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ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF
K3 SURFACES

EVA BAYER-FLUCKIGER

ABSTRACT. The aim of this paper is to give necessary and sufficient con-
ditions for an integral polynomial to be the characteristic polynomial of a
semi-simple isometry of some even unimodular lattice of given signature.
This result has applications to automorphisms of K3 surfaces; in particu-
lar, we show that every Salem number of degree 4,6,8,12,14 or 16 is the
dynamical degree of an automorphism of a non-projective K3 surface.

0. Introduction

Let r, s > 0 be integers such that = s (mod 8); this congruence condition is
equivalent to the existence of an even, unimodular lattice with signature (r, s).
When r,s > 1, such a lattice is unique up to isomorphism (see for instance
[S 77, chap. V); we denote it by A, ;. In [GM 02], Gross and McMullen raise
the following question (see [GM 02|, Question 1.1) :

Question. What are the possibilities for the characteristic polynomial F(X) =
det(X —t) of an isometry t € SO(A, ) ?

The aim of this paper is to answer this question for semi-simple isometries.

The condition ¢ € SO(A,.,) implies that F(X) = X&) F(X~1) hence F
is a symmetric polynomial (cf. §2)). Let 2n = deg(F), and let 2m(F’) be the
number of roots of F' outside the unit circle. As shown in [GM 02|, we have
the further necessary conditions :

(C1) |F)|, |[F(-1)] and (—1)"F(1)F(—1) are squares.

(C2)r = m(F), s > m(F), and if moreover F(1)F(—1) # 0, then
m(F) =r =s (mod 2).

Gross and McMullen prove that if F' € Z[X] is an irreducible, symmetric and
monic polynomial satisfying condition (C 2) and such that |F(1)F(—1)| = 1,
then there exists t € SO(A,. ;) with characteristic polynomial F' (see [GM 02],
Theorem 1.2). They speculate that conditions (C 1) and (C 2) are sufficient for
a monic irreducible polynomial to be realized as the characteristic polynomial
of an isometry of A, s; this is proved in [BT 20|, Theorem A. More generally,
Theorem A of [BT 20| implies that if a monic, irreducible and symmetric
polynomial F' satisfies conditions (C 1) and (C 2), then there exists an even,
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unimodular lattice of signature (r,s) having an isometry with characteristic
polynomial F. This is also the point of view of the present paper - we treat
the definite and indefinite cases simultaneously.

On the other hand, Gross and McMullen show that these conditions do
not suffice in the case of reducible polynomials (see [GM 02|, Proposition 5.2);
several other examples are given in [B 20]. Another example is the following :

Example 1. Let F(X) = (X* — X? + 1)(X — 1)*, and let (r,s) = (8,0);
conditions (C 1) and (C 2) hold, but there does not exist any positive definite,
even, unimodular lattice of rank 8 having an isometry with characteristic
polynomial F'; note that this amounts to saying that the lattice Eg does not
have any isometry with characteristic polynomial F'.

All these examples are counter-examples to a Hasse principle. Indeed, the
first result of the present paper is that conditions (C 1) and (C 2) are sufficient
locally. If p is a prime number, we say that a Z,-lattice (L,q) is even if
q(z,z) € 2Z, for all x € L; note that if p # 2, then every lattice is even, since
2 is a unit in Z,,. The following is proved in Theorem and Proposition [7.1]:

Theorem 1. Let ' € Z|X]| be a monic, symmetric polynomial of even degree.

(a) Condition (C 1) holds if and only if for all prime numbers p, there exists
an even, unimodular Z,-lattice having a semi-simple isometry with character-
istic polynomaial F.

(b) The group SO, s(R) contains a semi-simple element having characteristic
polynomial F' if and only if condition (C 2) holds.

The next result is a necessary and sufficient condition for the local-global
principle to hold. We start by defining an obstruction group (see §IT]). Let us
write F'(X) = F1(X)(X — 1) (X +1)" and assume that ny # 2, n_ # 2; in
this case, the group only depends on the polynomial F'; we denote it by 1.

Let us now assume that condition (C 2) holds, and let ¢ € SO, 4(R) be a
semi-simple isometry with characteristic polynomial F'; such an isometry exists
by part (b) of the above theorem (or Proposition [[I]). Assume moreover that
condition (C 1) also holds. In §I4] we define a homomorphism

6 Wp — Z/27
and prove the following (see Theorem [I4.]) :

Theorem 2. The isometryt € SO, ((R) preserves an even, unimodular lattice
if and only if ¢, = 0.

Example 2. Let F(X) = (X? — X2+ 1)(X — 1)*; we have IlIp ~ Z/2Z. If
t1 € SO44(R), we have ¢, = 0, and if 5 € SOgo(R), then ¢, # 0. Hence Ayy
has a semi-simple isometry with characteristic polynomial F', but the lattice
Es does not have such an isometry.

Corollary 1. Let G € Z[X] be a monic, irreducible, symmetric polynomial
such that |G(1)| is not a square, and suppose that |G(—1)| is a square. Let
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m =4 be an even integer, and set

F(X) = G(X)(X — 1)™.

Assume that condition (C 2) holds for F'. Then every semi-simple isometry
t € SO, s(R) with characteristic polynomial F preserves an even, unimodular
lattice.

Indeed, Condition (C 1) holds for F since |G(—1)] is a square, and one can
check that II1z = 0; therefore Theorem 2 implies the corollary.

For polynomials F' without linear factors, Theorem 2 is proved in [B20],
Theorem 27.4. However, it turns out that including linear factors is very
useful in the applications to K3 surfaces, which we now describe.

The second part of the paper gives applications to automorphisms of K3
surfaces, inspired by a series of papers of McMullen (see [McM 02], [McM 11],
[McM 16]).

Recall that a monic, irreducible, symmetric polynomial S € Z[X] of degree
> 4 is a Salem polynomial if S has exactly two roots outside the unit circle,
both positive real numbers. A real number is called a Salem number if it is
the unique real root > 1 of a Salem polynomial; it is an algebraic unit.

Ift7T: X — X is an automorphism of a complex K3 surface, then 7™ :
H?(X,C) — H?*(X,C) respects the Hodge decomposition

H*(X,C) = H*(X) o H"'(Xx) ® H"*(X);

since dim(H*°) = 1, the automorphism T* acts on it by multiplication
with a complex number, denoted by §(7); we have |6(T)| = 1. Moreover,
T* . H*X,Z) — H?(X,Z) preserves the intersection pairing. The above
properties imply that the characteristic polynomial of 7™ is a product of at
most one Salem polynomial and of a finite number of cyclotomic polynomials,
it satisfies condition (C 1), and 6(7’) is a root of this polynomial.

Moreover, assume that the characteristic polynomial is equal to SC', where
S is a Salem polynomial of degree d with 4 < d < 22 and C' is a product of
cyclotomic polynomials; then X is projective if and only if 6(T) is a root of C'
(see |R_17], Theorem 2.2). Such a polynomial is called a complemented Salem
polynomial (see Definition [[5.1]).

Let F' be a complemented Salem polynomial, and let § be a root of F'. We
wish to decide whether F' is the characteristic polynomial of an isomorphism
T* as above, with §(7') = 0. We start with the simplest case, where the
cyclotomic factor is a nontrivial power of X — 1.

Theorem 3. Let S be a Salem polynomial of degree d with 4 < d < 18 and
let 0 be a root of S with |6| = 1. Let

F(X) = S(X)(X - 1)*7,
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assume that condition (C 1) holds for F', and that |S(1)| is not a square. Then
there exists a non-projective K3 surface X and an automorphism T : X — X
such that

e [ is the characteristic polynomial of T*|H*(X).
o T* acts on H*°(X) by multiplication by §.

This is proved using Corollary 1, as well as some results of McMullen
([McM 11, Mc3) and Brandhorst ([Br_20]). For polynomials S with |S(1)| =1,
see Theorem [I5.4} in this case, the answer depends on the congruence class of
d modulo 8.

The dynamical degree of an automorphism 7" : X — X is by definition the
spectral radius of T™; since the characteristic polynomial of 7™ is the product of
a Salem polynomial and of a product of cyclotomic polynomial, the dynamical
degree is a Salem number. We say that a Salem number is realizable if a is
the dynamical degree of an automorphism of a K3 surface.

Let a be a Salem number of degree d with 4 < d < 20, and let S be
the minimal polynomial of «. In §I6] we prove an analog of Theorem 3 for
F(X)=8S(X)(X+1)%(X 1) or S(X)(X?-1)(X —1)"¢ and show that
if d =4,6,8,12,14 or 16, then « is realizable (see Corollary [16.7).

The aim of §I7]is to prove that the second smallest known Salem number,
A1s = 1.1883681475..., is not realizable as the dynamical degree of an auto-
morphism of a non-projective K3 surface. By contrast, McMullen proved that
A1s is the dynamical degree of an automorphism of a projective K3 surface
(see [McM 16|, Theorem 8.1).

I thank Marie José Bertin, Serge Cantat, Curt McMullen, Chris Smyth and
Yuta Takada for very useful comments and suggestions.

1. Equivariant Witt groups

We start by recalling some notions and results from [BT 20|, §3 and §4.
The equivariant Witt group

Let IC be a field, let A be a K-algebra and let 0 : A — A be a K-linear
involution. An A-bilinear form is a pair (V,b) consisting of an A-module V'
that is a finite dimensional KC-vector space, and a non-degenerate symmetric
KC-bilinear form b : V' x V' — K such that b(azx,y) = b(z,0(a)y) for all a € A
and all x,y € V.

The associated Witt group is denoted by W4(K) (see [BT 20|, §3). If M is a
simple A-module, we denote by W4 (K, M) the subgroup of W4(K) generated
by the classes of A-bilinear forms (M, b). Every class in W4(K) is represented
by an A-bilinear form whose underlining .A-module is semisimple, and we have

Walk) = GWa(K, M),
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where M ranges over the isomorphism classes of simple A-modules (see
IBT 20], Corollary 3.11 and Theorem 3.12).

Discrete valuation rings and residue maps

Let O be a discrete valuation ring with field of fractions K, residue field
and uniformizer 7. Let (A,o0) be an O-algebra with involution, and set
Ax = A®o K, A, = A®o k. An A-lattice in an Ag bilinear form V is
an A-submodule L which is finitely generated as an O-module and satisfies
KL =YV.1If Lis an A-lattice, then so is its dual

L*={xcV|bzL)cCO}.

We say that L is unimodularif L* = L and almost unimodularif mL* C L C L*.
If L is almost unimodular, then b induces an Ag-bilinear form L*/Lx L*/L — k
(see [BT 20], definition 4.1).

An Ag-bilinear form is said to be bounded if it contains an A-lattice. We
denote by WZK(K ) the subgroup of Wy, (K) generated by the classes of
bounded forms. The following result is proved in [BT 20)] :

Theorem 1.1. (i) Every bounded Ag-bilinear form contains an almost uni-
modular A-lattice L.

(ii) The class of L*/L in Wa, (k) only depends on the class of V in Wa(K).

(iii) The map 0 : Wa, (K) — Wa, (k) given by [V] — [L*/L] is a homomor-
phism.

(iv) V' contains a unimodular A-lattice if and only if V is bounded and
8[‘/] =01 WAk (]{7)

Proof. See [BT 20|, Theorem 4.3.

2. Symmetric polynomials and I'-modules

We recall some notions from [M 69| and [B_15]. Let K be afield. If f € K[X]
is a monic polynomial such that f(0) # 0, set f*(X) = f(0)X ) f(X~1); we
say that f is symmetricif f* = f. Recall the following definition from [B 15] :

Definition 2.1. Let f € k[X] be a monic, symmetric polynomial. We say
that f is of

e type 0 if f is a product of powers of X — 1 and of X + 1;

e type 1 if f is a product of powers of monic, symmetric, irreducible polynomials
in k[X] of even degree;

e type 2 if f is a product of polynomials of the form gg*, where g € k[X] is
monic, irreducible, and g # +g*.

The following is well-known :

Proposition 2.2. Every monic symmetric polynomial is a product of polyno-
maeals of type 0, 1 and 2.
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Proof. See for instance |[B 15|, Proposition 1.3.

Let J be the set of irreducible factors of F', and let us write F' = [] f™/.
fedJ
Let I; C J be the subset of irreducible factors of type 1, and let Iy C J be

the set of irreducible factors of type 0; set I = IoU I;. For all f € I, set
My = [K[X]/(f)]™. Set M* = & My, and M* = & M;. If f € J such

felo fen
that f # f*, set M; ;- = [K[X]/(f) ® K[X]/(f*)]", and let M? = (f@;*)Mf,f*v
where the sum runs over the pairs (f, f*) with f € J and f # f*. Set

M=M" o M @ M.

Let I' be the infinite cyclic group, and let v be a generator of I'. Setting
v(m) = Xm for all m € M endows M with a structure of semi-simple
K[I'-module; we say that M is the semi-simple K[I'|-module associated to
the polynomial F'.

Let us write ' = FyI| Fy, where F; is the product of the irreducible factors
of type i of F. We have Fy = (X —1)" (X +1)" for some integers nt,n~ > 0.
Set M+ = [K[X]/(X —1)*" and M~ = [K[X]/(X + 1)" . The K[I']-module
M? splits as

M=M"@ M.

3. Isometries of quadratic forms

We recall some results from [M_69] and [B_15]. Let K be a field of character-
istic # 2, let V' be a finite dimensional K-vector space, and let ¢ : V xV — K
be a non-degenerate quadratic form. An isometry of (V, q) is by definition an
isomorphism ¢ : V. — V such that g(tz,ty) = q(x,y) for all x;y € V. Let
t : V. — V be an isometry, and let I € K[X]| be the characteristic polyno-
mial of ¢. It is well-known that F' is a symmetric polynomial (see for instance
IB_15], Proposition 1.1). The following property is also well-known :

Lemma 3.1. Ift : V — V is an isometry of the quadratic form (V,q) and if
the characteristic polynomial F' of t satisfies F(1)F(—1) # 0, then

det(q) = F(1)F(—1) in K*/K*2
Proof. See for instance [B 15|, Corollary 5.2.

