
Turbulence-induced clustering in compressible active fluids

Vasco M. Worlitzer,1, ∗ Gil Ariel,2 Avraham Be’er,3, 4 Holger Stark,5 Markus Bär,1 and Sebastian Heidenreich1

1Department of Mathematical Modelling and Data Analysis,
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany

2Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
3Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research,
Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel

4Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
5Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany

(Dated: January 13, 2022)

We study a novel phase of active polar fluids, which is characterized by the continuous creation and
destruction of dense clusters due to self-sustained turbulence. This state arises due to the interplay
of the self-advection of the aligned swimmers and their defect topology. The typical cluster size is
determined by the characteristic vortex size. Our results are obtained by investigating a continuum
model of compressible polar active fluids, which incorporates typical experimental observations in
bacterial suspensions by assuming a non-monotone dependence of speed on density.

Active matter has become a central topic of contem-
porary physics with applications ranging from collective
motion of animals and cells [1] to new forms of soft matter
[2] and the dynamics of cells and tissues [3]. Among ac-
tive systems, bacterial colonies provide an intriguing and
experimentally well-controllable class of systems. Many
aspects of their behavior can be understood by analo-
gies to fundamental non-equilibrium statistical physics
[4]. Several bacterial species provide showcases for collec-
tive motion and ordered patterns, that can be described
by simple models of self-propelled particles dominated by
alignment [5] or repulsive interactions and particle shape
[6]. Suspensions of swimming bacteria may be governed,
in addition, by longer range hydrodynamic interactions,
which can lead to a new dynamic state referred to as
meso-scale turbulence. This dynamical state is charac-
terized by the presence of self-sustained vortices and jets
and is reminiscent of turbulence [7–12]. In contrast to in-
ertial turbulence there exists a characteristics vortex size
[7, 9, 13, 14], which can be explained by the competition
between alignment and hydrodynamic interactions [14–
17]. However, models of meso-scale turbulence commonly
assume incompressibility [14–17], and are therefore not
able to describe clustering phenomena.

A common description of compressible active fluids
is based on self-propulsion and purely repulsive inter-
actions showing intriguing non-equilibrium phenomena
like motility-induced phase separation (MIPS) [18–20].
For this phenomenon it is crucial that the self-propulsion
speed of the particle slows down with increasing density
[19]. In this context, experiments of bacterial suspensions
exhibit a puzzling situation: On the one hand, the speed
of bacteria increases with density for low and intermedi-
ate densities [21] and on the other hand, clusters or den-
sity variations are commonly present and often emerge
from dilute initial conditions [22]. This behavior has not
been explained so far.
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Based on our previous investigations [23], where a con-
tinuum model was proposed that combines meso-scale
turbulence with MIPS, we extend here this concept and
incorporate typical experimental observations in bacte-
rial suspensions by assuming a non-monotone depen-
dence of speed on density, see fig. 1(a). Through a numer-
ical study of the proposed continuum model, we discover
the novel dynamical state of turbulence-induced cluster-
ing, which is characterized by the continued formation,
reshaping and fracture of dense clusters. We show that
the dynamic arises due to self-advection of the aligned
swimmers and point out that the nucleation of clusters
is organized by the defect topology in the polar order
field of the swimmers. In general, topological defects of-
ten dominate the dynamics of active biological matter:
they govern cell death and extrusion in epithelial tissues
[24], control the dynamics in neural cell cultures [25] and
promote new layer formation in dense bacterial colonies
[26]. Moreover, we show that the average cluster size de-
pends linearly on the characteristic vortex size. Overall,
our results point out an alternative way how clusters can
emerge in systems far from equilibrium.

The proposed model for compressible active fluids con-
sists of coupled equations for the density ρ and the po-
larization density p, quantifying polar order, see [23]

∂tρ = −∇ · [v(ρ)p] +D∆ρ, (1a)

∂tp + λ0(p · ∇)p =− 1

2
∇[v(ρ)ρ]− [A(ρ) + C|p|2]p

+ Γ0∆p− Γ2∆2p. (1b)

