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Abstract

Local entropic loss functions provide a versatile framework to define architecture-aware
regularization procedures. Besides the possibility of being anisotropic in the synaptic space,
the local entropic smoothening of the loss function can vary during training, thus yielding
a tunable model complexity. A scoping protocol where the regularization is strong in the
early-stage of the training and then fades progressively away constitutes an alternative to
standard initialization procedures for deep convolutional neural networks, nonetheless, it has
wider applicability. We analyze anisotropic, local entropic smoothenings in the language of
statistical physics and information theory, providing insight into both their interpretation
and workings. We comment some aspects related to the physics of renormalization and the
spacetime structure of convolutional networks.
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1 Introduction

Insight and methods coming from physics have ever since helped to improve our understanding
and design of neural networks. The interdisciplinary potential of techniques borrowed from
statistical physics and information theory, such as entropic regularizations and renormalization,
has not yet exhausted its drive in machine learning.

Stochastic gradient descent (SGD) proved to be a particularly suited optimization algorithm
to train deep neural networks. This is mainly due to the properties of its noise, which is related
to the Hessian matrix of the loss function. Efficient escaping from sharp relative minima is an
example of a useful effect directly descending from the characteristics of the SGD noise. Besides,
it is argued that regularization effects due to noise bias the stochastic gradient descent algorithm
towards encountering, both systematically and efficiently, solutions belonging to clusters charac-
terized by a high value of the test accuracy. If not universal, this phenomenon is believed to be
generic for networks working in a regime well below their critical capacity.

To the purpose of understanding the virtues of SGD algorithms from a theoretical viewpoint,
and in order to define approaches able to enhance them, it has been recently proposed to modify
the loss function by means of a local solution-counting term, a local entropy. Local entropy
represents a refinement of standard entropy and defines a coarse-graining technique helpful in
understanding and improving deep neural networks. In particular, it offers a tunable way of
encouraging the training towards clusterized solutions through a smoothened version of the

2



original loss function. More precisely, the modified loss function allows us to perform a large-
deviation analysis, biasing the statistical measure away from Gibbs typicality towards regions
with a high density of high-accuracy weight configurations [1, 2].

The local entropy framework is attractive in many respects: the relation to statistical me-
chanics improves its interpretability; it admits time-dependent and anisotropic generalizations,
making it a flexible framework allowing for adaptive strategies; it demonstrated a potential in
image-classification experiments and constraint-satisfaction problems. Although being trained
with a regularized loss function inspired by statistical mechanics, the deep networks used in
practice are in general very far from being amenable to an analytical description. They, in fact,
depart in many ways from the regimes where analytical approaches can be available.

Local entropy is associated to a position-dependent Helmholtz free energy defined by convo-
luting the Boltzmann weight with a specified kernel. The term local refers to the fact that the
convolution kernel is significantly different from zero only over a compact region.1 A natural
example is provided by

e−βF(W ) =

√
βγ

2π

∫
dW ′e−β[L(W ′)+ γ

2 ‖W−W
′‖22] , (1)

where the original loss function L plays the role of the energy and β represents an inverse
temperature. With W we denoted the position in the synaptic space (i.e. a vector collecting
the weights of the network, thus representing its state), ‖‖2 is the Euclid-Frobenius norm and γ
is inversely related to the width of the Gaussian kernel

K(W ,W ′) = e−β
γ
2 ‖W−W

′‖22 . (2)

The idea is to use F(W ) as a regularized version of the original loss, where the smoothening

scale is controlled by γ−
1
2 .

Even before considering more generic kernels K, (1) can be extended naturally in two ways:
on the one hand, one can consider anisotropic Gaussian kernels where γ takes a different value for
different subspaces in the synaptic space. This corresponds to weighting differently the distance
between two points depending on the direction of their separation and has been dubbed partial
local entropy [3]. On the other hand, one can consider time-dependent choices where γ follows
either a pre-defined schedule or an adaptive protocol.

The present work is concerned with such generalizations, devoting particular attention to the
time-dependent extension of (1), which -as we will show- provides a useful alternative to sophis-
ticated initialization procedures in image-classification tasks performed with deep convolutional
networks. Furthermore, a varying γ admits practically useful insight coming from complexity
theory and the physics of renormalization.

2 Architecture-aware entropic regularization

The main point of considering a different γ for different directions in the synaptic space, namely
considering an anisotropic local entropy, consists in treating distinct weights in a different man-
ner. Since deep neural networks are by construction hierarchical systems, where the nature of

1Spatial locality in a high-dimensional space like the synaptic space can be a somewhat misguiding concept.
Indeed, recall that -in a high-dimensional space- the volume of a sphere is sharply concentrated close to its surface.
A random sampling of such high-dimensional sphere, when uniform in volume, would thereby concentrate in the
near-surface region.

3



the hierarchy is connected to combinatorial complexity, the anisotropic extension of (1) is theo-
retically natural. Said otherwise, it seems in general not adequate to treat all the weights on the
same footing as far as regularization is concerned.

