible by

[BT 20], Proposition 6.6; indeed, by [BT 20], Lemma 6.8 (ii) we have
∑

v∈S−

[κv : k] ≡ v(f(−1)) (mod 2),

and v(f(−1)) = 0 by hypothesis.

We now come to the places in S+. Recall that by [BT 20], Lemma 6.8 (i)
we have

∑
v∈S+

[κv : k] ≡ v(f(1)) (mod 2). Since v(f(1)) = 1 by hypothesis, this

implies that
∑

v∈S+

[κv : k] ≡ 1 (mod 2). Therefore there exists w ∈ S+ such

that [κw : k] is odd. By [BT 20], Proposition 6.6, we can choose λw such that
∂[Ew, bλw

, α] is either one of the two classes of γ ∈ W (k) = W (k, χ+) ⊂ WΓ(k)
with dim(γ) = 1. Let us choose the class of determinant −u+, and set
∂[Ew, bλw

, α] = δ.

Since v(f(1)) = 1, by hypothesis we have n+ > 1. Let (V +, q+) be a non-
degenerate quadratic form over K such that det(q+) = u+f(1), and that

∂[V +, q+, id] = −δ in W (k) = W (k, χ+) ⊂ WΓ(k).

Let S ′
+ = S+ − {w}; we have

∑
v∈S′

+

[κv : k] ≡ 0 (mod 2), hence by

[BT 20], Proposition 6.6, for all v ∈ S ′
+ there exists λv ∈ E×

0,v such that∑
v∈S′

+

∂[Ev , bλv
, α] = 0 in W (k) = W (k, χ+) ⊂ WΓ(k). We have

∂[E ⊕ V +, bλ ⊕ q+, (α, id)] = 0

in WΓ(k). Taking for (V −, q−) a quadratic form over O of determinant
u−f(−1) and setting q = q+ ⊕ q−, we get

∂[E ⊕ V, b⊕ q, (α, ǫ)] = 0
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in WΓ(k). This completes the proof in case (b). The proof is the same in case
(c), exchanging the roles of S+ and S−.

Assume that we are in case (d), that is, v(f(1)) = v(f(−1)) = 1. By
[BT 20], Lemma 6.8 (i) and (ii), we have

∑
v∈S+

[κv : k] ≡ v(f(1)) (mod 2), and
∑

v∈S−

[κv : k] ≡ v(f(−1)) (mod 2).

Therefore
∑

v∈S+

[κv : k] ≡ ∑
v∈S−

[κv : k] ≡ 1 (mod 2). Hence there exist

w± ∈ S± such that [κw+
: k] and [κw−

: k] are odd. By [BT 20], Proposition
6.6, we can choose λw±

such that ∂[Ew±
, bλw±

, α] is either one of the two classes

of γ ∈ W (k) = W (k, χ±) ⊂ WΓ(k) with dim(γ) = 1. Let us choose λw±
such

that ∂[Ew±
, bλw±

, α] is represented by a form of dimension 1 and determinant
u±, and set

δ± = ∂[Ew±
, bλw±

, α].

By hypothesis, we have n+ > 1 and n− > 1. Let (V ±, q±) be non-degenerate
quadratic forms over K such that det(q±) = u±f(±1) and that

∂[V ±, q±, ǫ±] = −δ± in W (k) = W (k, χ±) ⊂ WΓ(k).

Let S ′
+ = S+ − {w+}; we have

∑
v∈S′

+

[κv : k] ≡ 0 (mod 2), hence by

[BT 20], Proposition 6.6, for all v ∈ S ′
+ there exists λv ∈ E×

0,v such that∑
v∈S′

+

∂[Ev , bλv
, α] = 0 in W (k) = W (k, χ+) ⊂ WΓ(k). Similarly, set S ′

− =

S+ − {w−}; we have
∑

v∈S′
−

[κv : k] ≡ 0 (mod 2), hence by [BT 20], Proposition

6.6, for all v ∈ S− there exists λv ∈ E×
0,v such that

∑
v∈S′

−

∂[Ev, bλv
, α] = 0 in

W (k) = W (k, χ+) ⊂ WΓ(k). Set q = q+ ⊕ q−, and note that

∂[E ⊕ V, bλ ⊕ q, (α, ǫ)] = 0

in WΓ(k). This completes the proof when the characteristic of k is 6= 2.

Assume now that the characteristic of k is 2. The algebra Ev is of one of
the following types

(sp) Ev = E0,v × E0,v;

(un) Ev is an unramified extension of E0,v;

(r) Ev is a ramified extension of E0,v.

This gives a partition S = Ssp ∪ Sun ∪ Sr.

If λ = (λv)v∈S is an element of E×
0 =

∏
v∈S

E×
0,v, note that by Lemma 3.1 we

have

disc(bλ) = (−1)df(1)f(−1)

in K×/K×2.
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We choose λ = (λv)v∈S in E×

0 such that for every v ∈ Sun, we have
∂[Ev, bλv

, α] = 0 in WΓ(k); this is possible by [BT 20], Proposition 6.4.

Assume first that we are in case (a) or (d), and note that v(f(1)) +
v(f(−1)) = 0. By [BT 20], Lemma 6.8 and Proposition 6.7, we can choose λv

such that
∑
v∈Sr

∂[Ev, bλv
, α] = 0 in W (k) = W (k, 1) ⊂ WΓ(k).

Therefore ∂[E, bλ, α] = 0 in WΓ(k).

If we are in case (a) or case (d) and K 6= Q2, take for q the unit quadratic
form. We have

∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0

in WΓ(k); this concludes the proof in cases (a) and (d) when K 6= Q2.

Suppose that K = Q2 and that we are in case (a). Suppose first that
n+ = n− = 0. We already know that ∂[E, bλ, α] = 0 in WΓ(F2), hence (i) holds.
Since n+ = n− = 0, by hypothesis (−1)df(1)f(−1) = 1 in Q×

2 /Q2
×2, therefore

disc(bλ) = 1 in Q×
2 /Q2

×2. Let us choose λ such that the quadratic form (E, bλ)
contains an even, unimodular Z2-lattice. If Sr = ∅, this is automatic; indeed,
in that case the trace map E → E0 is surjective, and hence every Z2-lattice of
the shape (E, bλ) is even. If not, by [BT 20] Propositions 8.4 and 5.4 we can
choose λ having this additional property. This implies that (iii) holds as well.

We continue supposing that K = Q2 and that we are in case (a); assume
now that n+ 6= 0 and n− = 0. Let us choose q+ such that det(q∗) =
(−1)nf(1)f(−1); since det(bλ) = f(1)f(−1), this implies that

det(E ⊕ V, bλ ⊕ q+) = (−1)n.

Moreover, let us choose the Hasse-Witt invariant of q+ in such a way that
the quadratic form (E ⊕ V, bλ ⊕ q+ ⊕ q−) contains an even, unimodular Z2-
lattice; this is possible by [BT 20] Proposition 8.4. Therefore condition (iii)
holds. Note that since v(det(q+)) = 0, we have ∂[V, q+] = 0 in W (F2, hence
∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0 in WΓ(F2); therefore condition (i) also holds.

Assume now that n+ = 0 and n− 6= 0. Let us choose q− such that
det(q−) = (−1)nf(1)f(−1), and note that since v(f(1)) = v(f(−1)) = 0,
this implies that v(det(q−)) = v(f(−1)) = 0. As in the previous case, we see
that det(E ⊕ V, bλ ⊕ q−) = (−1)n, and we choose the Hasse-Witt invariant of
q− so that (E ⊕ V, bλ ⊕ q−) contains an even, unimodular Z2-lattice; this is
possible by [BT 20] Proposition 8.4. As in the previous case, we conclude that
conditions (i) and (iii) are satisfied.

Suppose that n+ 6= 0 and n− 6= 0. Let us choose q+ such that det(q+) =
u+f(1) and q− such that det(q−) = u−f(−1). Since u+u− = (−1)n and
det(bλ) = f(1)f(−1), this implies that

det(E ⊕ V, bλ ⊕ q+ ⊕ q−) = (−1)n.

Note that since v(u−) = v(f(−1)) = 0, we have v(det(q−)) = v(f(−1)) = 0.
As in the previous cases, we can choose q+ and q− such that (E ⊕ V, bλ ⊕ q−)
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contains an even, unimodular Z2-lattice, and that ∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0
in WΓ(F2), hence conditions (i) and (iii) hold.

Assume now that K = Q2 and that we are in case (d); note that the
hypothesis implies that n+, n− > 2, and that both n+ and n− are even. With
our previous choice of λ, we have ∂[E, bλ, α] = 0 in WΓ(F2). Let us choose
q+ and q− such that det(q±) = u±f(±1), and note that this implies that
v(det(q−)) = v(f(−1)), and that det(E⊕V, bλ⊕ q+⊕ q−) = (−1)n. Moreover,
choose the Hasse-Witt invariants of q+ and q− so that (E ⊕ V, bλ ⊕ q+ ⊕ q−)
contains an even, unimodular Z2-lattice; this is possible by [BT 20] Proposition
8.4. Therefore condition (iii) holds; moreover, we have ∂(V, q, ǫ) = 0 in WΓ(F2)
and ∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0 in WΓ(F2), hence condition (i) is also satisfied.
This concludes the proof in cases (a) and (d).

Suppose that we are in case (b) or case (c), and note that in both cases, we
have v(f(1)) + v(f(−1)) = 1. Hence Proposition 6.7 and Lemma 6.8 imply
that

∑
v∈Sr

∂[Ev , bλv
, α] is the unique non-trivial element of W (k) = W (k, 1) ⊂

WΓ(k). Suppose first that K 6= Q2. We have either n+ > 1 or n− > 1;
choose q± such that ∂[V ±, q±,±id] is also the unique non-trivial element of
W (k) = W (k, 1) ⊂ WΓ(k). We have

∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0

in WΓ(k). This settles cases (b) and (c) when K 6= Q2.

Assume now that K = Q2, and that we are in case (b), namely v(f(1)) = 1
and v(f(−1)) = 0; then n+ ≥ 2, and is even. If n− 6= 0, then choose q−

such that det(q−) = u−f(−1), and note that this implies that v(det(q−)) =
v(f(−1)) = 0; choose q+ such that det(q+) = u+f(1). Since v(f(1)) = 1,
this implies that ∂[V +, q+, id] is the unique non-trivial element of W (F2) =
WΓ(F2, 1) ⊂ WΓ(F2). Note that det(E⊕V, bλ⊕ q+⊕ q−) = (−1)n in Q×

2 /Q
×2.

Moreover, choose the Hasse-Witt invariants of q+ and q− such that the qua-
dratic form (E⊕V, bλ⊕ q+⊕ q−) contains an even, unimodular Z2-lattice; this
is possible by [BT 20] Proposition 8.4. Hence condition (iii) holds, and condi-
tion (i) follows from the fact that ∂[E, bλ, α] and ∂[V +, q+, id] are both equal
to the unique non-trivial element of W (F2) = WΓ(F2, 1), which is a group of
order 2. Therefore ∂[E ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0 in WΓ(F2), and hence condition
(i) is also satisfied.

Suppose now that K = Q2, and that we are in case (c). Then v(f(1)) = 0
and v(f(−1)) = 1, hence n− ≥ 2, and is even. If n+ 6= 0, then choose q+ such
that det(q+) = u+f(1). Choose q− such that det(q−) = u−f(−1), and note
that this implies that v(det(q−)) = v(f(−1)) = 1, and that ∂[V −, q−,−id] is
the unique non-trivial element of W (F2) = WΓ(F2, 1) ⊂ WΓ(F2). We conclude
as in case (b). This settles cases (b) and (c), and hence the proof of the
proposition is complete.

