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Abstract

We identify a nontrivial yet tractable quantum field theory model with

space/time anisotropic scale invariance, for which one can exactly compute cer-

tain four-point correlation functions and their decompositions via the operator-

product expansion(OPE). The model is the Calogero model, non-relativistic par-

ticles interacting with a pair potential g
|x−y|2 in one dimension, considered as a

quantum field theory in one space and one time dimension via the second quan-

tisation. This model has the anisotropic scale symmetry with the anisotropy

exponent z = 2. The symmetry is also enhanced to the Schrödinger symmetry.

The model has one coupling constant g and thus provides an example of a fixed

line in the renormalisation group flow of anisotropic theories.

We exactly compute a nontrivial four-point function of the fundamental fields

of the theory. We decompose the four-point function via OPE in two different

ways, thereby explicitly verifying the associativity of OPE for the first time for

an interacting quantum field theory with anisotropic scale invariance. From the

decompositions, one can read off the OPE coefficients and the scaling dimensions

of the operators appearing in the intermediate channels. One of the decompo-

sitions is given by a convergent series, and only one primary operator and its

descendants appear in the OPE. The scaling dimension of the primary operator

we computed depends on the coupling constant. The dimension correctly repro-

duces the value expected from the well-known spectrum of the Calogero model

combined with the so-called state-operator map which is valid for theories with

the Schrödinger symmetry. The other decomposition is given by an asymptotic

series. The asymptotic series comes with exponentially small correction terms,

which also have a natural interpretation in terms of OPE.
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1 Introduction

The concept of the renormalisation group underlies the universality in various

critical phenomena [1]. A quantum field theory with (isotropic) scale invariance

is a fixed point of the renormalisation group flow in the space of quantum field

theories and represents a universality class.

Quantum field theories invariant under space/time anisotropic scale transfor-

mation,

~x 7→ α~x,

t 7→ αzt,
(1.1)

are also of interest. The exponent z 6= 1 characterises the degree of anisotropy

of the system. These theories are also fixed points of the renormalisation group

flow in the generalised theory space of anisotropic quantum field theories. 1

Because of this, these theories are also quite universal. There are many

applications of quantum field theory models with anisotropic scale invariance.

To illustrate the richness of the applications, let us list a few examples: dy-

namical critical phenomena in which time-dependent fluctuations around a crit-

ical point are considered [2, 3], quantum critical phenomena [4], more general

non-equilibrium critical phenomena such as the directed percolation universality

class [5–7] relevant for the onset of turbulence [8, 9], and the KPZ universality

class in the surface growth phenomena [10]. Lucid introductions to these top-

ics can be found in [11, 12]. Another active area of research, with z = 2, is

the BEC/BCS crossover (also called the fermions at unitarity), systems of non-

relativistic spin 1/2 fermions with fine-tuned contact interaction, which can be

experimentally realised in cold atom systems [13–17].

The operator-product expansion(OPE) [18,19]

Oi(x)Oj(0) =
∑
k

Ckij(x)Ok(x), (1.2)

where Oi are local operators, summarises the short-distance physics of a quantum

field theory, and is both useful and conceptually important. Consistency of

successive OPEs imposes constraints on the theory, called the OPE associativity

or the crossing symmetry. For the isotropic case, in particular, when the scale

symmetry is enhanced into the conformal symmetry [20], the constraints are often

so powerful that consideration of them alone almost fixes the theory itself. This

approach, originally conceived by Polyakov [21], is called the conformal bootstrap

program. It had remarkable success for quantum field theories in two spacetime

1In general, the renormalisation group flow connects two anisotropic theories characterised by
different z.
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dimensions as pioneered by the fundamental work by Belavin, Polyakov and

Zamolodchikov [22]. In recent years, starting with [23], it has become clear

that the program can be successful also in higher spacetime dimensions. See

e.g. [24, 25] for recent reviews.

It is natural to ask whether a similar bootstrap approach can be successful

for anisotropic theories. Theories with z = 2 would be the first target since in

this case the scale symmetry can be extended to a larger symmetry, called the

Schrödinger symmetry [26,27]. (The basic properties of the Schrödinger symme-

try are briefly summarised in appendix A.) This enhancement is analogous to the

enhancement of the scale invariance to the conformal symmetry which occurs for

many interesting isotropic theories. 2 In particular, if the Schrödinger symmetry

is present, one can classify the local operators into primary operators and their

descendants (those operators obtained by acting with spacetime derivatives on

the primary operators), where the primary operators are defined by requiring

that they commute with certain generators of the Schrödinger symmetry. 3 For

the isotropic case, the representation theory of the conformal symmetry, includ-

ing the classification of operators into primary operators and their descendants,

is a key tool in the conformal bootstrap program. The analogous representation

theory of the Schrödinger symmetry relevant for the classification of operators

can be found in [30, 31] and references therein. Constraints on the correlation

functions imposed by the Schrödinger symmetry, analogous but less restrictive

compared to the isotropic case, are derived by Henkel [32,33].

Somewhat surprisingly, the study of OPE for theories with anisotropic scale

invariance started only relatively recently [34, 35]. We expect the OPE for

anisotropic theories to present new features since the short-distance behaviours

of isotropic and anisotropic theories are markedly different. For example, the be-

haviour of the two-point function of scalar primary operators in z = 1 conformal

field theory (CFT) is

〈O(x)O(0)〉 =
1

|x|2∆
, (1.3)

whereas in z = 2 Schrödinger invariant theory, it is

〈O(t,x)Ō(0,0)〉 =

 1
t∆
e−

NŌx2

2t (t > 0)

0 (t < 0)
. (1.4)

Here, Ō is the complex conjugate of the operator O, and NŌ > 0 is the U(1)

2See [28] for a review of the criteria for symmetry enhancement in the isotropic case. The general
criteria for the enhancement of z = 2 scale invariance to the Schrödinger symmetry are not understood.
Discussion of this issue for a class of models can be found in [28,29].

3To be precise, a primary operator O(0,0) can be characterised by the conditions [C,O(0,0)] = 0
and [Ki,O(0,0)] = 0 in the notation explained in appendix A. We note that, in principle, one can define
the concept of primary operators indirectly even if both the conformal and Schrödinger symmetries
are absent (thus even if z 6= 1 and z 6= 2) by the condition that a primary operator can never be
obtained as a spacetime derivative of other fields.
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charge, which is contained in the Schrödinger symmetry4, of the operator O.

Thus, the behaviour in the limit t→ 0,x→ 0 in the anisotropic theory depends

heavily on the precise manner of taking the limit and is more involved compared

to the isotropic case.

Because of this difference, it is important to understand general questions

regarding the OPE in the anisotropic theories such as “What are the convergence

properties of the OPEs?” and “Does the operator associativity hold?”.

For this purpose, it would be useful to have exactly solvable yet nontriv-

ial examples of quantum field theory models. For the isotropic case, the two-

dimensional Ising model and the massless Thirring model (which is equiva-

lent to the compactified free-boson CFT via bosonisation) played an instru-

mental role when the ideas of OPE and the anomalous dimensions were estab-

lished [18, 19, 36–38]. Exactly solvable models also gave substantial support to

the development of two-dimensional conformal field theory [22]. We may hope

that study of exactly solvable anisotropic models may play a similar role in the

understanding of the z 6= 1 fixed points of the renormalisation group.

In this paper, we identify an interacting yet highly tractable model with

anisotropic z = 2 scale invariance and its extension to the Schrödinger sym-

metry. 5 The model is the well-known Calogero model [39–43] considered as

a quantum field theory in one space and one time dimension via the second

quantisation.

We exactly compute the nontrivial four-point function of the fundamental

fields of the theory, 〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉. The result takes a

particularly simple form when t1 = t2 = 0 and t3 = t4 = t. It is expressed in

terms of the modified Bessel function. We call these special four-point functions

“pairwise equal-time”. For the generic case, we give an expression of the four-

point function in terms of a double convolution integral involving the pairwise

equal-time four-point function and the propagator of non-relativistic free parti-

cles. The double convolution integral can also be evaluated using a generalised

hypergeometric function.

We decompose the pairwise equal-time four-point function in two different

ways via OPE, thereby explicitly verifying the associativity of the OPE for the

first time for an interacting quantum field theory with anisotropic scale invari-

ance. From the decomposition, one can read off the OPE coefficients and the

scaling dimensions of the operators appearing in the intermediate channel.

One of the decompositions is obtained by expanding the pairwise equal-time

four-point function by the parameter x2

t , where x refers collectively to x21 = x2−
x1, x43 = x4 − x3. This decomposition arises from the OPE of Ψ(0, x2)Ψ(0, x1)

and of Ψ(t, x4)Ψ(t, x3). The decomposition can be schematically represented as

4The U(1) charge is a central charge, i.e. it commutes with all other charges in the Schrödinger
symmetry. In some literature, this U(1) charge is called the “mass” parameter.

5A quantum field theory possessing the Schrödinger symmetry is also called a “non-relativistic
CFT” in recent literature.
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〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 =
∑

Ψ1

Ψ3

Ψ2

Ψ4

, (1.5)

where the subscripts of Ψ and Ψ are the labels of the spacetime points. We

will call this expansion the “s-channel” decomposition of the four-point function.

The expansion is convergent. Only one primary operator (together with its

descendants) appears in the intermediate channel. Thus the four-point function

is the analogue of the conformal block which plays an important role in the

conformal bootstrap program. The primary operator has U(1) charge 2. The

scaling dimension of the primary operator depends on the coupling constant of

the theory. The result is consistent with the well-known energy spectrum of

the Calogero model, combined with the so-called state-operator map [44, 45], a

relation between the scaling dimensions of the operators of a system with the

Schrödinger symmetry and the energy spectrum of the theory put in an external

harmonic oscillator potential.

The other decomposition is the expansion of the four-point function by
t
x2 . This decomposition corresponds to the OPE of Ψ(t, x3)Ψ(0, x1) and of

Ψ(t, x4)Ψ(0, x2) (where x1 < x2, x3 < x4 are assumed) and we call it the “t-

channel” decomposition,

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 =
∑

Ψ1

Ψ3

Ψ2

Ψ4

. (1.6)

We found that this decomposition is an asymptotic expansion.

The asymptotic nature may be understood intuitively as follows. As can

be seen, for example, in (1.4), correlation functions in a Schrödinger invariant

theory generically involve exponential factors of the form e−a
x2

t , where a is a

numerical constant. These exponential factors play the role of the “instanton

effect” if we think about t
x2 as the “coupling constant”. As is well-known, the

asymptotic nature of a perturbation series is inherently related to the existence

of the non-perturbative “instanton effect”. 6 (See, for example, [51].) Thus, one

could have anticipated the asymptotic nature of the expansion in t
x2 from the

presence of the factors e−a
x2

t in Schrödinger invariant theories.

The operators appearing in the intermediate channel of the “t-channel” de-

composition have vanishing U(1) charges. The charge-zero operators are im-

portant in particular because they include currents associated with any internal

symmetry (including the U(1) symmetry in the Schrödinger symmetry) and the

6For the isotropic case, scale-invariant theories have convergent OPEs [46–48] whereas for general
quantum field theories without scale invariance OPEs are asymptotic [49]. One explanation of this is
as follows. (See the discussion below (2.11) of [50].) If the OPE (which is an expansion in terms of
x) is asymptotic, it would imply the existence of the non-perturbative “instanton” effect of the form

e−
l2

x2 where l is a length scale. This is impossible for scale-invariant theories, hence OPEs cannot be
asymptotic for these theories whereas theories without the scale invariance have asymptotic OPEs.
Our intuitive understanding of the asymptotic nature of the “t-channel” decomposition is reminiscent
of this explanation.
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energy-momentum tensor. But they are elusive since the technique of the state-

operator map is not applicable for them. The charge-zero sector is studied from

the perspective of Schrödinger symmetry (and its infinite extension for specific

models, the fermion at unitarity) in [52] and [53]. We study these charge-zero

operators directly via the decomposition of the four-point function. For exam-

ple, we will show that some charge-zero operators have non-vanishing two-point

functions only if they are put on the same time slice.

The asymptotic expansion comes with exponentially small correction terms,

which also can be interpreted naturally in terms of OPE: we found that the

exponentially small terms are inherently related to the “u-channel” contributions

arising from OPEs of Ψ(t, x3)Ψ(0, x2) and of Ψ(t, x4)Ψ(0, x1). These terms can

be schematically represented as ∑
Ψ1

Ψ3

Ψ2

Ψ4

. (1.7)

Some general properties of the OPE in the z = 2 Schrödinger invariant the-

ory have been uncovered in recent years [45, 52, 54]. Golkar and Son pointed

out in [52], among other important results, that the restrictions imposed by the

symmetry on the correlation functions become much stronger if one of the oper-

ators saturates the unitarity bound. Goldberger, Khandker and Prabhu proved

the convergence of the OPE for the case when the operators in the intermedi-

ate channel have nonzero U(1) charges [45]. Pal studied Schrödinger invariant

field theories focusing on the SL(2,R) subgroup of the Schrödinger symmetry

and uncovered properties of correlation functions of operators which are aligned

on a timelike line [54]. In particular, it was shown that the OPE relevant for

these correlation functions converges even when the OPE involves charge-zero

operators.

The results in this paper obtained for a particular solvable model confirm and

supplement these general results. We compute the explicit OPE coefficients and

show that the OPE converges for the “s-channel” OPE decomposition associated

with charge-two operators in the intermediate channel. This is consistent with

the results in [45]. The spacetime dependence of the three-point function we

compute by pinching two insertions in the four-point function agrees with the

result of [52] based on the Schrödinger symmetry.

On the other hand, we found novel features which presumably are shared by

general Schrödinger invariant theories. The OPE decomposition associated with

the “t-channel” OPE (involving charge-0 operators) is asymptotic, rather than

convergent. This does not contradict the results of Pal [54]. We are studying

different correlation functions: we consider the case where the operators are spa-

tially separated, whereas in [54] the operators are separated only in the timelike

direction.