Assigning different values of γ to different weight subspaces (e.g. a different γ for each layer)
corresponds to defining a regularization strategy which is adapted to the network architecture. It
is therefore fair to expect that a suitable, anisotropically tuned, γ can permit a better exploitation
of the biases intrinsically hard-coded in the architecture itself.

These comments appear particularly suited to deep networks, where the depth has a crucial
and transparent role. Nonetheless, the idea can be generalized to other contexts. In general, it
amounts to having a tunable neural sensitivity and -as such- it can be connected to studies on
neural plasticity. More theoretically, it is interesting to use the convolutional kernels introduced
through (1) as a probe to explore (and modify) the local capacity and sensitivity of the network.2

The analysis of [3] considered anisotropic entropic regularization where the anisotropy in the
synaptic space respects the layer structure of the network. That is, all the neurons belonging
to a same layer are smoothened over in the same way. In this sense, the entropic regularization
can be architecture-aware. As a special case, one can consider entropic regularization on a single
layer at a time. The numerical experiments described in [3] hinted to the possibly generic fact
that single-layer regularization is more effective than multi-layer regularization, on the one side,
and increasingly more effective when applied to increasingly deeper layers, on the other.3 We
corroborate this observations with a new series of experiments performed on MNIST with a 5-
layer fully-connected cylindrical network where all the layers, except the output layer, have 784
neurons. For the training we have considered momentum µ = 0.9, constant learning rate η =
10−4, constant batch-size of 256 images, ReLU activations and no weight-decay regularization.
The results are reported in Figure 1, which calls for some comments. First, the asymptotic test-
accuracy appear to define a “discrete spectrum”. This reinforces the idea that the SGD training
encounters solutions belonging to few clusters, representing rare deviations from typicality, yet
systematically found. Considering the same regularization intensity on progressively deeper
layers enhances the performance, indicating that the entropic regularization is more effective
when applied to the synapses corresponding to more complex features. This seems to agree with
the intuitive idea that the same level of noise is more harmful when affecting a deep rather than
a shallow layer.

3 Information theoretic interpretation of local entropies

It is useful to study the connections of local entropy to information theory. This allows us to
appreciate how the modified loss function (i.e. the local free energy) is associated to an entropy
encoding the similarity of the convolutional kernel and the modified Boltzmann weight. More
precisely, the local entropy arises from a relative entropy.

Let us first introduce a modified (local) partition function as

Z̃(W ) =

∫
dW ′e−βL(W

′)K(W ,W ′) . (3)

2More comments on the relation between the kernel size and measures of network complexity are given in
Section 6.

3The situation can actually be more complicated than just stated, and -for instance- it may depend on the
radius of the vicinity over which one smoothens the loss function; we refer to [3] for a more detailed discussion.
The last output layer, having as many neurons as the classes of the task, is actually excluded from the argument.
Thus, the “deepest” layer is the second-last from the input.
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Figure 1: Single-layer entropic regularization is more effective when applied to progressively
deeper layers.

For the moment being, we leave the convolutional kernel K generic, yet we assume that it satisfies

K(W ,W ′) ≥ 0 , for all W , W ′ , (4)

and ∫
dW ′K(W ′,W ) =

∫
dW ′K(W ,W ′) = 1 , for all W . (5)

This corresponds to a normalization property4 thanks to which we have∫
dW Z̃(W ) =

∫
dW ′e−βL(W

′)

∫
dWK(W ,W ′) =

∫
dW ′e−βL(W

′) = Z , (6)

where Z is the standard partition function. Thus, Z̃(W ) represents the local contribution to Z.5

As customary in statistical mechanics, the free energy is derived from the partition function
through

F̃ (W ) = −kT ln Z̃(W ) , (7)

which provides a local generalization of the standard derivation. We have introduced a Boltzmann
constant k and the temperature T (such that β = 1

KT ) to maintain the connection to statistical
physics explicit, yet the experiments will be be performed taking β = 1.

The partition function (3) allows us to define the following probability distribution

ρ̃(W ,W ′) =
e−βL(W

′)

Z̃(W )
K(W ,W ′) . (8)

4For the specific case of (1) the normalization was encoded in the
√
βγ
2π

pre-factor.
5A tilde is adopted throughout the paper to represent the local generalization of the tilded quantity.
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Note that the probability distribution is to be thought of as ρ̃W (W ′), that is, a probability
distribution over the synaptic space spanned by W ′ where W plays the role of a parameter
(namely, the “center” about which we define local quantities).