We now show that the conditions of Theorem 4.1 are sufficient. In the
case where char(k) 6= 2, we obtain a more precise result (see part (ii) of the
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following result; for K = Q2 an analogous result is given in Theorem 5.1). We
use the notation of §2.

Theorem 4.4. Let F ∈ O[X ] be a monic, symmetric polynomial.

If char(k) 6= 2, assume that v(F (1)) = v(F (−1)) = 0.

If char(k) = 2, assume that v(F (1)F (−1)) = 0.

(i) Then there exists a unimodular O-lattice having a semi-simple isometry

with characteristic polynomial F .

(ii) Assume in addition that char(k) 6= 2 and let u+, u− ∈ O×. If M± 6=
0, then there exists a unimodular O-lattice having a semi-simple isometry

with characteristic polynomial F such that the associated K[Γ]-bilinear form

(M±, q±) is such that

det(q±) = u±F1(±1)

in K×/K×2.

Proof. Let us write F = F0F1F2, where Fi is the product of the irreducible
factors of F of type i. The hyperbolic O-lattice of rank deg(F2) has an isometry
with characteristic polynomial F2, therefore it is enough to prove the theorem
for F = F0F1.

From now on, we assume that F = F0F1, in other words, all the irreducible
factors of F are symmetric, of type 0 or 1. Let I1 be the set of irreducible
factors of type 1 of F . We have F1 =

∏
f∈I1

fnf ; note that F1(1)F1(−1) 6= 0. Let

us write F (X) = F1(X)(X−1)n
+

(X+1)n
−

for some integers n+, n− such that
n+, n− > 0.

For all f ∈ I1, set Ef = K[X ]/(f). Let σf : Ef → Ef be the involution
induced by X 7→ X−1, and let (Ef )0 be the fixed field of σ in Ef . Let Mf be
an extension of degree nf of (Ef)0, linearly disjoint from Ef over (Ef )0. Set

Ẽf = Ef⊗(Ef )0
Mf . Let αf be a root of f in Ef . The characteristic polynomial

of the multiplication by αf on Ẽf is fnf , and its minimal polynomial is f . Set

Ẽ =
∏
f∈I1

Ẽf , and M̃ =
∏
f∈I1

M̃f . Let σ̃ : Ẽ → Ẽ be the involution of Ẽ

induced by the involutions σ : Ef → Ef . Set α̃ = (αf )f∈I1, and let us denote

by α̃ : Ẽ → Ẽ the multiplication by α̃. Note that α̃ is semi-simple, with
characteristic polynomial F1.

Let V = V +⊕V − be a K-vector space with dim(V +) = n+ and dim(V −) =
+n−. Applying Proposition 4.3 (i) with E0 = M̃ , E = Ẽ, σ = σ̃, α = α̃ and

f = F1, we see that there exists λ ∈ M̃× and a non-degenerate quadratic form
q : V × V → K such that

∂[Ẽ ⊕ V, bλ ⊕ q, α⊕ ǫ] = 0

in WΓ(k),. By Theorem 1.1 (iv) this implies that there exists a unimodular
O-lattice having a semi-simple isometry with characteristic polynomial F ,
proving part (i) of the theorem. Similarly, Proposition 4.3 (ii) implies part
(ii) of the theorem.
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To show that the conditions of Theorem 4.1 are necessary, we start with
some notation and a preliminary result.

Extending the scalars to K, an even, unimodular lattice having a semi-
simple isometry with characteristic polynomial F gives rise to a K[Γ]-bilinear
form on the semi-simple K[Γ]-module associated to F (see §2), and this form
has an orthogonal decomposition M = M0⊕M1⊕M2, cf. §3. The K[Γ]-form
M0 has the further orthogonal decomposition M0 = (M+, q+)⊕ (M−, q−).

Notation 4.5. Let γ be a generator of Γ. Let N± be the simple k[Γ]-module
such that dimk(N+) = 1, and that γ acts on N± by ±id; note that N+ = N−

if char(k) = 2.

Lemma 4.6. Let F ∈ O[X ] be a monic, symmetric polynomial, and sup-

pose that there exists a unimodular lattice having a semi-simple isometry with

characteristic polynomial F . Let M = M0 ⊕ M1 ⊕ M2 be the correspond-

ing orthogonal decomposition of K[Γ]-bilinear forms. Let us write F (X) =
F1(X)(X− 1)n

+

(X +1)n
−

for some integers n+, n− such that n+, n− > 0, and

such that F1(1)F1(−1) 6= 0. Then we have

(i) Assume that char(k) 6= 2. Then the component of ∂[M1] in WΓ(k,N+) ≃
W (k) is represented by a quadratic form of dimension v(F1(1)) over k.

(i) Assume that char(k) 6= 2. Then the component of ∂[M1] in WΓ(k,N−) ≃
W (k) is represented by a quadratic form of dimension v(F1(−1)) over k.

(i) Assume that char(k) = 2. Then the component of ∂[M1] in WΓ(k,N+) =
WΓ(k,N−) ≃ W (k) is represented by a quadratic form of dimension v(F1(1))+
v(F1(−1)) over k.

Proof. Since M is extended from a unimodular lattice, we have ∂[M ] = 0
(see Theorem 1.1). Let M = M0 ⊕M1 ⊕M2 be the orthogonal decoposition
of §3. We have ∂[M2] = 0, hence ∂([M0] + [M1]) = 0.

From now on, we assume that M = M0⊕M1; equivalently, all the irreducible
factors of F are of type 0 or 1. Let us write F1 =

∏
f∈I1

fnf . We have an

orthogonal decomposition

M1 = ⊕
f∈I

Mf ,

where Mf = [K[X ]/(f)]nf (see [M 69], §3, or [B 15], Propositions 3.3 and
3.4). For all f ∈ I, set Ef = K[X ]/(f), and let σ : Ef → Ef be the K-linear
involution induced by X 7→ X−1. By a well-known transfer property (see for
instance [M 69], Lemma 1.1 or [B 15], Proposition 3.6) the K[Γ]-bilinear form
Mf is the trace of a non-degenerate hermitian form over (Ef , σ), hence it is
an orthogonal sum of forms of the type bλ, see notation 4.2.

By [BT 20], Lemma 6.8 (i) and Proposition 6.6, the component of ∂[M1] in
WΓ(k,M+) is represented by a form of dimension v(F1(1)), and this implies
(i). Similarly, applying [BT 20], Lemma 6.8 (ii) and Proposition 6.6 implies
(ii), and [BT 20], Lemma 6.8 (ii) and Proposition 6.7) implies (iii).
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Proposition 4.7. Let F ∈ O[X ] be a monic, symmetric polynomial, and

suppose that there exists a unimodular lattice having a semi-simple isometry

with characteristic polynomial F . Then we have

If char(k) 6= 2, then v(F (1)) = v(F (−1)) = 0.

If char(k) = 2, then v(F (1)F (−1)) = 0.

Proof. Suppose first that char(k) 6= 2. If n+ > 0 and n− > 0, then
F (1) = F (−1) = 0, so there is nothing to prove. Assume that n+ = 0. Then
the component of ∂[M0] in WΓ(k,M+) is trivial, and note that F (1) = F1(1).
By Lemma 4.6 (i), the component of ∂[M1] in WΓ(k,M+) is represented by a
form of dimension v(F1(1)) = v(F (1)), hence v(F (1)) = 0. Similarly, n− = 0
implies that v(F (−1)) = 0. This completes the proof of the proposition in the
case where char(k) 6= 2.

Assume now that char(k) = 2. If n+ > 0 or n− > 0, then F (1)F (−1) = 0, so
there is nothing to prove. Assume that n+ = n− = 0. The component of ∂[M1]
in WΓ(k,M+) = WΓ(k,M−) is represented by a form of dimension v(F (1)) +
v(F (−1)) (cf. Lemma 4.6 (iii)). Since n+ = n− = 0 we have M = M1, hence
∂[M1] = 0, and we also have F = F1; therefore v(F (1))+ v(F (−1)) = 0. This
completes the proof of the proposition.

Proof of Theorem 4.1. The theorem follows from Theorem 4.4 and Propo-
sition 4.7.

5. Even, unimodular Γ-lattices over Z2

We keep the notation of §4, with K = Q2 and O = Z2. Recall that if a ∈ Z2,
we set v(a) = 0 if a = 0 or if the 2-adic valuation of a is even, and v(a) = 1 if
the 2-adic valuation of a is odd.

If F ∈ Z2[X ] is a monic, symmetric polynomial, we write F = F0F1F2,
where Fi is the product of the irreducible factors of type i of F . Recall that
M = M0 ⊕ M1 ⊕ M2 is the semi-simple Q2[Γ]-module associated to F , and
that M0 = M+ ⊕M−.

Theorem 5.1. Let F ∈ Z2[X ] be a monic, symmetric polynomial of even

degree such that F (0) = 1, and set 2n = deg(F ). Let u+, u− ∈ Z×
2 such that

u+u− = (−1)n. Assume that the following conditions hold :

(a) v(F (1)) = v(F (−1)) = 0.

(b) If F (1)F (−1) 6= 0, then (−1)nF (1)F (−1) = 1 in Q×

2 /Q2
×2.

Then we have

(i) There exists an even, unimodular Z2-lattice having a semi-simple isom-

etry with characteristic polynomial F .

(ii) If M+ 6= 0, M− 6= 0 and M1 6= 0, then there exists an even, unimodular

Z2-lattice having a semi-simple isometry with characteristic polynomial F such

that the associated Q2[Γ]-bilinear form (M±, q±) is such that

det(q±) = u±F1(±1)
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in Q×

2 /Q2
×2.

Proof. Let I be the set of irreducible factors of F of type 1, and set F1 =∏
f∈I1

fnf . The hyperbolic Z2-lattice of rank deg(F2) has a semi-simple isometry

with characteristic polynomial F2, therefore it is enough to prove the theorem
for F = F0F1.

From now on, we assume that all the irreducible factors of F are symmetric,
of type 0 or 1; we have F = F1(X − 1)n

+

(X + 1)n
−

for some integers n+ > 0,
n− > 0. Note that since deg(F ) is even and F (0) = 1 by hypothesis, n+ and
n− are both even.

For all f ∈ I1, set Ef = Q2[X ]/(f). Let σ : Ef → Ef be the involution
induced by X 7→ X−1, and let (Ef )0 be the fixed field of σ in Ef . Let Mf be
an extension of degree nf of (Ef)0, linearly disjoint from Ef over (Ef )0. Set

Ẽf = Ef⊗(Ef )0
Mf . Let αf be a root of f in Ef . The characteristic polynomial

of the multiplication by αf on Ẽf is fnf , and its minimal polynomial is f . Set

Ẽ =
∏
f∈I1

Ẽf , and M̃ =
∏
f∈I1

M̃f . Let σ̃ : Ẽ → Ẽ be the involution of Ẽ

induced by the involutions σ : Ef → Ef . Set α̃ = (αf )f∈I1, and let us denote

by α̃ : Ẽ → Ẽ the multiplication by α̃. Note that α̃ is semi-simple, with
characteristic polynomial F1.

We apply Theorem 8.1 of [BT 20] and Proposition 4.3 with E0 = M̃ , E = Ẽ,
σ = σ̃ and α = α̃.