The organisation of this paper is as follows. In section 2, we discuss the model

and establish the notation. In section 3, we describe the computation of the four-

point functions of fundamental fields in the model. Section 4 is devoted to what

can be read off from the four-point function. We will decompose the four-point

7



function via OPE in two ways (the “s-channel” and “t-channel” decompositions).

We examine the detailed properties of these decompositions, including the iden-

tification of the unique primary operator (whose scaling dimension depends on

the coupling constant) and the computation of the OPE coefficients in the “s-

channel” decomposition. We discuss the asymptotic nature of the “t-channel”

decomposition and the exponentially small corrections for the asymptotic series,

which can be interpreted as the “u-channel” contributions. We also compute a

three-point function by starting from the four-point function using OPE. Section

5 contains final comments. Several appendices give auxiliary results.

2 The model

The Hamiltonian of the Calogero model (or the Calogero-Marchioro model) [39–

43] in the first quantised formulation is 7

H = −1

2

∑
i

∂2
i +

∑
i<j

g

(xj − xi)2
. (2.1)

We work in the convention where the mass of the particle is set to unity.

For xj − xi → 0, the solution to the Schrödinger equation behaves as Ψ ∼
|xj − xi|λ where g = λ(λ − 1). The coupling constant g should satisfy g ≥ −1

4

in order that the energy spectrum be bounded below [59, section 35]. Solutions

with 0 ≤ λ are considered as acceptable. In the regime −1
4 < g < 0, there are

two solutions satisfying λ > 0 for given g. Corresponding to these two possible

boundary conditions, we have two different theories. 8 Thus λ ≥ 0 provides

a good parametrisation of the interacting theory. For λ = 0 and λ = 1, the

pair potential vanishes. These points are equivalent to the free bosons and free

fermions (or equivalently, bosons interacting with the infinitely large repulsive

δ-function potential), respectively. It is also convenient (to conform with the

convention used for the Bessel functions) to use another parameter ν defined by

ν =λ− 1

2
, −1

2
≤ ν, (2.2)

g =

(
ν − 1

2

)(
ν +

1

2

)
. (2.3)

In the second quantised formulation, the action is

S =

∫
dtdx

(
Ψ∂tΨ +

1

2
|∇Ψ|2

)
+
g

2

∫
dtdxdy |Ψ|2 (x)

1

(x− y)2
|Ψ|2 (y). (2.4)

7The term “Calogero model” often refers to particles interacting via a pairwise potential of the
form V (r) = g/r2 + ar2, or equivalently, particles interacting via a pairwise potential V (r) = g/r2

put in an external harmonic oscillator potential. The model we consider can also be considered as
the infinite volume limit (with the total number of particles, not the density, fixed) of the Sutherland
model [55–58], particles on a circle (with radius R) interacting with a pairwise potential of the form
V (r) = g/(R2 sin2 r

R ).
8The possibility of considering the branch with the smaller value of λ was discussed already in [55].

For a review of the Calogero and related models containing an explanation of this point, see [60].
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We consider the Euclidean statistical field theory in this paper. The canonical

(anti-)commutation relations are,

[Ψ(x),Ψ(x′)]± =δ(x− x′), (2.5)

[Ψ(x),Ψ(y)]± =0, (2.6)

[Ψ(x),Ψ(y)]± =0. (2.7)

The signs here are chosen according to whether we consider the bosonic or the

fermionic model.

We wish to note however that, as is well known, in the Calogero model, the

difference between the bosonic and the fermionic theory is not important in the

following sense. 9 One can solve the Schrödinger equation of the model in the

n-particle sector with the restriction x1 < x2 < · · · < xn, imposing the correct

boundary condition Ψ ∼ (xi+1−xi)λ when xi+1−xi → +0. This is sufficient for

the understanding of the properties of the Calogero model. Note that the bound-

ary condition on Ψ implies that there is no tunnelling amplitude of the particle

(for λ > 0), say, 1 from the region x1 < x2 to the region x1 > x2; the wave func-

tion vanishes at x1 = x2. One can define the wave function for the regions where

the condition x1 < x2 < · · · < xn is not satisfied, by complete symmetrisation or

anti-symmetrisation for bosons or fermions, respectively. Whether one is dealing

with bosons or fermions does not affect physical observables such as the energy

levels (when an external harmonic oscillator potential is present) of the system.

In our analysis, we also found that, for example, the four-point functions are

the same for fermions and bosons, provided that the ordering of the particles

are properly specified. We will work both for the bosonic and fermionic models

throughout this paper, except when otherwise explicitly stated.

The Calogero model possesses the Schrödinger symmetry as first shown

in [62]. Thus the model constitutes a fixed line of the renormalisation group

parametrised by ν ≥ −1
2 . The special significance of the potential energy 1/r2

regarding scale invariance was noted also in [63, 64]. The U(1) charge in the

Schrödinger symmetry is given by

N =

∫
ΨΨdx, (2.8)

and coincides with the particle number.

Although the Lagrangian (2.4) is non-local, we will show that this theory

has local OPEs. This is not too surprising; there are examples of quantum field

theories with non-local interaction, which nonetheless exhibit critical properties

described by a fixed point of the renormalisation group and can be studied by

OPE and the conformal bootstrap such as systems with a non-local dipole-dipole

interaction [65,66] and Ising models with a non-local interaction term [67–70].

We will study the correlation functions of the model around the true vacuum,

i.e. the state in which no particles are present. The simplest of such correlation

9This was already pointed out in the original papers by Calogero [39, 40, 42, 43] and emphasised
and explained in detail in [61]. See also the review article [60].
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functions is the two-point function of the fundamental fields,

〈Ψ(t, x)Ψ(0, 0)〉 =


√

1
2πte

− (x−y)2

2t (t > 0)

0 (t < 0)
. (2.9)

The U(1) charges of the fundamental fields are NΨ = −1, NΨ = +1. The two-

point function (2.9) is not renormalised, i.e. agrees with the free-theory result.

In particular, the fields Ψ, Ψ have scaling dimension 1
2 . See (1.4). 10 This non-

renormalisation is a consequence of the fact that the two-point functions are

associated only with one-particle states, and one-particle states by construction

are not affected by the interaction term. (There are no amplitudes to create

virtual particles starting from the one-particle states in the model. Also, there

are no vacuum polarisation effects.) General correlation functions around the

true vacuum are, of course, nontrivial and contain dynamical information of the

model as we will see in later sections of this paper.

Correlation functions around the true vacuum are different from the corre-

lation functions around the “finite-density vacuum” (the ground state with a

constant finite density of particles) of the Calogero model 11, which have been

extensively studied. See, for example, [71] and references therein. The reason we

study the correlation functions around the true vacuum in this paper is that we

are interested in the z = 2 scale-invariant correlation functions; the presence of

the nonzero density breaks the z = 2 scale invariance spontaneously.

3 Four-point function

In this section, we will compute the nontrivial four-point function of the funda-

mental fields

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉
=〈0|TΨ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)|0〉,

(3.1)

of the model described in the previous section.

3.1 Pairwise equal-time four-point function

The four-point function can be easily computed for the special, pairwise equal-

time case, i.e. when

t1 =t2 = 0, (3.2)

t3 =t4 = t > 0. (3.3)

10We fix the normalisation of Ψ,Ψ by the canonical (anti-)commutation relation (2.5).
11Correlation functions around the “finite-density vacuum” of the Calogero model are also equivalent

to the correlation functions of the Sutherland model in the thermodynamic limit, the large-volume
limit with the density fixed.
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If t < 0 the four-point function trivially vanishes since the operator Ψ(t, x)

annihilates the vacuum. The key observation is that the pairwise equal-

time correlation function is equivalent to the two-particle Feynman propagator

K(2)(x3, x4;x1, x2; t) in the first quantised formulation, i.e. the transition ampli-

tude of two particles starting at x1, x2 arriving at x3, x4 after time t passes, 12

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 =〈0|TΨ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)|0〉
=〈0|Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)|0〉 (3.4)

=K(2)(x3, x4;x1, x2; t).

The propagator K(2) is a solution of the two-body Schrödinger equation,

i∂tK
(2) =

(
−1

2
∂2

3 −
1

2
∂2

4 + g
1

(x4 − x3)2

)
K(2), (3.5)

with the initial condition

lim
t→0+

K(2) = δ(x3 − x1)δ(x4 − x2), (3.6)

where we assume for simplicity x1 < x2, x3 < x4.

The relation (3.4) follows from the basic feature of the second quantisation.

(See, for example, sections 64 and 65 of [59].) Let us recall that the state,

Ψ(x′)Ψ(x′′)|0〉, (3.7)

in the second quantised formulation, where we use Ψ(x) to denote the creation

operator in the x-representation, is a two-particle state, specified by the wave

function,

Ψ(x1, x2) =
1√
2

(
δ(x1 − x′)δ(x2 − x′′)± δ(x1 − x′′)δ(x2 − x′)

)
, (3.8)

in the first quantised formulation. (The sign ± above refers to the bosonic and

the fermionic model, respectively.) The equivalence of the pairwise equal-time

four-point function and the propagator (3.4) immediately follows.

By separating out the centre of mass motion, the computation of the two-

particle propagator reduces to that of the propagator of a particle in an external

potential of the form 1/r2. Defining the relative position r = x2 − x1 ≡ x21, the

relevant Hamiltonian is

Hrel = −∂2
r +

λ(λ− 1)

r2
. (3.9)

We can focus on the region r > 0. The propagator for this potential was first

computed by Peak and Inomata [72],

〈r′|e−Hrelt|r〉 =
√
rr′

1

2t
e−

r2+r′2
4t Iν

(
rr′

2t

)
, (3.10)

12For the fermionic theory, it is useful to consider the four-point function as the limit
limε1→0,ε2→0〈Ψ(t + ε2, x4)Ψ(t − ε2, x3)Ψ(ε1, x2)Ψ(−ε1, x1)〉. The limit is well-defined and does not
depend on the sign of ε1, ε2.
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where ν = λ− 1
2 . The boundary condition is such that the wave function behaves

as rλ at r → 0. For completeness, we will present a derivation of this result in

appendix B.

The centre of mass contribution to the four-point function is√
1

πt
e−

X2

t , (3.11)

where X is the change of the centre of mass from the initial to the final state,

X =
x3 + x4

2
− x1 + x2

2
=
x31 + x42

2
=
x32 + x41

2
. (3.12)

Hence the full four-point function is 13

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t ×
√
x21x43

4πt3
Iν

(x21x43

2t

)
.

(3.13)

Here t > 0 is assumed; if t < 0 the correlation function trivially vanishes. Also,

the conditions

x21 > 0, (3.14)

x43 > 0, (3.15)

are assumed, which come from the assumption that the relative position r is

positive. The expression (3.13) is valid for both the bosonic and fermionic cases

under these conditions.

It is easy to obtain the four-point function for the generic case. The results

for the bosonic and the fermionic theory differ by a sign factor. For the bosonic

theory, we have

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t ×
√
|x21x43|

4πt3
Iν

(
|x21x43|

2t

)
, (3.16)

and, for the fermionic theory, we have

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

= sgn(x43) sgn(x21)e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t ×
√
|x21x43|

4πt3
Iν

(
|x21x43|

2t

)
, (3.17)

where sgn(x) = x
|x| .

13It is easy to check that putting ν = − 1
2 in (3.13) reproduces the four-point function of the free

bosonic theory. See appendix E.
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3.2 Double integral formula for the general four-point

function

The four-point function in a generic position can be computed by a convolution

integral of the free particle propagator and the pairwise equal-time correlation

function computed in the previous subsection. We consider the four-point func-

tion,

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉, (3.18)

assuming t1 < t2 < t3 < t4 without loss of generality. If t1 < t3 < t2 < t4,

for example, then the four-point function trivially factorises into a product of

two-point functions.

The double integral formula is

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉

=

∫ +∞

−∞

∫ +∞

−∞
K(x4;x′4; t4 − t3)K(2)(x3, x

′
4;x′1, x2; t3 − t2)K(x′1;x1; t2 − t1)dx′1dx

′
4,

(3.19)

where K(x; y; t) is the free one-particle propagator,

K(x; y; t) =
1√
2πt

e−
(x−y)2

2t , (3.20)

and the pairwise four-point function or equivalently the two-particle propagator,

K(2)(x3, x4;x1, x2; t) = 〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉, (3.21)

is given by (3.16) or (3.17) according to whether the theory is bosonic or

fermionic. The formula (3.19) holds because in the intervals t1 < t < t2 and

t3 < t < t4 there is only a single particle as shown in Fig. 1.

There is, of course, also a simpler integral formula to compute a four-point

function where only Ψ’s are inserted on the same time slice as shown in Fig. 2,

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(0, x2)Ψ(0, x1)〉

=

∫ +∞

−∞
K(x4;x′4; t4 − t3)K(2)(x3, x

′
4;x1, x2; t3)dx′4,

(3.22)

where 0 = t1 = t2 < t3 < t4. This formula will be used later in section 4.3.2

when we compute a three-point function.

3.3 Four-point function in general position via gener-

alised hypergeometric function

The double integral (3.19) representing the four-point function

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉 in general position can be expressed

in terms of the generalised hypergeometric function. The detailed derivation of

13



t 4

4′3

1

2

1′

Figure 1: Horizontal lines are t = t3 and t = t2. The coordinates of the points 1′ and
4′ are (t′1 = t2, x

′
1) and (t′4 = t3, x

′
4) respectively. Both x′1 and x′4 are to be integrated

from −∞ to +∞.

t 4

4′3

210

Figure 2: Horizontal lines are t = t3 and t = t1 = t2 = 0. The coordinates of the point
4′ are (t′4 = t3, x

′
4). x′4 is integrated from −∞ to +∞.
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the formula and its consequences will be discussed in a separate publication. In

this paper, we give the expression and discuss a few of its basic properties. We

focus on the bosonic theory. We consider the nontrivial case, t1 < t2 < t3 < t4.