From the definition of the partition function (3), we have the correct normalization of ρ̃,
namely ∫

dW ′ρ̃(W ,W ′) = 1 . (9)

A re-arrangement of the terms in (8) gives us

βL(W ′) = − ln ρ̃(W ,W ′)− ln Z̃(W ) + lnK(W ,W ′) , (10)

which will be useful shortly.
Now, we follow the standard steps to define the entropy, yet we start from the local free

energy (7), namely

S̃(W ) = −∂F̃ (W )

∂T
(11)

= k

[
ln Z̃(W ) +

β

Z̃(W )

∫
dW ′L(W ′)e−βL(W

′)K(W ,W ′)

]
= k

[
ln Z̃(W )−

∫
dW ′ρ̃(W ,W ′) ln ρ̃(W ,W ′)

−
∫
dW ′ρ̃(W ,W ′) ln Z̃(W ) +

∫
dW ′ρ̃(W ,W ′) lnK(W ,W ′)

]
= −k

∫
dW ′ρ̃(W ,W ′) [ln ρ̃(W ,W ′)− lnK(W ,W ′)]

= −kDKL

[
ρ̃(W ,W ′)

∣∣∣∣K(W ,W ′)
]
.

Equation (11) shows that the local entropy S̃(W ) corresponds to the relative entropy among
the probability distribution (8) and the kernel K [4, 5]. To gain intuition, equation (8) implies
that a flat loss L(W ) maximizes S̃(W ). Note that, being the kernel K present in the definition
of the distribution ρ̃, the relative entropy (11) encodes mainly an intrinsic property of L(W )
rather than a property induced by the shape of the kernel. Yet, the kernel is determining the
region in synaptic space upon which the entropic comparison is made.6

4 Entropic regularization and tunable complexity

The number of data points introduces a natural resolution scale into the synaptic space [6]. To
rephrase, the complexity of the dataset translates into the complexity of the landscape of the
loss function built upon the dataset itself. In this perspective, a regularization techniques which
smoothens the loss function reduces the complexity of the landscape. This can be precisely
stated in terms of the Fisher information matrix [6]. Indeed, a smoothened loss will have –by
construction– a softer dependence on the weights, leading therefore to smaller eigenvalues of the
Fisher information matrix.7

6Abusing the language to the sake of conveying an intuitive idea, one could say that local entropy is an entropy
with a receptive field, this latter being determined by the support of the considered convolutional kernel K.

7We will further comment this point in relation to local scale invariance in Subsection 6.1. For the definition
of the Fisher information matrix and its relevance to the present discussion we refer to [5] and [6], respectively.
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The possibility of tuning by hand the complexity of the synaptic space is attractive both on a
theoretical and on a practical level. Roughly, it corresponds to having a tunable sensitivity for the
synapses, which can be exploited to define improved training protocols. In practice, this amounts
to consider an entropic regularization like (1) where the regularization parameter(s) γ evolves
in time during training. Its evolution can either be ruled by a pre-determined schedule or be
adaptive. The former possibility corresponds to a planned scoping of the entropic regularization,
the latter introduces an extra intrinsic dynamical ingredient.

The fact that scoping the local entropic regularization can be a good idea is directly suggested
by experiments where no scoping is considered. In fact, when considering sufficiently complicated
image-classification tasks like CIFAR10 or STL10, it appears that the entropic regularization
provides an advantage in training performance only when combined with an early-stopping pro-
tocol [3]. In other words, the local entropic regularization seems helpful, but only in an early
stage of the training process.

Such phenomenon can be understood as follows. The early stage of a stochastic gradient
descent is typically noisier than later stages. Thereby, filtering away some noise in the initial
phase produces a stabler and more effective training signal.8 Nevertheless, at later training stages,
the information filtered away by a smoothening process can be useful to further optimize the
network. This corresponds to the fact that a coarse-grained loss would perform asymptotically
in a sub-optimal fashion.

A further, more theoretical reason in favor of switching off the entropic smoothening along
the training connects to convergence. If the regularization is switched off completely starting
from some (possibly predetermined) training step, then we can directly apply the convergence
results of the standard stochastic gradient descent algorithm to the overall training.

Another related way to interpret the effect of an entropic smoothening is as a device enforcing
an exploration/exploitation (or robustness-sensitivity) trade off. Progressively switching off the
entropic smoothening appears to be desirable, amounting to favoring exploration in an early
phase of the training, while enhancing the exploitation later on. Indeed, we want to be more
robust initially and then learn finer details in a subsequent training phase, which is implemented
through a “search-then-converge” schedule [7] for the entropic regularization.

It is interesting to draw a comparison with renormalization theory in statistical mechanics,
which requires a small detour. Renormalization in statistical physics can be described as a (sys-
tematic) procedure to filter away the information about the microscopic dynamics of a physical
system in order to retain only the relevant dynamics determining its low-energy or overall behav-
ior.9 As an extreme case of renormalization, consider for instance the thermodynamic description
of a gas where a small set of thermodynamic parameters (the temperature, the pressure and so
on) accounts for the overall description of the macroscopic behavior of a microscopically very
complicated system.

In a machine learning task, to some extent, one proceeds as in renormalization: one is in-
terested in filtering away (irrelevant) information about the details of the dataset to keep just
the relevant information needed for the task. Thus, seemingly, a training process should be
interpretable as a dissipative flow along which irrelevant information is progressively forgot.