Let V ± be a Q2-vector spaces of dimension n±, and set V = V +⊕V −. Note
that if n+ = n− = 0, then F1 = F , hence the class of (−1)nF1(1)F1(−1) = 1
in Q×

2 /Q2
×2 by hypothesis; therefore the hypotheses of Proposition 4.3 are

satisfied. Proposition 4.3 (i) and (iii) imply that there exist λ ∈ M̃× and a
non-degenerate quadratic form q : V × V → Q2 such that

∂[Ẽ ⊕ V, bλ ⊕ q, α̃⊕ ǫ] = 0

in WΓ(k), that (Ẽ⊕V, bλ⊕q) contains an even, unimodular Z2-lattice, and that
v(det(q−) = v(F1(−1)). By Theorem 1.1 (iv), this implies that there exists a

unimodular lattice in Ẽ⊕V stable by α̃⊕ǫ, hence a unimodular lattice having a
semi-simple isometry with characteristic polynomial F ; therefore conditions (i)
and (ii) of [BT 20], Theorem 8.1 hold. Moreover, since v(det(q−) = v(F1(−1)),
Theorem 8.4 of [BT 20] implies that condition (iii) of [BT 20], Theorem 8.1
is also satisfied. This implies that there exists an even, unimodular Z2-
lattice having a semi-simple isometry with characteristic polynomial F , and
this completes the proof of (i). Part (ii) of the theorem also follows from
Proposition 4.3, part (iii).

Theorem 5.2. Let F ∈ Z2[X ] be a monic, symmetric polynomial of even

degree such that F (0) = 1, and set 2n = deg(F ). Assume that there exists an

even, unimodular Z2-lattice having a semi-simple isometry with characteristic

polynomial F . Then we have

(a) v(F (1)) = v(F (−1)) = 0.
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(b) If F (1)F (−1) 6= 0, then the class of (−1)nF (1)F (−1) in Q×

2 /Q2
×2 lies

in {1,−3}.
Proof. Let L be an even, unimodular lattice having a semi-simple isometry
with characteristic polynomial F . The lattice L gives rise to a Q2[Γ]-bilinear
form M on a bounded module. Let us consider the orthogonal decomposition
of Q2[Γ]-bilinear forms

M = M0 ⊕M1 ⊕M2

(cf. §3). Since L is unimodular we have ∂[M ] = 0; note that ∂[M2] = 0, hence
we have ∂([M0] + [M1]) = 0.

From now on, we assume that M = M0⊕M1; equivalently, all the irreducible
factors of F are of type 0 or 1. Let I be the set of irreducible factors of F of
type 1, and set F1 =

∏
f∈I1

fnf . We have F = F1(X − 1)n
+

(X + 1)n
−

for some

integers n+ > 0, n− > 0.

Further, we have an orthogonal decomposition M1 = ⊕
f∈I1

Mf , where

Mf = [Q2[X ]/(f)]nf

(see [M 69], §3, or [B 15], Propositions 3.3 and 3.4). For all f ∈ I1, set
Ef = Q2[X ]/(f), and let σ : Ef → Ef be the Q2-linear involution induced
by X 7→ X−1. By a well-known transfer property (see for instance [M 69],
Lemma 1.1 or [B 15], Proposition 3.6) the Q2[Γ]-bilinear form Mf is the trace
of a non-degenerate hermitian form over (Ef , σ), hence it is an orthogonal sum
of forms of the type bλ, see notation 4.2.

The component of ∂[M1] in WΓ(k,N±) is represented by a form of dimension
v(F (1))+v(F (−1)) (mod 2) (cf. [BT 20], Lemma 6.8 (ii) and Proposition 6.7).

Suppose that n+ = n− = 0. Then M = M1, hence we have ∂[M1] = 0;
by the above argument this implies that v(F (1)) + v(F (−1)) (mod 2). By
[BT 20], Proposition 8.6 and Theorem 8.5, we have v(F (−1)) = 0, hence
(a) holds. Since L is even and unimodular, the class of (−1)nF (1)F (−1) in
Q×

2 /Q2
×2 lies in {1,−3}; this shows that (b) holds as well.

Let M0 = V + ⊕ V −, and let q± the the quadratic form on V ±.

Suppose that n+ 6= 0, and n− = 0. Then F (1) = 0, hence v(F (1)) = 0.
Since n− = 0, the quadratic form q− is the zero form, and v(det(q−)) = 0. By
[BT 20], Theorem 8.5 and Proposition 8.6, we have v(det(q−)) = v(F (−1)),
hence v(F (−1)) = 0. This implies (a), and (b) is obvious since F (1) = 0.

Assume now that n+ = 0 and n− 6= 0; then F (−1) = 0, hence (b) holds. By
[BT 20], Theorem 8.5 and Proposition 8.6, we have v(det(q−)) = v(F (−1));
since F (−1) = 0, this implies that v(det(q−)) = 0. Therefore ∂[M0] = 0. This
implies that ∂[M1] = 0, and hence v(F (1)) + v(F (−1)) = 0. Since we already
know that v(F (−1)) = 0, we obtain v(F (1)) = 0, and this implies (a).

Finally, if n+ 6= 0 and n− 6= 0, then F (1) = F (−1) = 0, and hence both (a)
and (b) hold. This concludes the proof of the theorem.
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6. Milnor signatures and Milnor indices

The aim of this section is to recall from [B 20] some notions of signatures
and indices, inspired by Milnor’s paper [M 68].

Let F ∈ R[X ] be a monic, symmetric polynomial. If (V, q) is a non-
degenerate quadratic form over R and if t : V → V is a semi-simple isometry of
q with characteristic polynomial F , we associate to each irreducible, symmetric
factor P of F an index τ(P) and a signature µ(P) as follows. Let VP(t) be the
P(t)-primary subspace of V , consisting of all v ∈ V with P(t)Nv = 0 for N
large. The Milnor index τ(P) is by definition the index of the restriction of
q to the subspace VP(t), and we define the Milnor signature µ(P) at P as the
signature of the restriction of q to VP(t).

Let IrrR(F ) be the set of irreducible, symmetric factors of F ∈ R[X ]; if
P ∈ IrrR(F ), then either deg(P) = 2, or P(X) = X ± 1. If (r, s) is the
signature of q, we have ∑

P

τ(P) = r − s,

where the sum runs over P ∈ IrrR(F ).

If P ∈ IrrR(F ), let nP > 0 be the integer such that PnP is the power of P
dividing F .

We denote by Mil(F ) the set of maps τ : IrrR(F ) → Z such that the image of
P ∈ IrrR(f) belongs to the set {−deg(P)nP , . . . , deg(P)nP}. For all integers
r, s > 0, let Milr,s(F ) be the subset of Mil(F ) such that

∑
P

τ(P) = r−s, where

the sum runs over P ∈ IrrR(F ).

Proposition 6.1. Sending a semi-simple element SOr,s(R) with characteristic

polynomial F to its Milnor index induces a bijection between the conjugacy

classes of semi-simple elements of SOr,s(R) and Milr,s(F ).

Proof. See [B 20], §6.

7. Local conditions for even, unimodular Γ-lattices

Let F ∈ Z[X ] be a monic, symmetric polynomial, and let r, s ≥ 0 be integers
such that r + s = deg(F ). The aim of this section is to give local conditions
for the existence of an even, unimodular lattice of signature (r, s) having a
semi-simple isometry with characteristic polynomial F . More precisely, given
a Milnor index τ ∈ Milr,s(F ), we give a necessary and sufficient condition for
an even, unimodular lattice having a semi-simple isometry with characteristic
polynomial F and Milnor index τ to exist everywhere locally.

Let m(F ) be the number of roots z of F with |z| > 1 (counted with
multiplicity).

Proposition 7.1. There exist an R-vector space V and a non-degenerate qua-

dratic form q of signature (r, s) having a semi-simple isometry with character-

istic polynomial F and Milnor index τ ∈ Milr,s(F ) if and only if r > m(F ),
s > m(F ), and if moreover F (1)F (−1) 6= 0, then m(F ) ≡ r ≡ s (mod 2).
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Proof. This follows from [B 15], Proposition 8.1. Indeed, the necessity of
the conditions follows immediately from [B 15], Proposition 8.1. To prove the
sufficiency, note that while the statement of [B 15], Proposition 8.1 only claims
the existence of a non-degenerate quadratic form q of signature (r, s) having
a semi-simple isometry with characteristic polynomial F , the proof shows the
existence of such a form having a semi-simple isometry with a given Milnor
index τ ∈ Milr,s(F ).

If p is a prime number, we say that a Zp-lattice (L, q) is even if q(x, y) ∈ 2Zp;
note that if p 6= 2, then every lattice is even, since 2 is a unit in Zp.

Assume moreover that F has even degree, and that F (0) = 1. Set 2n =
deg(F ).

Theorem 7.2. There exists an even, unimodular Zp-lattice having a semi-

simple isometry with characteristic polynomial F for all prime numbers p if

and only if |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

Proof. This follows from Theorems 4.1, 5.1 and 5.2. Indeed, if p is a prime
number 6= 2, the existence of a unimodular Zp-lattice having a semi-simple
isometry with characteristic polynomial F implies that either F (1) = 0, or
vp(F (1)) is even; similarly, either F (−1) = 0, or vp(F (−1)) is even (see
Theorem 4.1). The existence of an even, unimodular Z2-lattice implies the
same property for p = 2 by Theorem 5.2. This implies that |F (1)| and |F (−1)|
are both squares, and therefore |F (1)F (−1)| is a square. If F (1)F (−1) = 0,
we are done. If not, Theorem 5.2 implies that the class of (−1)nF (1)F (−1)
in Q×

2 /Q2
×2 lies in {1,−3}; since |F (1)F (−1)| is a square, this implies that

(−1)nF (1)F (−1) is a square. The converse is an immediate consequence of
Theorems 4.1 and 5.1.

8. The local-global problem

The aim of this section is to reformulate the local conditions of §7, and to
give a framework for the local-global problem of the next sections. We also
introduce some notation that will be used in the following sections,

Let F ∈ Z[X ] be a monic, symmetric polynomial of even degree such that
F (0) = 1; set 2n = deg(F ). Let J be the set of irreducible factors of F , and
let us write F =

∏
f∈J

fnf . Let I1 ⊂ J be the subset of irreducible factors of

type 1, and let I0 ⊂ J be the set of irreducible factors of type 0.

Let M = M0 ⊕M1 ⊕M2 be the semi-simple Q[Γ]-module associated to the
polynomial F (see §2).

Let r, s ≥ 0 be integers such that r + s = deg(F ) and that r ≡ s (mod 8).
Let (V, q) = (Vr,s, qr,s) be the diagonal quadratic form over Q with r entries 1
and s entries −1.

Proposition 8.1. The following properties are equivalent



20 EVA BAYER-FLUCKIGER

(i) For all prime numbers p there exists an even, unimodular Zp-lattice

having a semi-simple isometry with characteristic polynomial F .

(ii) |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

(iii) For all prime numbers p, the quadratic form (V, q)⊗Q Qp has a semi-

simple isometry with characteristic polynomial F that stabilizes an even, uni-

modular lattice.

(iv) For all prime numbers p, the quadratic form (V, q) ⊗Q Qp has an

isometry with module M ⊗Q Qp, giving rise to a class [M ⊗Q Qp, q] in

WΓ(Qp) such that ∂p[M ⊗Q Qp, q] = 0 in WΓ(Fp) and that v2(det(q−)) ≡
v2(F1(−1)) (mod 2).