The evolution of the density is governed by the continuity
equation eq. (1a), where the current density consists of
a diffusive part and a term stemming from the directed
motion of the particles. Eq. (1b) is reminiscent of the
equation to model meso-scale turbulence [16, 17]. The
terms arise due to self-propulsion, alignment and hydro-
dynamic interactions. The pressure-like term involving
the gradient of ρ couples the polarization to the evolution
of the density, and the velocity field v(x, t) is obtained
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FIG. 1. (a) Density-dependent speed v(ρ) in our model (see
eq. (2)) and obtained from experiments (reproduced from
[21]). Linearly unstable region due to MIPS is colored in
blue [27]. (b) Phase portrait for ρ0 and λ0 exhibiting meso-
scale turbulence with homogeneous density (MST, grey) and
turbulence-induced clustering (TIC, red). Symbols represent
simulation data, from which the phase boundary is estimated
(yellow triangles = MST, blue circles = TIC). Insets: Typi-
cal snapshots of the respective states. Streamlines calculated
from v, while the background color is obtained from ρ (see
colorbar). For better visualization no streamlines are plotted
for areas with ρ = ρmax, i.e. inside dense clusters.

from v = v(ρ)p/ρ. We model the density-dependent
speed v(ρ) with the quadratic function

v(ρ) = −c [ρ− (ρmax + ρmin)/2]
2

+ v0, (2)

where c = 4v0/(ρmax − ρmin)2. This form is motivated
by experimental studies of bacterial suspensions [21, 28],
see fig. 1(a). We remark that the behaviour of bacterial
suspensions at the onset of meso-scale turbulence, i.e. in
the limit ρ → ρmin, is poorly understood. Hence, we do
not expect to accurately capture the dynamics with our
model in this limit.

Furthermore, density ρ and polarization p couple to
each other via the polar alignment strength A(ρ) in eq.
(1b). Inspired by Landau theory, one often assumes
A(ρ) = A0(ρc − ρ) to model the polar-isotropic phase
transition. For simplicity, we assume that the onset of
collective motion coincides with the polar-isotropic phase
transition, i.e. ρc = ρmin and hence A(ρ) < 0.

In our numerical simulations, we choose ρmin = 0.2
and ρmax = 0.8 in line with experimental results [21].
Moreover, we fix A0 = 0.3, C = 0.5, D = 5 and
v0 = 5. These parameters do not affect the dynamics
significantly. We vary the mean density ρ0, and use Γ0

and Γ2 to control the characteristic vortex size. Finally,
the strength of self-advection of the polarization is tuned
by λ0 (for details on the numerics see [27]).

We initiate simulations with a homogeneous density
profile and choose Γ0 = −1 and Γ2 = 1, such that the
system is in a meso-scale turbulent state [23, 27]. This
state is characterized by vortices with a characteristic

length scale as well as the presence of dynamical jets
[14, 15, 29]. By varying the mean density ρ0 and the
strength of self-advection λ0, we sketch a phase portrait,
see fig. 1(b). Note that the mean density ρ0 is varied
outside the spinodal regime of MIPS, i.e. between ρmin

and ρs ≈ 0.58, see fig. 1(a) and [27].

Meso-scale turbulence (MST) or vortex lattices accom-
panied by an almost constant density ρ ≈ ρ0 are ob-
served for low values of ρ0 and λ0. For high values of ρ0
and λ0, we discover a novel phase, which we refer to as
turbulence-induced clustering (TIC). In this phase dense
clusters with ρ = ρmax, hence v = 0, emerge throughout
the simulation domain, while dilute areas are still char-
acterized by vortices. The dense clusters are not fixed
in space but rather get reshaped and stretched. Further-
more, clusters commonly fracture and smaller parts of
the fracture might vanish. We emphasize that the emer-
gence, reshaping and fracture of clusters continues indefi-
nitely. That is, while a cluster might fracture in one part
of the simulation domain, a new cluster might emerge at
another place, see the supplemental movie [27].

To quantify the dynamical evolution of dense clusters,
we use Minkowski functionals. They provide a mathe-
matical framework to completely characterize the mor-
phology of patterns [27, 30, 31]. In two dimensions, the
Minkowski functionals coincide with the area A, perime-
ter U and Euler number χ. The Euler number can be
calculated by counting the number of connected finite
domains, in our case the dense clusters, and subtract-
ing the number of holes. Hence, the Euler number is a
topological quantity related to the number of clusters.
Minkowski functionals provide a useful tool to study the
highly irregular shapes of dense clusters in our system,
while also allowing for comparison with the more com-
monly studied quantities such as the number of clusters
and the characteristic domain size derived from the den-
sity correlation function [27, 30].