This intuitive picture is not sufficient to account for the training of a neural network. To
understand this it is enough to note that, unlike the physical system (stick to the example of a
gas), the neural network does not contain the microscopic information to begin with. In other
words, the training is not simply a filtering operation, rather is it a process in which information is

8This can be put in analogy to the effect of momentum, we discuss this comparison in Subsection 6.4. We also
refer to the discussions on the effects of momentum contained in [7, 8].

9See Appendix A for related comments.
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acquired from the dataset and -generically- filtered at the same time.10 In this sense, the scoping
of the entropic smoothening corresponds to organizing the learning priority, coarse-grained and
robust features first, finer details later on.

5 Alternative to initialization

Since the entropic smoothening can provide tunable parameters which control the synaptic sensi-
tivity, it can be exploited to pursue an alternative solution to the so-called initialization problem
in deep networks. Complicated neural networks, especially those that -due to their depth- entail
strong hierarchies among different weights, can need suitable initialization procedures in order to
be trained. This is the case for deep convolutional neural networks. Although the initialization
problem has been studied in detail, and suitable as well as easy initialization procedures have
been devised [12, 13], it is interesting to consider alternatives. In particular, one would like to
seek for methods which can be applicable in general, independently of the specific characteristics
of the architecture of the underlying neural network. In this context, the entropic smoothening
offers a viable and versatile tool. By considering an aggressive entropic regularization at the
beginning of the training, one induces a strong insensitivity to the initial state.

The idea of an initially insensitive neural network, which is progressively made more sensitive
during training matches with the arguments described in Section 4. Here we stress that such
scoping of the entropic smoothening can be pushed to the extent that it makes an initialization
procedure superfluous. To substantiate this proposal we tested it in two different circumstances,
both referring to image-classification tasks. We describe the experimental details and results in
two separate subsections, Subsection 5.1 for experiments performed on the MNIST dataset and
Subsection 5.2 for experiments performed on STL10.

It is useful to stress that here we are considering an entropic regularization on the weights of
convolutional layers. This has been argued to worsen the performance of the neural network [3].11

However, here we consider a regularization which is active only at an early stage of the training
and which fades away completely at later stages.

Another technical observation, which applies to all the experiments described below, is that
the entropic regularization has been enforced by taking a single extra weight configuration for
each training step. This corresponded to considering a kernel K given by the characteristic
function of a hypercube and approximating the convolution integral (3) by means of a (minimal)
empirical sampling. The extra configuration W ′ is sampled uniformly in a hypercubic vicinity
of the original configuration W . More precisely, the extra sampling point W ′ is generated as a
perturbation of the unperturbed configuration W according to

W ′ = W + ∆W , (12)

where ∆W is a vector whose components ∆Wi are uniformly distributed in the interval

[−Ri, Ri] . (13)

The parameter Ri sets the size along the i-th direction of the hypercube.12 Note that Ri controls
the size of the smoothening vicinity, a role that in (1) corresponded to γ

1
2 .
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layer input channels13 output channels kernel size
conv 1 1 3
conv 1 1 3
conv 1 1 3
conv 1 1 3

fully conn. 20 · 20 10

Table 1: Deep convolutional architecture adopted for image classification on MNIST.

Figure 2: The two plots show the same training experiments on MNIST, but the one on the
right zooms into the high-accuracy region. The numbering in the legend corresponds to the list
of protocols described in the main text.

5.1 MNIST

The convolutional architecture employed in the series of experiments on MNIST is detailed in
Table 1. The entropic smoothening has been applied only on the weights belonging to the
convolutional layers, leaving those of the fully-connected head un-regularized. No weight decay
or other sources of regularization on the weights have been considered. The learning parameter
has been kept always constant in time η = 0.001, the same is true for the mini-batch size C = 256
and the momentum µ = 0.9. The neural network has been trained for 120 epochs and we have
considered five distinct protocols in relation to initialization and the entropic regularization
schedule,

1. Random initialization according to a normal distribution with zero mean and σ = 0.01.
No entropic regularization.

2. Kaiming initialization [13]. No entropic regularization.

3. Random initialization according to a normal distribution with zero mean and σ = 0.01.
Constant, anisotropic entropic regularization according to Ri = (i − 1)σ with the index i

10These comments are close to the information bottle-neck analysis of neural networks, see [9–11].
11A similar observation applies to dropout regularization of convolutional layers which generically affects neg-

atively the overall performance [14].
12See [3] for details.
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layer input channels output channels kernel size
conv 3 8 3
conv 8 8 3

max pool 2
conv 8 16 3
conv 16 16 3
conv 16 16 3

max pool 2
fully conn. 16 · 20 · 20 16 · 20 · 20
fully conn. 16 · 20 · 20 16 · 20 · 20
fully conn. 16 · 20 · 20 10

Table 2: Deep convolutional architecture adopted for image classification on STL10.

counting the layers, i = 1, ..., 4.14

4. Random initialization according to a normal distribution with zero mean and σ = 0.01.
Scheduled, anisotropic entropic regularization starting with Ri = (i − 1)σ, reduced by a
factor 1

3 for each ten training epochs (the scheduling corresponds to an exponential decay).