The result is

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉

=
e
− x2

43
2t43
−x

2
32
t32
− x2

21
2t21

(2π)
3
2
√
t43t21

Γ2
(
ν
2 + 3

4

)
2ν−1Γ(ν + 1)

τ
ν
2

+ 3
4F(v123, v234, τ), (3.23)

where the function F is a generalised hypergeometric function with three vari-

ables defined by the following triple series expansion,

F(v123, v234, τ) =
∞∑
p=0
m,n=0

(τ)p

p!

(v123)m

m!

(v234)n

n!

[
Λ(0)
pmn +

√
τv123v234Λ(1)

pmn

]
, (3.24)

with the coefficients Λ
(j)
pmn (j = 0, 1) given by

Λ(j)
pmn =

(
ν + 3

2

)2j (ν2 + 3
4 + j

)
p+m

(
ν
2 + 3

4 + j
)
p+n

(
ν + 1

2 + j
)

2p(
1
2 + j

)
m

(
1
2 + j

)
n

(
1
2 + j

)
p

(2ν + 1 + j)2p

, (3.25)

where we used the Pochhammer symbol (x)n = x(x+ 1) · · · (x+n− 1) = Γ(x+n)
Γ(x) .

The quantities τ and v are Schrödinger invariant quantities defined by

τ =
t21t43

t31t42
, v123 =

(t21x32 − t32x21)2

2t21t32t31
, v234 =

(t32x43 − t43x32)2

2t32t43t42
. (3.26)

They may be considered as the analogue of the cross-ratios, quantities invariant

under the conformal symmetry, in usual CFT.

We note that an ansatz for Schrödinger invariant four-point functions is given

in [73] which contains an arbitrary function of four Schrödinger invariant “cross-

ratios” (τ and three v’s). For one space and one time dimension, the number

of independent Schrödinger invariant cross-ratios is decreased by one 14, so that

there are three independent cross-ratios (τ and two v’s appearing in (3.23)).

The function (3.24) is symmetric in v123 and v234. The invariant quantity v,

say, v123 is proportional to the squared “area” of the triangle spanned by the

space-time points 1, 2, 3. Thus v may be considered as measuring the degree

of “non-collinearity” of the three space-time points. For instance, if the points

1-2-3 are collinear, one has v123 = 0. In this case, (3.24) reduces to a double

hypergeometric function,

F(0, v234, τ) =F 1:0:3
0:1:3

[
ν
2 + 3

4 : −−; ν2 + 3
4 ,

ν
2 + 3

4 ,
ν
2 + 1

4

−−−−− : 1
2 ; 1

2 , ν + 1, ν + 1
2

∣∣∣∣∣ v234, τ

]
, (3.27)

14Concretely,
√
v134 can be written as a linear combination of

√
v123 and

√
v234 for one space and

one time dimension.
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where the Kampé de Fériet series [74, p.27] is used. If all the four points lie along

a line, it further reduces to a hypergeometric function of the single cross-ratio τ ,

F(0, 0, τ) =4F3

(
ν
2 + 3

4 ,
ν
2 + 3

4 ,
ν
2 + 3

4 ,
ν
2 + 1

4
1
2 , ν + 1, ν + 1

2

∣∣∣∣ τ) . (3.28)

4 OPE decomposition of the four-point

function

By taking various limits of the four-point function we have computed in the

previous section, one can extract the information of OPE coefficients and a three-

point function.

In section 4.1 we consider two different decompositions of the pairwise equal-

time four-point function (3.13) using OPE. One of the decompositions, the “s-

channel” decomposition, arises from ΨΨ and Ψ Ψ OPEs and is represented by

a convergent series. The operators appearing in the intermediate channel have

anomalous dimensions, i.e. their scaling dimensions depend on the coupling con-

stant. The other decomposition, the “t-channel” decomposition, arises from two

ΨΨ OPEs and is represented by an asymptotic series. By representing the same

four-point function in two ways by OPE, we prove the operator associativity of

the model, for this particular four-point function. The asymptotic series for the

“t-channel” decomposition has also exponentially small correction terms, which

also have an interpretation via OPE.

In section 4.2 we study in detail the “s-channel” decomposition and show

that only one primary operator Φ appears in the ΨΨ OPE. We fix the forms

of the descendant operators of Φ appearing in the OPE and compute all the

relevant OPE coefficients. In section 4.3 we compute the three-point function

ΨΨΦ from the four-point function. In section 4.4 we discuss a peculiar property

of the two-point functions between operators arising in the ΨΨ-OPE.

4.1 Decomposition of pairwise equal-time four-point

function

4.1.1 “s-channel” decomposition

We consider the expansion of the pairwise equal-time four-point function (3.13)

in the parameter x2/t, where x refers to both x21 and x43. As it turns out,

this expansion has an infinite convergence radius, so that the expansion is valid

for an arbitrarily large value of x2

t . The expansion becomes more useful when
x2

t � 1 since the first few terms will then dominate the series. The smaller the

value of x2

t , the closer are the operators Ψ(t, x4),Ψ(t, x3) and Ψ(0, x2),Ψ(0, x1)

respectively. Therefore, considering this expansion should amount to considering

the OPE between Ψ(t, x4)Ψ(t, x3) and Ψ(0, x2)Ψ(0, x1). (See (1.5).) Since the

argument of the modified Bessel function is z = x21x43
2t ∼ x2

t , one can use the

16



definition of the modified Bessel function by the series expansion,

Iν (z) = (1
2z)

ν
∞∑
k=0

(1
4z

2)k

k!Γ (ν + k + 1)
. (4.1)

This series is convergent for any value of the argument z. Substituting (4.1) into

(3.13), we obtain,

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=e−
X2

t

√
x21x43

4πt3

(x21x43

4t

)ν
e−

x2
21+x2

43
4t

∞∑
k=0

(
x21x43

4t

)2k
k!Γ (ν + k + 1)

,
(4.2)

where X ≡ x3+x4−x1−x2
2 .

This decomposition of the four-point function emerges from the equal-time

OPEs

Ψ(0, x2)Ψ(0, x1) =
∞∑
k=0

Ckx
∆k−1
21 Φk

(
0,
x1 + x2

2

)
, (4.3)

Ψ(t, x4)Ψ(t, x3) =
∞∑
k=0

Ckx
∆k−1
43 Φk

(
t,
x3 + x4

2

)
. (4.4)

Here Ck’s are the OPE coefficients, 15 and ∆k’s are dimensions of the operator Φk

(and Φk). The operators Φk are charge-2 operators, NΦk
= 2. The powers of x21

and x43 in (4.3) and (4.4) are fixed by scale invariance. For simplicity, we will set

(x1 +x2)/2 = 0, (x3 +x4)/2 = X, using translational invariance. Equation (4.2)

is valid provided x21 > 0, x43 > 0 for both the bosonic and fermionic models. We

assume in this subsubsection, without loss of generality, that these conditions

are met.

In (4.3) and (4.4), we are not distinguishing primary and descendant oper-

ators. We will see that Φ0 ≡ Φ is the only primary operator appearing in the

OPE and all other operators Φk(k = 1, 2, · · · ) are its descendants in section 4.2,

where we also compute all OPE coefficients Ck’s.

It is easy to read off the dimensions ∆k by comparing the powers of x21 and

x43 in the formulae (4.3) and (4.4) with (4.2). We obtain,

∆k =
3

2
+ ν + 2k. (4.5)

We see that the scaling dimensions depend on the coupling constant ν; the op-

erators Φk’s have anomalous dimensions.

Let us consider the leading order contribution from the lowest-dimension

operator Φ with dimension ∆0 = 3
2 + ν. From (4.3) and (4.4) we obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

≈C2
0x

ν+ 1
2

43 x
ν+ 1

2
21

〈
Φ (t,X) Φ (0, 0)

〉
.

(4.6)

15We take Ck to be real by choosing the phases of Φk’s appropriately.
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Comparing this to the leading order term (both in the expansion by x43 and x21)

of (4.2),

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 ≈ 1

t
3
2

+ν
e−

X2

t × 1

4ν
√

4πΓ(ν + 1)
x
ν+ 1

2
21 x

ν+ 1
2

43 ,

(4.7)

we can read off the leading OPE coefficient to be

C0 =
1

2ν(4π)
1
4

√
Γ(ν + 1)

, (4.8)

together with the two-point function

〈Φ(t,X)Φ(0, 0)〉 =
1

t
3
2

+ν
e−

X2

t . (4.9)

The spacetime dependence agrees with the general form of the two-point function

of the primary operator (1.4) with NΦ = 2 and ∆ = ∆0 = 3
2 + ν. We fixed the

normalisation of Φ by (4.9). We will see presently that Φ is indeed a primary

operator. The differences in scaling dimensions of Φk (k > 0) and Φ are integers.

This suggests that Φk (k > 0) are descendants of Φ. We will see later in section

4.2 that this is the case.

In section 3.1, we computed the four-point function by identifying it with

the two-particle propagator. In this identification, the expansion parameters x43

and x21 are the relative coordinates, and X appearing above is the difference

in the final and the initial centre of mass position. Thus, the “s-channel” OPE

decomposition described here may be interpreted as representing the separation

of the centre of mass and relative motions.

The state-operator map The spectrum of operators (4.5) is consistent

with the state-operator map introduced by Nishida and Son for Schrödinger

invariant theories [44]. (See also [45].) The state-operator map is a one-to-one

correspondence between an operator Ō (with positive U(1) charge NŌ > 0) of

a Schrödinger invariant theory and a state |Ō〉 of the model which is obtained

by adding an external harmonic oscillator potential to the theory. 16 For our

model, the extra harmonic oscillator term can be represented as an additional

contribution

Sext = −
∫
dtdx

1

2
x2 |Ψ|2 , (4.10)

to the action (2.4). The state-operator map has the property that the scaling

dimension of Ō equals the energy of the state |Ō〉 in the deformed model. The

16The state-operator map first appeared in [75] for the free-field theory. For a specific interacting
model (the fermion at unitarity), Werner and Castin applied a similar map between the theory with
and without the external harmonic oscillator potential [76]. We note also that the state-operator maps
given in [44] and [45] are slightly different. The map given in [45] has the advantage that the operator
[Ki, Ō] is directly mapped to the state Ki|O〉.
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map also preserves the U(1) charge: the state |Ō〉 is an NŌ-particle state in the

deformed model.

The energy spectrum of the deformed model can be exactly computed. This

is the celebrated result by Calogero [42]. For N -particle state, it is,

E =
N

2
+

(
ν +

1

2

)
N(N − 1)

2
+

N∑
i=1

ni, (4.11)

where ni (i = 1, · · · , N) are integers satisfying

0 ≤ n1 ≤ n2 ≤ · · · ≤ nN , (4.12)

for both the bosonic and fermionic models. (See, for example, (16) of [60].)

Thus, via the state-operator map, we have the complete tabulation of operators

(with positive U(1) charge 17) including their correct multiplicities. The scaling

dimensions are given simply by (4.11), with the identification ∆ = E.

Let us consider the simplest case, N = 1. The operators are labelled by a

single non-negative integer n and their dimensions are

∆ =
1

2
+ n. (4.13)

The lowest dimension operator necessarily is a primary operator, which is nothing

but the fundamental field Ψ. (Recall that the scaling dimension of the funda-

mental field is protected and equals 1
2 . See the explanation below (2.9).) The

operators with n > 0 are descendants of the fundamental field, ∂nxΨ. It is not

necessary to consider descendants produced by acting with ∂t’s on Ψ. This is

because it is redundant to consider the null operator
(
∂t − 1

2∂
2
x

)
Ψ in the OPE.

See [30,31,52].

For the N = 2 case, which is relevant for the “s-channel” OPE we are con-

sidering, (4.11) becomes

∆ =
3

2
+ ν + n1 + n2, (4.14)

with 0 ≤ n1 ≤ n2. 18 This includes the spectrum found from the OPE, (4.5),

consistently with the correct coupling constant dependence of the scaling dimen-

sions. We now see that the operator Φ with dimension ∆0 = 3
2 + ν has the

lowest scaling dimension in the charge-2 sector, and must therefore be a primary

operator. (In (4.5) the scaling dimensions are separated by even integers whereas

in (4.14) the separations are general integers. This difference arises because we

are defining the OPE at the symmetric points x1+x2
2 , x3+x4

2 in (4.3) and (4.4).)

17Of course, negatively charged operators are also classified since they are the complex conjugates
of positively charged operators. The state-operator map fails to capture, importantly, charge-zero
operators (operators with NO = 0).

18For the free-field theory case, ν = − 1
2 , one can understand this spectrum as that of the operators

∂n1
x Ψ∂n2

x Ψ.

19



One can also characterise primary operators using the state-operator map:

they correspond to the states annihilated by the charges C,K. 19 It should be

possible to directly study this condition in the Calogero model (with the harmonic

oscillator external potential). This will lead to a complete classification of the

primary operators (with nonzero charge, since the zero-charge sector defies the

use of the state-operator map). The operator technique developed in [77] seems

to be well-suited for this purpose. This problem will be addressed in a separate

publication.

4.1.2 “t-channel” decomposition

Next, we consider the pairwise equal-time four-point function

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 in the regime in which x2/t is large, where x

refers collectively to x21 > 0 and x43 > 0. In this regime, the spacetime points

2, 4 and 1, 3 can be made close to each other, respectively. Hence we expect

that this regime should be understood from the OPEs Ψ(t, x4)Ψ(0, x2) and

Ψ(t, x3)Ψ(0, x1). (See (1.6).)