Recall that I' is the infinite cyclic group, and let ¢ : K[I'] — KJI'] be the
K-linear involution such that o(y) = v~ forall vy € T'. Anisometryt:V — V
endows V with a K[I']-module structure, and if moreover ¢ is semi-simple with
characteristic polynomial F', then this module is isomorphic to the semi-simple
K[I'-module M = M(F) associated to the polynomial F' (see §2)). Hence M
also carries a non-degenerate quadratic form, that we also denote by ¢. Note
that (M, q) is a K[[']-bilinear form, and gives rise to an element [M, ¢ of the
Witt group Wir(K). To simplify notation, set Wr(K) = Wi (K).

Let us write M = M°® M* @® M? as in §2, and let ¢° denote the restriction
of q to M?; this gives rise to an orthogonal decomposition (M, q) = (M?°,¢°) @
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(MY, ¢") @ (M?,4?), and (M2, ¢*) is hyperbolic, hence its class in Wp(K) is
trivial (see for instance [M 69|, Lemma 3.1). With the notation of §21 we have
the further orthogonal decompositions

(M°,¢°) = & (My,qr) and (M',¢") = & (My,qy),
felo fen

where ¢ is the restriction of ¢ to My (see for instance [M 69|, §3, or [B 15],
Propositions 3.3 and 3.4). Note that if f € Iy, then f(X)=X —1or X +1,
and we have the orthogonal decomposition (M° ¢°) = (M*,q") ® (M~,q7),
with ¢* = gx_1 and ¢~ = gx41.

4. Local fields and unimodular I'-lattices

Let K be a non-archimedean local field of characteristic 0, let O be its ring
of integers, and let k be its residue field. If a € O, set v(a) = 1 if vk (a) is odd,
and v(a) = 0 if vk (a) is even or a = 0 (in other words, v(a) is the valuation
of a (mod 2) if a # 0, and v(0) = 0).

Theorem 4.1. Let F € O[X] be a monic, symmetric polynomial. There
exists a unimodular O-lattice having a semi-simple isometry with characteristic
polynomial F if and only if one of the following holds

(i) char(k) # 2, and v(F(1)) = v(F(-1)) = 0.
(ii) char(k) =2, and v(F(1)F(—1)) = 0.

We start with a preliminary result, and some notation.

Notation 4.2. Let E; be an étale K-algebra of finite rank, and let £ be
an étale Fjy-algebra which is free of rank 2 over Fy. Let ¢ : E — FE be

the involution fixing Fy. If A € EJ, we denote by by the quadratic form
by : £ x E — K such that by(z,y) = Trg/k(Azo(y)).

Proposition 4.3. Let Ey be an étale K-algebra of finite rank, and let E be
an étale Ey-algebra which s free of rank 2 over Ey. Let o : E — E be
the involution fizing Ey. Let o € Ej be such that ao(a) = 1, and that the
characteristic polynomial f of a over K belongs to O[X]. Let deg(f) = 2d,
and assume that f(1)f(—1) # 0. Let uy,u_ € O*.

Let V.= VT @&V~ be a finite dimensional K -vector space, and let ¢ =
(e',e7) : V. =V be the isomorphism given by €t : V¥ — VE & = 4id. Set
nt =dim(V*) and n~ = dim(V 7).

If char(k) # 2, assume that if n* = 0, then v(f(+1)) = 0.

If char(k) = 2, assume that if n* =n~ =0, then v(f(1)) +v(f(-1)) =0.
If moreover K = Qs, assume that

e n and n~ are both even,

e ifnT =n" =0, then (—=1)2f(1)f(—1) =1 in Q5 /Q2*?,

o if nt =0, then v(f(£1)) =0,

o uyu_ = (—1)", where 2n = dim(E® V).
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Then there exists A € Eg and non-degenerate quadratic forms
gt VT x VT oK, ¢V xV™ =K

such that, for ¢ = q* & q~, we have

(i)

IEDV,by®qgade =0

in Wr(k).

(ii) If char(k) # 2 then det(qF) = uy f(£1) in K*/K*2.

(iii) If moreover K = Qg, then

o [fn_#0, then v(det(q™)) = v(f(—1)),

o Ifn, #0 and n_ # 0, then det(qe) = uxf(£1) in QS /Q*?,

e det(EdV, bdq) = (—1)", and (E®V,bDHq) contains an even, unimodular
Zs-lattice.

Proof. The proof depends on the values of v(f(1)) and v(f(—1)). We are in
one of the following cases

(a) v(f(1)) =0, v(f(=1))
(b) v(f(1)) =1, v(f(=1))
(¢) v(f(1)) =0, v(f(=1))
(d) o(f(1)) =1, v(f(=1))

The algebra Ej decomposes as a product of fields Ey = [] Eyp,. For all
vES

)

0
0,
1
1

Y

veS, set B, =FE®pg, Ey,.

Assume first that the characteristic of k£ is # 2. The algebra FE, is of one of
the following types

(Sp) Ev = EO,v X EO,v;
(un) E, is an unramified extension of Ej ,;

(+) E, is a ramified extension of Ej,, and the image @ of « in the residue
field k, of E, is 1;

(-) E, is a ramified extension of Ey,, and the image @ of « in the residue
field k, of E, is —1.

This gives a partition S = S5, U Sy, US4 US_.

Let v be a generator of I, and let y+ : I' — {£} be the character sending
v to +1.

Let us choose A = (\y)ves in By = [] £, such that for every v € Sy, we
veS
have 0[E,,by,,a] = 0 in Wr(k); this is possible by [BT 20|, Proposition 6.4.
The choices for v € S; and S_ depend on which of the cases (a), (b), (c) or
(d) we are in. Let @ be the image of u in k.
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Assume that we are in case (a) : then by hypothesis v(f(—1)) = v(f(1)) = 0.
For v € S, US_, we choose A, such that

> OBy, by, 0] = 0in W(k) = W(k,x+) C Wr(k), and

veESL

> O0[Ey, by, =0in W(k) =W (k,x-) C Wr(k).

veS_

This is possible by [BT 20|, Proposition 6.6; indeed, by [BT 20|, Lemma 6.8
we have Y [k, 1 k] = o(f(1)) (mod 2), > [ky : k] = v(f(=1)) (mod 2),

vES— veES_
and v(f(1)) = v(f(—1)) = 0 by hypothesis; therefore 0[E, by, a] = 0 in Wr(k).
Taking for ¢* the zero form if n* = 0, and a unimodular form of determinant
u® f(41) otherwise, we get

a[EEB‘/ub)\@Q7 (04,6)] =0
in Wr(k). This implies (i) and (ii), and completes the proof in case (a).

Assume now that we are in case (b); then by hypothesis v(f(—1)) = 0 and
v(f(1)) = 1. For v € S_ we choose A, such that

> 0[E,,by,,a] = 0in W(k) = W(k,x-) C Wr(k). This is possible by

veS_

IBT 20], Proposition 6.6; indeed, by [BT 20|, Lemma 6.8 (ii) we have
Sl 4] = o(f(-1) (mod 2)

vES_

and v(f(—1)) = 0 by hypothesis.

We now come to the places in S,. Recall that by [BT 20|, Lemma 6.8 (i)
we have > [k, : k] = v(f(1)) (mod 2). Since v(f(1)) = 1 by hypothesis, this
veS4

implies that > [k, : k] = 1 (mod 2). Therefore there exists w € S, such
veS4

that [k, : k] is odd. By [BT 20|, Proposition 6.6, we can choose \,, such that
O[Ey, by, , ] is either one of the two classes of v € W (k) = W(k, x;) C Wr(k)
with dim(y) = 1. Let us choose the class of determinant —u,, and set
8[fﬂu,bAw,Cﬂ =9.

Since v(f(1)) = 1, by hypothesis we have n*™ > 1. Let (V*,¢") be a non-
degenerate quadratic form over K such that det(¢q%) = uy f(1), and that

VT, qt,id] = =6 in W(k) = W(k, x+) C Wr(k).
Let S% = S; — {w}; we have > [k, : k] = 0 (mod 2), hence by
veS!,
[BT 20], Proposition 6.6, for all v € S’ there exists A\, € Ep, such that
> O0[Ey, by, ) =0in W(k) = W(k, x+) C Wr(k). We have
veS!
OE® VT by®q", (a,id)] =0

in Wr(k). Taking for (V~,¢7) a quadratic form over O of determinant
u_f(—1) and setting g = ¢~ ® ¢, we get

IE®V,b@q (o, e)] =0
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in Wr(k). This completes the proof in case (b). The proof is the same in case
(¢), exchanging the roles of S, and S_.

Assume that we are in case (d), that is, v(f(1)) = v(f(-1)) = 1. By
IBT 20|, Lemma 6.8 (i) and (ii), we have
Y (ke i k] = v(f(1)) (mod 2), and > [k, : k] = v(f(—1)) (mod 2).

’UES+ vES_

Therefore > [k, : k] = > [k, : k] = 1 (mod 2). Hence there exist

veESY veES_
wy € Sy such that [k, : k] and [k,_ : k] are odd. By [BT 20|, Proposition
6.6, we can choose A, such that 9[F,_, by, , a] is either one of the two classes
of y € W(k) = W(k,x+) C Wr(k) with dim(y) = 1. Let us choose A, such
that O[F,.,by,, ,a] is represented by a form of dimension 1 and determinant
U+, and set
5:|: = 8[Ewi, b)\wi s Oé].

By hypothesis, we have nt > 1 and n~ > 1. Let (VF, ¢%) be non-degenerate
quadratic forms over K such that det(q*) = us f(£1) and that

OVE ¢t et = =64 in W(k) = W(k,x+) C Wr(k).

Let S = S, — {w;}; we have > [k, : k] = 0 (mod 2), hence by

vesS!
[BT 20], Proposition 6.6, for all v € S’ there exists A\, € Eg, such that
> 0By, by, = 0in W(k) = W(k,x+) C Wr(k). Similarly, set §" =
veS!
Sy —{w_}; we have ) [k, : k] = 0 (mod 2), hence by [BT 20|, Proposition

veS’

6.6, for all v € S_ there exists \, € Ej, such that ) J[E,,by,,a] = 0 in

veS’

W(k) =W (k,xy) C Wr(k). Set ¢ = ¢* @ ¢, and note that
a[E@‘/abA@Qa (Oé,E)] =0
in Wr(k). This completes the proof when the characteristic of k is # 2.

Assume now that the characteristic of k is 2. The algebra FE, is of one of
the following types

(Sp> E, = EO,v X EO,U;

(un) E, is an unramified extension of Ej ,;

(r) E, is a ramified extension of Ej,,.

This gives a partition S = S5, U Sy, U S;.

If X = (A\y)ves is an element of £y = [] By, note that by Lemma 3.1 we

veES
have

disc(by) = (=1)4f(1)f(—1)
in K*/K*2.
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We choose A\ = (\,)pes in Ef such that for every v € S,,, we have
O[Ey, by,, o) = 0 in Wr(k); this is possible by [BT 20|, Proposition 6.4.

Assume first that we are in case (a) or (d), and note that v(f(1)) +
v(f(—=1)) = 0. By |[BT 20|, Lemma 6.8 and Proposition 6.7, we can choose \,
such that

> 0By, by,,a] =0in W (k) =W(k,1) C Wr(k).

vES,
Therefore 0[E, by, o] = 0 in Wr(k).

If we are in case (a) or case (d) and K # Q, take for ¢ the unit quadratic
form. We have
IE®V,by®qade =0
in Wr(k); this concludes the proof in cases (a) and (d) when K # Qx.

Suppose that K = Qy and that we are in case (a). Suppose first that
nt =n~ = 0. We already know that J[E, by, a] = 0in W (F5), hence (i) holds.
Since n™ = n~ = 0, by hypothesis (—1)?f(1)f(—1) = 1 in Q5 /Q2*?, therefore
disc(by) = 1in Q5 /Q2™?. Let us choose A such that the quadratic form (E, by)
contains an even, unimodular Z,-lattice. If S, = @, this is automatic; indeed,
in that case the trace map E — Ej is surjective, and hence every Zs-lattice of
the shape (E,by) is even. If not, by [BT 20| Propositions 8.4 and 5.4 we can
choose A having this additional property. This implies that (iii) holds as well.

We continue supposing that K = Qs and that we are in case (a); assume
now that nt # 0 and n~ = 0. Let us choose ¢© such that det(¢*) =
(=1)"f(1)f(—1); since det(by) = f(1)f(—1), this implies that

det(E @ V,by®qh) = (—1)™.

Moreover, let us choose the Hasse-Witt invariant of ¢t in such a way that
the quadratic form (E @ V,by & ¢" @ ¢~) contains an even, unimodular Zy-
lattice; this is possible by [BT 20| Proposition 8.4. Therefore condition (iii)
holds. Note that since v(det(¢™)) = 0, we have 9[V,¢"] = 0 in W(F3, hence
IE®V,by®q,a® el =0 in Wr(Fy); therefore condition (i) also holds.

Assume now that nt = 0 and n~ # 0. Let us choose ¢~ such that
det(¢7) = (—=1)"f(1)f(—1), and note that since v(f(1)) = v(f(—1)) = 0,
this implies that v(det(¢~)) = v(f(—1)) = 0. As in the previous case, we see
that det(E @ V,by @& ¢~ ) = (—1)", and we choose the Hasse-Witt invariant of
q~ so that (E @ V,by @ ¢~ ) contains an even, unimodular Zj-lattice; this is
possible by [BT 20] Proposition 8.4. As in the previous case, we conclude that
conditions (i) and (iii) are satisfied.