5. Random initialization according to a normal distribution with zero mean and σ = 0.01.
Scheduled, anisotropic entropic regularization with Ri(t) = i−1√

t
σ where t is a discrete time

variable counting the number of training epochs elapsed.

The results are summarized in Figure 2. The random initialization with no entropic reg-
ularization (protocol 1) could not be trained. Random initialization with a constant entropic
regularization (protocol 3) proved to be trainable but led to sub-optimal results. The remaining
three protocols proved to be optimal and -essentially- equivalent. To recapitulate, a training
starting from random initialization, when performed according to a properly scheduled entropic
regularization, led to equivalent results as a non-regularized case initialized with the Kaimimg
method.

5.2 STL10

We still consider a series of experiments similar to those described in Subsection 5.1, here per-
formed on the significantly more demanding image-classification task defined by the STL10
dataset. To this purpose, we adopt the architecture described in Table 2. The network is
one layer deeper than that used on MNIST, but -apart from this difference- we consider the
same experimental setups as described in the list in Subsection 5.1. Also regarding the training
hyperparameters, we consider the same values as described there, namely, η = 0.001, C = 256
and µ = 0.9.

As it already happened for MNIST, also on STL10 the random initialization with no entropic
regularization (protocol 1) corresponds to a setup where the network does not train. The case
where the entropic regularization is kept constant throughout the training with random initial-
ization (protocol 3) is trainable but -again- it leads to suboptimal results. Actually, adopting
protocol 3, a sufficiently long training can spoil completely the results obtained at an earlier stage
of the training. Protocols 2 and 5 proved to be practically equivalent, as far as the asymptotic

14In (13) the index i ran over the weights, here we overload the notation because we are considering that Ri is
equal for all the weights belonging to the same layer.
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Figure 3: Training on STL10 according to the protocols detailed in Subsection 5.1 (the same as
those adopted on MNIST). Left: early training phase. Right: large-time behavior for protocols
2, 4 and 5.

test accuracy is concerned, with protocol 4 reaching a slightly sub-optimal result. Nonetheless,
the training dynamics is quite different among the three protocols. A scheduled entropic regu-
larization, especially when switched off exponentially, proved to be the best achieving protocol
in a wide portion of the early training.

The experiments on STL10 features a richer structure with an interest on its own (especially
in relation to early-stopping policies). They however corroborate the conclusions already reached
on the experiments on MNIST: a progressively fading entropic regularization can provide a valid
alternative to Kaiming initialization.

6 Discussion

6.1 Local scale invariance

We adopt the Rectified Linear Unit (ReLU) activation function for all the neurons in the network,
which is a scale covariant function, namely

σReLU(αx) = ασReLU(x) , (14)

where α is a generic real constant. The outputs zj of the network are normalized by means of a
softmax function,

p̂j =
e−zj∑
k e
−zk

, (15)

so that {p̂j} can be interpreted as an empirical probability distribution over classes, in the
Bayesian sense of encoding a degree of uncertainty.

The two characteristics expressed in (14) and (15) make the network prediction independent
from a scaling of all the weights of a layer by the same constant factor. We refer to this property
as local scale invariance, where the “local” attribute refers here to depth, namely we can have a
different scaling factor αi for each layer i. Clearly, local scale invariance is stronger than global
scale invariance, this latter corresponding to αi = α for all i.
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If the weights of a layer are distributed with a variance vi, scaling them by a factor α trans-
forms the variance to α2vi. From this observation it emerges that the initialization procedures,
which tune the variance of the initial weight distribution, set a local scale (i.e. a scale for each
layer), meaning that the initialization does not commute with a local scaling transformation. If
we think to the cost function as an energy15 and to the weight configuration as the state of the
system, then we have that local scale invariance is preserved by the energy function (i.e. the
energy is invariant under local scale transformations) but broken by the state of the network.
This corresponds to what in physics is referred to as spontaneous symmetry breaking.

The former statement applies to the unregularized loss function L(W ), before considering
the entropic regularization (1). In fact, the regularizing term in (1) is not invariant under local
rescalings of the weights, thus neither it is so the local free loss F(W ′).16 This situation is
referred to as explicit breaking of the local scaling symmetry. Indeed, one can think to

Lγ(W ,W ′) = L(W ) +
γ

2
‖W −W ′‖22 , (16)

appearing at the exponent in the integrand of (1), as a modified energy function, where γ is a
source of explicit symmetry breaking. In other words, γ introduces explicitly a scale into the
formerly scale-invariant problem. In the case in which we consider different γ’s for different
directions in the synaptic space, we introduce more than one explicit scale into the problem.