One can use, for the four-point function (3.13), the asymptotic expansion of

the modified Bessel function [78, (10.40.1), (10.17.1)]

Iν (z) ∼ ez

(2πz)
1
2

∞∑
p=0

(−1)p
ap(ν)

zp
, (4.15)

where a0(ν) = 1 and

ap(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2p− 1)2)

p!8p
. (4.16)

The asymptotic expansion is valid in the limit z →∞ for |ph z| ≤ π
2 − ε, which

includes z > 0 relevant for us. (ph z is the argument of z and ε is a positive

infinitesimal quantity.) Substituting (4.15) to (3.13), we obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 (4.17)

=e−
x2
21+x2

43+(x1+x2−x3−x4)2

4t ×
√
x21x43

4πt3
e
x21x43

2t
1√

2π x21x43
2t

∞∑
p=0

(−1)p
ap(ν)(
x21x43

2t

)p .
(4.18)

It is essential that the exponential factors in this formula combine to yield

e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t e
x21x43

2t =e−
x2
31+x2

42
2t . (4.19)

We obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=
1

2π
e−

x2
31+x2

42
2t × 1

t

∞∑
p=0

(−1)p2pap(ν)
tp

xp21x
p
43

.
(4.20)

19For our notation about the Schrödinger algebra, see appendix A.
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To clarify the connection to the OPE, we define

X ′ =
x4 + x2

2
− x3 + x1

2
. (4.21)

Then we have, using x21 = X ′ − x42−x31
2 and x43 = X ′ + x42−x31

2 ,

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=
1

2π
e−

x2
31+x2

42
2t × 1

t

∞∑
p=0

(−1)p2pap(ν)
tp(

X ′2 − (x42−x31)2

4

)p . (4.22)

This “t-channel” decomposition of the four-point function is valid for x21 >

0, x43 > 0 for both the bosonic and fermionic models. Hereafter in this subsub-

section, to be specific, we consider the bosonic model.

The decomposition (4.22) indeed has the form which arises from the OPEs

Ψ(t, x4)Ψ(0, x2) and Ψ(t, x3)Ψ(0, x1). In particular, it shows that the OPE

Ψ(t, x)Ψ(0, x′) is well-defined in the limit t → 0 with fixed (x−x′)2

t . More pre-

cisely, the OPE has the form

Ψ(t, x)Ψ(0, x′) =

∞∑
k=0

C̃k(t, x− x′)Jk
(
t

2
,
x+ x′

2

)

=
∞∑
k=0

(x− x′)∆̃k−1fk

(
(x− x′)2

t

)
Jk
(
t

2
,
x+ x′

2

)
,

(4.23)

where Jk (with scaling dimension ∆̃k) are the operators in the intermediate

channel. In the second line, we have used the scale invariance to constrain the

OPE coefficients C̃k. The two-point functions of Jk’s are

〈Jk(0, X ′)Jk′(0, 0)〉 =
Dkk′

X ′∆̃k+∆̃k′
. (4.24)

Some of the coefficients Dkk′ can be absorbed into the normalisation of the op-

erators Jk. Here, we are not specifying whether Jk is a primary or a descendant

operator. (They can be a linear combination of primary and descendant opera-

tors in general.) The operators Jk have vanishing U(1) charges. Note that the

primary and descendant operators for the charge-zero sector behave differently

from those in other sectors [52]. This is because the generators K and P , which

act as the “ladder operators” for the sectors with the nonzero U(1) charge, com-

mute for the charge-zero sectors. (The commutation relations of the Schrödinger

algebra are given in appendix A.)

From the OPE (4.23) and the two-point functions (4.24), we obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=
+∞∑
m=0

+∞∑
n=0

x∆̃m−1
42 x∆̃n−1

31 fm

(
x2

42

t

)
fn

(
x2

31

t

)
Dmn

1

X ′∆̃m+∆̃n
.

(4.25)
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The powers of X ′, x21, and x43 are all integers in (4.20). Comparing (4.20) and

(4.25), we see that this strongly suggests that ∆̃k’s are also integers. There are

ambiguities, however, which stem from the fact that one can insert

1 =

(
x2

42

t

)δ (
t

x2
31

)δ (x2
31

x2
42

)δ
, (4.26)

where δ is an arbitrary number, into (4.25). This leads to a redefinition of fm
and fn and a shift of the dimensions ∆̃m and ∆̃n by ±2δ. We will return to

a possible resolution of this ambiguity towards the end of this subsubsection.

Although it seems unlikely that a set of consistent OPE coefficients exist with

non-integer valued ∆̃m > 0, we have not succeeded in ruling this possibility out.

We hereafter assume that the scaling dimensions are integers and write

∆̃k = k. (4.27)

We can fix the first two OPE coefficients, f0 and f1, by comparing (4.20) and

(4.25) under this assumption. Firstly, we see that the lowest dimension operator

J0 has scaling dimension 0, 20 and hence should be identified with the identity

operator J0 = 1. This implies D00 = 1 and D0n = 0 (n > 0) since the one-

point function of any operator with nonzero dimension vanishes because of scale

invariance. The OPE coefficient is

f0

(
x2

t

)
= e−

x2

2t
x√
2πt

, (4.28)

and hence the leading order term in the ΨΨ OPE is

Ψ(0, t)Ψ(0, 0) = e−
x2

2t
1√
2πt
× 1 + . . . (4.29)

This is an expected result in view of the two-point function (2.9).

The subleading OPE coefficient can also be read off. We obtain

f2
1D11 = − 1

π
a1(ν)e−

x2

t , (4.30)

where a1(ν) is given by (4.16). The operator J1 has dimension 1 and it is

natural to identify it with the density of the U(1) charge. We have not fixed

the normalisation of J1; this is the reason why both f1 and D11 appear in the

above formula. By redefining the operator J1 appropriately by multiplying it by

a phase factor, we can choose f1 to be real and J1 to be hermitian.

Note that a1(ν) flips its sign at ν = 1
2 . The coefficient of the two-point

function 〈J1(0, x)J1(0, 0)〉, D11, is positive for ν < 1
2 and negative for ν > 1

2 .

This does not contradict the unitarity of the theory. (The unitarity of the theory

is guaranteed as the Hamiltonian of the model is hermitian.) We recall that,

for the isotropic case, the positivity of the two-point function in a unitary CFT

is proven via the state-operator map. The analogous state-operator map in

20This conclusion is not affected by the ambiguity associated with (4.26).
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z = 2 Schrödinger invariant theory is not applicable to the charge-zero sector.

Furthermore, one cannot invoke the positivity of the norm of the Hilbert space via

〈Jm(t, x)Jn(0, 0)〉 = 〈0|Jm(t, x)Jn(0, 0)|0〉, since one can show that this equation

holds for t > 0 but not for t = 0, which is the case of interest here. This point

will be explained in section 4.4.

The special point ν = 1
2 , where f2

1D11 = 0, corresponds to the point at which

the Calogero model coincides with the system of free fermions; The asymptotic

series (4.15) truncates at that point. Similar truncations of the asymptotic series

occur also at ν = −1
2 and at ν = 3

2 ,
5
2 , · · · . The ΨΨ-OPE appears to be degenerate

for these special points.

It is not possible to fix the higher OPE coefficients fn (n = 2, 3, · · · ) unam-

biguously from the pairwise equal-time four-point function. This is because of the

ambiguity associated with (4.26) (where δ is chosen to be an integer). Starting

from the pairwise equal-time point-function, we are forced to take the coincident

limit of both pairs of the spacetime points (1, 3) and (2, 4). (Note that we have to

take the limit (t31, x31)→ 0, (t42, x42)→ 0 with fixed
x2

31
t31

,
x2

42
t42

in order to have a

well-defined ΨΨ OPE.) We should obtain more information on OPE coefficients

from the general four-point function discussed in sections 3.2 and 3.3, since then

we can, say, pinch the spacetime points (1, 3) while keeping (2, 4) un-pinched.

By studying this type of limit, we expect to get the complete OPE coefficients

and understanding of the primary/descendant structure of operators Jk. This

will be left as a future problem.

It is possible to read off some properties of the operators Jk without going

into the details of the expression of the general four-point function. In particular,

we find that the operators Jk (k ≥ 1) have a rather unusual property, namely,

that their two-point functions vanish unless the two operators are inserted on

the same time slice. This will be shown in section 4.4.

To summarise this subsubsection, we have shown that the pairwise equal-

time four-point function (3.13) can be decomposed by using two ΨΨ OPEs. The

decomposition (4.22) is represented by an asymptotic series rather than a conver-

gent series. The charge-zero operators Jm appearing in the intermediate channels

appear to have integer-valued scalar dimensions. J0 is the identity operator. We

have computed the leading and the next-to-leading OPE coefficients associated

with J0 and J1.

Since we have represented the same four-point function now in two ways as

“the s-channel” decomposition (in section 4.1.1) and “the t-channel” decompo-

sition here, we have thereby shown the operator associativity for this model, for

the particular four-point function. Schematically, we have shown

∑
Ψ1

Ψ3

Ψ2

Ψ4

= 〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 =
∑

Ψ1

Ψ3

Ψ2

Ψ4

. (4.31)

The second equality has to be understood as the representation of a function by

an asymptotic series.
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4.1.3 The exponentially small corrections and “u-channel” con-
tributions

The asymptotic expansion of the modified Bessel function (4.15), and hence the

“t-channel” decomposition of the four-point function, comes with exponentially

small contributions. Here we will show that these correction terms can also be

interpreted using the OPE.

As we shall see below, it is necessary to analytically continue the time variable

t. We write

t = eiαt′, (4.32)

where α ∈ R and t′ > 0. We will only consider the regime 0 ≤ α ≤ π
2 . We con-

sider the analytically continued pairwise equal-time four-point function defined

by

〈0|Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)|0〉 (4.33)

where the operator in the Heisenberg picture, Ψ(t, x), is given by

Ψ(t, x) = eHtΨ(0, x)e−Ht. (4.34)

For α = 0, this definition coincides with the four-point function with the Eu-

clidean time we have been considering in this paper. The computation in section

3.1 (and appendix B) goes through for the analytically continued case, and hence

the result (3.13) is unaffected in form,

〈0|Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)|0〉

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t ×
√
x21x43

4πt3
Iν

(x21x43

2t

)
. (4.35)

where we assume x21 > 0, x43 > 0.

By gradually increasing α from 0 to π
2 , we have t = it′ and we obtain the

four-point function of the theory with the “Minkowski” time: the analytically

continued four-point function, considered as a function of t′, coincides with the

four-point function of the theory with the “Minkowski” time t′. Let us write

explicitly the four-point function for this case,

〈Ψ(t′, x4)Ψ(t′, x3)Ψ(0, x2)Ψ(0, x1)〉M
=〈0|ΨM(t′, x4)ΨM(t′, x3)Ψ(0, x2)Ψ(0, x1)|0〉

=ei
x2
21+x2

43+(x3+x4−x1−x2)2

4t′ × e−i
3
4
π

√
x21x43

4πt′3
Iν

(
−ix21x43

2t′

)
=ei

x2
21+x2

43+(x3+x4−x1−x2)2

4t′ × e−i
π
2 (ν+ 3

2)
√
x21x43

4πt′3
Jν

(x21x43

2t′

)
.

(4.36)

Here, the subscript M refers to the theory in the “Minkowski” signature and the

Heisenberg operator assumes the usual quantum mechanical form, ΨM(t′, x4) =
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eiHt
′
Ψ(0, x)e−iHt

′
. We used Iν(z) = e−

iπν
2 Jν

(
ei
π
2 z
)

[78, (10.27.6)]. The expres-

sion (4.36), of course, can also be obtained directly for the Minkowski theory

without relying on the analytic continuation.

In the regime 0 < α ≤ π
2 , the asymptotic expansion accompanied with expo-

nentially small correction terms [78, (10.40.5)],

Iν (z) ∼ ez

(2πz)
1
2

∞∑
p=0

(−1)p
ap(ν)

zp
− ie−νπi e−z

(2πz)
1
2

∞∑
p=0

ap(ν)

zp
, (4.37)

captures the modified Bessel function Iν(z) accurately. The coefficients ap(ν)

are defined in (4.16). The first term in (4.37) coincides with the asymptotic

expansion (4.15) used for the “t-channel” decomposition in section 4.1.2.

The expression (4.37) is not valid for the Euclidean theory (α = 0). The

reason is that α = 0 corresponds to a Stokes line of the modified Bessel function

Iν(z), where the first term in (4.37) is maximally dominating over the second

term. 21 As is well known, across the Stokes line, the coefficients of the smaller

terms change almost discontinuously albeit in a controlled manner [79]. One

needs to use a specially tailored expansion formula to study the behaviour of a

function exactly on the Stokes line. Such a formula for Iν(z) was derived in [80].

We found a natural interpretation in terms of OPE for the formula (4.37) rather

than the expansion valid exactly on the Stokes line given in [80]. This may

suggest that it is useful to define the Euclidean theory not exactly at α = 0 but

rather using the limit α→ 0. Note that, for large |z|, one needs only small α > 0

to make the expansion (4.37) accurate.

Substituting (4.37) into (3.13), we find that the exponentially small correc-

tions to the four-point function 〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉 are

−ie−iπν × 1

2π
e−

x2
41+x2

32
2t

1

t

 ∞∑
p=0

2pap(ν)
tp

xp21x
p
43

 . (4.38)

This formula is valid for x21 > 0, x43 > 0 for both the bosonic and fermionic

models. Hereafter in this subsubsection, we focus on the bosonic model.

The similarity of (4.38) with the “t-channel” decomposition (4.20) is clear.