Proof. The equivalence of (i) and (ii) is Proposition 7.2, and it is clear
that (iii) implies (i). Let us show that (i) implies (iii). Set u = (−1)s.
Since r + s = 2n and r ≡ s (mod 8), we have n ≡ s (mod 8), hence
u = (−1)n. By (i), there exists an even, unimodular Zp-lattice having a
semi-simple isometry with characteristic polynomial F . If F (1)F (−1) 6= 0,
then the class of the determinant of this lattice in in Q×

p /Qp
×2 is equal to

F (1)F (−1), and F (1)F (−1) = u by (ii); if F (1)F (−1) = 0, then by Theorem
4.4 (ii) and Theorem 5.1 (ii) we can assume that the determinant of this lattice
in Q×

p /Qp
×2 is equal to u. Therefore the lattice is isomorphic to the diagonal

Zp-lattice 〈1, . . . , u〉 of determinant u if p 6= 2 (cf. [O’M 73], 92:1), and to
the orthogonal sum of n hyperbolic planes if p = 2 (see for instance [BT 20],
Proposition 8.3). Let qp be the quadratic form over Qp obtained from this
lattice by extension of scalars; then the Hasse-Witt invariant of qp is trivial if
p 6= 2, and is equal to the Hasse-Witt invariant of the orthogonal sum of n
hyperbolic planes if p = 2; its determinant is equal to u = (−1)n in Q×

p /Qp
×2.

This implies that qp and (V, q) ⊗ Qp are isomorphic as quadratic forms over
Qp. Since qp has a semi-simple isometry with characteristic polynomial F that
stabilizes a unimodular lattice, property (iii) holds. Finally, the equivalence of
(iii) and (iv) follows from Theorem 1.1 (iv) and from [BT 20], Theorems 8.1
and 8.5.

Terminology. We say that the local conditions for F hold at the finite places
if the equivalent conditions of Proposition 8.1 are satisfied.

Recall that m(F ) is the number of roots z of F with |z| > 1 (counted with
multiplicity).

Proposition 8.2. Let τ ∈ Milr,s(F ) be a Milnor index. The following proper-

ties are equivalent :

(i) The quadratic form (V, q) ⊗Q R has a semi-simple isometry with char-

acteristic polynomial F and Milnor index τ .

(ii) r > m(F ), s > m(F ), and if moreover F (1)F (−1) 6= 0, then m(F ) ≡
r ≡ s (mod 2).

(iii) The quadratic form (V, q)⊗Q R has an isometry with module M ⊗Q R

and Milnor index τ .
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Proof. The equivalence of (i) and (ii) follows from Proposition 7.1, and (iii)
is a reformulation of (i).

Terminology. We say that the local conditions for F and τ hold at the infinite
place if the equivalent conditions of Proposition 8.2 are satisfied.

We consider the following conditions

(C 1) |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

(C 2) r > m(F ), s > m(F ), and if moreover F (1)F (−1) 6= 0, then

m(F ) ≡ r ≡ s (mod 2).

Note that the local conditions for F at the finite places hold if and only if
condition (C 1) is satisfied, and that the local conditions for F and τ hold if
and only if condition (C 2) is satisfied.

Terminology. Let M and q be as above, and let p be a prime number. A
Γ-quadratic form (M ⊗Q Qp, q) such that ∂p[(M ⊗Q Qp, q] = 0 in WΓ(Fp) and
that v2(det(q−)) ≡ v2(F1(−1)) (mod 2) if p = 2 is called a local solution for F
at the prime number p.

9. Q[Γ]-forms, signatures and determinants

Let F ∈ Z[X ] be a monic, symmetric polynomial, and let us write F =
F0F1F2, where Fi is the product of the irreducible factors of type i of F . Let
r, s ≥ 0 be integers such that r + s = deg(F ) and that r ≡ s (mod 8), and
let τ ∈ Milr,s(F ) be a Milnor index. Let (L, q) be an even, unimodular lattice
having a semi-simple isometry with characteristic polynomial F and Milnor
index τ , and let (M, q) be the corresponding Q[Γ]-form, and let

M = M0 ⊕M1 ⊕M2

and

M0 = M+ ⊕M−

be the associated orthogonal decompositions (cf. §3). Note that the Milnor
index τ and the degrees of the polynomials determine the signatures of the
factors. We have sign(M) = (r, s). Set sign(M1) = (r1, s1), and sign(M2) =
(r2, s2); note that r2 = s2 = deg(F2)/2, since M2 is hyperbolic, and set

sign(M+) = (r+, s+), sign(M−) = (r−, s−).

We have det(M) = (−1)s, det(M1) = F1(1)F1(−1) = (−1)s1 |F1(1)F1(−1)|,
and det(M2) = (−1)s2 .

Proposition 9.1. We have

det(M+) = (−1)s+|F1(1)|, det(M−) = (−1)s−|F1(−1)|

in Q×/Q×2.
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Proof. The sign of det(M±) is (−1)s±. Let p be a prime, p 6= 2. By Lemma
4.6, the component of ∂p[M

1] in WΓ(Fp, N±) ≃ W (Fp) is represented by a
quadratic form of dimension v(F1(±1)) over Fp. If v(F1(±1)) = 0, then this
component of ∂p[M

1] is trivial, hence ∂p[M
±] is also trivial. This implies that

v(det(M±) = 0. Assume now that v(F1(±1)) = 1. Then the component
of ∂p[M

1] in WΓ(Fp, N±) ≃ W (Fp) is represented by a quadratic form of
dimension 1. Since ∂p[M ] = 0, this implies that ∂p[M

±] is represented by a
form of dimension 1, and therefore v(det(M±) = 1. Hence in this case too, we
have v(det(M±)) = v(F1(±1)).

Assume that p = 2. The component of ∂2[M
1] in WΓ(F2, N±) ≃ W (F2) is

represented by a quadratic form of dimension v(F1(1)) + v(F1(−1)) over F2

(see Lemma 4.6). If M+ = 0 and M− = 0, there is nothing to prove. Assume
that M+ 6= 0, and M− = 0. Then F1(−1) = F (−1), and by Theorem 5.2 (a),
we have v(F1(−1)) = 0. Hence ∂2(M

1) is represented by a form of dimension
v(F1(1)). If v(F1(1)) = 0, then ∂2(M

1) = 0, and hence ∂2(M
+) = 0; therefore

v(det(M+)) = 0. If v(F1(1)) = 1, then ∂2(M
1) is represented by a form of

dimension 1 over F2, hence ∂2(M
+) is also represented by a form of dimension

1 over F2. This implies that v(det(M+)) = 1. Therefore v(det(M+)) =
v(F1(1)). The same argument shows that if M+ = 0 and M− 6= 0, then
v(det(M−)) = v(F1(−1)). Suppose now that M+ 6= 0 and M− 6= 0. By
[BT 20], Theorem 8.5 and Proposition 8.6, we have v(det(M−)) = v(F1(−1)).
If v(F1(1)) = v(F1(−1)), then ∂2(M

1) = 0. Therefore ∂2(M
+ ⊕ M−) = 0.

Since v(det(M−)) = v(F1(−1)), this implies that v(det(M+)) = v(F1(1)). If
v(F1(1)) + v(F1(−1)) = 1, then ∂2(M

1) 6= 0, and hence ∂2(M
+ ⊕ M−) 6= 0.

Therefore v(det(M+)) + v(det(M−)) = 1. Since v(det(M−)) = v(F1(−1)), we
have v(det(M+)) = v(F1(1)). This completes the proof of the proposition.

10. Local decomposition

Let F ∈ Z[X ] be a monic, symmetric polynomial of even degree with
F (0) = 1; set 2n = deg(F ). Let r, s ≥ 0 be integers such that r + s = deg(F )
and that r ≡ s (mod 8), let τ ∈ Milr,s(F ) be a Milnor index. If the local
conditions (C 1) and (C 2) hold, then we obtain a local solution everywhere
(see §8). The aim of this section is to define local decompositions that will be
useful in the following sections.

We start by introducing some notation. Let M = M0 ⊕ M1 ⊕ M2 be the
semi-simple Q[Γ]-module associated to F as in §2, with

M1 = ⊕
i∈I

Mf and M0 = M+ ⊕M−.

If f ∈ I1, set Ef = Q[X ]/(f) and let σf : Ef → Ef be the involution
induced by X 7→ X−1. Let (Ef)0 be the fixed field of σf , and let df ∈ (Ef)0 be

such that Ef = (Ef )0(
√
df). Note that Mf is an Ef -vector space of dimension

nf . Let

Qf : Mf ×Mf → Q
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be the orthogonal sum of nf copies of the quadratic form Ef×Ef → Q defined
by (x, y) 7→ TrEf/Q(xσf (y)).

The Milnor index τ ∈ Milr,s(F ) determines the signatures of M+ and M−,
as follows. Recall that dim(M+) = n+ and dim(M+) = n+.

Let s+ and s− be as in §9, and set D± = (−1)s±F1(±1); let Q± be the diag-
onal quadratic form of dimension n± over Q defined by Q± = 〈D±, 1, . . . , 1〉.
Let Q be the orthogonal sum

Q = ⊕
f∈I1

Qf ⊕Q+ ⊕Q−.

sign(M+) = (r+, s+), sign(M−) = (r−, s−).

Recall form §8 that we denote by q = qr,s the diagonal quadratic form over
Q having r diagonal entries 1 and s diagonal entries −1.

Assume that conditions (C 1) and (C 2) hold. If p is a prime number, then
(M, q)⊗Q Qp has a structure of a Qp[Γ]-quadratic form (see §8), and we have
the orthogonal decomposition (cf. §3).

(M, q)⊗Q Qp = ⊕
f∈I1

(Mp
f , q

p
f)⊕ (Mp

+, q
p
+)⊕ (Mp

−, q
p
−)⊕ (Mp

2 , q
p
2),

where Mp
f = Mf ⊗Q Qp, M

p
+ = M+ ⊗Q Qp, M

p
− = M− ⊗Q Qp, and Mp

2 =

M2 ⊗Q Qp. The Qp[Γ]-quadratic form (Mp
2 , q

p
2) is hyperbolic.

For f ∈ I1, set Ep
f = Ef ⊗Q Qp and (Ef)

p
0 = (Ef )0 ⊗Q Qp. There exists a

unique non-degenerate hermitian form (Mp
f , h

p
f) over (Ep

f , σf ) such that

qpf (x, y) = TrEp
f
/Qp

(hp
f(x, y)),

see for instance [M 69], Lemma 1.1 or [B 15], Proposition 3.6.

Set λp
f = det(hp

f) ∈ (Ep
f)

×
0 /NEp

f
/(Ep

f
)0 . Note that the hermitian form hp

f is

isomorphic to the nf -dimensional diagonal hermitian form 〈λp
f , 1, . . . , 1〉 over

Ep
f . Hence qpf is determined by λp

f .

Notation 10.1. With the notation above, set

∂p(λ
p
f ) = ∂p[q

p
f ] ∈ WΓ(Fp).

Proposition 10.2. We have dim(qpf ) = deg(f)nf , det(qpf ) = [f(1)f(−1)]nf ,

and the Hasse-Witt invariant of qpf satisfies

w2(q
p
f) + w2(Qf) = cor(Ef )

p
0
/Qp

(det(hp
f ), df)

in Br2(Qp).

Proof. The assertion concerning the dimension is clear, the one on the
determinant follows from Lemma 3.1, and the property of the Hasse-Witt
invariants from [B 20], Proposition 12.8.
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Proposition 10.3. (a) dim(qp±) = n± and

det(qp+)det(q
p
+) = (−1)s++s−|F1(1)F1(−1)|.

(b) If n+ 6= 0 and n− 6= 0, then we can choose qp+ and qp− such that det(qp±) =
(−1)s±|F1(±1)|.
(c) If n± 6= 0, then the Hasse-Witt invariant of qp± can take either of the two

possible values of {0, 1} = Br2(Qp).

(d) If p 6= 2, then ∂p[q
p
±] can be either of the two possible classes of dimension

vp(det(q
p
±)) of WΓ(Fp, N

±) ≃ W (Fp).

Proof. (a) is clear, (b) follows from Theorem 4.4 (ii) and Theorem 5.1 (ii);
(c) and (d) are straightforward to check.