It is relevant to note that these statements about local scaling symmetry apply also when
considering the training dynamics. Specifically, if the loss is invariant under local scalings, then
the training step (i.e. the gradient descent step) commutes with a local rescaling. This means
that one can perform the rescaling and the training step in either order and reach the same final
state. This is due to the linearity of the gradient descent algorithm and would cease to apply
when considering higher-order descent algorithms.

Explicit breaking of the local scale invariance, either implemented by means of a local-entropic
loss function or by considering activation functions which are not scale covariant, can be con-
trasted with the so-called natural gradients approach [15,16]. This latter employs a normalization
technique, based on approximated information-theoretic arguments, to avoid the scaling ambi-
guity. More recently, normalization techniques aimed at removing the local scaling ambiguity
have been studied in [17,18].

Although the local scale invariance is in many respects similar to a redundancy which we have
to project away17, the considerations about its breaking, either spontaneous or explicit, might
have a relevant role. Specifically, one could consider how the interplay between the spontaneous
scale introduced by initialization and the explicit scale introduced by local entropic regularization
affect the network training and eventual performance.

There are at least four further observations which connect to local scale invariance:

• Scale invariance emerges in common but very specific setups, for instance, in networks
characterized by the exclusive adoption of ReLU activations. These systems can thus be
regarded as a fine-tuned family within the wider set of possible networks that are not scale
invariant. Apart from their practical interest [19], scale-covariant activations are simpler
to study. As such, they can constitute a good starting point in view of studying how the
scales introduced by non-covariant activations may affect the behavior of the networks.18

15To the purposes of the present discussion, one can interpret the cost function as the static potential of a
would-be Hamiltonian system.

16To avoid confusion, we remind ourselves that the adjective local in local free loss refers to locality in the
synaptic space.

17In theoretical physics, one would speak of a gauge invariance which needs to be fixed.
18We leave a systematic experimental study of these aspects to the future, especially because the theoretical
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• The regularized loss function F(W ) introduced in (1) is defined in terms of a convolution
integral over the synaptic space. Although it introduces into the problem an explicit scale
through γ, this does not lift the flat directions of the original loss associated to local scale
invariance. Equivalently, both the original loss L(W ) and the regularized one, F(W ), have
a Fisher matrix with some zero eigenvalues associated to the local scaling freedom.

• As already commented in Section 4, complexity theory and, specifically, the concept of
effective capacity [6] suggest that also the dataset can induce the notion of a scale into
the synaptic space. This corresponds intuitively to the idea that a richer dataset defines a
more detailed loss.19

• Individuating the physical scales and the hierarchies among them is at the basis of possible
effective descriptions of neural networks [20–22]. Scale transformations generate the renor-
malization group whose fixed points are associated to criticality, a condition, or regime,
which could radically simplify the analysis and the training of the networks [23]. Entropic
probes have been considered recently in this context, see [24].

6.2 Related frameworks

In practice, the computation of the convolution integral (1) is not convenient as it would entail a
significant extra cost. Rather, one considers an empirical proxy for such an integral obtained by
sampling a discrete set of points according to a suitable sampling criterion. A similar approach is
considered in entropic least action learning, where a number of real copies of the original system
are trained concomitantly and coupled to one another by means of an attractive interaction,
whose intensity is typically increased along training [25, 26]. Such elastic regularization imple-
ments a soft version of a distance constraint between the machines working in parallel [27, 28].

Another framework exploiting parallelism to enforce an entropic bias and, more generically,
to enhance the exploratory character of an algorithm is quantum annealing (see for instance [29]).
In quantum annealing the support of the wave-function corresponds to the explored region. In
such a framework, an external control enhancing the focusing of the wave-function along the
training would -at least intuitively- parallel the increasing binding interaction among parallel
machines in least-action learning.

6.3 Minimal extra cost

As already mentioned, local entropic regularizations can be approximated by suitable sampling
techniques. The sampling, although being in general cheaper than the actual computation of
the integral, amounts to extra evaluations of the loss function and computation of its gradient.
Clearly, this correspond to an increased computational cost at each training step. Two relevant
comments in this respect are the following.

• Numerical experiments show that the cost can be minimal, yet still leading to useful effects.
In particular, already adding just one extra sampling point in the vicinity of the original

picture is likely more involved (and probably more interesting, too). Nonetheless, we give some further comments
on this in Subsection 6.6.

19It is relevant to observe that fixing the local scale invariance by means of normalizing the weights of each
layer defines a sphere for each subspace (of the synaptic space) corresponding to a layer. In other words, if Wi

is a vector whose components represent the weights of the i-th layer, its normalization means that Wi spans a
spherical surface. Such surface is compact, and compactness is crucial to argue that a finite dataset can induce a
physical scale in the synaptic space.
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point yields the positive effects of local entropic regularization.20

• The extra samplings do not require re-loading the image mini-batch, which is in general a
costly operation. This represents the main difference between the approach described here
from that usually adopted in entropic least action learning (see Subsection 6.2) where each
machine working in parallel is provided with a different mini-batch of training samples.