In particular, the exponential factor in (4.37) and (3.13) combines in a similar

manner to (4.19) and yields the exponential factor e−
x2
41+x2

32
2t in (4.38). Compar-

ing this exponential factor with the corresponding factor, e−
x2
31+x2

42
2t , in (4.20), we

find that the roles of spacetime points 1 and 2 (or equivalently 3 and 4) are inter-

changed. This leads us to identify the exponentially small contributions (4.38)

as arising from the OPEs Ψ(t, x3)Ψ(0, x2) and Ψ(t, x4)Ψ(0, x1). Schematically

these contributions can be represented as,∑
Ψ1

Ψ3

Ψ2

Ψ4

. (4.39)

21The Minkowski case α = π
2 corresponds to an anti-Stokes line where the second and first terms

are of comparable size. For α > π
2 , the second term becomes exponentially large compared to the first

term.
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This interpretation can be made more precise. To clarify the connection to

the OPE, we define

X ′′ =
x4 + x1

2
− x3 + x2

2
. (4.40)

Then (4.38) becomes, using x21 = −X ′′ + x41−x32
2 and x43 = X ′′ + x41−x32

2 ,

e−iπ(ν+ 1
2) × 1

2π
e−

x2
41+x2

32
2t × 1

t

∞∑
p=0

(−1)p2pap(ν)
tp(

X ′′2 − (x41−x32)2

4

)p . (4.41)

Note that an extra factor (−1)p appeared in the summand, compared to (4.38),

due to the rewriting in terms of the variable X ′′. Now we see that (4.41) have

precisely the same form, except for the overall phase factor e−iπ(ν+ 1
2), to the “t-

channel” decomposition (4.22). This is natural since both terms originate from

the ΨΨ-OPE.

The overall phase factor has a natural interpretation within the framework of

the generalised statistics [60,61] for the Calogero model. The generalised statis-

tics is an interesting way of understanding various properties of the Calogero

model as a consequence of the phase factor e−iπ(ν+ 1
2) associated with each ex-

change of two particles. We indeed see that the “u-channel” terms which are

obtained by the exchange of, say, the two particles at the spacetime points 1 and

2, acquire precisely that phase factor relative to the “t-channel” terms.

The successful interpretation of the exponentially small terms as the “u-

channel” contributions relies on the fact that the coefficients of the first and

the second terms of (4.37) are closely related. (Both are given in terms of ap(ν)

defined by (4.16).) This connection is an example of the so-called resurgence

phenomenon. (See, for example, [81].) Thus the resurgence property of the mod-

ified Bessel function represents the fact that both “t-channel” and “u-channel”

contributions arise from the ΨΨ OPE.

There is another way of understanding the necessity of the resurgence prop-

erty and the role of the “u-channel” terms from the point of view of the OPE.

When ν is a half-odd integer (i.e. ν = −1
2 ,

1
2 ,

3
2 ,

5
2 , · · · ), the asymptotic series

(4.37) truncates and becomes exact. (The Stokes phenomenon does not occur

for these values of ν.) The four-point function (in Euclidean time) becomes,

writing ν = n+ 1
2 with n = 0, 1, · · · , 22

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t × x21x43

2πt2
× i(1)

n

(x21x43

2t

) (4.42)

where i
(1)
n (z) is a modified spherical Bessel function defined by [78, (10.49.8)]

i(1)
n (z) = 1

2e
z

n∑
k=0

(−1)k
ak(n+ 1

2)

zk+1
+ (−1)n+1 1

2e
−z

n∑
k=0

ak(n+ 1
2)

zk+1
, (4.43)

22Some formulae for the free-boson case, ν = − 1
2 , are presented in appendix E.
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which is related to Iν(z) by [78, (10.47.7)],

i(1)
n (z) =

√
1
2π/zIn+ 1

2
(z) . (4.44)

The first and the second finite sum in (4.43) correspond to the exponentially

large and small contributions in (4.37), respectively. Since these formulae are

valid for all z = x43x21
2t , one can in particular consider the limit z → 0. This limit

corresponds to the limit where spacetime points (1, 2) or (3, 4) become coincident

(related to the “s-channel” decomposition studied in section 4.1.1). Although

each term in the first and second sum in (4.43) diverges, there are cancellations

between these terms such that i
(1)
n (z) ∼ zn for z → 0. This must be the case.

Consider, say, the limit x43 → 0, in which z also goes to zero, z ∼ x. In this

limit, the four-point function is controlled by the OPE (4.4), Ψ(0, x)Ψ(0, 0) ∼
xn+1Φ. (Note that the scaling dimensions of the operators Ψ and Φ are 1

2 and

n+ 2, respectively.) Hence the four-point function behaves as xn+1
43 . This agrees

with (4.42) and (4.43) together with i
(1)
n (z) ∼ zn. The consistency of the four-

point function with the ΨΨ OPE relies on the cancellations, which in turn occur

because of the resurgence relations, i.e. the relations between the coefficients of

the exponentially small and large terms of (4.37).

It is intriguing that the interpretation of the exponentially small terms as the

“u-channel” contributions means that the operator associativity relation (4.31)

can be made more accurate by including “u-channel” contributions. Schemati-

cally, we have,

∑
Ψ1

Ψ3

Ψ2

Ψ4

=
∑

Ψ1

Ψ3

Ψ2

Ψ4

+
∑

Ψ1

Ψ3

Ψ2

Ψ4

. (4.45)

4.2 Detailed analysis of “s-channel” decomposition

In this subsection, we take a closer look into the “s-channel” OPE decomposi-

tion of the pairwise equal-time four-point function (3.13) which arises when we

consider the OPE of Ψ(0, x2)Ψ(0, x1) and of Ψ(t, x4)Ψ(t, x3). In section 4.1.1,

we have seen that the operators Φk appearing in the ΨΨ OPE, (4.4), have di-

mensions,

∆k =
3

2
+ ν + 2k, (k = 0, 1, 2, · · · ), (4.46)

and the lowest dimension operator Φ = Φ0 is a primary operator. We also

obtained the leading OPE coefficient (4.8) involving Φ.

We will now study the subleading operators Φk (k = 1, 2, · · · ) in the ΨΨ

OPE and show that they coincide with the following special descendants of the

primary operator Φ,

Φ(k) =(∂2
x − 4∂t)

kΦ. (4.47)
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The corresponding special descendants of Φ are

Φ
(k)

=(∂2
x + 4∂t)

kΦ. (4.48)

Thus the ΨΨ OPE involves only one primary operator Φ. This will be shown

in the following steps. Firstly, in section 4.2.1, we fix the form of the special

descendants Φ(k) appearing in the OPE by studying a part of the decomposition

of the four-point function (4.2). Next, we compute the coefficients of the ΨΨ

OPE involving the Φ(k)’s. Finally, we show that there are no subleading operators

other than Φ(k) appearing in the ΨΨ OPE. (For example, a primary operator

Φ′ with dimension 3
2 + ν + 2n, where n is a positive integer, could appear on

the RHS of (4.4). We have to exclude this type of possibilities.) This is done in

section 4.2.2 by completely reproducing the full pairwise equal-time four-point

function (3.13) just by summing up contributions from the primary operator Φ

together with Φ(k). This shows in particular that the ΨΨ OPE is exhausted by

the primary operator Φ and its special descendants Φ(k). (In other words, one

can put Φk = Φ(k) in (4.4).)

Throughout section 4.2 we will assume x21 > 0, x43 > 0 without loss of

generality. Under this assumption, all formulae are valid for both the bosonic

and fermionic theories.

4.2.1 The contribution from the descendants of Φ,Φ

We will fix the descendants of Φ,Φ appearing in the OPE (4.3) and (4.4). We

will see that the following observation is essential: each term in the “s-channel”

decomposition (4.2) of the four-point function contains X only in the exponent

and not in the prefactor of the exponential factor e−
X2

t .

We consider a part of the “s-channel” decomposition (4.2), namely, the lead-

ing order terms in the expansion in terms of x21 (keeping all subleading terms in

the expansion by x43),

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

≈e−
x2
43
4t e−

X2

t ×
√
x21x43

4πt3

(x21x43

4t

)ν 1

Γ(ν + 1)

=
+∞∑
k=0

1

k!

(
−x

2
43

4t

)k
e−

X2

t ×
√
x21x43

4πt3

(x21x43

4t

)ν 1

Γ(ν + 1)
.

(4.49)

These terms should arise from the lowest dimension operator Φ in the

Ψ(0, x2)Ψ(0, x1) OPE. Each term in this series corresponds to each operator

contained in the Ψ(t, x4)Ψ(t, x3) OPE. Now, in a theory with z = 2 Schrödinger

symmetry, primary operators with different scaling dimensions have vanishing

two-point functions [32]. This means that k ≥ 1 terms in (4.49) must all come

from the descendants of Φ appearing in the ΨΨ OPE.

In order to obtain the expression for these descendant operators, we need to

know the two-point functions between a primary operator and its descendants.

We will set (x1 +x2)/2 = 0, (x3 +x4)/2 = X, for simplicity. Let us first consider
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the k = 1 case. The relevant descendant operators should have dimension ∆0 +2;

they are ∂2
xΦ and ∂tΦ. (We recall that ∆0 = 3

2 +ν.) Taking spacetime derivatives

of the two-point function (4.9), we obtain

〈∂2
xΦ(t,X)Φ(0, 0)〉 =

1

t∆0

(
−2

t
+

4X2

t2

)
e−

X2

t , (4.50)

〈∂tΦ(t,X)Φ(0, 0)〉 =
1

t∆0

(
−∆0

t
+
X2

t2

)
e−

X2

t . (4.51)

Notice that each of the expressions contains X in the prefactor of e−
X2

t . However,

we see that the k = 1 term (in fact, all terms) in (4.49) does not contain X in the

prefactor of e−
X2

t . Therefore, the special linear combination of the descendant

operators ∂2
xΦ and ∂tΦ,

Φ(1) =
(
∂2
x − 4∂t

)
Φ, (4.52)

must be responsible for the k = 1 term in (4.49). The linear combination Φ(1) is

constructed so that the two-point function

〈Φ(1)(t,X)Φ(0, 0)〉 = 4

(
∆0 −

1

2

)
× 1

t∆0+1
e−

X2

t2 . (4.53)

does not contain X in the prefactor of e−
X2

t . Thus, the first subleading term in

the ΨΨ OPE should contain descendants of Φ only in the form of Φ(1).

One can repeat this process of forming linear combinations of descendant

operators further to construct special descendant operators Φ(k); we observe that

the necessary computations are the same, except that ∆0 should be replaced by

∆0 + 1 and then by ∆0 + 2, and so forth. 23 We obtain the special descendant

operators

Φ(k) =
(
∂2
x − 4∂t

)k
Φ, (4.54)

with the two-point functions

〈
(
∂2
x − 4∂t

)k
Φ (t,X) Φ (0, 0)〉 =4k

(
∆0 −

1

2
+ k − 1

)
· · ·
(

∆0 −
1

2

)
1

t∆0+k
e−

X2

t

=4k
Γ (ν + k + 1)

Γ (ν + 1)

1

t
3
2

+ν+k
e−

X2

t ,

(4.55)

which do not contain X in the prefactor of e−
X2

t . (We used ∆0 = 3
2 + ν above.)

The coefficients before Φ(k) in the ΨΨ OPE can be read off from (4.49) using

(4.55) and (4.8). We obtain,

Ψ(t, x4)Ψ(t, x3)

=

+∞∑
k=0

1

2ν(4π)
1
4

√
Γ(ν + 1)

× (−1)k
1

k!

1

42k

Γ (ν + 1)

Γ (ν + k + 1)
× xν+ 1

2
+2k

43 × Φ(k)

(
t,
x3 + x4

2

)
.

(4.56)

23To construct the special descendant operators by linear combinations, the operators arising at
each step by applying ∂2x and ∂t should be linearly independent. This is assured for ∆0 >

1
2 .
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The term with k = 0 of course is the leading order term in the OPE we have

already seen in (4.3) and (4.8), Φ = Φ(0).

We have shown that the descendants of Φ should appear in the ΨΨ OPE in

the way given in (4.56). However, there could be another primary operator, say,

Φ′ with dimension ∆0 + 2n where n is a non-negative integer, which enters the

ΨΨ OPE together with its descendants. (In other words, Φk in (4.4) may be

a linear combination of Φ(k) and Φ′ itself or its descendants.) We will exclude

this possibility in section 4.2.2. Once this is done, we can conclude that (4.56)

is complete and coincides with (4.4) with Φk = Φ(k) and

Ck =
1

2ν(4π)
1
4

√
Γ(ν + 1)

× (−1)k
1

k!

1

42k

Γ (ν + 1)

Γ (ν + k + 1)
. (4.57)

By repeating the same argument starting from the leading order terms in x43

of (4.2), we obtain similar results for the Ψ Ψ OPE. Thus, descendants of Φ must

enter the Ψ Ψ OPE in the following special linear combinations, 24

Φ
(k)

=(∂2
x + 4∂t)

kΦ, (4.58)

which are constructed so that the two-point functions

〈
(
∂2
x + 4∂t

)k
Φ (t,X) Φ (0, 0)〉 = 4k

Γ (ν + k + 1)

Γ (ν + 1)

1

t
3
2

+ν+k
e−

X2

t , (4.59)

do not contain X in the prefactor of e−
X2

t . The Ψ Ψ OPE becomes

Ψ(0, x2)Ψ(0, x1)

=
+∞∑
n=0

1

2ν(4π)
1
4

√
Γ(ν + 1)

× (−1)n
1

n!

1

42n

Γ (ν + 1)

Γ (ν + n+ 1)
× xν+ 1

2
+2n

21 × Φ
(n)
(

0,
x1 + x2

2

)
.

(4.60)

Again we will see in section 4.2.2 that (4.60) is complete and coincides with (4.3)

with Φk = Φ
(k)

and (4.57).

The important property of the special descendants Φ
(m)

, Φ(n) is that their

mutual two-point functions

〈Φ(m)
(t,X) Φ(n) (0, 0)〉 = 4m+nΓ (ν +m+ n+ 1)

Γ (ν + 1)

1

t
3
2

+ν+m+n
e−

X2

t , (4.61)

do not contain X in the prefactor of e−
X2

t . This reflects the absence of X in the

prefactor of e−
X2

t for all terms contained in (4.2).