We also need the following

Lemma 10.4. Let p be a prime number, p 6= 2, and let b1 and b2 be two

quadratic forms over Qp with dim(b1) = dim(b2) and det(b1) = det(b2). Then

we have

w2(b1) = w2(b2) in Br2(Qp) ⇐⇒ ∂p[b1] = ∂p[b2] in W (Fp).

Proof. The proof is straightforward.

Similarly, we have

(M, q)⊗Q R = ⊕
f∈I1

(M∞
f , q∞f )⊕ (M∞

+ , q∞+ )⊕ (M∞
− , q∞− )⊕ (M∞

2 , q∞2 ),

where M∞
f = Mf ⊗Q R, M∞

+ = M+ ⊗Q R, M∞
− = M− ⊗Q Qp, and M∞

2 =

M2 ⊗Q Qp. The R[Γ]-quadratic form (M∞
2 , qp2) is hyperbolic.

The R[Γ]-quadratic forms (M∞
f , q∞f ) and (M∞

± , q∞± ) are determined by the
Milnor index τ ∈ Milr,s(F ).

Proposition 10.5. We have dim(q∞f ) = deg(f)nf , det(q
∞
f ) = [f(1)f(−1)]nf ,

and the Hasse-Witt invariant of q∞f satisfies

w2(q
∞
f ) + w2(Qf ) = cor(Ef )

∞
0
/R(det(h

∞
f ), df)

in Br2(R).

Proof. The assertion concerning the dimension is clear, the one on the
determinant follows from Lemma 3.1, and the property of the Hasse-Witt
invariants from [B 20], Proposition 12.8.

For f ∈ I1, set E∞
f = Ef ⊗Q R and (Ef)

∞
0 = (Ef )0 ⊗Q R. There exists a

unique non-degenerate hermitian form (M∞
f , hf) over (E∞

f , σf ) such that

q∞f (x, y) = TrE∞
f

/R(h
∞

f (x, y)),

see for instance [M 69], Lemma 1.1 or [B 15], Proposition 3.6. Set

λ∞
f = det(h∞

f ) ∈ (E∞
f )×0 /NE∞

f
/(E∞

f
)0 .
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11. Obstruction group

We keep the notation of the previous sections. The aim of this section is to
define a finite elementary abelian 2-group that will play an important role in
the Hasse principle (see §13). Recall that J is the set of irreducible factors of
the polynomial F , that I0 ⊂ J is the set of factors of type 0, I1 ⊂ J is the set
of factors of type 1, and I = I0 ∪ I1.

Notation 11.1. If f ∈ Z[X ] is an irreducible, symmetric polynomial of even
degree, set Ef = Q[X ]/(f), let σf : Ef → Ef be the involution induced by
X 7→ X−1, and let (Ef )0 be the fixed field of σ in Ef . Let α ∈ Ef be the
image of X.

Definition 11.2. Let f ∈ Z[X ] be an irreducible, symmetric polynomial of
even degree, and let p be a prime number. We say that f is ramified at p if
there exists a place w of (Ef)0 above p that is ramified in Ef ; otherwise, we
say that f is unramified at p. We denote by Πr

f the set of prime numbers p
such that f is ramified at p.

Let p ∈ Πr
f be an odd prime number. If w is a place of (Ef)0 above p that is

ramified in Ef , we denote by κw the residue field of w, and by α be the image
of α in κw; we denote by S+ the set of places w above p such that α = 1, and
by S− the set of places w above p such that α = −1. We denote by Πr,+

f the
set of prime numbers p such that there exists a place w above p with w ∈ S+,
and by Πr,−

f the set of prime numbers p such that there exists a place w above
p with w ∈ S−.

Notation 11.3. If f, g ∈ Z[X ] are monic, irreducible, symmetric polynomials
of even degree, we denote by Πf,g the set of prime numbers p such that one of
the following conditions holds :

(a) The polynomial f has a symmetric, irreducible factor f ′ ∈ Zp[X ],
the polynomial g has a symmetric, irreducible factor g′ ∈ Zp[X ], such that
f ′ (mod p) and g′ (mod p) have a common irreducible, symmetric factor in
Fp[X ].

(b) p ∈ Πr
f ∩ Πr

g, and the polynomials f (mod p) and g (mod p) are both
divisible by X − 1 in Fp[X ].

(c) p ∈ Πr
f ∩ Πr

g, and the polynomials f (mod p) and g (mod p) are both
divisible by X + 1 in Fp[X ].

F1 =
∏
f∈I1

fnf and F0(X) = (X − 1)n
+

(X + 1)n
−

for some integers n+, n− > 0.

For all prime numbers p, let Dp
+, D

p
− ∈ Q×

p /Q
×2
p .

Notation 11.4. If f ∈ I1, let Πf,X−1 be the set of prime numbers p such that
p ∈ Πr

f , that f (mod p) is divisible by X − 1 in Fp[X ], and that if n+ = 2,
then Dp

+ 6= −1.
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Let Πf,X+1 be the set of prime numbers p such that p ∈ Πr
f , and that

f (mod p) is divisible by X + 1 in Fp[X ], and that if n− = 2, then Dp
− 6= −1.

Let ΠX−1,X+1 = {2} if the following conditions hold : n+ 6= 0, n− 6= 0,
and if n+ = 2, then D2

+ 6= −1; if n− = 2, then D2
− 6= −1. Otherwise, set

ΠX−1,X+1 = ∅.

We denote by C(I) the set of maps I → Z/2Z.

Notation 11.5. If f, g ∈ I, let cf,g ∈ C(I) be such that

cf,g(f) = cf,g(g) = 1, and cf,g(h) = 0 if h 6= f, g.

Let (f, g) : C(I) → C(I) be the map map sending c to c+ cf,g.

Notation 11.6. Let C0(I) be the set of c ∈ C(I) such that

c(f) = c(g) if Πf,g 6= ∅,

and we denote by XF (D+, D−) the quotient of the group C0(I) by the sub-
group of constant maps.

In general, the group depends on D+ = (Dp
+) and D− = (Dp

−). If n+ 6= 2
and n− 6= 2, then XF (D+, D−) only depends on F , and we denote it by XF .

12. Local data

We keep the notation of §10. Assume that conditions (C 1) and (C 2) of §8
hold, and recall that this implies the existence of a “local solution" everywhere.
This leads, for all prime numbers p, to an orthogonal decomposition of the
associated Qp[Γ]-bilinear form (see §10). We obtain in this way a collection
of Qp[Γ]-bilinear forms, one for each irreducible, symmetric factor of the
characteristic polynomial. The dimensions and determinants of the bilinear
forms are always the same, but their Hasse-Witt invariants vary.

The aim of this section is to give a combinatorial encoding of the possible
Hasse-Witt invariants, called “local data".

We identify Br2(R) and Br2(Qp), where p is a prime number, with {0, 1} =
Z/2Z. Let V be the set of all places of Q, and let V ′ be the set of finite places.

If p is a prime number, let qpf for f ∈ I1, q
p
+ and qp− be as in §10; recall that

if n+ 6= 0 and n− 6= 0, we choose qp± such that det(qp±) = (−1)s±|F1(±1)| (see
Proposition 10.3 (b)).

Let ap ∈ C(I) be the map defined as follows :

ap(f) = w2(q
p
f) + w2(Qf)

if f ∈ I1, set
ap(X ± 1) = w2(q

p
±) + w2(Q±).

Let Cp be the set of maps ap ∈ C(I) obtained in this way.

Proposition 12.1. For almost all prime numbers p, the zero map belongs to

the set Cp.
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Proof. Let S be the set of prime numbers such that p is ramified in the
extension Ef/Q for some f ∈ I1, or w2(q) 6= w2(Q) in Br2(Qp); this is a finite
set. We claim that if p 6∈ S, then the zero map belongs to Cp. Indeed, set
qpf = Qp

f for all f ∈ I1, and qp± = Qp
±. We have det(q) = det(Q) in Q×/Q×2,

and if p 6∈ S we have w2(q) = w2(Q) in Br2(Qp), therefore, for p 6∈ S, we have

(M, q)⊗Q Qp = ⊕
f∈I1

(Mp
f , q

p
f)⊕ (Mp

+, q
p
+)⊕ (Mp

−, q
p
−)⊕ (Mp

2 , q
p
2).

If p is unramified in all the extensions Ef/Q for f ∈ I1, by [B 20], Lemma
11.2 we have ∂p[M

p
f , q

p
f ] = 0 in WΓ(Fp); moreover, vp(D±) = 0, hence

∂[Mp
±, q

p
±] = 0 in WΓ(Fp).

The above arguments show that if p 6∈ S, then the choice of qpf = Qp
f for all

f ∈ I1 and qp± = Qp
± gives rise to the element ap = 0 of Cp; therefore the zero

map is in Cp, as claimed. This completes the proof of the proposition.

Proposition 10.2 implies that if f ∈ I1, then ap(f) is determined by det(hp
f).

Set λp
f = det(hp

f) ∈ (Ep
f )

×

0 /NEp
f
/(Ep

f
)0 . Set Ep =

∏
f∈I1

Ep
f and Ep

0 =
∏
f∈I1

(Ep
f )0;

the map ap is determined by λp ∈ (Ep
0)

×/NEp/Ep
0
(Ep)×), and the quadratic

forms qp±.

Notation 12.2. With the above notation, we set ap = ap[λp, qp±] = a[λp, qp+, q
p
−].

Notation 12.3. If f, g ∈ I, let cf,g ∈ C(I) be such that

cf,g(f) = cf,g(g) = 1 and cf,g(h) = 0 if h 6= f, g.

Let (f, g) : C(I) → C(I) be the map map sending c to c+ cf,g.

Recall that for all f, g ∈ I, the set Πf,g consists of the prime numbers p such
that f (mod p) and g (mod p) have a common symmetric factor in Fp[X ].

If p is a prime number, let us consider the equivalence relation on C(I)
generated by the elementary equivalence

a ∼ b ⇐⇒ b = (f, g)a with p ∈ Πf,g.

We denote by ∼p this equivalence relation.

Proposition 12.4. The set Cp is a ∼p-equivalence class of C(I).

Proof. Set Ap = w2(q) + w2(Q) in Br2(Qp) = Z/2Z, and note that for all
ap ∈ Cp, we have

∑
f∈J

ap(f) = Ap.

We start by proving that the set Cp is stable by the maps (f, g) for p ∈ Πf,g.
Let ap[λp, qp±] ∈ Cp, let f, g ∈ J be such that p ∈ Πf,g, and let us show
that (f, g)(ap[λp, qp±]) ∈ Cp. Note that if f ∈ I1, then p ∈ Πf,g implies that
(Ep

f )
×

0 /NEp
f
/(Ep

f
)0(E

p
f) 6= 0. Assume first that f, g ∈ I. There exist µf , µg ∈

(Ep
f )

×

0 /NEp
f
/(Ep

f
)0(E

p
f) such that cor(Ef )

p
0
/Qp

(µf , df) 6= cor(Ef )
p
0
/Qp

(λf , df) and

cor(Ef )
p
0
/Qp

(µg, dg) 6= cor(Ef )
p
0
/Qp

(λg, dg). Let µp ∈ Ep
0 be obtained by replacing
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λp
f by µp

f , λ
p
f by µp

f , and leaving the other components unchanged. We have

ap[µp, qp±] = (f, g)(ap[λp, qp±]). Using the arguments of [B 20], Propositions 16.5
and 22.1 we see that ap[µp, qp±] ∈ Cp. Assume now that f ∈ I1 and g = X − 1.
In this case, the hypothesis p ∈ Πf,g implies that there exists a place w of
(Ef )0 above p that ramifies in Ef , and such that the w-component λw of λp

is such that with the notation of [B 20], §22, ∂p(λ
w) is in WΓ(Fp, N+). We

modify the w-component of λp to obtain µf ∈ (Ep
f )

×

0 /NEp
f
/(Ep

f
)0(E

p
f ) such that

cor(Ef )
p
0
/Qp

(µf , df) 6= cor(Ef )
p
0
/Qp

(λf , df), and let bp be a quadratic form over

Qp with dim(bp) = dim(qp+), det(b
p) = det(qp+), and w2(b

p) = w2(q
p
+) + 1. We

have ap[µp, bp, qp−] = (f, g)(ap[λp, qp±]). The arguments of [B 20], Propositions
16.5 and 22.1 show that ap[µp, bp, qp−] ∈ Cp.