6.4 Gradient de-noising

A local entropy regularization extracts more information at each training step by sampling the
point and its vicinity. As such, it has a de-noising effect on the computed gradient. Momentum,
too, has a denoising effect on the training gradient.

Momentum integrates information coming from previous training steps. It does not entail an
increase of training cost, but only in memory resources (which should be generically cheap). Con-
versely, partial local entropy exploits spatially and temporally local information. It requires an
additional sampling cost (see Subsection 6.3). Momentum is “conservative”, exploiting informa-
tion coming from the past and resisting to update it by means of an inertial update rule; partial
local entropy, instead, exploits as much as possible the current circumstance independently of
how one has reached it. The two things might not be as independent as they seem at first: the
current weight configuration is conditioned by previous training so, even if we decide to forget
the gradient information collected in the previous steps, there is some information correlated to
it encoded in the current state. Yet, this would be very difficult to disentangle explicitly.

6.5 Size and shape of the solution clusters

Stochastic gradient descent and its regularized versions typically encounter solutions belonging
to clusters of configurations leading to similar test accuracy. The size of the solution cluster,
that is, the Gardner volume, can be assessed with entropic probes, either analytically (when
treatable) or numerically [19, 30]. In a setup where the entropic regularization is non-trivial
at the end of the training, the final γ encodes a bias on the size of the encountered cluster of
solutions. Therefore, a suitably anisotropic γ can be used as a probe of the shape of the solution
cluster [3]. In this context, we should recall that -if working with a scale invariant network- the
concept of shape is meaningful only after a suitable normalization scheme has been adopted. For
instance, normalizing all the layers to a fixed and pre-determined value. This latter observation
represents a refinement on the critical observations about the concept of “wide valleys” discussed
in [17].

6.6 Activation functions which are not scale covariant

The activation functions can have a relevant impact on the properties of the loss landscape.
We have already seen an explicit example of this when discussing scale invariance in Subsection
6.1 and, specifically, when observing that the scale covariance of ReLU activations produces
some exactly flat directions in the loss landscape. As shown both analytically and numerically
in [19], the robustness properties of the solution clusters may depend on the choice of activation
functions.

20A related observation was already made in [3], where experiments performed with a bi-layer fully-connected
network on the Fashion-MNIST image-classification task yield very similar results irrespective of the fact that the
partial entropic regularization relied on either 5 or 9 sampling points. Note that these numbers are very small
with respect to the dimensionality of the problem (the number of weights). For a connection between the number
of sampling points and the Parisi parameter m see [19].
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Figure 4: Test accuracy during training for a convolutional neural network specified in Table 2,
but with tanh activations instead of ReLU. The task, image classification on STL10, and the
hyperparameters are the same as those described in Subsection 5.2.

Considering a non-scale covariant activation function, namely tanh, lifts the flat directions
associated to the local scale transformations discussed in Subsection 6.1. In particular, the
ratio between the intrinsic scale dictated by the tanh activation (related to the steepness of
the transition between the two asymptotic saturating behaviors) and the scale (or scales, in the
anisotropic case) enforced by γ could produce some observable effects in the training dynamics.
Yet, some preliminary experiments -performed on STL10 with an identical setup as the one
described in Subsection 5.2 where ReLUs have been substituted with tanh activations- show a
training behavior which is qualitatively analogous. Compare Figures 4 and 3.

6.7 Dynamical landscape

Suppose that the training dynamics has some time dependence on top of the scoping of the
γ parameters or a scheduling of the learning rate. Namely, some time dependence which is
related to the task evolution in time. An explicit example of this can be provided by a dataset
which changes over time. If the task evolution is rapid enough, we can think that the training
dynamics finds itself constantly in a situation similar to being in an early training stage. As
argued in Section 5, this is the circumstance in which an entropic regularization can provide
an advantage, for convolutional weights too. Thus, we can think that γ(t) should depend on
time in response to the variations of the dataset. Roughly, we need a higher γ when the dataset
variations are stronger, while we need a decaying γ when the dataset is static or quasi-static.
To rephrase, γ(t) seems to need to be adaptive and related to the time-dependent properties of
the task.21 In physical terms, γ(t) should adequately respond to the external driving. Entropic
regularization could therefore be interesting in the context of the problems related to catastrophic
forgetting [31].

21In this sense, the initial condition of a training with a constant dataset can be interpreted as an abrupt change,
or a quench, separating the time before training from the training time. As such, the early training profits from
a strong entropic regularization as a response to the initial conditions.

15



6.8 Final remarks

We showed that an anisotropic and suitably scheduled entropic regularization can provide a tun-
able alternative to initialization procedures for deep neural networks. Moreover, the entropic
protocols can enhance the test-accuracy, especially in early training phases. The training dy-
namics featured by the entropic protocols appears to be very rich and sensitive to both the
architecture and hyper-parameters, on the one side, and to the characteristics of the task, on the
other. As such, a systematic characterization of the effects of anisotropic and scheduled entropic
regularization is a very complex and wide task. We provided here a first exploratory round of
experiments to stress the potential and the theoretical interest. An in-depth experimental study
constitute however a promising route for future investigations, which could be performed with
either an exploratory or an exploitative attitude, that is to say, it can be pursued with a tunable
inclination towards practical applications.