Analyzing the temporal evolution of the Minkowski
functionals in the TIC phase reveals that A, U and χ
fluctuate around a non-zero mean value [27] due to con-
tinuous creation and destruction of clusters, which indi-
cates a statistical steady state. We rule out finite-size
effects by varying the linear size L of the system [27].
To further test the universality of our results, we initiate
simulations with a single dense circular domain and vary
the self-advection strength λ0 along the dotted line in fig.
1(b). For low values of λ0 (i.e. in the MST phase) the
mean values of the Minkowski functionals are well sepa-
rated (fig. 2(a)): An initial circular cluster preserves its
Euler number 1 and maintains positive area and perime-
ter, while the Minkowski functionals are zero for the ho-
mogeneous density profile. Hence, the time evolution in
the MST phase depends heavily on the initial conditions,
see fig. 2(b) and (c). For high values of λ0 (i.e. in the
TIC phase) differences in the time-averaged Minkowski
functionals cannot be attributed to the initial conditions.
After a transient, the dynamics and statistical properties
of the system for different initial conditions are indistin-
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FIG. 2. (a) Time-averaged Minkowski functionals when vary-
ing λ0 along the dotted line in fig. 1(b), i.e. for ρ0 = 0.4.
Circles represent runs started from a homogeneous density
profile, while triangles represent runs started from an initial
dense droplet. Surface area and perimeter are rescaled by the
domain size to yield fractions. (b), (c) Snapshots of the ini-
tial condition (upper) and at t = 150 (end of the simulation,
lower) for a homogeneous density profile (b) and an initial
droplet (c) in the MST phase, i.e. for ρ0 = 0.4 and λ0 = 0.
Respective snapshots of the TIC phase are provided in [27].

guishable, see fig. 2(a) and [27]. From this observation
we can draw two conclusions about the TIC phase: 1)
The novel statistical steady state is independent of the
initial conditions and 2) the completely phase separated
state is unstable. The second conclusion in turn shows
that another process than MIPS must be responsible for
the TIC phase, as MIPS predicts a complete phase sep-
aration on long time scales. Our results indicate that
self-advection through the non-linear term λ0(p · ∇)p of
the polarization triggers the nucleation of clusters as well
as the fracture of already existing domains.

The nucleation of clusters due to meso-scale turbu-
lence can be understood by the compressibility of the
system and the local defect topology. We illustrate this
by initiating the system with a vortex lattice at constant
density ρ = ρ0. In this situation, the evolution of the
density eq. (1a) reduces to ∂tρ = −v(ρ0)∇ · p. Hence,
density changes are only possible if sinks (∇ · p < 0) or
sources (∇·p > 0) of the polarization are present. We re-
mark that this argument is only valid at the early stages,
when density gradients are negligible. We detect sources
and sinks of the polarization by computing the integral
1/L2

∫
(∇·p)2 dx. Fig. 3(b) shows that the maximum of

this integral increases with the strength of self-advection
λ0, leading to density gradients within the system.

Analyzing the snapshots in fig. 3(a) shows that the
density changes are organized by the defect topology of
the polarization. In a vortex lattice, a topological de-
fect with charge 1 is located at the vortex center and the
point in between four adjacent vortices is a topological

FIG. 3. (a) Snapshots at t = 20 of runs started from a vortex
lattice with ρ0 = 0.25, Γ0 = −2 for λ0 = 0 and λ0 = 3. (b)
Maximal absolute divergence, i.e. max[0,δt] 1/L2

∫
(∇ · p)2dx

for the initial stage of the vortex lattice when varying λ0. Pa-
rameters as in (a). (c) Snapshots of a cluster growing from
random initial conditions with ρ0 = 0.45, λ0 = 0.5. (d) Evo-
lution of a flat interface between a dense cluster and a vortex
array in the dilute region with ρ0 = 0.45 and λ0 = 3. In (a),
(c) and (d) arrows represent the p field, with arrow color indi-
cating clockwise (red) and counterclockwise (green) rotating
vortices.

defect with charge -1. While for λ0 = 0 the vortex lattice
is only perturbed marginally, high values of λ0 result in
the appearance of sources of the polarization at the vor-
tices. Clearly, combining a source with a vortex results
in an outward spiral. This is in line with simulation re-
sults from [32]. Therein, elongated pushers (like Bacillus
subtilis) show a propensity to form outward spirals, when
increasing self-advection. Density shifted away from the
vortices accumulates in between four adjacent vortices
(fig. 3(a)) due to mass conservation. This is reminiscent
of the results of [33], where swimmers forced by a veloc-
ity field in the form of a vortex lattice leave the vortices
and accumulate in between them. Hence, there is a den-
sity shift from topological defects with charge 1 to those
with topological charge -1, which represent possible nu-
cleation sites for dense clusters. Indeed, in simulations
started from random initial conditions, clusters prefer-
entially nucleate in between four adjacent vortices, see
fig. 3(c). Furthermore, initiating the system with a flat
interface between a dense cluster and a vortex array in
the dilute region, shows that the surrounding vortices
modulate and eventually break-up the interface, see fig.
3(d).
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Finally, we address the mechanism which determines
the average cluster size in the TIC phase. Trivially, the
cluster size depends on the mean density ρ0 [27]. More
interestingly, for fixed ρ0, the cluster size changes with
the characteristic vortex size. The characteristic vortex
size can be estimated from the fastest growing mode kc
obtained from the stability analysis as Λ = 2π/kc =

2π
√

2Γ2/− Γ0 [27].