24We note that the sign flip before ∂t of Φ
(k)

compared to Φ(k) is due to our use of Euclidean time,

Φ(t, x) = eHtΦ(0, x)e−Ht, Φ(t, x) = eHtΦ(0, x)e−Ht. Thus we have Φ(k)(0, x) = Φ
(k)

(0, x) because
∂tΦ(0, x) = [H,Φ(0, x)] = −[H,Φ(0, x)] = −∂tΦ(0, x).
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4.2.2 Reproducing full four-point function from OPE

Here we shall prove that the OPEs (4.56) and (4.60) are complete by showing

that they fully reproduce the pairwise equal-time four-point function (3.13).

From the OPEs (4.56) and (4.60) and the two-point functions (4.61), we

obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=
1

4ν(4π)
1
2 Γ(ν + 1)

×
∞∑
m=0

∞∑
n=0

(−1)n

n!

1

42n

Γ (ν + 1)

Γ (ν + n+ 1)
x
ν+ 1

2
+2n

43 × (−1)m

m!

1

42m

Γ (ν + 1)

Γ (ν +m+ 1)
x
ν+ 1

2
+2m

21

×4m+nΓ (ν +m+ n+ 1)

Γ (ν + 1)

1

t
3
2

+ν+m+n
e−

X2

t

=e−
X2

t

√
x21x43

4πt3

(x21x43

4t

)ν ∞∑
m=0

∞∑
n=0

(−1)m+n

m!n!

Γ (ν +m+ n+ 1)

Γ (ν +m+ 1) Γ (ν + n+ 1)

x2m
21 x

2n
43

(4t)m+n
.

(4.62)

We wish to show this formula agrees with the “s-channel” decomposition

(4.2). Factoring out the common factor, the identity we have to show is

∞∑
m=0

∞∑
n=0

(−1)m+n

m!n!

Γ (ν +m+ n+ 1)

Γ (ν +m+ 1) Γ (ν + n+ 1)

x2m
21 x

2n
43

(4t)m+n
= e−

x2
21+x2

43
4t

∞∑
k=0

(
x21x43

4t

)2k
k!Γ (ν + k + 1)

,

(4.63)

which is equivalent to

1

m!n!

Γ (ν +m+ n+ 1)

Γ (ν +m+ 1) Γ (ν + n+ 1)
=

min(m,n)∑
k=0

1

k!Γ (ν + k + 1)

1

(m− k)!

1

(n− k)!
.

(4.64)

Now, using the Pochhammer symbol, we have

(RHS) =

min(m,n)∑
k=0

1

k!

1

(ν + 1)kΓ (ν + 1)
(−1)k

(−m)k
m!

(−1)k
(−n)k
n!

=
+∞∑
k=0

1

k!

1

(ν + 1)kΓ (ν + 1)

(−m)k
m!

(−n)k
n!

=
1

Γ (ν + 1)m!n!
2F1(−m,−n; ν + 1; 1) = (LHS),

(4.65)

where we used a well-known identity for hypergeometric functions,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (4.66)

Thus the OPEs (4.56) and (4.60) reproduce the pairwise equal-time four-point

function (3.13) fully and hence are complete.
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4.3 Three-point function 〈ΨΨΦ〉
We have seen in section 4.2 that there is only one primary operator, Φ, involved

in the OPE Ψ(x)Ψ(0). By pinching the two insertion points of Ψ of the four-

point functions obtained in section 3, we can compute the three-point function

〈ΨΨΦ〉.
In [52], Golkar and Son showed that the constraint from Schrödinger symme-

try alone fixes the spacetime dependence of the three-point function (except, of

course, the overall coefficient which contains the dynamical information of the

theory considered) when one of the operators involved saturates the unitarity

bound, which, in one space dimension, is ∆ ≥ 1
2 . The field Ψ saturates the

unitarity bound. The form of the three-point function we obtained is consistent

with Golkar and Son’s analysis. Since their analysis is done in Minkowski sig-

nature, and the continuation to Euclidean signature is not entirely trivial, we

give the analysis done for theories with Euclidean time in appendix D. The ap-

pendix also contains a discussion of the boundary conditions necessary to fix the

spacetime dependence. We point out that the boundary conditions give different

constraints for one space dimension compared to other cases.

4.3.1 Three-point functions with two operators at equal-time

First, we consider the case in which two Ψ’s are inserted at the same time,

〈Ψ(t, x3)Ψ(t, x2)Φ(0, 0)〉. (4.67)

We will consider the case t > 0; If t < 0 the three-point function vanishes trivially

since the operator Ψ(x) annihilates the vacuum.

We keep the leading order term in the expansion in x21 = x2 − x1 in the

pairwise equal-time four-point function (3.13) using (4.1). Putting x1+x2
2 = 0,

we obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

≈e−
x2
43+(x3+x4)2

4t ×
√
x21x43

4πt3
1

Γ (ν + 1)

(x21x43

4t

)ν
+ · · · .

(4.68)

This is valid when x43 > 0, x21 > 0 for both the bosonic and fermionic models.

Comparing this with the leading term of the OPE (4.60)

Ψ(0, x2)Ψ(0, x1) ≈ 1

2ν(4π)
1
4

√
Γ(ν + 1)

x
ν+ 1

2
21 × Φ (0, 0) , (4.69)

we obtain, after relabelling,

〈Ψ(t, x3)Ψ(t, x2)Φ (0, 0)〉

=
1

2ν(4π)
1
4

√
Γ(ν + 1)

× xν+ 1
2

32 t−(ν+ 3
2) × e−

x2
3+x2

2
2t .

(4.70)
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This expression is valid when x32 > 0 for both the bosonic and fermionic models.

The formula valid for x32 < 0 can be obtained easily as is done for the equal-

time four-point function, (3.16) and (3.17). The normalisation conditions for the

operators Ψ and Φ are fixed by the two-point functions, (2.9) and (4.9).

The result (4.70) is, apart from an overall factor, the product of two free

propagators 〈Ψ(t, x3)Ψ (0, 0)〉〈Ψ(t, x2)Ψ (0, 0)〉 ∼ 1
t e
−x

2
3+x2

2
2t dressed with a factor

(depending on x32 and t) x
ν+ 1

2
32 t−(ν+ 1

2).

4.3.2 Three-point functions in general position

Integral representation We consider the three-point function in general

position,

〈Ψ(t3, x3)Ψ(t2, x2)Φ(t1, x1)〉. (4.71)

Here we will only consider the bosonic model. We set x1 = 0, t1 = 0 using trans-

lational invariance. We assume t3 > t2 without loss of generality. We consider

the case t2 > t1 since otherwise the three-point function vanishes trivially, the

operator Ψ(t2, x2) annihilating the vacuum.

We begin with the integral representation (3.22) for the four-point function

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(0, x2)Ψ(0, x1)〉, with t4 > t3 > 0. (The labels 3, 4 will be

replaced respectively by 2, 3 later.) We consider the limit x2 → x1 and keep the

leading order term in the expansion in terms of x21. Writing t3 = t, t43 = t′ and

setting x1+x2
2 = 0, we obtain, using the leading order term of (4.1) and (3.16),

〈Ψ(t+ t′, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

≈
∫
e−

x2
4′3+(x3+x4′)

2

4t ×
√
|x21x4′3|

4πt3
×
∣∣∣x21x4′3

4t

∣∣∣ν 1

Γ(ν + 1)
×
√

1

2πt′
e−

1
2

x2
44′
t′ dx′4.

(4.72)

Note that we used (3.16) valid for the bosonic model and applicable for both

positive and negative x4′3.

Comparing (4.72) with the leading order term in the OPE (4.60),

Ψ(0, x2)Ψ(0, x1) ≈ 1

2ν(4π)
1
4

√
Γ(ν + 1)

|x21|ν+ 1
2 × Φ (0, 0) , (4.73)

we obtain an integral representation of the three-point function in general posi-

tion,

〈Ψ(t+ t′, x4)Ψ(t, x3)Φ (0, 0)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

1√
t′

1

t
3
2

+ν

∫
e−

x2
4′3+(x4′+x3)

2

4t × |x4′3|ν+ 1
2 × e−

1
2

x2
44′
t′ dx4′ .

(4.74)
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Three-point function in general position This integral can be worked

out, separating contributions from x4′3 > 0 and x4′3 < 0. The result can be

expressed in terms of the parabolic cylinder functions or the confluent hyperge-

ometric functions. The details of the computation, including the comparison to

the generic form of the three-point function found by Henkel [32,33], are given in

appendix C. The final result expressed via the confluent hypergeometric function

M(a, b, z) (in the notation of [78]) is,

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
Γ
(
ν + 3

2

)
2

3
2
ν+ 3

4π
1
4

√
Γ(ν + 1)Γ

(
ν
2 + 5

4

)
√√√√ t32

ν+ 1
2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21 e

− x2
31

2t31

× e−
w2

2 M

(
ν

2
+

3

4
,
1

2
,
1

2
w2

)
.

(4.75)

where w is a quantity which is invariant under the Schrödinger symmetry,

w =

(
x21

t21
− x32

t32

)√
t21t32

t31
. (4.76)

We have chosen t3 > t2 > t1 and hence w ∈ R. (In the notation of section 3.3,
1
2w

2 = v).

The spacetime dependence is consistent with the analysis based on the

Schrödinger symmetry by Golkar and Son [52]. See appendix D for a detailed

comparison.

By taking the limit t32 → 0 of (4.75), we recover the result of section 4.3.1.

See appendix C.5. The special case ν = −1
2 agrees with the result for the free-

boson. See appendix E.2.

4.4 Two-point function of the charge-zero operators

appearing in the “t-channel” decomposition

In this subsection, we will deduce a peculiar property of the charge-zero operators

Jm (m = 1, 2, · · · ) appearing in the ΨΨ OPE. Namely, we will show that the

two-point functions

〈Jm(t1, x1)Jn(t2, x2)〉 (m > 0, n > 0) (4.77)

vanish if t1 6= t2. Note that the two-point functions are non-vanishing and finite

in general for t1 = t2, (4.24). Our argument is fairly general and is not restricted

to the Calogero model. The assumptions are the existence of the OPE, the scale

invariance, the U(1) symmetry, and the uniqueness of the vacuum. Hence the

argument will apply in particular to any theory with Schrödinger symmetry and

with a unique vacuum.

The basis of the argument is the following property of the four-point func-

tion 〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉. Depending on the time-order of the

operators, the four-point function (i) has a nontrivial form, (ii) factorises into
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a product of two-point functions, or (iii) vanishes. The first possibility occurs

when the time-ordered product of the operators has the form ΨΨΨ Ψ, i.e. when

t4 > t1, t4 > t2, t3 > t2, and t3 > t1 hold. The pairwise equal-time four-point

function derived in section 3.1 is a particular case of this possibility. The second

possibility occurs when the time-ordered product has the form ΨΨΨΨ, i.e. when

t4 > t2 > t3 > t1, t3 > t2 > t4 > t1, t4 > t1 > t3 > t2, or t3 > t1 > t4 > t2
hold. The third possibility occurs when the operator with the smallest time is Ψ

or the largest time is Ψ (because of Ψ|0〉 = 0 and 〈0|Ψ = 0).

Let us consider the second possibility; to be specific, we focus on the case

t4 > t2 > t3 > t1. Then we have

〈Ψ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)〉
=〈0|TΨ(t4, x4)Ψ(t3, x3)Ψ(t2, x2)Ψ(t1, x1)|0〉
=〈0|Ψ(t4, x4)Ψ(t2, x2)Ψ(t3, x3)Ψ(t1, x1)|0〉
=〈0|Ψ(t4, x4)Ψ(t2, x2)|0〉〈0|Ψ(t3, x3)Ψ(t1, x1)|0〉
=〈Ψ(t4, x4)Ψ(t2, x2)〉〈Ψ(t3, x3)Ψ(t1, x1)〉.

(4.78)

In going from the third to the fourth line, we inserted a complete set of eigen-

states between Ψ(t2, x2) and Ψ(t3, x3). Then we used the fact that the state

Ψ(t3, x3)Ψ(t1, x1)|0〉 has vanishing U(1) charge and hence should coincide with

the vacuum |0〉 up to a constant factor.

Let us consider the limit where both pairs of spacetime points (4, 2) and (3, 1)

become coincident. (More precisely, the limit x31 → 0, t31 → 0 with fixed
x2

31
t31

,

and the similar coincident limit for the points (4, 2) should be taken.) In this

limit, we can use the OPE (4.23) of Ψ(t4, x4)Ψ(t2, x2) and of Ψ(t3, x3)Ψ(t1, x1)

which we have studied in section 4.1.2,

Ψ(t, x)Ψ(0, 0) =

∞∑
k=0

xk−1fk

(
x2

t

)
Jk
(
t

2
,
x

2

)
. (4.79)

We recall that J0 is the identity operator and

x−1f0

(
x2

t

)
=

1√
2πt

e−
x2

2t = 〈Ψ(t, x)Ψ(0, 0)〉. (4.80)

Because of the factorisation property (4.78), the four-point function depends on

(t31, x31) and (t42, x42) but not on the relative position between (t2, x2) ≈ (t4, x4)

and (t1, x1) ≈ (t3, x3). This implies the vanishing of the two-point functions,

〈Jm(t2, x2)Jn(t1, x1)〉 = 0, (4.81)

for t2 > t1, except for the case when both the operators are the identity oper-

ator (m = 0, n = 0). Indeed, the identity operator appearing in the ΨΨ OPE

completely reproduces the factorised four-point function.

The situation is quite different from that considered in section 4.1.2,

where we need infinitely many nonzero equal-time two-point functions

〈Jm(t, x)Jn(t, x′)〉 = Dmn
(x−x′)m+n , in order to reproduce the pairwise equal-time

four-point function (except for the special cases where ν is a half odd integer).
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We can make this argument more precise by considering three-point functions

〈ΨJkΨ〉. We start from the non-factorised four-point function, t4 > t3 > t2 > t1.