Suppose that n™ # 0 and n~ # 0. Let us choose ¢ such that det(¢q") =
uy f(1) and ¢~ such that det(¢”) = u_f(—1). Since uju_ = (—1)" and
det(by) = f(1)f(—1), this implies that

det(E@V,by®q" dqg™) = (-1)"
Note that since v(u_) = v(f(—1)) = 0, we have v(det(¢™)) = v(f(-1)) = 0.
As in the previous cases, we can choose ¢ and ¢~ such that (E &V, b\ & ¢™)
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contains an even, unimodular Zy-lattice, and that O[FE @ V. by ® ¢,a @€ =0
in Wr(F3), hence conditions (i) and (iii) hold.

Assume now that K = Qy and that we are in case (d); note that the
hypothesis implies that n*,n~ > 2, and that both n* and n~ are even. With
our previous choice of A, we have 9[F,by,a] = 0 in Wr(F3). Let us choose
q¢" and ¢~ such that det(¢®) = u+f(&1), and note that this implies that
v(det(¢7)) = v(f(—1)), and that det(E® V, by ®¢" B¢~ ) = (—1)". Moreover,
choose the Hasse-Witt invariants of ¢ and ¢~ so that (F @ V by ® ¢" ©q7)
contains an even, unimodular Z,-lattice; this is possible by [BT 20| Proposition
8.4. Therefore condition (iii) holds; moreover, we have (V, ¢, €) = 0 in Wr(Fy)
and O[E @ V. by ® q,a® €] =0 in Wr(F3), hence condition (i) is also satisfied.
This concludes the proof in cases (a) and (d).

Suppose that we are in case (b) or case (c), and note that in both cases, we
have v(f(1)) + v(f(—1)) = 1. Hence Proposition 6.7 and Lemma 6.8 imply
that > O[E,,by,,a] is the unique non-trivial element of W (k) = W(k,1) C

vES,
Wr(k). Suppose first that K # Q,. We have either nt > 1 or n= > 1;
choose ¢* such that 9[V*, ¢F, +id] is also the unique non-trivial element of

W(k) =W(k,1) C Wr(k). We have
IE®V,by®qade =0
in Wr(k). This settles cases (b) and (c¢) when K # Qa.

Assume now that K = Q,, and that we are in case (b), namely v(f(1)) =1
and v(f(=1)) = 0; then nt > 2, and is even. If n= # 0, then choose ¢~
such that det(¢~) = u_f(—1), and note that this implies that v(det(¢™)) =
v(f(=1)) = 0; choose ¢* such that det(¢™) = u,y f(1). Since v(f(1)) = 1,
this implies that J[V'*,¢",id] is the unique non-trivial element of W(F,) =
Wr(Fy, 1) C Wr(Fy). Note that det(E®V, by D g™ ®q™) = (—=1)" in Q5 /Q*2.
Moreover, choose the Hasse-Witt invariants of ¢* and ¢~ such that the qua-
dratic form (E®V, by ® q¢" @ ¢ ) contains an even, unimodular Zy-lattice; this
is possible by [BT 20| Proposition 8.4. Hence condition (iii) holds, and condi-
tion (i) follows from the fact that J[E, by, o] and J[V T, ¢",id] are both equal
to the unique non-trivial element of W (Fy) = Wr(Fy, 1), which is a group of
order 2. Therefore O[E &V, by @ q,a ® €] = 0 in Wr(F2), and hence condition
(i) is also satisfied.

Suppose now that K = Qs, and that we are in case (c¢). Then v(f(1)) =0
and v(f(—1)) =1, hence n~ > 2, and is even. If n* # 0, then choose ¢ such
that det(¢™) = uy f(1). Choose ¢~ such that det(¢~) = u_f(—1), and note
that this implies that v(det(¢™)) = v(f(—1)) = 1, and that o[V, q~, —id] is
the unique non-trivial element of W(Fy) = Wr(Fy, 1) C Wr(F3). We conclude
as in case (b). This settles cases (b) and (c), and hence the proof of the
proposition is complete.

We now show that the conditions of Theorem [A.1] are sufficient. In the
case where char(k) # 2, we obtain a more precise result (see part (ii) of the
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following result; for K = Qg an analogous result is given in Theorem G.1]). We
use the notation of §21

Theorem 4.4. Let F € O[X] be a monic, symmetric polynomial.
If char(k) # 2, assume that v(F(1)) = v(F(—1)) = 0.
If char(k) = 2, assume that v(F(1)F(—1)) = 0.

(i) Then there exists a unimodular O-lattice having a semi-simple isometry
with characteristic polynomial F'.

(ii) Assume in addition that char(k) # 2 and let uy,u_ € O*. If M* #
0, then there exists a unimodular O-lattice having a semi-simple isometry
with characteristic polynomial F such that the associated K[I'|-bilinear form
(M=, ¢%) is such that

det(qi) = uiFl(j:]_)
in K*/K*2.

Proof. Let us write F' = FyFF5, where Fj; is the product of the irreducible
factors of F' of type i. The hyperbolic O-lattice of rank deg(F3) has an isometry

with characteristic polynomial F, therefore it is enough to prove the theorem
for ' = FQFl.

From now on, we assume that F' = FyFi, in other words, all the irreducible
factors of F' are symmetric, of type 0 or 1. Let I; be the set of irreducible

factors of type 1 of F. We have F; = [] f™/; note that Fy(1)F;(—1) # 0. Let
feh

us write F(X) = Fy(X)(X —1)"" (X +1)* for some integers n*, n~ such that
nt,n- > 0.

For all f € I, set Ey = K[X]/(f). Let oy : Ey — E; be the involution
induced by X — X! and let (E})o be the fixed field of o in E;. Let M; be
an extension of degree ny of (Ey)y, linearly disjoint from Ey over (Ey)o. Set
Ef = E¢®p), My Let ay be aroot of f in Ey. The characteristic polynomial

of the multlphcatlon by o on E ¢ 1is f"/, and its minimal polynomial is f. Set

= J1Es, and M = [][ My. Let 6 : E — E be the involution of E
feh fen
induced by the involutions o : Ef — E;. Set & = (ay)fer,, and let us denote

by a : E — E the multiplication by a. Note that & is semi-simple, with
characteristic polynomial F}.

Let V = V* @V~ be a K-vector space with dim(V*) = n* and dim(V") =
+n~. Applying Proposition (i) with By = M, E=F, 0 =&, a = & and
f = Fy, we see that there exists A € M* and a non-degenerate quadratic form
q:V xV — K such that

IEDV,by®qa®e =0

in Wr(k),. By Theorem [I1] (iv) this implies that there exists a unimodular
O-lattice having a semi-simple isometry with characteristic polynomial F,
proving part (i) of the theorem. Similarly, Proposition (ii) implies part
(ii) of the theorem.
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To show that the conditions of Theorem [£1] are necessary, we start with
some notation and a preliminary result.

Extending the scalars to K, an even, unimodular lattice having a semi-
simple isometry with characteristic polynomial F' gives rise to a K[I']-bilinear
form on the semi-simple K[I']-module associated to F' (see §2)), and this form
has an orthogonal decomposition M = M° & M* & M?, cf. §8l The K|[['|-form
M? has the further orthogonal decomposition M® = (M™* ¢q*) & (M~,q).

Notation 4.5. Let 7 be a generator of I'. Let N1 be the simple k[I']-module
such that dimy(N,) = 1, and that ~ acts on Ny by +id; note that N, = N_
if char(k) = 2.

Lemma 4.6. Let ' € O[X] be a monic, symmetric polynomial, and sup-
pose that there exists a unimodular lattice having a semi-simple isometry with
characteristic polynomial F. Let M = M° ® M!' @ M?* be the correspond-
ing orthogonal decomposition of K|[I'|-bilinear forms. Let us write FI(X) =
(X)X =1 (X+1)" for some integers n™,n~ such that n™,n~ >0, and
such that Fy(1)Fy(—1) # 0. Then we have

(i) Assume that char(k) # 2. Then the component of O[M*] in Wr(k, Ny ) ~
W (k) is represented by a quadratic form of dimension v(Fi(1)) over k.
M

(i) Assume that char(k) # 2. Then the component of O[M*] in Wr(k, N_) ~
(

W (k) is represented by a quadratic form of dimension v(Fi(—1)) over k.

k
(i) Assume that char(k) = 2. Then the component of d[M'] in Wr(k, N;) =
Wr(k, N_) ~ W (k) is represented by a quadratic form of dimension v(Fy(1))+
v(Fy(—1)) over k.

Proof. Since M is extended from a unimodular lattice, we have 9[M]| = 0
(see Theorem [LT)). Let M = M° & M' & M? be the orthogonal decoposition
of §8l We have 9[M?] = 0, hence O([M°] + [M']) = 0.

From now on, we assume that M = M°®M?*; equivalently, all the irreducible

factors of F' are of type 0 or 1. Let us write F; = [ f™. We have an
feh
orthogonal decomposition

M'= @ M,
fel
where M; = [K[X]/(f)]" (see M 69], §3, or [B_15], Propositions 3.3 and
3.4). Forall f €1, set Ef = K[X]/(f), and let 0 : Ef — E; be the K-linear
involution induced by X — X~!. By a well-known transfer property (see for
instance [M 69|, Lemma 1.1 or [B_15], Proposition 3.6) the K [I'|-bilinear form
My is the trace of a non-degenerate hermitian form over (Ey, o), hence it is
an orthogonal sum of forms of the type by, see notation [£.2]

By [BT 20], Lemma 6.8 (i) and Proposition 6.6, the component of 9[M'] in
Wr(k, M) is represented by a form of dimension v(Fi(1)), and this implies
(i). Similarly, applying [BT 20|, Lemma 6.8 (ii) and Proposition 6.6 implies
(ii), and [BT 20|, Lemma 6.8 (ii) and Proposition 6.7) implies (iii).



ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF K3 SURFACES 15

Proposition 4.7. Let F' € O[X] be a monic, symmetric polynomial, and
suppose that there exists a unimodular lattice having a semi-simple isometry
with characteristic polynomial F'. Then we have

If char(k) # 2, then v(F(1)) = v(F(—1)) = 0.
If char(k) = 2, then v(F(1)F(—1)) = 0.

Proof. Suppose first that char(k) # 2. If nt > 0 and n~ > 0, then
F(1) = F(—1) = 0, so there is nothing to prove. Assume that n™ = 0. Then
the component of 9[M°] in Wr(k, M) is trivial, and note that F(1) = Fy(1).
By Lemma [0 (i), the component of 9[M'] in Wr(k, M) is represented by a
form of dimension v(F;(1)) = v(F(1)), hence v(F (1)) = 0. Similarly, n= =0
implies that v(F(—1)) = 0. This completes the proof of the proposition in the
case where char(k) # 2.

Assume now that char(k) = 2. If n* > 0orn~ > 0, then F(1)F(—1) =0, so
there is nothing to prove. Assume that n™ = n~ = 0. The component of 9[M]
in Wr(k, M;) = Wr(k, M_) is represented by a form of dimension v(F (1)) +
v(F(=1)) (cf. Lemma 6 (iii)). Since nt =n~ = 0 we have M = M"', hence
I[M'] = 0, and we also have F' = F}; therefore v(F(1)) +v(F(—1)) = 0. This
completes the proof of the proposition.

Proof of Theorem 4.1l The theorem follows from Theorem A4 and Propo-
sition 4.7l

5. Even, unimodular ['-lattices over Z,

We keep the notation of §4], with K = Q3 and O = Z,. Recall that if a € Zs,
we set v(a) = 0 if a = 0 or if the 2-adic valuation of a is even, and v(a) = 1 if
the 2-adic valuation of a is odd.

If I € Zy[X] is a monic, symmetric polynomial, we write F' = FyF) Fy,
where F; is the product of the irreducible factors of type ¢ of F. Recall that
M = M°® M' ® M? is the semi-simple Q,[[']-module associated to F', and
that My =M™ @& M.

Theorem 5.1. Let F' € Zy[X]| be a monic, symmetric polynomial of even
degree such that F'(0) = 1, and set 2n = deg(F'). Let uy,u_ € Z3 such that
uyu_ = (—1)". Assume that the following conditions hold :

(a) v(F(1)) = v(F(-1)) = 0.
(b) If F(1)F(—1) #0, then (=1)"F(1)F(—=1) =1 in Q;/szz.
Then we have

(i) There ezists an even, unimodular Zs-lattice having a semi-simple isom-
etry with characteristic polynomial F'.

(i) If MT #0, M~ #0 and M' # 0, then there exists an even, unimodular
Zs-lattice having a semi-simple isometry with characteristic polynomaial F' such
that the associated Qo[T'-bilinear form (M*,¢*) is such that

det(qi) = uiFl (j:].)
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in Qg / Q2X2-
Proof. Let I be the set of irreducible factors of F' of type 1, and set F; =

[ /™. The hyperbolic Zy-lattice of rank deg(F3) has a semi-simple isometry
feh
with characteristic polynomial F, therefore it is enough to prove the theorem

for F = F()Fl.

From now on, we assume that all the irreducible factors of F' are symmetric,
of type 0 or 1; we have F = Fy (X — 1)"" (X + 1) for some integers n* > 0,
n~ > 0. Note that since deg(F') is even and F'(0) = 1 by hypothesis, n* and
n~ are both even.

For all f € I, set Ef = Qu[X]/(f). Let 0 : Ef — E; be the involution
induced by X — X! and let (E})o be the fixed field of o in E;. Let M; be
an extension of degree ny of (Ey)o, linearly disjoint from E over (Ef)o. Set
Ef = E¢®), My Let ay be aroot of f in Ey. The characteristic polynomial

of the multiplication by o on E ¢ 1is f™f, and its minimal polynomial is f. Set

= J1Es, and M = [[ My. Let 6 : E — E be the involution of E
fell f€[1
induced by the involutions ¢ : Ey — Ey. Set & = (af)rer,, and let us denote
by & : E — E the multiplication by &. Note that & is semi-simple, with
characterlstlc polynomial F}.