Conversely, let us show that if ap[λp, qp±] and ap[µp, bp±] are in Cp, then
ap[λp, qp±] ∼p ap[µp, bp±]. Let J ′ be the set of f ∈ J such that ap[λp, qp±](f) 6=
ap[µp, bp±](f). Since

∑
h∈J

ap(h) = Ap for all ap ∈ Cp, the set J ′ has an even

number of elements.

Assume first that p 6= 2. This implies that for all f ∈ J ′, we have ∂p(λ
p
f) 6=

∂p(µ
p
f) and that if f(X) = X ± 1, then ∂p(q

p
±) 6= ∂p(b

p
±). Hence there exist

f, g ∈ J ′ with f 6= g such that ∂p(WΓ(Qp,M
p
f )) and ∂p(WΓ(Qp,M

p
g )) have a

non-zero intersection. This implies that p ∈ Πf,g. The element f, g)(ap[λp, qp±])
differs from ap[µp, bp±] in less elements than ap[λp, qp±]. Since J ′ is a finite set,
continuing this way we see that ap[λp, qp±] ∼p a

p[µp, bp±].

Suppose now that p = 2. Let J ′′ be the set of f ∈ J ′ such that ∂2(λ
2
f ) 6=

∂2(µ
2
f), and note that J ′′ has an even number of elements. The same argument

as in the case p 6= 2 shows that applying maps (f, g), we can assume that
J ′′ = ∅. If f ∈ J ′ and f 6∈ J ′′, then ∂2(λ

2
f) belongs to WΓ(F2, 1) ⊂ WΓ(F2).

Therefore f, g ∈ J ′ and f, g 6∈ J ′′, then 2 ∈ Πf,g. The number of these elements
is also even, hence after a finite number of elementary equivalences we see that
ap[λp, qp±] ∼p a

p[µp, bp±]. This completes the proof of the proposition.

Notation 12.5. Let ap ∈ Cp, and let c ∈ C(I). Set

ǫap(c) =
∑

f∈I

c(f)ap(f).

Recall from §11 that C0(I) is the set of c ∈ C(I) such that

c(f) = c(g) if Πf,g 6= ∅.

Lemma 12.6. Let ap, bp be two elements of Cp, and let c ∈ C0(I). Then

ǫap(c) = ǫbp(c).

Proof. By Proposition 12.4, we have ap ∼p bp; we can assume that bp =
(f, g)ap with p ∈ Πf,g. By definition, we have bp(h) = ap(h) if h 6= f, g,
bp(f) = ap(f) + 1 and bp(g) = ap(g) + 1. Since c ∈ C0(I) and Πf,g 6= ∅, we
have c(f) = c(g), and this shows that ǫap(c) = ǫbp(c), as claimed.
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Since ǫap(c) does not depend on the choice of ap ∈ Cp, we set ǫp(c) = ǫap(c)
for some ap ∈ Cp, and obtain a map

ǫp : C0(I) → Z/2Z.

By Proposition 12.1, we have ǫp = 0 for almost all prime numbers p.

Let ǫfinite =
∑

ǫp, where the sum is taken over all the prime numbers p; this
is a finite sum. Note that if (X − 1)(X +1) does not divide F , then ǫfinite only
depends on F ; it does not depend of the choice of the Milnor signature τ . We
have a homomorphism

ǫfinite : C0(F ) → Z/2Z.

Let v∞ ∈ V be the unique infinite place. Recall that the forms q∞f and q∞±
are uniquely determined by the choice of the Milnor index τ ∈ Milr,s(F ). Let
a∞ ∈ C(I) be the map defined as follows :

a∞(f) = w2(q
∞

f ) + w2(Qf)

if f ∈ I1,

a∞(X ± 1) = w2(q
∞

± ) + w2(Q±),

and

a∞(f) = 0 if f ∈ J with f 6∈ I, f 6= X ± 1.

We obtain a map

ǫ∞τ : C(I) → Z/2Z

by setting

ǫ∞τ (c) =
∑

f∈J

c(f)a∞(f).

For v ∈ V, set ǫv = ǫp if v = vp, and ǫv = ǫ∞τ if v = v∞. Set

ǫτ (c) =
∑

v∈V

ǫv(c).

Since ǫv = 0 for almost all v ∈ V (cf. Proposition 12.1), this is a finite sum.
We have ǫτ = ǫfinite + ǫ∞τ . We obtain a homomorphism

ǫτ : C0(I) → Z/2Z.

Recall from §11 that XF (D+, D−) is the quotient of C0(I) by the constant
maps.

Proposition 12.7. The homomorphism ǫτ : C0(I) → Z/2Z induces a homo-

morphism

ǫτ : XF (D+, D−) → Z/2Z.
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Proof. It suffices to show that if c(f) = 1 for all f ∈ J , then ǫ(c) = 0. For all
v ∈ V, set Av = w2(q) + w2(Q) in Br2(Qv) = Z/2Z, where Qv is either R or
Qp, for a prime number p. Note that Av = 0 for almost all v ∈ V, and that∑
v∈V

Av = 0. Moreover, for all av ∈ Cv, we have by definition
∑
f∈J

av(f) = Av.

Let c ∈ C(I) be such that c(f) = 1 for all f ∈ J . We have

ǫτ (c) =
∑

v∈V

∑

f∈J

c(f) av(f) =
∑

v∈V

∑

f∈J

av(f) =
∑

v∈V

Av = 0.

13. Hasse Principle

We keep the notation of the previous sections; in particular, F ∈ Z[X ] is a
monic, symmetric polynomial of even degree such that F (0) = 1 and we set
2n = deg(F ). Let r, s ≥ 0 be integers such that r + s = deg(F ) and that
r ≡ s (mod 8), and let τ ∈ Milr,s(F ) be a Milnor index. We assume that
conditons (C 1) and (C 2) hold.

Recall from §12 that we have a homomorphism

ǫτ : XF (D+, D−) → Z/2Z.

Theorem 13.1. There exists an even, unimodular lattice having a semi-simple

isometry with characteristic polynomial F and Milnor index τ if and only if

ǫτ = 0.

Proof. Assume that there exists an even, unimodular lattice (L, q) having
a semi-simple isometry with characteristic polynomial F and Milnor index τ ,
and let (M, q) be the associated Q[Γ]-quadratic form. Let M0 ⊕M1 ⊕M2 the
corresponding orthogonal decomposition of §9. We have the further orthogonal
decompositions (M1, q1) = ⊕

f∈I1
(Mf , qf), and (M0, q0) = (M+, q+)⊕ (M−, q−)

(see §3). For all prime numbers p, this gives rise to a local decomposition
as in §10, and to an element ap ∈ Cp given by ap(f) = w2(q

p
f ) + w2(Qf) if

f ∈ I1, by ap(X ± 1) = w2(q
p
±) + w2(Q±), and ap(f) = 0 if f ∈ J with f 6∈ I,

f 6= X ± 1 (see §12). Similarly, we have the element a∞ ∈ C(I) given by
a∞(f) = w2(q

∞
f ) + w2(Qf) if f ∈ I1, a∞(X ± 1) = w2(q

∞
± ) + w2(Q±), and

a∞(f) = 0 if f ∈ J with f 6∈ I, f 6= X ± 1. Since qpf = qf ⊗Q Qp and
q∞f = qf ⊗Q R for all f ∈ J , we have

∑
v∈V

av(f) = 0 for all f ∈ J .

This implies that ǫτ = 0.

Conversely, assume that ǫτ = 0. By [B 20], Theorem 13.5 this implies that
for all v ∈ V there exists bv ∈ Cv such that for all f ∈ J , we have

∑
v∈V

bv(f) = 0.

If v ∈ V ′ with v = vp where p is a prime number, let us write bv =
a[λp, qp+, q

p
−], for some λp ∈ (Ep

0)
×/NEp/Ep

0
(Ep)×, and some quadratic forms

qp+, q
p
− over Qp, as in notation 12.2.
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Note that since v∞ does not belong to any of the sets Πf,g, we have b∞(f) =
a∞(f) = w2(q

∞
f ) +w2(Qf ) if f ∈ I1, b

∞(f) = a∞(X ± 1) = w2(q
∞
± ) +w2(Q±),

and b∞(f) = a∞(f) = 0 if f ∈ J with f 6∈ I, f 6= X ± 1. Recall that the
forms q∞f and q∞± are uniquely determined by the choice of the Milnor index
τ ∈ Milr,s(F ).

If f ∈ I1, we have

bvp(f) = a[λp, qp+, q
p
−](f) = cor(Ef )

p
0
/Qp

(λp
f , df),

and
bv∞(f) = a[λ∞, q∞+ , q∞− ](f) = cor(Ef )

∞
0
/R(det(h

∞

f ), df)

(cf. Propositions 10.2 and 10.5).

Since
∑
v∈V

bv(f) = 0, we have

∑

v∈V

cor(Ef )
v
0
/Qv

(λv
f , df) = 0,

where Qv = Qp if v = vp and Qv = R if v = v∞. This implies that
∑

w∈W

(λw
f , df) = 0,

where W is the set of primes of E0. Therefore there exists λf ∈ E×
0 /NE/E0

(E×)
mapping to λw

f for all w ∈ W (see for instance [B 20], Theorem 10.1). In
particular, we have (λf , df) = (λw

f , df) in Br2(E
w
0 ) for all w ∈ W.

Note that τ(f) is an even integer. Let hf : Mf ×Mf → Ef be a hermitian

form such that det(hf) = λf , and that the index of hf is equal to τ(f)
2

; such a
hermitian form exists (see for instance [Sch 85], 10.6.9). Let us define

qf : Mf ×Mf → Q

by
qf(x, y) = TrEf/Q(hf(x, y)).

Let f = X ± 1. We have
∑
v∈V

bv(f) = 0, hence by the Brauer-Hasse-Noether

theorem there exists a(±) ∈ Br2(Q) mapping to bv(f) in Br2(Qv) for all v ∈ V.
Let q± be a quadratic form over Q of dimension n±, determinant D±, Hasse-
Witt invariant w2(q±) = a(±) +w2(Q±) and index τ(X ± 1) = r± − s±. Such
a quadratic form exists; see for instance [S 77], Proposition 7.

Let q′ : M ×M → Q be the quadratic form given by

(M, q′) = ⊕
f∈I1

(Mf , qf)⊕ ⊕
f∈I0

(Mf , qf)⊕ (M2, q2),

where (M2, q2) is hyperbolic. By construction, (M, q′) has the same dimen-
sion, determinant, Hasse-Witt invariant and signature as (M, q), hence the
quadratic forms (M, q′) and (M, q) are isomorphic.

Let t : M → M be defined by t(m) = γm, where γ is a generator of
Γ. By construction, t is an isometry of (M, q′) and it is semi-simple with
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characteristic polynomial F . By hypothesis, conditions (C 1) and (C 2) hold,
hence (M, q′)⊗Q Qp contains an even, unimodular Zp lattice Lp stable by the
isometry t. Let

L = {x ∈ M | x ∈ Lp for all prime numbers p}.
(L, q′) is an even, unimodular lattice having a semi-simple isometry with
characteristic polynomial F . This completes the proof of the theorem.