We then take the coincident limit of the spacetime points (3, 2) and use the OPE

Ψ(t3, x3)Ψ(t2, x2). Focusing on each term in the OPE expansion, one obtains the

three-point functions where Ψ is inserted at the spacetime point 4, Jk is inserted

at 3 = 2, and Ψ at 1.

Now, if we start with a different time-ordering, say, t3 > t2 > t4 > t1,25

the factorisation (4.78) implies that the three-point function vanishes except for

the special case where the operator appearing from the ΨΨ OPE is the identity

operator. Thus, the three-point function

〈Ψ(t3, x3)Jm(t2, x2)Ψ(t1, x1)〉 (m = 1, 2, · · · ) (4.82)

is non-vanishing only when t3 > t2 > t1.

We then take the coincident limit of the points 3 and 1. Unless we maintain

the time-ordering t3 > t2 > t1 during the coincident limit, the result vanishes

(when Jm is not an identity operator). We again reach the conclusion that the

two-point function

〈Jm(t1, x1)Jn(t2, x2)〉 (m > 0, n > 0) (4.83)

can have a nonzero value only if t1 = t2.

The vanishing of the two-point functions can be deduced from the following

more formal argument. One may rewrite the two-point function as the vacuum

expectation value of the time-ordered product,

〈Jm(t1, x1)Jn(t2, x2)〉 = 〈0|TJm(t1, x1)Jn(t2, x2)|0〉. (4.84)

Assume that t1 > t2. Then we have

〈Jm(t1, x1)Jn(t2, x2)〉 = 〈0|Jm(t1, x1)Jn(t2, x2)|0〉. (4.85)

We can insert a complete set of states between Jm(t1, x1) and Jm(t2, x2). Since

Jn(t2, x2)|0〉 has vanishing U(1) charge and the only state with zero charge is

the vacuum, we obtain

〈Jm(t1, x1)Jn(t2, x2)〉 = 〈0|Jm(t1, x1)|0〉〈0|Jn(t2, x2)|0〉. (4.86)

By the scale invariance, the one-point function of any operator should vanish,

unless the operator is an identity operator. Therefore we see that the two-point

function 〈Jm(t1, x1)Jn(t2, x2)〉 should vanish unless m = 0, n = 0. This ar-

gument illustrates the subtlety involved in the two-point function for the case

t1 = t2. In order to have the finite equal-time two-point functions (4.24), which

are required by the “t-channel” decomposition of the nontrivial four-point func-

tion and the ΨΨ OPE discussed in section 4.1.2, one must conclude that (4.85)

does not hold when t1 = t2,

〈Jm(t, x1)Jn(t, x2)〉 6= 〈0|Jm(t, x1)Jn(t, x2)|0〉. (4.87)

25Note that the points 3 and 2 should be adjacent in the time-ordering in order that one can take
the coincident limit.
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as otherwise the equal-time two-point functions would also vanish by the same

argument.

In this subsection, we deduced features of charge-0 operators arising from the

ΨΨ OPE. It is clearly important to pursue this direction further. For example,

by using the four-point function for general positions derived in section 3.3, one

should be able to compute the three-point function 〈ΨJmΨ〉. This will in turn

give us information about the JmΨ OPE. This is important in understanding the

nature of the operators Jm. We expect them to include the energy-momentum

tensor and the symmetry currents. The JmΨ OPE should tell us what kind of

symmetries, if any, are associated with the operators Jm.

5 Conclusion and Discussion

In this paper, we have pointed out that the Calogero model considered as a quan-

tum field theory in one space and one time dimension via the second quantisation

is a tractable yet nontrivial example of z = 2 anisotropic scale invariant theory.

We obtained the expression of the four-point function of the elementary fields

for the special pairwise equal-time case (3.13). The general four-point function

can also be expressed either in terms of a double convolution integral (3.19) or

of a generalised hypergeometric function (3.23).

We have obtained new insights into the z = 2 theories, exploiting the exact

expression of the four-point function. We decomposed it in two different ways

(the “s-channel” and “t-channel” decompositions studied in sections 4.1.1 and

4.1.2), corresponding to two different ways of applying the OPE. In this way, we

have verified the OPE associativity for the model in the case of the particular

four-point function. The “t-channel” decomposition is asymptotic rather than

convergent. The exponentially small corrections to the asymptotic series also can

be interpreted using the OPE (section 4.1.3). The asymptotic nature is inher-

ently connected to the presence of the terms behaving as e−ax
2/t in Schrödinger

invariant theories. This makes us suspect that the asymptotic nature of the

“t-channel” decomposition and the interpretation of the exponentially small cor-

rection terms by the OPE are universal features of Schrödinger invariant theories

rather than being specific to our model.

Our analysis suggests the importance of the equal-time observables (e.g., the

pair-wise equal-time four-point function). They have particularly simple forms

but yet contain interesting dynamical information of the model such as the scaling

dimensions and the OPE coefficients depending on the coupling constant.

The “s-channel” decomposition turns out to involve only one primary opera-

tor (section 4.2). Thus we have obtained an analogue of the conformal block in

isotropic theories. We may call it the “Schrödinger block”. We have obtained a

special case of the Schrödinger block (in two spacetime dimensions). It is special

in that it is restricted to the four-point functions of operators with ∆ = 1
2 . The

scaling dimension of the operator running in the intermediate channel can be

controlled by tuning the coupling constant ν. We hope this result may serve as a

building block in the bootstrap program of z = 2 Schrödinger invariant theories.
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By taking a certain limit of the four-point function we have computed a three-

point function (section 4.3) and have found peculiar properties of correlation

functions involving certain charge-zero operators (section 4.4).

The reason we are able to uncover these new features is because our model

allows us to explicitly compute the four-point function. Previously obtained exact

results for genuine interacting Schrödinger invariant field theories are restricted,

to our knowledge, to computations of three-point functions and the associated

OPE. 26 These include the exact computation of a three-point function [82] and

OPEs [45] for the fermion at unitarity (and for a related bosonic theory) in

general space dimensions. For the computation of the OPE in systems with

contact interactions in one space and one time dimension(which are generally

not scale invariant), see, for example, [83] and references therein. For a review

of computations of observables related to the three-point correlation functions

with Schrödinger symmetry in statistical models, see [84].

Four-point function in general position We have presented the exact

expression (3.24) of the four-point function in general position using a generalised

hypergeometric function with three variables. The three variables are quantities

invariant under the Schrödinger symmetry and thus are the analogues of the

cross-ratios in the standard CFT.

The exact expression is worth further investigation. Firstly, by studying a

certain limit of the expression, we should get a better understanding of the “t-

channel” OPE and hence of the important charge-zero operators.

Secondly, the generalised hypergeometric function should obey certain con-

nection formulae, analogous to those satisfied by the ordinary Gaussian hyper-

geometric functions. The connection formulae relate different expansions of the

function valid for different limits one can take in their arguments. These differ-

ent limits should correspond to the various ways of decomposing the four-point

function by the OPE. Hence, the connection formulae should be a rather di-

rect manifestation of the OPE associativity. A good example which shows the

relevance of the hypergeometric functions and their connection formulae in the

conformal bootstrap program is the Liouville CFT. A four-point function in the

Liouville CFT is written directly in terms of the Gaussian hypergeometric func-

tion of the cross-ratio, and a connection formula between the hypergeometric

functions indeed represents the OPE associativity [85].

Finally, we have seen that Schrödinger invariant theories have an intricate

structure: if looked at from a certain perspective they are described by functions

analogous to the confluent hypergeometric function (which can be represented

by an asymptotic series when its argument goes to infinity), and from another

perspective, they are described by functions analogous to the hypergeometric

function (which can be expanded everywhere, even including the point at infinity,

and represented as a convergent series). On the one hand, the pairwise equal-

time four-point function is given in terms of a modified Bessel function, which

is a special case of the confluent hypergeometric function. Also, the three-point

26For holographic computations, see for example [73].
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function obtained as a limit of the four-point function is written by a confluent

hypergeometric function. On the other hand, if considered as a function of one

of the Schrödinger invariant “cross-ratios” (3.26), τ = t21t43
t31t42

, the four-point func-

tion should have features analogous to the hypergeometric function, consistent

with the SL(2,R) subgroup of the Schrödinger symmetry discussed in [54]. The

expression of the four-point function via a generalised hypergeometric function

should embody this mixed feature. Expressed as a multiple series of a certain set

of combinations of the variables valid for certain limits, the series should be of

hypergeometric type. When another set of combinations of its variables is used,

the series should have degenerate parameters, and have properties closer to the

confluent hypergeometric functions rather than the hypergeometric functions.

Analogy to 2D CFT and the sine-Gordon model The model we have

considered in this paper, the Calogero model in the second-quantised formulation,

has features analogous to the compactified free-boson CFT in two spacetime

dimensions. Both the Calogero model and the compactified free-boson CFT

are theories parametrised by a single parameter (the coupling constant and the

compactification radius R respectively). The scaling dimensions of the charged

operators are dependent on that single parameter, e. g. the operator Φ (arising

from the ΨΨ OPE) in the Calogero model and ei
1
R
X of the compactified free-

boson CFT, where X is the fundamental scalar field. That the ΨΨ OPE involves

only one primary operator Φ is reminiscent of the fact that the OPE of ei
1
R
Xei

1
R
X

involves only one primary operator, ei
2
R
X .

This analogy may be more than superficial: both the Calogero model and

the compactified free-boson CFT can be embedded into the sine-Gordon model.

As is well-known, the IR limit of the sine-Gordon model (for a range of the

coupling constant) is described by the compactified free-boson CFT. (See, for

example, [86] and references therein.) On the other hand, one can first take the

non-relativistic limit of the sine-Gordon model [87,88] 27 to obtain a model of two

kinds of interacting non-relativistic particles (the solitons and the anti-solitons

of the original sine-Gordon model). The pair potential between solitons (or anti-

solitons) in this limit has the form ∼ 1/ sinh2(r/r0), and that between a soliton

and an anti-soliton has the form ∼ −1/ cosh2(r/r0). By taking a further limit

where the length scale of the non-relativistic model vanishes, one finds that the

solitons and anti-solitons decouple from each other, and the interactions among

each of them are described by the Calogero model. Thus, the Calogero model

and the compactified free-boson CFT can be realised as different limits of the

sine-Gordon model.

As is well known, it is possible to compute correlation functions of minimal

model CFTs, applying a certain projection to the compactified free-boson CFT.

(See for example chapter 9 of [90].) In particular, correlation functions of the

27More precisely, in order to retain the nontrivial S-matrix, the non-relativistic limit should be
defined as a scaling limit in which the energies of the particles and a parameter of the sine-Gordon
theory are going to zero, while the ratios between them are fixed. The precise form of the scaling
limit can be found in [89].
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critical two-dimensional Ising model can be calculated by taking the “square

root” of the compactified free-boson CFT with a special coupling [91–99]. It

may be possible to obtain correlation functions of various z = 2 Schrödinger

invariant theories starting from the correlation functions of the Calogero model.

In particular, correlation functions of the Glauber model [2], a model describing

the dynamical critical behaviour of the Ising model, in one space and one time

dimension at criticality may be computed starting from the Calogero model.

The Glauber model in d = 1 + 1 at criticality has the z = 2 scale invariant

behaviour. (See for example section 10.2 of [11].) The model is exactly solvable

in the sense that its partition function can be computed [100] via the mapping

to free fermions. This is analogous to the mapping of the two-dimensional Ising

model to Majorana fermions [101]. For the Ising model, one can calculate the

correlation functions by further rewriting the Majorana fermions as the “square

root” of massless Dirac fermions, which in turn is equivalent to the compactified

free-boson CFT (with a specific coupling constant) via bosonisation. One may be

able to compute general correlation functions of the Glauber model in a similar

manner using the Calogero model. We note that the two-point functions of

the fundamental spin operator of the Glauber model in 1 + 1-dimension has

been computed [2] and verified to have the form dictated by the Schrödinger

symmetry at criticality [32]. Some correlation functions related to the three-point

functions were computed and it was found that there exists an operator with

dimension ∆ = 3 (in addition to the fundamental spin operator with dimension

∆ = 1
2) [84, 102]. It is tempting to conjecture that the Calogero model with

ν = 3
2 , in which case the dimension of Φ becomes ∆ = 3

2 + ν = 3, is relevant

for the Glauber model, just like the compactified free-boson CFT with a specific

compactification radius is relevant for the two-dimensional Ising model.

Note that ν = 3
2 is one of the special “degenerate” cases of the Calogero model

(ν = −1
2 ,

1
2 ,

3
2 , . . . ) in which the asymptotic series associated with the “t-channel”

decomposition truncates. The relation of the Calogero model to the sine-Gordon

model (and the system of particles interacting with a 1/ cosh2 r pair potential)

may shed light on these special points and the spectrum of zero-charge operators.

As is well-known, in the sine-Gordon model, a soliton and an anti-soliton can

form a bound state. The number of bound states takes the value n = 0, 1, 2, . . . ,

depending on the parameter of the sine-Gordon theory. At the special values of

the parameter where the number of bound states changes discontinuously, the

reflection coefficients between a soliton and an anti-soliton vanish. These special

values of the parameters are reminiscent of the special cases, ν = −1
2 ,

1
2 ,

3
2 , . . . , of

the Calogero model where the asymptotic series truncates. We speculate that at

these special points the “multiplicity” of the zero-charge operators also change

discontinuously.

Generalisations We computed the four-point function by reducing it to the

two-particle problem. The integrability of the Calogero model means that one

has a certain analytic control over the three- (or more) particle sector. Exploiting

the integrability, therefore, it should be possible to calculate six-point functions
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of the fundamental fields (more precisely the correlation functions with three Ψ’s

and three Ψ’s), and to study the ΨΦ OPE.