We apply Theorem 8.1 of [BT 20] and Proposition B3 with Ey = M, E = E,
oc=o0 and a = a.

Let V* be a Qa-vector spaces of dimension n*, and set V = V+@® V. Note
that if n™ = n~ = 0, then F} = F, hence the class of (—1)"Fy(1)F;(—1) =1
in Q5 /Q2*? by hypothesis; therefore the hypotheses of Proposition E3] are
satisfied. Proposition &3 (i) and (iii) imply that there exist A € M* and a
non-degenerate quadratic form ¢ : V x V' — Q5 such that

IE®V,by®q,a®e =0

in Wr(k), that (E®V, by®q) contains an even, unimodular Z,-lattice, and that
v(det(q~) = v(F1(—1)). By Theorem [L1] (iv), this implies that there exists a
unimodular lattice in E@GV stable by a@e, hence a unimodular lattice having a
semi-simple isometry with characteristic polynomial F'; therefore conditions (i)
and (ii) of [BT 20], Theorem 8.1 hold. Moreover, since v(det(q~) = v(Fi(—1)),
Theorem 8.4 of [BT 20] implies that condition (iii) of [BT 20|, Theorem 8.1
is also satisfied. This implies that there exists an even, unimodular Zs-
lattice having a semi-simple isometry with characteristic polynomial F', and
this completes the proof of (i). Part (ii) of the theorem also follows from
Proposition 4.3 part (iii).

Theorem 5.2. Let F' € Zy[X]| be a monic, symmetric polynomial of even
degree such that F'(0) = 1, and set 2n = deg(F'). Assume that there ezists an
even, unimodular Zs-lattice having a semi-simple isometry with characteristic
polynomial F'. Then we have

(a) o(F(1)) = v(F(-1)) = 0.
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(b) If F(1)F(—1) # 0, then the class of (—1)"F(1)F(—1) in Qf/Qx*? lies
in {1,—3}.

Proof. Let L be an even, unimodular lattice having a semi-simple isometry
with characteristic polynomial F. The lattice L gives rise to a Qg[I']-bilinear
form M on a bounded module. Let us consider the orthogonal decomposition
of Qa[I']-bilinear forms

M=M"® M'® M?
(cf. §3). Since L is unimodular we have 9[M] = 0; note that d[M?] = 0, hence
we have 9([M°] + [M']) = 0.

From now on, we assume that M = M°®M*; equivalently, all the irreducible
factors of F' are of type 0 or 1. Let I be the set of irreducible factors of F' of
type 1, and set Fy = [] f*. We have F' = Fy(X —1)" (X + 1) for some

feh
integers nt > 0, n~ > 0.

Further, we have an orthogonal decomposition M' = & M, where
feh

My = [Q[X]/ ()™

(see [M 69], §3, or |[B 15|, Propositions 3.3 and 3.4). For all f € I, set
Ey = Qu[X]/(f), and let 0 : Ef — Ef be the Qa-linear involution induced
by X — X! By a well-known transfer property (see for instance [M 69],
Lemma 1.1 or [B_15], Proposition 3.6) the Q2[I']-bilinear form My is the trace
of a non-degenerate hermitian form over (Ey, o), hence it is an orthogonal sum
of forms of the type by, see notation [£L.2

The component of O[M'] in Wr(k, N1) is represented by a form of dimension
v(F(1))4+v(F(-=1)) (mod 2) (cf. [BT 20], Lemma 6.8 (ii) and Proposition 6.7).

Suppose that n™ = n~ = 0. Then M = M?", hence we have I M*'] = 0;
by the above argument this implies that v(F (1)) + v(F(—1)) (mod 2). By
IBT 20], Proposition 8.6 and Theorem 8.5, we have v(F(—1)) = 0, hence
(a) holds. Since L is even and unimodular, the class of (—1)"F(1)F(—1) in
Q5 /Q2*? lies in {1, —3}; this shows that (b) holds as well.

Let M° =V* ®V~, and let ¢& the the quadratic form on V=.

Suppose that n* # 0, and n= = 0. Then F(1) = 0, hence v(F(1)) = 0.
Since n~ = 0, the quadratic form ¢~ is the zero form, and v(det(¢~)) = 0. By
IBT 20|, Theorem 8.5 and Proposition 8.6, we have v(det(¢™)) = v(F(-1)),
hence v(F(—1)) = 0. This implies (a), and (b) is obvious since F'(1) = 0.

Assume now that n™ = 0 and n~ # 0; then F(—1) = 0, hence (b) holds. By
IBT 20|, Theorem 8.5 and Proposition 8.6, we have v(det(¢™)) = v(F(-1));
since F(—1) = 0, this implies that v(det(¢™)) = 0. Therefore [M°] = 0. This
implies that [M?'] = 0, and hence v(F(1)) +v(F(—1)) = 0. Since we already
know that v(F(—1)) = 0, we obtain v(F'(1)) = 0, and this implies (a).

Finally, if n™ # 0 and n~ # 0, then F(1) = F(—1) = 0, and hence both (a)
and (b) hold. This concludes the proof of the theorem.
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6. Milnor signatures and Milnor indices

The aim of this section is to recall from [B 20| some notions of signatures
and indices, inspired by Milnor’s paper [M 6§].

Let F € R[X] be a monic, symmetric polynomial. If (V,q) is a non-
degenerate quadratic form over R and if ¢t : V' — V is a semi-simple isometry of
q with characteristic polynomial F', we associate to each irreducible, symmetric
factor P of F' an index 7(P) and a signature x(P) as follows. Let Vp(y be the
P(t)-primary subspace of V, consisting of all v € V with P(¢)Nv = 0 for N
large. The Milnor index 7(P) is by definition the index of the restriction of
¢ to the subspace Vp(y), and we define the Milnor signature ;(P) at P as the
signature of the restriction of q to Vp.

Let Irrr (F') be the set of irreducible, symmetric factors of F' € R[X]; if
P € Irrr(F), then either deg(P) = 2, or P(X) = X £ 1. If (r,s) is the
signature of ¢, we have

Z’T(P) =r—s,
P

where the sum runs over P € Irrg (F)).

If P € Irrg(F), let np > 0 be the integer such that P"? is the power of P
dividing F'.
We denote by Mil(F') the set of maps 7 : Irrg (F') — Z such that the image of

P € Irrr(f) belongs to the set {—deg(P)np,...,deg(P)np}. For all integers
r,s = 0, let Mil, s(F) be the subset of Mil(F') such that Y 7(P) = r — s, where
P

the sum runs over P € Irrg (F).

Proposition 6.1. Sending a semi-simple element SO, s(R) with characteristic
polynomial F to its Milnor index induces a bijection between the conjugacy
classes of semi-simple elements of SO, s(R) and Mil, s(F').

Proof. See [B 20], §6.

7. Local conditions for even, unimodular I'-lattices

Let F' € Z[X] be a monic, symmetric polynomial, and let r, s > 0 be integers
such that r + s = deg(F"). The aim of this section is to give local conditions
for the existence of an even, unimodular lattice of signature (r,s) having a
semi-simple isometry with characteristic polynomial F'. More precisely, given
a Milnor index 7 € Mil, ;(F'), we give a necessary and sufficient condition for
an even, unimodular lattice having a semi-simple isometry with characteristic
polynomial F' and Milnor index 7 to exist everywhere locally.

Let m(F') be the number of roots z of F with |z| > 1 (counted with
multiplicity).

Proposition 7.1. There exist an R-vector space V' and a non-degenerate qua-
dratic form q of signature (r, s) having a semi-simple isometry with character-
istic polynomial F' and Milnor index 7 € Mil, ((F) if and only if r > m(F),
s = m(F), and if moreover F(1)F(—1) # 0, then m(F) =r = s (mod 2).



ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF K3 SURFACES 19

Proof. This follows from [B 15|, Proposition 8.1. Indeed, the necessity of
the conditions follows immediately from |[B 15|, Proposition 8.1. To prove the
sufficiency, note that while the statement of [B 15|, Proposition 8.1 only claims
the existence of a non-degenerate quadratic form ¢ of signature (r, s) having
a semi-simple isometry with characteristic polynomial F', the proof shows the

existence of such a form having a semi-simple isometry with a given Milnor
index 7 € Mil, ((F).

If p is a prime number, we say that a Z,-lattice (L, q) is even if ¢(z,y) € 2Z,;
note that if p # 2, then every lattice is even, since 2 is a unit in Z,,.

Assume moreover that F' has even degree, and that F'(0) = 1. Set 2n =
deg(F).

Theorem 7.2. There exists an even, unimodular Z,-lattice having a semi-
simple isometry with characteristic polynomial F' for all prime numbers p if
and only if |F(1)|, |F(=1)| and (=1)"F(1)F(—1) are all squares.

Proof. This follows from Theorems E1] B.1] and Indeed, if p is a prime
number # 2, the existence of a unimodular Z,-lattice having a semi-simple
isometry with characteristic polynomial F' implies that either F'(1) = 0, or
vp(F(1)) is even; similarly, either F'(—1) = 0, or v,(F(—1)) is even (see
Theorem [.1)). The existence of an even, unimodular Z,-lattice implies the
same property for p = 2 by Theorem This implies that |F'(1)| and |F(—1)|
are both squares, and therefore |F/(1)F(—1)| is a square. If F(1)F(—1) = 0,
we are done. If not, Theorem implies that the class of (—1)"F(1)F(—1)
in Q) /Q2*? lies in {1, —3}; since |F(1)F(—1)| is a square, this implies that
(—=1)"F(1)F(—1) is a square. The converse is an immediate consequence of
Theorems A1l and 5.1

8. The local-global problem

The aim of this section is to reformulate the local conditions of §7, and to
give a framework for the local-global problem of the next sections. We also
introduce some notation that will be used in the following sections,

Let ' € Z[X] be a monic, symmetric polynomial of even degree such that
F(0) = 1; set 2n = deg(F'). Let J be the set of irreducible factors of F, and

let us write F' = [] f™. Let I; C J be the subset of irreducible factors of
feJ
type 1, and let Iy C J be the set of irreducible factors of type 0.

Let M = M°® M' ® M? be the semi-simple Q[I']-module associated to the
polynomial F' (see §2)).

Let r,s > 0 be integers such that r + s = deg(F’) and that r = s (mod 8).
Let (V,q) = (Vi.s, ¢r.5) be the diagonal quadratic form over Q with r entries 1
and s entries —1.

Proposition 8.1. The following properties are equivalent
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(i) For all prime numbers p there exists an even, unimodular Z,-lattice
having a semi-simple 1sometry with characteristic polynomial F.

(i) [F(1)], |[F(=1)| and (=1)"F(1)F(—1) are all squares.

(ili) For all prime numbers p, the quadratic form (V,q) ®q Q, has a semi-
simple isometry with characteristic polynomial F' that stabilizes an even, uni-
modular lattice.

(iv) For all prime numbers p, the quadratic form (V,q) ®q Q, has an
isometry with module M ®q Q,, giving rise to a class [M ®q Qp,q] in
Wr(Q,) such that 0,[M ®q Qp.q] = 0 in Wr(F,) and that vy(det(q-)) =
ve(F1(—=1)) (mod 2).

Proof. The equivalence of (i) and (ii) is Proposition [[.2] and it is clear
that (iii) implies (i). Let us show that (i) implies (iii). Set u = (—1)°.
Since r +s = 2n and r = s (mod 8), we have n = s (mod 8), hence
u = (—=1)". By (i), there exists an even, unimodular Z,-lattice having a
semi-simple isometry with characteristic polynomial F. If F(1)F(—1) # 0,
then the class of the determinant of this lattice in in Q;/ QpX2 is equal to
F(1)F(—1), and F(1)F(—1) = u by (ii); if F(1)F(—1) =0, then by Theorem
4.4 (ii) and Theorem [5.1] (ii) we can assume that the determinant of this lattice
in Q)/ pr is equal to u. Therefore the lattice is isomorphic to the diagonal
Z,-lattice (1,...,u) of determinant u if p # 2 (cf. [O’M 73|, 92:1), and to
the orthogonal sum of n hyperbolic planes if p = 2 (see for instance [BT 20],
Proposition 8.3). Let ¢” be the quadratic form over Q, obtained from this
lattice by extension of scalars; then the Hasse-Witt invariant of ¢ is trivial if
p # 2, and is equal to the Hasse-Witt invariant of the orthogonal sum of n
hyperbolic planes if p = 2; its determinant is equal to v = (—1)" in Q;/prz.
This implies that ¢ and (V,q) ® Q, are isomorphic as quadratic forms over
Q,. Since ¢ has a semi-simple isometry with characteristic polynomial F' that
stabilizes a unimodular lattice, property (iii) holds. Finally, the equivalence of
(ili) and (iv) follows from Theorem [IT] (iv) and from |[BT 20|, Theorems 8.1
and 8.5.

Terminology. We say that the local conditions for F hold at the finite places
if the equivalent conditions of Proposition B.1] are satisfied.

Recall that m(F') is the number of roots z of F' with |z| > 1 (counted with
multiplicity).

Proposition 8.2. Let 7 € Mil, ((F') be a Milnor index. The following proper-
ties are equivalent :

(i) The quadratic form (V,q) ®q R has a semi-simple isometry with char-
acteristic polynomial F' and Milnor index T.

(i) » = m(F), s = m(F), and if moreover F(1)F(—1) # 0, then m(F) =
r=s (mod 2).