Corollary 13.2. Assume that conditions (C 1) and (C 2) hold, and that

XF = 0. Then there exists an even, unimodular lattice having a semi-simple

isometry with characteristic polynomial F and Milnor index τ .

14. Even, unimodular lattices preserved by a semi-simple element of

SOr,s(R)

In this section, we reformulate the Hasse principle result of §13, and prove
a result stated in the introduction. We keep the notation of §13. In particular
F ∈ Z[X ] is a monic, symmetric polynomial of even degree such that F (0) = 1,
and r, s ≥ 0 are integers such that r + s = deg(F ) and that r ≡ s (mod 8).

Let us now assume that condition (C 2) holds, and let t ∈ SOr,s(R) be
a semi-simple isometry with characteristic polynomial F . Let τ = τ(t) ∈
Milr,s(F ) be the Milnor index associated to t in Proposition 6.1.

Assume that condition (C 1) also holds, and let ǫτ : XF (D+, D−) →
Z/2Z be the homomorphism defined in §13; set ǫt = ǫτ . The following is
a reformulation of Theorem 13.1 :

Theorem 14.1. The isometry t ∈ SOr,s(R) preserves an even, unimodular

lattice if and only if ǫt = 0.

Corollary 14.2. If ǫτ : XF (D+, D−) → Z/2Z =, the isometry t ∈ SOr,s(R)
preserves an even, unimodular lattice.

15. Automorphisms of K3 surfaces

Which Salem numbers occur as dynamical degrees of automorphisms of
complex analytic K3 surfaces ? This question was raised by Curt McMullen
in [McM 02], and was studied in many other papers (see for instance [GM 02],
[O 10], [McM 11], [R 12], [BGA 16], [McM 16], [R 17], [Z 19], [Br 20]).

We refer to [H 16] and [Ca 14] for background on complex K3 surfaces
(henceforth K3 surfaces, for short) and their automorphisms.

Let X be a K3 surface, and let T : X → X be an automorphism; it induces
an isomorphism T ∗ : H2(X ,Z) → H2(X ,Z). The dynamical degree of T is
by definition the spectral radius of T ∗; it is either 1 or a Salem number. The
characteristic polynomial of T ∗ is a product of at most one Salem polynomial
and of a finite number of cyclotomic polynomials (see [McM 02], Theorem 3.2).

Let H2(X ,C) = H2,0(X )⊕H1,1(X )⊕H0,2(X ) be the Hodge decomposition
of H2(X ,C). Since the subspace H2,0(X ) is one dimensional, T ∗ acts on it by
multiplication by a scalar, denoted by δ(T ), and called the determinant of T ;
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we have |δ(T )| = 1. Moreover, δ(T ) is a root of unity if X is projective (cf.
[McM 02], Theorem 3.5).

The intersection form of H2(X ,Z) is an even, unimodular lattice of signa-
ture (3,19), hence it is isomorphic to Λ3,19, and an automorphism of X induces
an isometry of that form. Therefore a necessary condition for a Salem number
α to occur as the dynamical degree of such an automorphism is that Λ3,19 has
an isometry with characteristic polynomial SC, where S is the minimal poly-
nomial of α, and C is a (possibly empty) product of cyclotomic polynomials.

Definition 15.1. A complemented Salem polynomial is by definition a degree
22 polynomial that is the product of a Salem polynomial and of a (possibly
empty) product of cyclotomic polynomials.

Recall from §8 that a monic, symmetric polynomial F ∈ Z[X ] satisfies
condition (C 1) if and only if

|F (1)|, |F (−1)| and (−1)nF (1)F (−1) are squares,

where 2n = deg(F ), and that this condition is necessary for F to be the
characteristic polynomial of an isometry of an even, unimodular lattice.

If F is a complemented Salem polynomial, then m(F ) = 1, since F has
exactly two roots that are not on the unit circle. This implies that condition
(C 2) holds for (r, s) = (3, 19).

Definition 15.2. Let F be a complemented Salem polynomial, and let δ be
a root of F with |δ| = 1. We say that (F, δ) is realizable (resp. projectively
realizable) if there exists a K3 surface (resp. a projective K3 surface) X and
an automorphism T : X → X such that

• F is the characteristic polynomial of T ∗|H2(X ).

• T ∗ acts on H2,0(X ) by multiplication by δ.

Let S be a Salem polynomial of degree d with 4 6 d 6 20, and set

F (X) = S(X)(X − 1)22−d.

Let us consider Salem polynomials S with |S(1)| = 1. In this case, ΠS(X),X−1 =
∅, hence the obstruction group XF is not trivial, and not all Milnor indices
are realized. We start by introducing some notation.

Notation 15.3. If δ is a root of S with |δ| = 1, let τδ ∈ Mil3,19(F ) be such
that

τδ(P) = 2 if P(X) = (X − δ)(X − δ−1),

that

τδ(Q) = −2 for all Q ∈ IrrR(S) with Q 6= P,

and that
τδ(X − 1) = d− 22.

Let τ1 ∈ Mil3,19(F ) be such that τ1(Q) = −2 for all Q ∈ IrrR(S), and that
τ1(X − 1) = d− 20.
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Theorem 15.4. Let S be a Salem polynomial of degree d with 4 6 d 6 20, set

F (X) = S(X)(X − 1)22−d.

Assume that condition (C 1) holds for F and that |S(1)| = 1. Let τ ∈
Mil3,19(F ).

Then the lattice Λ3,19 has an isometry with characteristic polynomial F and

Milnor index τ if and only if one of the following holds

(i) d ≡ −2 (mod 8) and τ = τδ where δ is a root of S with |δ| = 1.

(ii) d ≡ 2 (mod 8) and τ = τ1.

Proof. The polynomials S and X − 1 are relatively prime over Z. This
implies that if the lattice Λ3,19 has a semi-simple isometry with characteristic
polynomial F , then Λ3,19 ≃ L1 ⊕ L2 where L1 and L2 are even, unimodular
lattices, such that L1 has an isometry with characteristic polynomial S, and
L2 has a semi-simple isometry with characteristic polynomial (X − 1)22−d.

Note that every τ ∈ Mil3,19(F ) is either equal to τ1, or to τδ, where δ is a
root of S with |δ| = 1. Assume first that Λ3,19 has a semi-simple isometry with
characteristic polynomial F and Milnor index τ1, and let Λ3,19 ≃ L1 ⊕ L2 be
as above. The signature of L1 is (1, d − 1), and since L1 is unimodular and
even, this implies that d ≡ 2 (mod 8).

Suppose now that Λ3,19 has a semi-simple isometry with characteristic poly-
nomial F and Milnor index τδ, where δ is a root of S with |δ| = 1. Let
Λ3,19 ≃ L1 ⊕ L2 be as above. The signature of L1 is then (3, d− 3), and since
L1 is unimodular and even, we have d ≡ −2 (mod 8).

This implies that if Λ3,19 has a semi-simple isometry with characteristic
polynomial F , then we are in one of the cases (i) or (ii).

Let us show the converse. Suppose first that we are in case (i). We have
d ≡ −2 (mod 8); this means that d = 6 or d = 14. Let (r, s) = (3, 3) if d = 6
and (r, s) = (3, 11) if d = 14; note that condition (C 2) holds for S and (r, s),
and that r ≡ s (mod 8). By hypothesis, condition (C 1) holds for F ; since
F (−1) = S(−1), this implies that |S(−1)| is a square. Moreover, |S(1)| = 1
by hypothesis. We claim that condition (C 1) also holds for S. Since S is a
Salem polynomial, we have S(1) < 0 and S(−1) > 0; we have d ≡ 2 (mod 4),
therefore (−1)d/2S(1)S(−1) is a square. This implies that condition (C 1)
holds for S. Moreover, S is irreducible, hence XS = 0.

Let τ ′ ∈ Milr,s(S) be the restriction of τδ to Milr,s(S). We have seen that
conditions (C 1) and (C 2) hold for S, and that XS = 0. By Corollary 13.2 the
even, unimodular lattice Λr,s has an isometry with characteristic polynomial S
and Milnor index τ ′. The identity is a semi-simple isometry of the lattice −E8

with characteristic polynomial (X−1)8. Since Λ3,19 = Λ3,3⊕(−E8)⊕(−E8) =
Λ3,11 ⊕ (−E8), the lattice Λ3,19 has a semi-simple isometry with characteristic
polynomial F and Milnor index τδ, as claimed.

Suppose now that we are in case (ii). We have d ≡ 2 (mod 8); that is,
d = 10 or d = 18. Let (r, s) = (1, d − 1); note that r ≡ s (mod 8), and that
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condition (C 2) holds for S and (r, s). We show as in case (i) that condition
(C 1) holds for S and that XS = 0.

Let τ ′′ ∈ Milr,s(S) be the restriction of τ1 to Milr,s(S). By Corollary
13.2 the even, unimodular lattice Λr,s has an isometry with characteristic
polynomial S and Milnor index τ ′′. The identity is a semi-simple isometry
of the lattice Λ2,20−d with characteristic polynomial (X−1)22−d. Since Λ3,19 =
Λ1,d−1⊕Λ2,20−d, the lattice Λ3,19 has a semi-simple isometry with characteristic
polynomial F and Milnor index τ1.

Proposition 15.5. Let S be a Salem polynomial of degree d with 4 6 d 6 22
and d ≡ 6 (mod 8). and let δ be a root of S with |δ| = 1. Suppose that |S(1)|
and S(−1) are both squares, and set F (X) = S(X)(X − 1)22−d. Then (F, δ)
is realizable.

Proof. The argument of Theorem 15.4 implies that the lattice Λ3,19 has a
semi-simple isometry with characteristic polynomial F and Milnor index τδ.
Applying [Br 20], Lemma 3.3 (1) of Brandhorst gives the desired result.

Example 15.6. If a > 0 is an integer, the polynomial

Sa(X) = X6 − aX5 −X4 + (2a− 1)X3 −X2 − aX + 1

is an Salem polynomial (see [GM 02], page 284, Example 1), and S(1) = −1.
Part (iii) of Theorem 15.5 implies that if δa is a root of Sa with |δa| = 1 and
Fa(X) = Sa(X)(X − 1)16, then (Fa, δa) is realizable.

The polynomials Sa also appear in §4 of [McM 02] : for every integer
a > 0, McMullen gives a geometric construction of an automorphism of a non-
projective K3 surface such that the dynamical degree and the determinant
of the automorphisms are roots of Sa (see [McM 02], Theorem 4.1); this
construction uses complex tori.

Example 15.7. Let S be a Salem polynomial of degree 14, and assume that
|S(1)| = 1. Let δ be a root of S, and set F (X) = S(X)(X − 1)8. If moreover
S(−1) is a square, then condition (C 1) holds for F , and Theorem 15.5 (iii)
implies that (F, δ) is realizable.

Salem polynomials of degree 14 with |S(1)| = |S(−1)| = 1 were considered
in several papers. Oguiso proved that the third smallest known Salem number
λ14 is the dynamical degree of an automorphism of a non-projective K3 surface
(see [O 10], Proposition 3.2). If a Salem number is a root of a Salem polynomial
S of degree 14 with |S(1)| = |S(−1)| = 1, then this was shown by Reschke
(see [R 12], Theorem 1.2).