7 Acknowledgements

A special acknowledgment goes to Manuel Fernández Delgado and Giorgio Musso for interchanges
and feedback on the draft.

I would like also to thank Amparo Alonso Betanzos, Antonio Amariti, Carlo Baldassi, Brais
Cancela Barizo, Xabier Cid Vidal, Aldo Cotrone, Thomas Dent, Carlos Eiras Franco, Andrés
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A Entropic smoothening as a filtering process

Consider the definition of the local partition function (3) as a filtering procedure applied to
the Boltzmann weight e−βL(W ) and expressed mathematically through the convolution with the
integration kernel K.

To gain intuition about this, it is useful to think of two extreme cases. First, take the trivial
kernel

K(W ,W ′) = 1 . (17)

In this case the filtering due to (3) reduces to the simple integral of the Boltzmann weight over
the configuration space. This is the standard definition of the partition function in statistical
mechanics. In a learning perspective, it corresponds to having filtered away as much information
as possible, just retaining the thermodynamic information actually encoded in Z.

An opposite circumstance occurs when the integration kernel takes the form of a Dirac delta,

K(W ,W ′) = δ(W ,W ′) . (18)

In such a case, the convolution (3) simply returns the original Boltzmann weight, the delta
corresponding to an identity operator. Thus, no information has been integrated away by the
convolution.

The cases with generic kernels K, as well as the specific examples considered in the main text
(like that of a Gaussian K), fall intuitively between the two extreme cases just described. In other
terms, partial local entropy can be interpreted as a procedure which refines the thermodynamic
description, but still filters some microscopic information away. Specifically, local thermodynamic
functionals defined by means of a convolution with a kernel with compact support (or, at least,
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a kernel which is significantly different from zero on a compact region of the synaptic space)
represent essentially the local contribution to the associated thermodynamic potential. For
instance, (1) represents the local free energy contribution to the standard Helmholtz free energy

B Physically motivated pruning of a perceptron leads to a
convolutional network

Figure 5: Convolutional architecture as a physically-inspired pruning of a fully-convolutional
network.

In the main text, the inspiration coming from physics has been frequently appealed. Still
resorting to physics, one can motivate the derivation of a convolutional architecture from a
fully-connected one on the basis of generic principles. Specifically, locality and translational
covariance.

This not only provides an organizing principle to “expect” that convolutional architectures
may be convenient, it also provides a suggestive connection between the network and the geom-
etry of spacetimes endowed with a light-cone structure.

Let us clarify by means of an explicit example. Consider a small fully-connected network
formed by 15 neurons. For simplicity, take a cylindrical network, and consider three layers
counting five neurons each, see Figure 5. Although having just 15 neurons, this multi-layer per-
ceptron in its fully-connected configuration presents an already quite complicated link structure.
It seems thereby natural to devise some simplified version, namely to find some criterion to
reduce the number of links. This is sometimes referred to as a pruning procedure.

Suppose that the input layer is on the bottom of the pictures, so that the depth of the
network coincides with height in the pictures of Figure 5. Also, associate the vertical direction
(i.e. still the depth) to time, according to the logic that information flows from the input toward
the output of the network. Now, assume that the “signals” have a finite horizontal propagation
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speed. This means, for instance, that the output of a neuron A can reach only the neurons that
are sufficiently close to the neuron lying on top of A, one layer deeper. Notice that this statement
is introducing a specific notion of locality into the network. Actually, we are inducing a structure
of light-cones, see Figure 5. Specifically, a neuron in the input layer can affect only those neurons
which belong to a conical region above it, progressively widening when going deeper (i.e. as time
progresses). Thus, the neurons belonging to this future light cone are the only ones which can
be causally connected to the neuron sitting at the vertex of the cone.

Apart from the light-cone interpretation, note that locality has motivated a pruning technique
of the fully-connected network which directly returned a “convolutional” structure. Actually, we
are still half-way on our path to a convolutional architecture. To reach there we still need to
comment translational symmetry.

Let us first observe that we can define also a past light cone. Namely, a neuron sitting at a
point within the network can be influenced by all neurons which belong to a cone, progressively
widening towards the input, whose vertex is the original neuron position. With different words,
we have just re-expressed what is usually referred to as the neuron’s receptive field.

The last, essential, ingredient to reach the convolutional network is related to symmetry,
specifically, covariance of the network with respect to translational symmetry. Still referring
to Figure 5, consider a pruned network where the weights connected by a horizontal (discrete)
translation are constrained to be the same. The color coding in Figure 5 is meant to illustrate this
idea. Now, combining the observation about the structure of the receptive fields and translational
covariance, once can directly prove that the operation encoded in the neural network is actually
a convolution, in the standard sense.
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