(iii) The quadratic form (V,q) ®q R has an isometry with module M @q R
and Milnor index T.
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Proof. The equivalence of (i) and (ii) follows from Proposition [} and (iii)
is a reformulation of (i).

Terminology. We say that the local conditions for F' and 7 hold at the infinite
place if the equivalent conditions of Proposition [8.2] are satisfied.

We consider the following conditions

(C1) |F)|, |[F(-1)] and (=1)"F(1)F(—1) are all squares.

(C2)r = m(F), s =2 m(F), and if moreover F(1)F(—1) # 0, then
m(F)=r=s (mod 2).

Note that the local conditions for F' at the finite places hold if and only if
condition (C 1) is satisfied, and that the local conditions for F' and 7 hold if
and only if condition (C 2) is satisfied.

Terminology. Let M and g be as above, and let p be a prime number. A
I'-quadratic form (M ®q Q,, ¢) such that 9,[(M ®q Q,, q] = 0 in Wr(F,) and
that ve(det(q-)) = vo(F1(—1)) (mod 2) if p = 2 is called a local solution for F
at the prime number p.

9. Q[I']-forms, signatures and determinants

Let F' € Z[X] be a monic, symmetric polynomial, and let us write F' =
FoF1 Fy, where F; is the product of the irreducible factors of type 7 of F'. Let
r,s > 0 be integers such that r + s = deg(F') and that » = s (mod 8), and
let 7 € Mil, o(F') be a Milnor index. Let (L, q) be an even, unimodular lattice
having a semi-simple isometry with characteristic polynomial F' and Milnor
index 7, and let (M, q) be the corresponding Q|I']-form, and let

M=M" e M & M?
and
MO = M@ M~

be the associated orthogonal decompositions (cf. §3]). Note that the Milnor
index 7 and the degrees of the polynomials determine the signatures of the
factors. We have sign(M) = (r,s). Set sign(M') = (r1,s1), and sign(M?) =
(2, 52); note that ry = sy = deg(F})/2, since M? is hyperbolic, and set

sign(M*) = (r*,s™), sign(M~) = (r_,s_).

We have det(M) = (—1)%, det(M') = Fy(1)Fi(—1) = (=1)*|F(1)Fi(-1)],
and det(M?) = (—1)*2.

Proposition 9.1. We have
det(M™1) = (=1)*+|Fy(1)|, det(M™)
n QX/QX2'

(—1)" [Fy(=1)
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Proof. The sign of det(M®*) is (—1)*t. Let p be a prime, p # 2. By Lemma
4.6, the component of ,[M'] in Wr(F,, Ny) ~ W(F,) is represented by a
quadratic form of dimension v(F;(%1)) over F,. If v(F;(£1)) = 0, then this
component of 9,[M!] is trivial, hence 9,[M™] is also trivial. This implies that
v(det(M*) = 0. Assume now that v(Fj(+1)) = 1. Then the component
of 9,[M'] in Wr(F,, Ny) ~ W(F,) is represented by a quadratic form of
dimension 1. Since 9,[M] = 0, this implies that 9,[M*] is represented by a
form of dimension 1, and therefore v(det(M*) = 1. Hence in this case too, we
have v(det(M*)) = v(Fy(£1)).

Assume that p = 2. The component of Oy[M?'] in Wr(Fq, Ny) ~ W(Fy) is
represented by a quadratic form of dimension v(Fi(1)) 4+ v(Fi(—1)) over Fy
(see Lemma [£.6). If M+ =0 and M~ = 0, there is nothing to prove. Assume
that M* # 0, and M~ = 0. Then Fy(—1) = F(—1), and by Theorem (5.2 (a),
we have v(F;(—1)) = 0. Hence 9y(M") is represented by a form of dimension
v(Fi(1)). If v(F(1)) = 0, then dy(M') = 0, and hence 9,(M™) = 0; therefore
v(det(MT)) = 0. If v(Fi(1)) = 1, then dy(M?") is represented by a form of
dimension 1 over Fy, hence 0,(M™) is also represented by a form of dimension
1 over Fy. This implies that v(det(M™*)) = 1. Therefore v(det(M™)) =

v(F1(1)). The same argument shows that if M* = 0 and M~ # 0, then
v(det(M~)) = v(Fi(—1)). Suppose now that M* # 0 and M~ # 0. By
IBT 20], Theorem 8.5 and Proposition 8.6, we have v(det(M ™)) = v(Fi(—1)).

If v(Fi(1)) = v(Fi(—1)), then 95(M"') = 0. Therefore dy(M*T & M~) = 0.
Since v(det(M ™)) = v(Fi(—1)), this implies that v(det(M™)) = v(Fy(1)). If
v(Fi(1)) +v 1)) = 1, then 0y(M") # 0, and hence do(M* & M~) # 0.

(1 (=
Therefore v(det(M™)) + v(det(M ™)) = 1. Since v(det(M ™)) = v(Fi(-1)), we
have v(det(M™)) = v(Fi(1)). This completes the proof of the proposition.

10. Local decomposition

Let F € Z[X] be a monic, symmetric polynomial of even degree with
F(0) = 1; set 2n = deg(F). Let r, s > 0 be integers such that r + s = deg(F)
and that » = s (mod 8), let 7 € Mil, ((F') be a Milnor index. If the local
conditions (C 1) and (C 2) hold, then we obtain a local solution everywhere
(see §8). The aim of this section is to define local decompositions that will be
useful in the following sections.

We start by introducing some notation. Let M = M° @ M* @& M? be the
semi-simple Q[I'l-module associated to F' as in §2, with

M'= &M;and M =M*" & M~.
el
If f el set Ef = Q[X]/(f) and let oy : Ef — E; be the involution
induced by X — X 1. Let (Ef)o be the fixed field of o, and let d; € (E})o be
such that E; = (Ef)o(v/dy). Note that M; is an Ef-vector space of dimension
ny. Let

QfZMfXMf%Q



ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF K3 SURFACES 23

be the orthogonal sum of n copies of the quadratic form Fy x Ey — Q defined
by (z,y) = Trg,q(rvos(y)).

The Milnor index 7 € Mil, ;(F') determines the signatures of M+ and M,
as follows. Recall that dim(M™) = ny and dim(M™) = n,.

Let s, and s_ be as in §9 and set Dy = (—1)%+ Fj(£1); let Q=+ be the diag-
onal quadratic form of dimension ny over Q defined by Q+ = (D4, 1,...,1).
Let @ be the orthogonal sum

Q= 0QroQsoQ-.
fenh

sign(M™) = (r*,s%), sign(M~) = (r_,s_).

Recall form §§ that we denote by ¢ = ¢, s the diagonal quadratic form over
Q having r diagonal entries 1 and s diagonal entries —1.

Assume that conditions (C 1) and (C 2) hold. If p is a prime number, then
(M, q) ®q Q, has a structure of a Q,[I']-quadratic form (see §§), and we have
the orthogonal decomposition (cf. §3)).

(M, q) ©q Qp = & (M7, q7) ® (M, ¢3) © (ME, ¢2) & (M3, g3),

where M} = My ®q Q,, ML} = M* ®q Q,, M2 = M~ ®q Qp, and Mj =

M? ®q Q,. The Q,[[']-quadratic form (M2, ¢5) is hyperbolic.
For f € I, set £ = Ey ®q Q, and (Ef)j = (Ef)o ®q Q,. There exists a
unique non-degenerate hermitian form (M¥, h%) over (EY, o) such that
Q?(za y) = TIE?/Qp(h?(xa y))>
see for instance [M 69|, Lemma 1.1 or [B_15], Proposition 3.6.
Set A} = det(hh) € (E?)g/NE;/(E;)O. Note that the hermitian form A% is

isomorphic to the ng-dimensional diagonal hermitian form (X’}, 1,...,1) over
EY. Hence ¢} is determined by A

Notation 10.1. With the notation above, set
Op(X}) = Oplay] € Wr(Fy).

Proposition 10.2. We have dim(q}) = deg(f)ns, det(qy) = [f(1)f(=1)]"/,
and the Hasse-Witt invariant of qi satisfies

wy(qy) + w2 (Qf) = corg,yr q, (det(h), dy)
in Bra(Qp).

Proof. The assertion concerning the dimension is clear, the one on the
determinant follows from Lemma [B.I] and the property of the Hasse-Witt
invariants from [B 20|, Proposition 12.8.
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Proposition 10.3. (a) dim(¢}) = ny and

det(q?)det(¢?) = (—1)* | Fy () Fi(~1)].

(b) If ny #0 and n_ # 0, then we can choose ¢ and ¢ such that det(¢%) =
(1) [Fi(£1)].

(c) If ne # 0, then the Hasse- Witt invariant of ¢, can take either of the two
possible values of {0,1} = Bra(Q,).

(d) If p # 2, then 0,[¢ ] can be either of the two possible classes of dimension
vp(det(qh)) of Wr(Fy, N¥) = W(F,).

Proof. (a) is clear, (b) follows from Theorem M4 (ii) and Theorem [B.1] (ii);
(c) and (d) are straightforward to check.

We also need the following

Lemma 10.4. Let p be a prime number, p # 2, and let by and by be two
quadratic forms over Q, with dim(b;) = dim(be) and det(by) = det(bz). Then
we have

U)Q(bl) :wg(bg) in BI‘Q(QP) <~ 8p[b1] :ap[bg] in W(Fp)
Proof. The proof is straightforward.

Similarly, we have
(M, q) q R = 2 (M7°,q7°) & (M, qF) & (M2,¢%) & (M5°, ¢5°),
where M3 = M; ©q R, M® = M* ©q R, M> = M~ ®q Q,, and Mg =
M? ®q Q,. The R[[']-quadratic form (Ms°, ¢%) is hyperbolic.

The R[I']-quadratic forms (M3°, ¢7) and (M2°, ¢5°) are determined by the
Milnor index 7 € Mil, ;(F).

Proposition 10.5. We have dim(g3°) = deg(f)ny, det(¢7) = [f(1)f(=1)]"/,
and the Hasse-Will invariant of 7 satisfies

wa(q5°) + w2 Q) = core e /m(det(hf), df)
in Bra(R).

Proof. The assertion concerning the dimension is clear, the one on the
determinant follows from Lemma [B.I and the property of the Hasse-Witt
invariants from [B 20|, Proposition 12.8.

For f € I, set B = Ey ®q R and (Ey)5° = (Ef)o ®q R. There exists a
unique non-degenerate hermitian form (Mg°, hy) over (E%°, o) such that

q;o(l,’ y) = TIIE;?O/R(h?O(xa y))>
see for instance [M 69|, Lemma 1.1 or [B_15|, Proposition 3.6. Set
7 =det(h7) € (EF) /NE/(3)0-
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11. Obstruction group

We keep the notation of the previous sections. The aim of this section is to
define a finite elementary abelian 2-group that will play an important role in
the Hasse principle (see §13). Recall that J is the set of irreducible factors of
the polynomial F', that Iy C J is the set of factors of type 0, I; C J is the set
of factors of type 1, and I = Iy U I;.

Notation 11.1. If f € Z[X] is an irreducible, symmetric polynomial of even
degree, set By = Q[X]/(f), let oy : Ef — E be the involution induced by
X +— X1 and let (Ey)o be the fixed field of o in E;. Let a € E; be the
image of X.

Definition 11.2. Let f € Z[X] be an irreducible, symmetric polynomial of
even degree, and let p be a prime number. We say that f is ramified at p if
there exists a place w of (Ef)y above p that is ramified in E; otherwise, we
say that f is unramified at p. We denote by II% the set of prime numbers p
such that f is ramified at p.

Let p € I} be an odd prime number. If w is a place of (Ey) above p that is
ramified in Fy, we denote by x,, the residue field of w, and by @ be the image
of a in k,,; we denote by S, the set of places w above p such that @ = 1, and
by S_ the set of places w above p such that @ = —1. We denote by H}’Jr the
set of prime numbers p such that there exists a place w above p with w € S,
and by H;’_ the set of prime numbers p such that there exists a place w above
p with w € S_.

Notation 11.3. If f, g € Z[X] are monic, irreducible, symmetric polynomials
of even degree, we denote by Il  the set of prime numbers p such that one of
the following conditions holds :

(a) The polynomial f has a symmetric, irreducible factor f' € Z,[X],
the polynomial ¢ has a symmetric, irreducible factor ¢’ € Z,[X], such that
f' (mod p) and ¢’ (mod p) have a common irreducible, symmetric factor in

[ X].

(b) p € I} NI}, and the polynomials f (mod p) and g (mod p) are both

divisible by X — 1 in F,[X].

(c) p € I} N1II}, and the polynomials f (mod p) and g (mod p) are both
divisible by X + 1 in F,[X].

Fi=T]fvand Fp(X) = (X — 1) (X + 1)
feh
for some integers n*,n~ > 0.

For all prime numbers p, let D%, D” € QX /Q)*.

Notation 11.4. If f € I, let IIy x_; be the set of prime numbers p such that
p € I}, that f (mod p) is divisible by X — 1 in F,[X], and that if n™ = 2,
then D # —1.
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Let IIf x41 be the set of prime numbers p such that p € II’, and that
f (mod p) is divisible by X + 1 in F,[X], and that if n= = 2, then D” # —1.

Let IIx_1 x41 = {2} if the following conditions hold : n™ # 0, n= # 0,
and if nt = 2, then D3 # —1; if n= = 2, then D? # —1. Otherwise, set
Hx_ 1,x41 = 9.

We denote by C(I) the set of maps I — Z/2Z.
Notation 11.5. If f,g € I, let ¢, € C(I) be such that

Cf,g(f) = Cf,g(g) = 17 and Cf,g(h> =0ifh % fvg
Let (f,g): C(I) = C(I) be the map map sending ¢ to ¢+ c¢y,,.