16. Realizable Salem numbers

The aim of this section is to show that if α is a Salem number of degree d with
d = 4, 6, 8, 12, 14 or 16, then α is the dynamical degree of an automorphism of
a non-projective K3 surface; partial results are given for the other values of d
as well.
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Notation 16.1. Let S be a Salem polynomial of degree d with 4 6 d 6 20,
and let δ be a root of S with |δ| = 1. Let F be a complemented Salem
polynomial with Salem factor S. We define the Milnor index τδ ∈ Mil3,19(F )
as follows :

• τδ((X − δ)(X − δ−1)) = 2;

• τδ(P) < 0 for all P ∈ IrrR(F ) such that P(X) 6= (X − δ)(X − δ−1).

Theorem 16.2. Let S be a Salem polynomial of degree d, and let δ be a root

of S with |δ| = 1. Suppose that d 6 16 and d ≡ 0, 4 or 6 (mod 8). Then there

exists a complemented Salem polynomial F with Salem factor S such that Λ3,19

has a realizable isometry with Milnor index τδ.

Notation 16.3. If f ∈ Z[X ] is an irreducible, symmetric polynomial of even
degree, set Ef = Q[X ]/(f), let σf : Ef → Ef be the involution induced by
X 7→ X−1, and let (Ef )0 be the fixed field of σ in Ef .

Definition 16.4. Let f ∈ Z[X ] be an irreducible, symmetric polynomial of
even degree, and let p be a prime number. We say that f is ramified at p if
there exists a place w of (Ef )0 above p that is ramified in Ef .

Proposition 16.5. Suppose that d 6 18 and that one of the following holds :

(i) |S(1)| and S(−1) are not both squares.

(ii) S is ramified at the prime 2.

Then there exists a complemented Salem polynomial F with Salem factor S
such that Λ3,19 has a realizable isometry with Milnor index τδ.

Proof. (a) Suppose first that there exists a prime number p such that
vp(S(−1)) ≡ 1 (mod 2). Set F (X) = S(X)(X − 1)20−d(X + 1)2. We have
D− = (−1)s−S(−1) = S(−1); this implies that D− 6= −1 in Q×

p /Q
×2
p , since

vp(D−) = vp(S(−1)) ≡ 1 (mod 2). Therefore p ∈ ΠS,X+1, and XF (D−) = 0.

(b) Suppose now that no such prime number exists; this implies that S(−1)
is a square. Then either |S(1)| is not a square, or S is ramified at 2.

Set F (X) = S(X)(X − 1)22−d. We have d 6 18, hence 22 − d 6= 2; this
implies that p ∈ ΠS,X−1 and hence XF = 0.

Let (L, q) be an even, unimodular lattice of signature (3, 19), and let t :
L → L be a semi-simple isometry with characteristic polynomial F and with
Milnor index τδ; such an isometry exists XF (D−) = 0 in case (a) and XF = 0
in case (b).

Set LS = Ker(S(t)), and let SC be the orthogonal of LS in L. If we are in
case (b), then the restriction of t to LC is the identity, hence it is a positive
isometry in the terminology of McMullen; this implies that t : L → L is
realizable.

Suppose now that we are in case (a). Let L1 = LS = Ker(S(t)), L2 =
Ker(t+ 1) and L3 = Ker(t− 1); let ti : Li → Li be the restriction of t to Li.

A root of (L2, q) is by definition an element x ∈ L2 such that q(x, x) = −2.
If (L2, q) has no roots, then t2 is a positive isometry of (L2,−q) by [McM 11],
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Theorem 2.1, and hence [McM 11], Theorem 6.2 (see also [McM 16], Theorem
6.1) implies that (F+, δ) is realizable, hence (b) holds.

Suppose that (L2, q) has at least one root. By hypothesis, S(−1) is not
a square, therefore det(L2, q) is not a square. Since (L2, q) is of rank 2,
even and negative definite, there exist integers D > 1 and f > 1 such that
det(L2, q) = f 2D, where −D is the discriminant of an imaginary quadratic
field. The lattice (L2, q) is isomorphic to a quadratic form q′ on an order O
of the imaginary quadratic field Q(

√
−D) (see for instance [Co 89], Theorem

7.7). Complex conjugation induces an isometry of the quadratic form (O, q′)
with characteristic polynomial X2 − 1. If D = 3 and f = 1, then (O, q′)
is isomorphic to the root lattice A2, and complex conjugation is a positive
isometry of (O,−q′) (see [McM 11], §5, Example); otherwise, (O, q′) contains
only two roots, fixed by complex conjugation, hence we obtain a positive
isometry of (O,−q′) in this case as well. Let t′2 : L2 → L2 be the isometry of
(L2, q) obtained via the isomorphism (O, q′) ≃ (L2, q). Then t′2 is a positive
isometry of (L2,−q). Let G(L2) = (L2)

♯/L2, and note that t2 and t′2 both
induce −id on G(L2). This implies that (L, q) has a semi-simple isometry
t′ : L → L inducing the positive isometry t2 or t′2 on L2 and ti on Li for
i = 1, 3. By [McM 11], Theorem 6.2 (see also [McM 16], Theorem 6.1) this
implies that the isometry is realizable.

Proof of Theorem 16.2. If |S(1)| and S(−1) are not both squares or if if d
is divisible by 4, then the result follows from the proposition; if d ≡ 6 (mod 8),
then it follows from Proposition 15.5.

Definition 16.6. Let α be a Salem number and let δ be a conjugate of α such
that |δ| = 1. We say that (α, δ) is realizable (resp. projectively realizable) if
there exists an automorphism of a K3 surface (resp. a projective K3 surface)
having an automorphism of dynamical degree α and and determinant δ.

Corollary 16.7. Let α be a Salem number of degree d with 4 6 d 6 16, let

S be the minimal polynomial of α, and let δ be a root of S with |δ| = 1. If

d = 4, 6, 8, 12, 14 or 16, then (α, δ) is realizable.

Remark 16.8. If d = 20 with |S(1)| is a square and S(−1) is not a square,
then the method of Proposition 16.5 still works, and therefore Corollary 16.7
holds in this case as well.

Example 16.9. McMullen proved that the Salem numbers λ14, λ16 and λ20 are
not realized as dynamical degrees of automorphisms of projective K3 surfaces
(cf. [McM 16], §9). Corollary 16.7 and Remark 16.8 show that they are realized
by automorphisms of non-projective K3 surfaces.

17. A nonrealizable Salem number

McMullen proved that the Salem number λ18 = 1.1883681475... (the second
smallest known Salem number) is the dynamical degree of an automorphism of
a projective K3 surface (cf. [McM 16], Theorem 8.1). The aim of this section
is to show that this is not possible for non-projective K3 surfaces.
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Let S be a Salem polynomial of degree 18, and let δ be a root of S with
|δ| = 1. Let σδ ∈ Mil3,15(S) be such that σδ(P) = 2 for P(x) = (x−δ)(x−δ−1)
and that σδ(Q) = −2 for all Q ∈ IrrR(S) with Q 6= P.

If f ∈ Z[X ] is a monic polynomial, we denote by Res(S, f) the resultant of
the polynomials S and f .

Proposition 17.1. Assume that |Res(S, f)| = 1 for all f ∈ {Φ1,Φ2,Φ3,Φ4,Φ6}.
Let C be a product of cyclotomic polynomials such that deg(C) = 4, and set

F = SC. Let τδ ∈ Mil3,19(F ) be such that the restriction of τδ to Mil3,15(S) is

σδ, and that τδ(Q) < 0 for all Q ∈ IrrR(C).

If Λ3,19 has a semi-simple isometry with characteristic polynomial F = SC
and Milnor index τδ, then C = Φ12.

Proof. If C = Φ5, Φ8 or Φ10, then FC does not satisfy Condition (C 1), hence
Λ3,19 does not have any isometry with characteristic polynomial F for these
choices of C.

Assume that all the factors of C belong to the set {Φ1,Φ2,Φ3,Φ4,Φ6}. Then
S and C are relatively prime over Z. If Λ3,19 has an isometry with characteristic
polynomial F , then Λ3,19 = L1 ⊕ L2, where L1 and L2 are even, unimodular
lattices such that L1 has an isometry with characteristic polynomial S and
Milnor index σδ, and L2 has an isometry with characteristic polynomial C.
This implies that the signature of L1 is (3, 15) and that the signature of L2 is
(0, 4), and this is impossible.

Therefore the only possiblity is C = Φ12, as claimed.

Notation 17.2. Let C = Φ12, and set F = SC. Let ζ be a primitive 12th
root of unity. Let τδ, τζ ∈ Mil3,19(F ) be such that

τδ(P) = 2 for P(x) = (x − δ)(x − δ−1) and that τδ(Q) = −2 for all
Q ∈ IrrR(F ) with Q 6= P;

τζ(P) = 2 for P(x) = (x − ζ)(x − ζ−1) and that τζ(Q) = −2 for all
Q ∈ IrrR(F ) with Q 6= P.

Theorem 17.3. Let S be an Salem polynomial of degree 18 such that

|S(1)S(−1)| = 1,

let C = Φ12, and set F = SC. Let δ be a root of S with |δ| = 1, and let ζ be a

primitive 12th root of unity. With the above notation, we have

(a) The lattice Λ3,19 has an isometry with characteristic polynomial F and

Milnor index τζ .

(b) The lattice Λ3,19 has an isometry with characteristic polynomial F and

Milnor index τδ if and only if XF = 0.

Proof. The polynomial F satisfies Condition (C 1), since F (1) = −1 and
F (−1) = 1.

Let us prove (a). Let σ1 ∈ Mil1,17(S) and σ2 ∈ Mil2,2(C) be the restrictions
of of τζ ∈ Mil3,19(F ). Since S and C are both irreducible, we have XS = 0 and



ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF K3 SURFACES 39

XC = 0. Therefore by Corollary 13.2, Λ1,17 has an isometry with characteristic
polynomial S and Milnor index σ1 and Λ2,2 has an isometry with characteristic
polynomial C and Milnor index σ2. This implies (a).

Let us prove (b). If XF = 0, then Corollary 13.2 implies that Λ3,19 has an
isometry with characteristic polynomial F and any Milnor index.

Assume that XF 6= 0; since F has two irreducible factors, this implies that
XF ≃ Z/2Z. Recall from §12 that ǫτδ = ǫfinite + ǫ∞τδ and ǫτζ = ǫfinite + ǫ∞τζ .

By (a) we know that Λ3,19 has an isometry with characteristic polynomial F
and Milnor index τζ ; this implies that ǫτζ = 0. Note that ǫ∞τδ 6= ǫ∞τζ . Therefore
ǫτδ 6= 0, and by Theorem 13.1 this implies that Λ3,19 does not have an isometry
with characteristic polynomial F and Milnor index τδ. This completes the
proof of (b).

Example 17.4. Let S be the Salem polynomial corresponding to the Salem
number λ18. This polynomial satisfies the conditions of Proposition 17.1 : we
have |Res(S, f)| = 1 for all f ∈ {Φ1,Φ2,Φ3,Φ4,Φ6}. Therefore by Proposition
17.1, if Λ3,19 has an isometry with characteristic polynomial SC and Milnor
index τδ for some product C of cyclotomic polynomials, then we have C = Φ12.

Let F = SΦ12. We have XF 6= 0. Indeed, |Res(S, f)| = 169, and the
common factors modulo 13 of S and Φ12 in F13[X ] are X+6, X+11 ∈ F13[X ].
These polynomials are not symmetric. Therefore ΠS,Φ12

= ∅, and hence
XF ≃ Z/2Z. Theorem 17.3 implies that Λ3,19 does not have any isometry
with characteristic polynomial SΦ12 and Milnor index τδ.

Since this holds for all roots δ of S with |δ| = 1, the Salem number λ18 is
not realized by an automorphism of a non-projective K3 surface.
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