Increasing Λ results in a decrease in the number of
clusters (fig. 4(a)), but a higher probability to find larger
clusters, which can be deduced from the cluster size dis-
tribution plotted in fig. 4(b). Moreover, we compute a
characteristic domain size L∗ either from the density cor-
relation function (Lc), the perimeter (Lp) or the Euler
number (LE) [27]. All three quantities increase linearly
with Λ, see fig. 4(c). This shows that the mean value,
around which the Minkowski functionals fluctuate, is de-
termined by the characteristic vortex size. A possible
explanation is provided by our previous observation that
clusters preferentially nucleate in between adjacent vor-
tices. Increasing the vortex size leaves more space in
between vortices (implies larger distance between topo-
logical defects with charge +1), while the number of pos-
sible nucleation sites reduces, resulting in fewer but larger
clusters. Hence, we conjecture that the novel TIC phase
can be understood as fluctuations around a vortex lattice
with dense cluster situated in between vortices.

We presented an extension of a continuum model that
combines MIPS with meso-scale turbulence by including
a realistic self-propulsion speed dependence on density.
By numerical investigations, we showed that meso-scale
turbulence induces dynamical clustering if incompress-
ibility is not enforced. Independent of the system size
and initial conditions, a novel dynamical state emerges,
which is characterized by the continuous nucleation, de-
formation and destruction of clusters. These antagonistic
dynamics arise due a common cause: Hydrodynamic in-
teractions lead to self-advection of the polarization gov-
erning the dynamics. This points to the importance of
hydrodynamic interactions, which are usually excluded
in the literature [34, 35], when studying clustering phe-
nomena of elongated self-propelled particles.

Furthermore, the TIC phase extends to densities
ρ0 > ρs, i.e. to the regime where spinodal decomposi-
tion through MIPS is expected: Clusters form initially
through a process reminiscent of spinodal decomposition,
while on long time scales we observe continued emer-
gence, reshaping and fracture of clusters [27]. Hence,
turbulence-induced clustering is a generic phenomena for
incompressible polar active fluids.

Our results bear some reminiscence to passive systems
quenched into the spinodal regime in the presence of tur-
bulence. Therein, thermodynamic forces drive coarsen-
ing, while existing domains are broken up due to the
turbulent motion. The competition between these ef-
fects leads to a coarsening arrest at a certain length scale

[36–39]. However, there are two notable novel aspects
of our observations: Firstly, nucleation of clusters due
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FIG. 4. (a) Number of clusters, (b) cluster size distribution
and (c) characteristic domain size L∗ for different characteris-

tic vortex sizes Λ = 2π
√

2Γ2/− Γ0. Details for the choice of
Γ0,Γ2 can be found in the supplemental material [27]. Data
is obtained for ρ0 = 0.5 by averaging over 10 runs ((a),(b))
and 5 runs (c) with identical parameters but different random
initial conditions. Colors in (b) correspond to those in (a). In
(c) the characteristic domain size obtained from the perime-
ter (Lp, magenta circles), the Euler number (LE , black stars)
and the correlation function (Lc, cyan crosses) is shown. As
a visual guide linear fits for all three cases are provided as
dashed lines. Lp and LE are rescaled with the maximum of
Lc.

to inertial turbulence is not reported for passive systems
[36–39], where clusters emerge spontaneously as the sys-
tem is quenched into the spinodal regime. Our simula-
tions are performed outside the spinodal regime. Conse-
quently, clustering is initiated and governed by the tur-
bulent fluid motion in the active system. Secondly, the
average cluster size in the active system is controlled by
the characteristic vortex size, rather than by opposing
forces. Hence, turbulence-induced clustering illustrates
a novel route to pattern formation which is unique to
active systems. In the context of biological systems, it
points to a possible functional benefit of meso-scale tur-
bulence, e.g. as a driver for aggregation of bacteria at low
and intermediate densities.

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) through grants HE 5995/3-1 (SH,
VMW and AB), BA 1222/7-1 (MB and GA) and SFB
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