Notation 11.6. Let Cy(I) be the set of ¢ € C(I) such that

co(f) = clg) if Iy, # 2,
and we denote by (D4, D_) the quotient of the group Cy(I) by the sub-
group of constant maps.
In general, the group depends on Dy = (D%) and D_ = (D"). If n* # 2
and n~ # 2, then IlIx(D,, D_) only depends on F', and we denote it by 1.

12. Local data

We keep the notation of §I0l Assume that conditions (C 1) and (C 2) of §§]
hold, and recall that this implies the existence of a “local solution" everywhere.
This leads, for all prime numbers p, to an orthogonal decomposition of the
associated Q,[[']-bilinear form (see §I0). We obtain in this way a collection
of Qp[I']-bilinear forms, one for each irreducible, symmetric factor of the
characteristic polynomial. The dimensions and determinants of the bilinear
forms are always the same, but their Hasse-Witt invariants vary.

The aim of this section is to give a combinatorial encoding of the possible
Hasse-Witt invariants, called “local data'.

We identify Bry(R) and Bry(Q,), where p is a prime number, with {0,1} =
Z/27Z. Let V be the set of all places of Q, and let V' be the set of finite places.

If p is a prime number, let g} for f € I, ¢} and ¢” be as in §I0; recall that
if ny # 0 and n_ # 0, we choose ¢ such that det(¢}) = (—1)%|Fy(£1)| (see
Proposition I0.3] (b)).

Let a? € C(I) be the map defined as follows :

a’(f) = wz(Q?) + wa(Qy)
if f eI, set
aP(X £ 1) = wa(qh) + we(Qx).

Let C? be the set of maps a” € C(I) obtained in this way.

Proposition 12.1. For almost all prime numbers p, the zero map belongs to
the set CP.



ISOMETRIES OF LATTICES AND AUTOMORPHISMS OF K3 SURFACES 27

Proof. Let S be the set of prime numbers such that p is ramified in the
extension Ey/Q for some f € I, or wa(q) # w2(Q) in Bra(Q,); this is a finite
set. We claim that if p € S, then the zero map belongs to CP. Indeed, set
¢y = QY for all f € I, and ¢f = Q. We have det(g) = det(Q) in Q*/Q*2,
and if p ¢ S we have ws(q) = wa(Q) in Bry(Q,), therefore, for p ¢ S, we have

(M,q) ®q Qp = i (M5, qp) © (MY, ¢4) © (MZ, %) & (M3, 43).

If p is unramified in all the extensions E;/Q for f € I;, by [B 20|, Lemma
11.2 we have 9,[Mf,q7] = 0 in Wr(F,); moreover, v,(Ds) = 0, hence
OME, ¢] =0 in Wr(F,).

The above arguments show that if p & S, then the choice of ¢} = Q" for all

f €I, and ¢f, = Q" gives rise to the element a? = 0 of C?; therefore the zero
map is in CP, as claimed. This completes the proof of the proposition.

Proposition [0.2 implies that if f € I, then a?(f) is determined by det(h).
Set \; = det(h}) € (E]’i)g/NE?/(Ei)O. Set E? = [[ E} and Ef = [] (E})o;

feh fen
the map a” is determined by N € (E§)*/Ngp/ge(EP)*), and the quadratic

forms ¢
Notation 12.2. With the above notation, we set a? = a?[N, ¢}l ] = a[N, ¢%, ¢"].
Notation 12.3. If f,g € I, let ¢, € C(I) be such that

crg(f) =cpglg) =1and crg(h) =0if h # f,g.
Let (f,g) : C(I) = C(I) be the map map sending ¢ to ¢ + cy,.

Recall that for all f, g € I, the set Il , consists of the prime numbers p such
that f (mod p) and g (mod p) have a common symmetric factor in F,[X].

If p is a prime number, let us consider the equivalence relation on C(I)
generated by the elementary equivalence

a~b <= b=(f,g)a with p € Il;,.
We denote by ~,, this equivalence relation.
Proposition 12.4. The set C? is a ~,-equivalence class of C(I).

Proof. Set A? = wy(q) + w2(Q) in Bry(Q,) = Z/2Z, and note that for all
af € C?, we have ) aP(f) = AP.

feJ

We start by proving that the set C? is stable by the maps (f, g) for p € Il¢,.

Let a?[N,¢}] € CP, let f,g € J be such that p € II;,, and let us show

that (f, g)(ap[)\p,qi]) € CP. Note that if f € I;, then p € Il;, implies that

(E%)o /NEp/ BY) o(E%) # 0. Assume first that f,g € I. There exist ps,p, €
)

(E)q /NEﬁ/ )0 (Ep such that corgp/q, (1, ds) # corgy/q,(As, ds) and
COT ()2 /Q, (,ug, g) 7 COr(gr/q,(Ng, dy). Let uP € Ef be obtained by replacing
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N} by i, N by g, and leaving the other components unchanged. We have
al[pP, q] = (f, g)(aP[M, ¢"]). Using the arguments of [B 20|, Propositions 16.5
and 22.1 we see that a?[u?, ¢ ] € CP. Assume now that f € [; and g = X — 1.
In this case, the hypothesis p € Iy, implies that there exists a place w of
(Ef)o above p that ramifies in Ey, and such that the w-component A of \?
is such that with the notation of [B 20|, §22, 0,(A*) is in Wr(F,, N;). We
modify the w-component of AP to obtain uy € (E?)g/NEﬁ/(E?)O (E%) such that
cor(Ef)g/Qp(uf,df) + cor(Ef)g/Qp()\f,df), and let O be a quadratic form over
Qp with dim(b?) = dim(¢?), det(b?) = det(q¢h), and wo(b?) = wa(qh) + 1. We
have a?[u?, 07, ¢"] = (f, g9)(aP’[N, ¢%]). The arguments of [B 20|, Propositions
16.5 and 22.1 show that a?[u?, b*, ¢”] € CP.

Conversely, let us show that if a?[M\, ¢Y] and a?[uP, V] are in CP, then
aP[ NP, ¢ ] ~, aP[pP, V]. Let J' be the set of f € J such that a?[\?, ¢](f) #

al[pP, B8 ](f). Since > aP(h) = AP for all a? € CP, the set J' has an even
heJ
number of elements.

Assume first that p # 2. This implies that for all f € J', we have J,(\}) #
Op(p7) and that if f(X) = X £ 1, then 9,(¢%) # 9,(b}). Hence there exist
f,g € J with f # g such that 9,(Wr(Q,, M7)) and 9,(Wr(Q,, M})) have a
non-zero intersection. This implies that p € II;,. The element f, g)(a?[N\?, ¢} ])

differs from a?[p?, 0% ] in less elements than a?[A\P, ¢} ]|. Since J’ is a finite set,
continuing this way we see that a?[\, ¢} ] ~, aP[u?, b ].

Suppose now that p = 2. Let J” be the set of f € J' such that 82()\?) =+
d2(17), and note that J” has an even number of elements. The same argument
as in the case p # 2 shows that applying maps (f,g), we can assume that
J'=@. If feJ and f & J", then 05(\}) belongs to Wr(Fa, 1) C Wp(Fy).
Therefore f,g € J and f,g ¢ J”, then 2 € 1I;,. The number of these elements
is also even, hence after a finite number of elementary equivalences we see that
aP[ NP, @8] ~p, aP[pP, b]. This completes the proof of the proposition.

Notation 12.5. Let a? € C?, and let ¢ € C([). Set
car(c) = Y _c(fa’(f).

Recall from §IT] that Cy(7) is the set of ¢ € C(I) such that
co(f) = clg) it Iy # 2.
Lemma 12.6. Let a?, b* be two elements of C?, and let ¢ € Co(I). Then
€ar(€) = € (c).

Proof. By Proposition [[2.4] we have a? ~, 0P; we can assume that b =
(f,g)a? with p € II;,. By definition, we have bP(h) = aP(h) if b # f,g,
W (f) = a?(f) + 1 and b(g9) = a”(g) + 1. Since ¢ € Cy(I) and II;, # @, we
have ¢(f) = ¢(g), and this shows that €,»(c) = e (c), as claimed.
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Since €4 (c) does not depend on the choice of a? € CP, we set €(c) = €4 (c)
for some a? € CP, and obtain a map

e Co(I) = Z/2Z.

By Proposition [2.1], we have ¢? = 0 for almost all prime numbers p.

Let efinie = $™ ¢l where the sum is taken over all the prime numbers p; this
is a finite sum. Note that if (X —1)(X + 1) does not divide F', then €™ only
depends on F'; it does not depend of the choice of the Milnor signature 7. We
have a homomorphism

éinite . Co(F) — Z/27Z.

Let v € V be the unique infinite place. Recall that the forms ¢3° and ¢
are uniquely determined by the choice of the Milnor index 7 € Mil, (F'). Let
a>® € C(I) be the map defined as follows :

a*(f) = wa(q5°) + w2(Qy)
if f e,
a™ (X £1) = wy(qF) + wa(Q+),
and

a(f)=0if fe Jwith f& I, f#X=£1.

We obtain a map

e :C()—Z/2Z

by setting
e(c) =Y _clf)a>(f).
feJ
Forve V,set €’ =€’ if v =1v,, and €’ = €° if v = vy. Set

veV
Since € = 0 for almost all v € V (cf. Proposition [2.1]), this is a finite sum.
We have €, = ™% + €. We obtain a homomorphism

e Co(l) = Z/2Z.
Recall from §I1] that Il x(Dy, D_) is the quotient of Cy(I) by the constant

maps.

Proposition 12.7. The homomorphism €, : Co(I) — Z/2Z induces a homo-
morphism
e : Ip(Dy, D_) — Z/2Z.



30 EVA BAYER-FLUCKIGER

Proof. It suffices to show that if ¢(f) = 1 for all f € J, then €(c) = 0. For all
v eV, set AY = wq(q) + wa(Q) in Brao(Q,) = Z/2Z, where Q, is either R or
Q,, for a prime number p. Note that A” = 0 for almost all v € V, and that
> A" = 0. Moreover, for all a” € C?, we have by definition ) a¥(f) = A”.
veY fed

Let ¢ € C(I) be such that ¢(f) =1 for all f € J. We have

()= > cf)a’(f)=)_ ) a'(f)=) A" =0

veV feJ veV feJ veV

13. Hasse Principle

We keep the notation of the previous sections; in particular, F' € Z[X] is a
monic, symmetric polynomial of even degree such that F(0) = 1 and we set
2n = deg(F'). Let r,s > 0 be integers such that r + s = deg(F) and that
r = s (mod 8), and let 7 € Mil, 4(F) be a Milnor index. We assume that
conditons (C 1) and (C 2) hold.

Recall from §I2] that we have a homomorphism
e : Wlp(Dy, D) — Z/2Z.

Theorem 13.1. There exists an even, unimodular lattice having a semi-simple
isometry with characteristic polynomial F and Milnor index 7 if and only if
e, = 0.

Proof. Assume that there exists an even, unimodular lattice (L, q) having
a semi-simple isometry with characteristic polynomial F' and Milnor index 7,
and let (M, q) be the associated Q[I']-quadratic form. Let M® @ M @ M? the
corresponding orthogonal decomposition of §91 We have the further orthogonal
decompositions (M1, ¢') = f@j (My,qs), and (M°,¢°) = (M*,¢") & (M~,q7)
€l

(see §3). For all prime numbers p, this gives rise to a local decomposition
as in §I0, and to an element a” € CP given by a”(f) = wa(q}) + wa(Qy) if
fenh,bya?(X £1) =ws(q¢h) + wa(Q+), and a?(f) =0 if f € J with f & I,
f# X £1 (see §12). Similarly, we have the element a> € C(I) given by
2(f) = walqF) + wa(Qy) if f € L1, a™(X £ 1) = we(¢F) + wa(Qx+), and
a®(f) = 0if f € Jwith f ¢ I, f # X £ 1. Since ¢} = ¢f ®q Q, and
q7° = qr ®q R for all f € J, we have

> a’(f)=0forall feJ.

veY
This implies that €, = 0.

IS]

Conversely, assume that ¢, = 0. By [B_20], Theorem 13.5 this implies that
for all v € V there exists b” € C¥ such that for all f € J, we have Y b*(f) = 0.
veV
If v € V' with v = v, where p is a prime number, let us write b¥ =
alN\P, g, q"], for some NP € (E§)*/Npp/gr(EP)”, and some quadratic forms
¢, ¢" over Q,, as in notation 122
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Note that since vy, does not belong to any of the sets I ,, we have b>°(f) =
a®(f) = wa(qF) + wa(Qp) if f € L1, 0(f) = a™(X £ 1) = wy(qF) + w2(Q),
and b°(f) = a>*(f) =0if f € Jwith f &€ I, f # X + 1. Recall that the
forms ¢3° and ¢7° are uniquely determined by the choice of the Milnor index
7 € Mil, 4(F).

If f eI, we have

bvp(f) = a[>\p7 qg—? qz—;](f) = Cor(Ef)g/Qp()‘z}v df)7
and
b= (f) = a[)\007 qiov qio](f) = Cor(Ef)(ﬁo/R(det(h;o)v df)

(cf. Propositions and [10.5)).
Since > b"(f) = 0, we have

veY
> cor/q. (AN dy) =0,
veY
where Q, = Q, if v = v, and Q, = R if v = vs. This implies that

Z()‘;‘Uvdf) =0,

wew
where W is the set of primes of Ey. Therefore there exists Ay € Eg /Ng,g,(£*)
mapping to A¥ for all w € W (see for instance [B 20], Theorem 10.1). In
particular, we have (Ay,dy) = (XY, dy) in Bry(Ef) for all w € W.
Note that 7(f) is an even integer. Let hy : My x My — E; be a hermitian

form such that det(hy) = Ay, and that the index of hy is equal to TTf); such a

hermitian form exists (see for instance [Sch 85|, 10.6.9). Let us define
qs : Mf X Mf — Q
by
ar(x,y) = Trg, q(hy(2,y)).

Let f = X £ 1. We have ) b"(f) = 0, hence by the Brauer-Hasse-Noether

%
theorem there exists a(£) € Bry(Q) mapping to b”(f) in Bry(Q,) for allv € V.

Let g+ be a quadratic form over Q of dimension n., determinant D, , Hasse-
Witt invariant ws(gs) = a(£) + we(@Q+) and index 7(X £ 1) = ry — sy. Such
a quadratic form exists; see for instance [S_77], Proposition 7.

Let ¢ : M x M — Q be the quadratic form given by

(M,q) = & (My.q) @ @ (My,qp) ® (M?,¢%),

feh fely
where (M?,¢?) is hyperbolic. By construction, (M, q’) has the same dimen-
sion, determinant, Hasse-Witt invariant and signature as (M, q), hence the
quadratic forms (M, ¢') and (M, q) are isomorphic.

Let t : M — M be defined by t(m) = ym, where 7 is a generator of
['. By construction, t is an isometry of (M,¢’) and it is semi-simple with
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characteristic polynomial F'. By hypothesis, conditions (C 1) and (C 2) hold,
hence (M, ¢') ®q Q, contains an even, unimodular Z, lattice L, stable by the
isometry t. Let

L={xe M| xe L, for all prime numbers p}.

(L,q') is an even, unimodular lattice having a semi-simple isometry with
characteristic polynomial F'. This completes the proof of the theorem.

Corollary 13.2. Assume that conditions (C 1) and (C 2) hold, and that
Iz = 0. Then there exists an even, unimodular lattice having a semi-simple
1sometry with characteristic polynomial F' and Milnor index 7.

14. Even, unimodular lattices preserved by a semi-simple element of
SO, s(R)

In this section, we reformulate the Hasse principle result of §13] and prove
a result stated in the introduction. We keep the notation of I3l In particular
F € Z[X] is a monic, symmetric polynomial of even degree such that F'(0) = 1,
and r, s > 0 are integers such that r + s = deg(F') and that r = s (mod 8).

Let us now assume that condition (C 2) holds, and let ¢ € SO, (R) be
a semi-simple isometry with characteristic polynomial F. Let 7 = 7(t) €
Mil, s(F') be the Milnor index associated to ¢ in Proposition

Assume that condition (C 1) also holds, and let ¢, : p(Dy,D_) —
Z/27Z be the homomorphism defined in I3t set ¢, = €,. The following is
a reformulation of Theorem [I3.1]:

Theorem 14.1. The isometry t € SO, s(R) preserves an even, unimodular
lattice if and only if ¢, = 0.

Corollary 14.2. If e, : llp(Dy, D_) — Z/2Z =, the isometry t € SO, ,(R)

preserves an even, unimodular lattice.

15. Automorphisms of K3 surfaces

Which Salem numbers occur as dynamical degrees of automorphisms of
complex analytic K3 surfaces 7 This question was raised by Curt McMullen
in [McM 02], and was studied in many other papers (see for instance [GM 02],
[O10], [McM 11], [R12], [BGA 16], [McM 16|, [R_17], [Z_19], [Br_20]).

We refer to [H 16| and [Ca 14] for background on complex K3 surfaces
(henceforth K3 surfaces, for short) and their automorphisms.

Let X be a K3 surface, and let T': X — X be an automorphism; it induces
an isomorphism 7% : H?(X,Z) — H*(X,Z). The dynamical degree of T is
by definition the spectral radius of T™; it is either 1 or a Salem number. The
characteristic polynomial of 7™ is a product of at most one Salem polynomial
and of a finite number of cyclotomic polynomials (see [McM 02|, Theorem 3.2).

Let H*(X,C) = H**(X)® H (X)) ® H*?(X) be the Hodge decomposition
of H?(X,C). Since the subspace H*°(X) is one dimensional, T* acts on it by
multiplication by a scalar, denoted by §(7), and called the determinant of T';
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we have [0(T)| = 1. Moreover, 6(T) is a root of unity if X is projective (cf.
[IMcM 02|, Theorem 3.5).

The intersection form of H?(X,Z) is an even, unimodular lattice of signa-
ture (3,19), hence it is isomorphic to Ajs 19, and an automorphism of X’ induces
an isometry of that form. Therefore a necessary condition for a Salem number
a to occur as the dynamical degree of such an automorphism is that Ag 19 has
an isometry with characteristic polynomial SC, where S is the minimal poly-
nomial of «, and C'is a (possibly empty) product of cyclotomic polynomials.

Definition 15.1. A complemented Salem polynomial is by definition a degree
22 polynomial that is the product of a Salem polynomial and of a (possibly
empty) product of cyclotomic polynomials.

Recall from §8 that a monic, symmetric polynomial F' € Z[X] satisfies
condition (C 1) if and only if

|F(1)], |[F(=1)| and (—=1)"F(1)F(—1) are squares,

where 2n = deg(F'), and that this condition is necessary for F' to be the
characteristic polynomial of an isometry of an even, unimodular lattice.

If Fis a complemented Salem polynomial, then m(F) = 1, since F' has
exactly two roots that are not on the unit circle. This implies that condition

(C 2) holds for (r,s) = (3,19).

Definition 15.2. Let F' be a complemented Salem polynomial, and let ¢ be
a root of F' with |0| = 1. We say that (F,J) is realizable (resp. projectively
realizable) if there exists a K3 surface (resp. a projective K3 surface) X and
an automorphism 7" : X — & such that

e [ is the characteristic polynomial of T*|H?(X).
e T* acts on H*°(X) by multiplication by ¢.
Let S be a Salem polynomial of degree d with 4 < d < 20, and set
F(X)=S(X)(X —1)2

Let us consider Salem polynomials S with [S(1)| = 1. In this case, ILg(x) x-1 =
&, hence the obstruction group Iy is not trivial, and not all Milnor indices
are realized. We start by introducing some notation.

Notation 15.3. If § is a root of S with || = 1, let 75 € Mils19(F') be such
that

s(P)=2 if P(X)=(X-0§)(X-07"),
that
75(Q) = —2 forall Q € Irrg(S) with Q # P,
and that
(X —1) =d—22.

Let 73 € Milg19(F') be such that 7(Q) = —2 for all Q € Irrg(5), and that
n(X —1) =d - 20.
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Theorem 15.4. Let S be a Salem polynomial of degree d with 4 < d < 20, set
F(X)=S(X)(X —1)2

Assume that condition (C 1) holds for F and that |S(1)] = 1. Let 7 €
Mﬂg’lg(F).

Then the lattice A3 19 has an isometry with characteristic polynomial F' and
Milnor index 7 if and only if one of the following holds

(i) d = —2 (mod 8) and T = 75 where § is a root of S with |0| = 1.
(ii) d =2 (mod 8) and T = 7.

Proof. The polynomials S and X — 1 are relatively prime over Z. This
implies that if the lattice A19 has a semi-simple isometry with characteristic
polynomial F', then Asj9 >~ L; @& Ly where L; and Lo are even, unimodular
lattices, such that L; has an isometry with characteristic polynomial S, and
Ly has a semi-simple isometry with characteristic polynomial (X — 1)%~4.

Note that every 7 € Milg19(F') is either equal to 7, or to 75, where ¢ is a
root of S with |d] = 1. Assume first that As ;9 has a semi-simple isometry with
characteristic polynomial F' and Milnor index 7, and let As 9 >~ Ly @& Ly be
as above. The signature of L; is (1,d — 1), and since L; is unimodular and
even, this implies that d = 2 (mod 8).

Suppose now that Asz ;9 has a semi-simple isometry with characteristic poly-

nomial F' and Milnor index 75, where § is a root of S with || = 1. Let
As19 >~ Ly @ Ly be as above. The signature of L; is then (3,d — 3), and since
Ly is unimodular and even, we have d = —2 (mod 8).

This implies that if As;9 has a semi-simple isometry with characteristic
polynomial F', then we are in one of the cases (i) or (ii).

Let us show the converse. Suppose first that we are in case (i). We have
d = —2 (mod 8); this means that d = 6 or d = 14. Let (r,s) = (3,3) if d =6
and (r,s) = (3,11) if d = 14; note that condition (C 2) holds for S and (r, s),
and that » = s (mod 8). By hypothesis, condition (C 1) holds for F'; since
F(—1) = S(—1), this implies that |[S(—1)| is a square. Moreover, |S(1)| =1
by hypothesis. We claim that condition (C 1) also holds for S. Since S is a
Salem polynomial, we have S(1) < 0 and S(—1) > 0; we have d = 2 (mod 4),
therefore (—1)%25(1)S(—1) is a square. This implies that condition (C 1)
holds for S. Moreover, S is irreducible, hence IIIg = 0.

Let 7" € Mil, 4(S) be the restriction of 75 to Mil, ((S). We have seen that
conditions (C 1) and (C 2) hold for S, and that IIIg = 0. By Corollary[I3.2lthe
even, unimodular lattice A, ; has an isometry with characteristic polynomial S
and Milnor index 7/. The identity is a semi-simple isometry of the lattice —Fy
with characteristic polynomial (X —1). Since Az 19 = A33® (—FEg) ®(—Fs) =
As11 @ (—Eyg), the lattice Az 19 has a semi-simple isometry with characteristic
polynomial F' and Milnor index 75, as claimed.

Suppose now that we are in case (ii). We have d = 2 (mod 8); that is,
d=10or d = 18. Let (r,s) = (1,d — 1); note that r = s (mod 8), and that
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condition (C 2) holds for S and (r,s). We show as in case (i) that condition
(C 1) holds for S and that g = 0.

Let 77 € Mil, 4(S) be the restriction of 7 to Mil,¢(S). By Corollary
the even, unimodular lattice A, has an isometry with characteristic
polynomial S and Milnor index 7”. The identity is a semi-simple isometry
of the lattice Ay g9_q with characteristic polynomial (X —1)%7%. Since A3 19 =
Ay g—1D A2 204, the lattice A3 19 has a semi-simple isometry with characteristic
polynomial F' and Milnor index 7.

Proposition 15.5. Let S be a Salem polynomial of degree d with 4 < d < 22
and d =6 (mod 8). and let 6 be a root of S with |§| = 1. Suppose that |S(1)|
and S(—1) are both squares, and set F(X) = S(X)(X — 1)2*74. Then (F,0)

1s realizable.

Proof. The argument of Theorem [15.4] implies that the lattice As19 has a
semi-simple isometry with characteristic polynomial F' and Milnor index 7.
Applying [Br 20|, Lemma 3.3 (1) of Brandhorst gives the desired result.

Example 15.6. If a > 0 is an integer, the polynomial
Sa(X) =X —aX’ - X"+ (24— 1)X* - X* —aX +1

is an Salem polynomial (see [GM 02|, page 284, Example 1), and S(1) = —1.
Part (iii) of Theorem 5.5 implies that if J, is a root of S, with [d,| = 1 and
Fo(X) = S,(X)(X —1)' then (F,,d,) is realizable.

The polynomials S, also appear in §4 of [McM 02| : for every integer
a > 0, McMullen gives a geometric construction of an automorphism of a non-
projective K3 surface such that the dynamical degree and the determinant
of the automorphisms are roots of S, (see [McM 02], Theorem 4.1); this
construction uses complex tori.

Example 15.7. Let S be a Salem polynomial of degree 14, and assume that
|S(1)] = 1. Let ¢ be a root of S, and set F'(X) = S(X)(X — 1)%. If moreover
S(—1) is a square, then condition (C 1) holds for F', and Theorem (iii)
implies that (F,d) is realizable.

Salem polynomials of degree 14 with |S(1)| = |S(—1)| = 1 were considered
in several papers. Oguiso proved that the third smallest known Salem number
A14 is the dynamical degree of an automorphism of a non-projective K3 surface
(see [O_10], Proposition 3.2). If a Salem number is a root of a Salem polynomial
S of degree 14 with |S(1)| = |S(—1)| = 1, then this was shown by Reschke
(see |[R_12], Theorem 1.2).

16. Realizable Salem numbers

The aim of this section is to show that if o is a Salem number of degree d with
d=4,6,8,12,14 or 16, then « is the dynamical degree of an automorphism of
a non-projective K3 surface; partial results are given for the other values of d
as well.



36 EVA BAYER-FLUCKIGER

Notation 16.1. Let S be a Salem polynomial of degree d with 4 < d < 20,
and let § be a root of S with |[§| = 1. Let F be a complemented Salem
polynomial with Salem factor S. We define the Milnor index 75 € Mil; 19(F')
as follows :

o (X — ) (X —671)) =2
o 75(P) <0 for all P € Irrr (F) such that P(X) # (X — §)(X —4671).

Theorem 16.2. Let S be a Salem polynomial of degree d, and let & be a root
of S with |0] = 1. Suppose that d < 16 and d = 0,4 or 6 (mod 8). Then there
exists a complemented Salem polynomial F' with Salem factor S such that As 19
has a realizable isometry with Milnor index 5.

Notation 16.3. If f € Z[X] is an irreducible, symmetric polynomial of even
degree, set By = Q[X]/(f), let o : Ef — E be the involution induced by
X — X~ and let (Ey) be the fixed field of o in .

Definition 16.4. Let f € Z[X] be an irreducible, symmetric polynomial of
even degree, and let p be a prime number. We say that f is ramified at p if
there exists a place w of (Ef)y above p that is ramified in Ey.

Proposition 16.5. Suppose that d < 18 and that one of the following holds :
(i) |S(1)] and S(—1) are not both squares.
(ii) S is ramified at the prime 2.

Then there exists a complemented Salem polynomial F' with Salem factor S
such that A3 19 has a realizable isometry with Milnor index 7s.

Proof. (a) Suppose first that there exists a prime number p such that
v,(S(=1)) = 1 (mod 2). Set F(X) = S(X)(X — 1)2°4X + 1)%2. We have
D_ = (=1)*-5(—1) = S(—1); this implies that D_ # —1 in Q)/Q.?, since
vp(D-) = v,(S(—=1)) = 1 (mod 2). Therefore p € g x41, and Ix(D_) = 0.

(b) Suppose now that no such prime number exists; this implies that S(—1)
is a square. Then either |S(1)] is not a square, or S is ramified at 2.

Set F(X) = S(X)(X —1)29 We have d < 18, hence 22 — d # 2; this
implies that p € IIg x_; and hence Iz = 0.

Let (L,q) be an even, unimodular lattice of signature (3,19), and let ¢ :
L — L be a semi-simple isometry with characteristic polynomial F' and with
Milnor index 75; such an isometry exists IlIz(D_) = 0 in case (a) and Iz =0
in case (b).

Set Lg = Ker(S(t)), and let S¢ be the orthogonal of Lg in L. If we are in
case (b), then the restriction of ¢ to L¢ is the identity, hence it is a positive
isometry in the terminology of McMullen; this implies that ¢t : L — L is
realizable.

Suppose now that we are in case (a). Let L; = Lg = Ker(S(t)), Ly =
Ker(t + 1) and L3 = Ker(t — 1); let ¢; : L; — L; be the restriction of t to L;.

A root of (L, q) is by definition an element x € Lo such that ¢(z,x) = —2.
If (Lo, ) has no roots, then t; is a positive isometry of (Lq, —¢) by [McM 11],
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Theorem 2.1, and hence [McM 11|, Theorem 6.2 (see also [McM 16|, Theorem
6.1) implies that (F,d) is realizable, hence (b) holds.

Suppose that (L, q) has at least one root. By hypothesis, S(—1) is not
a square, therefore det(Lo,q) is not a square. Since (Lg,q) is of rank 2,
even and negative definite, there exist integers D > 1 and f > 1 such that
det(Lq,q) = f?D, where —D is the discriminant of an imaginary quadratic
field. The lattice (L, q) is isomorphic to a quadratic form ¢’ on an order O
of the imaginary quadratic field Q(v/—D) (see for instance [Co 89|, Theorem
7.7). Complex conjugation induces an isometry of the quadratic form (O, ¢)
with characteristic polynomial X2 — 1. If D = 3 and f = 1, then (O,¢)
is isomorphic to the root lattice Ay, and complex conjugation is a positive
isometry of (O, —¢) (see [McM 11|, §5, Example); otherwise, (O, ¢’) contains
only two roots, fixed by complex conjugation, hence we obtain a positive
isometry of (O, —¢’) in this case as well. Let t, : Ly — Lo be the isometry of
(Ls, q) obtained via the isomorphism (O, ¢’) ~ (Ls,q). Then t} is a positive
isometry of (Ly, —q). Let G(Ls) = (L2)*/Ls, and note that t, and ¢, both
induce —id on G(Ls). This implies that (L,q) has a semi-simple isometry
t' : L — L inducing the positive isometry to or ¢, on Ly and t; on L; for
i = 1,3. By [McM 11], Theorem 6.2 (see also [McM 16|, Theorem 6.1) this
implies that the isometry is realizable.

Proof of Theorem [16.2 If |S(1)| and S(—1) are not both squares or if if d
is divisible by 4, then the result follows from the proposition; if d = 6 (mod 8),
then it follows from Proposition [I5.5]

Definition 16.6. Let o be a Salem number and let § be a conjugate of « such
that |0| = 1. We say that («,0) is realizable (resp. projectively realizable) if
there exists an automorphism of a K3 surface (resp. a projective K3 surface)
having an automorphism of dynamical degree o and and determinant 9.

Corollary 16.7. Let o be a Salem number of degree d with 4 < d < 16, let
S be the minimal polynomial of o, and let § be a root of S with |0| = 1. If
d=4,6,8,12,14 or 16, then («,§) is realizable.

Remark 16.8. If d = 20 with |[S(1)| is a square and S(—1) is not a square,
then the method of Proposition still works, and therefore Corollary [16.7]
holds in this case as well.

Example 16.9. McMullen proved that the Salem numbers A4, A1g and Ay are
not realized as dynamical degrees of automorphisms of projective K3 surfaces

(cf. [McM 16], §9). Corollary[I6.7and Remark [[6.8§show that they are realized
by automorphisms of non-projective K3 surfaces.

17. A nonrealizable Salem number

McMullen proved that the Salem number A\;g = 1.1883681475... (the second
smallest known Salem number) is the dynamical degree of an automorphism of
a projective K3 surface (cf. [McM 16|, Theorem 8.1). The aim of this section
is to show that this is not possible for non-projective K3 surfaces.
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Let S be a Salem polynomial of degree 18, and let § be a root of S with
6] = 1. Let 05 € Mils 15(S) be such that o5(P) = 2 for P(x) = (z—0)(z—051)
and that 05(Q) = —2 for all Q € Irrg(S) with Q # P.

If f € Z[X] is a monic polynomial, we denote by Res(S, f) the resultant of
the polynomials S and f.

Proposition 17.1. Assume that |Res(S, f)| = 1 for all f € {®y, Py, O3, Dy, Ps}.
Let C be a product of cyclotomic polynomials such that deg(C) = 4, and set
F =SC. Let 15 € Milz19(F) be such that the restriction of 75 to Mils 15(S) is
os, and that 75(Q) < 0 for all Q € Irrg (C).

If As 19 has a semi-simple isometry with characteristic polynomial ' = SC
and Milnor index 75, then C = ®q5.

Proof. If C' = &5, &g or $y, then F'C does not satisfy Condition (C 1), hence
A3 19 does not have any isometry with characteristic polynomial F' for these
choices of C.

Assume that all the factors of C' belong to the set {®y, &y, P3, Dy, Ps}. Then
S and C' are relatively prime over Z. If A3 19 has an isometry with characteristic
polynomial F', then As19 = Ly @ Lo, where L; and Ly are even, unimodular
lattices such that L; has an isometry with characteristic polynomial S and
Milnor index o4, and Ly has an isometry with characteristic polynomial C'.
This implies that the signature of L; is (3,15) and that the signature of L is
(0,4), and this is impossible.

Therefore the only possiblity is C' = ®15, as claimed.

Notation 17.2. Let C' = ®5, and set F' = SC. Let ( be a primitive 12th
root of unity. Let 75, 7. € Mils19(F') be such that

75(P) = 2 for P(z) = (x — §)(x — §7') and that 75(Q) = —2 for all
Q € Irrr (F) with Q # P;

7(P) = 2 for P(z) = (z — {)(z — (') and that 7(Q) = —2 for all
Q € Irrg(F) with Q # P.

Theorem 17.3. Let S be an Salem polynomial of degree 18 such that
[SM)S(-1)] =1,

let C = ®y5, and set F' = SC. Let § be a root of S with |6| = 1, and let ¢ be a
primitive 12th root of unity. With the above notation, we have

(a) The lattice As19 has an isometry with characteristic polynomial F and
Milnor index 7.

(b) The lattice A3 19 has an isometry with characteristic polynomial F and
Milnor index 15 if and only iof Ip = 0.

Proof. The polynomial F' satisfies Condition (C 1), since F/(1) = —1 and
F(-1)=1.

Let us prove (a). Let oy € Mily 17(S) and oy € Mily 5(C') be the restrictions
of of 7, € Mils 19(F"). Since S and C are both irreducible, we have IIIg = 0 and
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[T = 0. Therefore by Corollary[13.2, A; 17 has an isometry with characteristic
polynomial S and Milnor index o and As 2 has an isometry with characteristic
polynomial C' and Milnor index o,. This implies (a).

Let us prove (b). If IlIp = 0, then Corollary [[3.2] implies that Az ;9 has an
isometry with characteristic polynomial F' and any Milnor index.

Assume that Il # 0; since F' has two irreducible factors, this implies that
Ulp ~ Z/2Z. Recall from §I2 that e,, = it 4 e and €, = efinite €

By (a) we know that Aj 19 has an isometry with characteristic polynomial F
and Milnor index 7¢; this implies that €, = 0. Note that €° # € Therefore
s # 0, and by Theorem [13.1] this implies that As 19 does not have an isometry
with characteristic polynomial F' and Milnor index 75. This completes the
proof of (b).

Example 17.4. Let S be the Salem polynomial corresponding to the Salem
number A;g. This polynomial satisfies the conditions of Proposition I7.1]: we
have |Res(S, f)| = 1 for all f € {®y, Py, P3, Py, Ps}. Therefore by Proposition
7T if Asq9 has an isometry with characteristic polynomial SC' and Milnor
index 75 for some product C' of cyclotomic polynomials, then we have C' = ®45.

Let ' = S®j5. We have IIp # 0. Indeed, |Res(S, f)| = 169, and the
common factors modulo 13 of S and @15 in F13[X] are X +6, X +11 € F3[X].
These polynomials are not symmetric. Therefore Ilgs,, = &, and hence
My ~ Z/2Z. Theorem 7.3 implies that Aj19 does not have any isometry
with characteristic polynomial S®;, and Milnor index 7.

Since this holds for all roots § of S with |§| = 1, the Salem number \g is
not realized by an automorphism of a non-projective K3 surface.

References

[B 15] E. Bayer-Fluckiger, Isometries of quadratic spaces, J. Eur. Math. Soc. 17 (2015),
1629-1656.

[B 20| E. Bayer-Fluckiger, Isometries of lattices and Hasse principles, J. Eur. Math. Soc.
(to appear), larXiv:2001.07094.

[BT 20] E. Bayer-Fluckiger, L. Taelman, Automorphisms of even unimodular lattices and
equivariant Witt groups, J. Eur. Math. Soc. 22 (2020), 3467-3490.

[Bo 77] D. W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), 315-328.

[Br 20] S. Brandhorst, On the stable dynamical spectrum of complex surfaces, Math. Ann.
377 (2020), 421-434.

[BGA 16] S. Brandhorst, V. Gonzalez-Alonso, Automorphisms of minimal entropy on su-
persingular K3 surfaces, J. London Math. Soc. 97 (2016), 282-305.

[Ca 14] S. Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in
Complex Dynamics : In celebration of John Milnor’s 80th birthday (463-514), Princeton
Math. Ser. 51, Princeton Univ. Press, Princeton, NJ, 2014.

[Co 89] D. Cox, Primes of the form xz? + ny?, Fermat, class field theory and complex
multiplication, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York,
1989.

[E 84] J-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math.
75 (1984), 561-584.

[GM 02] B. Gross, C. McMullen, Automorphisms of even, unimodular lattices and unrami-
fied Salem numbers, J. Algebra 257 (2002), 265-290.


http://arxiv.org/abs/2001.07094

40 EVA BAYER-FLUCKIGER

[H 16] D. Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathe-
matics 158, Cambridge University Press, Cambridge, 2016.

[McM 02] C. McMullen, Dynamics on K3 surfaces: Salem numbers and Siegel disks. J.
Reine Angew. Math. 545 (2002), 201-233.

[McM 11] C. McMullen, K3 surfaces, entropy and glue. J. Reine Angew. Math. 658 (2011),
1-25.

[McM 16] C. McMullen, Automorphisms of projective K3 surfaces with minimum entropy.
Invent. Math. 203 (2016), 179-215.

[M 68] J. Milnor, Infinite cyclic coverings, Topology of Manifolds (J. Hocking, ed.), Prindle,
Weber and Schmidt, Boston (1968), 115-133.

[M 69] J. Milnor, Isometries of inner product spaces, Invent. Math. 8 (1969), 83-97.

[O 10] K. Oguiso, The third smallest Salem number in automorphisms of K3 surfaces,
Algebraic geometry in East Asia - Seoul 2008, 331-360, Adv. Stud. Pure Math. 60,
Math. Soc. Japan, Tokyo, 2010.

[O’M 73] O.T. O’Meara, Introduction to quadratic forms, reprint of the 1973 edition. Clas-
sics in Mathematics. Springer-Verlag, Berlin, 2000.

[R 12] P. Reschke, Salem numbers and automorphisms of complex surfaces, Math. Res. Lett.
19 (2012), 475-482.

[R 17] P. Reschke, Salem numbers and automorphisms of abelian surfaces, Osaka J. Math.
54 (2017), 1-15.

[Sch 85] W. Scharlau, Quadratic and hermitian forms, Grundlehren der Mathematischen
Wissenschaften 270, Springer-Verlag, Berlin, 1985.

[S 77] J-P. Serre, Cours d’arithmétique, Presses Universitaires de France, 1977.

[Sm 15] C. Smyth, Seventy years of Salem numbers, Bull. Lond. Math. Soc. 47 (2015),
379-395.

[Z 19] S. Zhao, Automorphismes lozodromiques de surfaces abéliennes réelles, Ann. Fac. Sci.
Toulouse Math 28, 109-127.

Eva Bayer—Fluckiger
EPFL-FSB-MATH

Station 8

1015 Lausanne, Switzerland

eva.bayer@epfl.ch



	0. Introduction
	1. Equivariant Witt groups
	2. Symmetric polynomials and -modules
	3. Isometries of quadratic forms
	4. Local fields and unimodular -lattices
	5. Even, unimodular -lattices over Z2
	6. Milnor signatures and Milnor indices
	7. Local conditions for even, unimodular -lattices
	8. The local-global problem
	9. Q[]-forms, signatures and determinants
	10. Local decomposition
	11. Obstruction group
	12. Local data
	13. Hasse Principle
	14. Even, unimodular lattices preserved by a semi-simple element of SOr,s(R) 
	15. Automorphisms of K3 surfaces
	16. Realizable Salem numbers
	17. A nonrealizable Salem number
	References