One can introduce a three-body interaction to the Calogero model without

destroying the integrability in the three-particle problem [103, 104]. Studying

such a deformation would be interesting. The deformation will not affect the

physics of the two-particle sector, and hence the results of our paper. However,

the six-point functions of the fundamental fields and hence the ΨΦ OPE will be

deformed.

Another interesting variant of the Calogero model is the so-called BN -type

Calogero model. See, for reviews, [105, 106]. The model can be considered as

the Calogero model put on a semi-infinite line with an appropriate boundary

condition, which preserves the integrability of the model. We expect that the BN -

type Calogero model (around the true vacuum) will exhibit a z = 2 anisotropic

surface critical behaviour and provide a nontrivial yet tractable example of the

z = 2 analogue of a CFT with a boundary.

The integrability of the Calogero model allows one to compute the correlation

functions around the finite-density vacuum. (See, for example, [71] and references

therein.) The finite-density vacuum breaks the z = 2 scale invariance sponta-

neously. It would be interesting to study the finite-density correlation functions

from the point of view of the broken z = 2 scale invariance and Schrödinger

invariance. (For a review of spontaneous breaking of the Schrödinger symme-

try, see [107].) The IR limit of the Calogero model at finite-density is described

by a c = 1 CFT [108–113]. Thus the finite-density correlation functions of the

Calogero model should interpolate between the z = 2 scale invariant correlation

functions studied in this paper in the UV limit and the z = 1, c = 1 CFT in the

IR limit.

The Calogero model is inherently related to a system of anyons, which is a

z = 2 Schrödinger invariant model in one time and two space dimensions. (See,

for example, [44] and references therein). In particular, the Calogero model is

equivalent to a system of anyons restricted to the lowest Landau levels [110,114–

121]. It would be interesting to study the implications of our exact four-point

function for the system of anyons.

In this paper we focused on the case with one space dimension. However,

the Schrödinger symmetry exists for any number of space dimensions when non-

relativistic particles are interacting with a pair potential of the form 1/r2 [62].

We do not expect these models in general to be integrable in the conventional

sense. However, since our analysis of the four-point function is associated only

with the two-particle sector of the model, the computation of the four-point

function in higher space dimensions appears feasible. It would be interesting

to consider the properties of the OPE, including the OPE associativity, for this

higher dimensional system with the Schrödinger symmetry.

Finally, finding an anisotropic scale invariant quantum field theory model

with z 6= 2 but with exactly computable OPEs is an interesting open problem.
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We hope that our analysis provides a starting point of better understand-

ing of fixed points of the renormalisation group for anisotropic theories, and of

uncovering a rich structure of solvable models with z = 2 scale invariance.
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A Schrödinger symmetry

We list here all nonzero commutators in the algebra associated with the

Schrödinger symmetry. The members of the algebra are the time translation,

the space translations, the angular momenta, a U(1) charge, the dilation, and

the spacelike and timelike “special conformal transformations”: H,Pi, D,Mij =

−Mji, N,Ki, C. Here we used the label i = 1, · · · , d where d is the number of

space dimensions. For d = 1, generators Mij do not exist. The scaling dimensions

of these generators are reflected in,

[D,H] =2iH, (A.1)

[D,Pi] =iPi, (A.2)

[D,Ki] =− iKi, (A.3)

[D,C] =− 2iC. (A.4)

The nonzero commutators involving Mij show the transformation properties of

the generators under the spatial rotation,

[Mij , Pk] =i (δikPj − δjkPi) , (A.5)

[Mij ,Kk] =i (δikKj − δjkKi) , (A.6)

[Mij ,Mkl] =i (δikMjl − δjkMil − δilMjk + δjlMik) . (A.7)

The remaining non-vanishing commutation relations are

[H,C] =− iD, (A.8)

[C,Pi] =iKi, (A.9)

[H,Ki] =− iPi, (A.10)

[Ki, Pj ] =iNδij . (A.11)
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B Propagator in 1/r2 potential

In this appendix, we compute the propagator for the Hamiltonian, (2.1)

Hrel = −∂2
r +

λ(λ− 1)

r2
, (B.1)

corresponding to a particle in an external potential 1/r2 where r > 0. The

boundary condition for r → 0 is Ψ ∼ rλ.

The Schrödinger equation for an energy eigenstate Ψ(r) with energy E = k2

(k > 0) is

−Ψ′′ +
λ(λ− 1)

r2
Ψ = k2Ψ. (B.2)

For r → +∞, Ψ(r) asymptotes to a linear combination of e±ikr.

A simple redefinition

Ψ =
√
rw, (B.3)

z =kr, (B.4)

leads to

z2d
2w

dz2
+ z

dw

dz
+

(
z2 −

(
λ− 1

2

)2
)
w = 0, (B.5)

which is Bessel’s equation [78, (10.2.1)] with ν = λ − 1
2 . Hence the solution to

the Schrödinger equation with the desired behaviour at r → 0, Ψ ∼ rλ, is

Ψ(r) = Nk

√
rJν(kr). (B.6)

We shall use the bra-ket notation,

〈r|k〉 = Nk

√
rJν(kr), (B.7)

where k > 0.

The normalisation constant Nk is fixed by the requirement that |k〉’s should

give a complete orthonormal basis (with the correct boundary condition)

〈k′|k〉 = δ(k′ − k). (B.8)

Using an integral formula [78, (10.22.67)]∫ ∞
0

t exp(−p2t2)Jν (at) Jν (bt) dt =
1

2p2
exp

(
−a

2 + b2

4p2

)
Iν

(
ab

2p2

)
, (B.9)

we see that

〈k′|k〉 = Nk′Nk

∫ ∞
0

√
rJν(k′r)

√
rJν(kr)dr (B.10)
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vanishes for k 6= k′ and is IR divergent for k = k′. A natural IR cut-off can be

introduced:

Nk′Nk

∫ ∞
0

√
rJν(k′r)

√
rJν(kr)e−αr

2
dr, (B.11)

where we are interested in the limit α→ 0 in the end. This equals

Nk′Nk ×
1

2α
e−

k2+k′2
4α × Iν

(
kk′

2α

)
≈Nk′Nk ×

1

2α
e−

k2+k′2
4α × e

kk′
2α

1√
2π kk

′

2α

=Nk′Nk ×
1√

2πkk′
1√
2α
e−

(k−k′)2
4α

≈|Nk|2 ×
1

k
δ(k − k′),

(B.12)

using (B.9) and (4.15). Thus we obtain

Nk =
√
k. (B.13)

Finally, the propagator in 1/r2 potential is,

〈r′|e−Hrelt|r〉 =

∫ +∞

0
〈r′|k〉e−k2t〈k|r〉dk

=

∫ +∞

0
ke−k

2t
√
r′Jν(kr′)

√
rJν(kr)dk

=
√
rr′

1

2t
e−

r2+r′2
4t Iν

(
rr′

2t

)
,

(B.14)

using (B.9).

If t is very small, the propagator reduces to√
1

4πt
e−

(r′−r)2

4t , (B.15)

which coincides with the free particle propagator with the reduced mass m = 1
2 ,

as it should be.

C Details of the computation of the three-

point function 〈ΨΨΦ〉
In this appendix, we supply the details of the computation of the three-point

function 〈ΨΨΦ〉 in general position. We also give the comparison to the generic

form of the three-point function derived by Henkel [32, 33] and elaborate on the

properties of the Schrödinger invariant quantity which we denote w.
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C.1 Evaluation of the integral representation

We begin with the integral representation of the three-point function (4.74),

〈Ψ(t+ t′, x4)Ψ(t, x3)Φ (0, 0)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

1√
t′

1

t
3
2

+ν

∫
e−

x2
4′3+(x4′+x3)

2

4t × |x4′3|ν+ 1
2 × e−

1
2

x2
44′
t′ dx4′ .

We evaluate this integral as follows. First, we extract the dependence of the

integrand on x = x34′ ,

〈Ψ(t+ t′, x4)Ψ(t, x3)Φ (0, 0)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

1√
t′

1

t
3
2

+ν
e−

x2
3
t e−

x2
43

2t′

∫ ∞
−∞
|x|ν+ 1

2 e−
1
2( 1

t
+ 1
t′ )x

2

e(
x3
t
−x43

t′ )xdx.

(C.1)

Separating the contribution from x > 0 and x < 0, we get,

〈Ψ(t+ t′, x4)Ψ(t, x3)Φ (0, 0)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

√√√√ t′ν+ 1
2

(t+ t′)ν+ 3
2 tν+ 3

2

e−
x2
3
t
−x

2
43

2t′

×

( ∫ ∞
0

e−
1
2
y2+wyyν+ 1

2dy +

∫ ∞
0

e−
1
2
y2−wyyν+ 1

2dy

)
,

(C.2)

where

y =

√
t+ t′

tt′
x, (C.3)

w =

√
tt′

t+ t′

(x3

t
− x43

t′

)
. (C.4)

C.2 Relabelling and properties of w

We will write the integrals in the last line of (C.2) using the parabolic cylin-

der functions [78, section 12], which in turn can be expressed using the con-

fluent hypergeometric functions. Before doing so, we will relabel the x, t coor-

dinates and check whether the result obtained is consistent with the general

form [32, 33] of three-point functions dictated by the Schrödinger symmetry.

To do this we slightly modify our notation to bring the three-point function

〈Ψ(t + t′, x4)Ψ(t, x3)Φ (0, 0)〉 into the form 〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉. Thus,

we relabel as, x4 → x31, x3 → x21, t
′ → t32, t→ t21. The result is,

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

√√√√ t32
ν+ 1

2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
−x

2
21
t21
− x2

32
2t32

×

( ∫ ∞
0

e−
1
2
y2+wyyν+ 1

2dy +

∫ ∞
0

e−
1
2
y2−wyyν+ 1

2dy

)
,

(C.5)
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with

w =

(
x21

t21
− x32

t32

)√
t21t32

t31
. (C.6)

The integral converges since ν ≥ −1
2 , (2.2). We recall that we chose t3 > t2 > t1

and hence w ∈ R. It is worthwhile to discuss some properties of the “cross-ratio”

w which is invariant under the Schrödinger symmetry. For t3 > t2 > t1 we have

w2 ≥ 0, and w2 = 0 holds if and only if the spacetime points 1, 2, 3 are aligned

on a straight line. It is easy to show the identity

x12t23 − x23t12 = x23t31 − x31t23 = x31t12 − x12t31, (C.7)

by direct computation. It is amusing to note that the quantity in (C.7) is twice

the “area” of a triangle spanned by the spacetime points 1, 2, 3 up to sign. It is

completely anti-symmetric in the labels 1, 2, 3. It follows that

(x12t23 − x23t12)2

t12t23t31
=

(x23t31 − x31t23)2

t12t23t31
=

(x31t12 − x12t31)2

t12t23t31

=− x2
12

t12
− x2

23

t23
− x2

31

t31

=
x2

32

t32
− x2

31

t31
+
x2

21

t21

=w2

(C.8)

We note that w2 again is completely anti-symmetric in the labels 1, 2, 3. In

section 3.3, we used the notation v = 1
2w

2.

C.3 Comparison to the general form of three-point

functions dictated by Schrödinger symmetry

The standard form of the three-point function in a Schrödinger invariant theory

is, 28

〈O3(t3, x3)O2(t2, x2)O1(t1, x1)〉

=t
−∆3+∆1−∆2

2
31 t

−∆2+∆1−∆3
2

21 t
−∆3+∆2−∆1

2
32 e

− |N2|
2

x2
21
t21
− |N3|

2

x2
31
t31 F123(w2),

(C.9)

where F123 is an arbitrary scaling function which generically is not fixed by

the Schrödinger symmetry alone. The quantum numbers Ni(i = 1, 2, 3) are

the charges of the operators Oi associated with a U(1)-symmetry present for

theory with the Schrödinger symmetry. They satisfy N1 + N2 + N3 = 0, and

N1 > 0, N2 < 0, N3 < 0. For the three-point function studied here, we have

O3 = Ψ,O2 = Ψ,O1 = Φ and ∆3 = 1
2 ,∆2 = 1

2 ,∆1 = 3
2 + ν, N3 = −1, N2 =

−1, N1 = 2.

28Our convention differs slightly from that of [33] in that we adopt the Euclidean statistical field
theory convention rather than the Minkowski one. We assume t3 > t2 > t1.
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To compare with the standard form, it is convenient to rewrite (C.5) using

(C.8),

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
1

2ν+1π
3
4

√
Γ(ν + 1)

√√√√ t32
ν+ 1

2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21
− x2

31
2t31

× e−
1
2
w2

( ∫ ∞
0

e−
1
2
y2+wyyν+ 1

2dy +

∫ ∞
0

e−
1
2
y2−wyyν+ 1

2dy

)
.

(C.10)

The last line combined with the numerical prefactor is the scaling function F123.

C.4 Three-point function in terms of parabolic cylin-

der functions and confluent hypergeometric functions

The integral appearing in (C.10) can be written [78, (12.5.1)]∫ ∞
0

e−
y2

2
+wyyν+ 1

2dy = Γ

(
ν +

3

2

)
e

1
4
w2
U(ν + 1,−w), (C.11)

using the parabolic cylinder function U(a, z). Thus we obtain

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
Γ
(
ν + 3

2

)
2ν+1π

3
4

√
Γ(ν + 1)

√√√√ t32
ν+ 1

2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21
− x2

31
2t31

× e−
1
4
w2

(U(ν + 1,−w) + U(ν + 1, w)) .

(C.12)

We observe that the last line is even in w. We rewrite the above formula

in terms of a parabolic hyperbolic function, u1 in the notation of [78], which is

even in w. We will then rewrite the formula in terms of the confluent hyper-

geometric functions. This will be useful to check against the result by Golkar

and Son [52], and also to study simplifying limits, namely the free boson limit

(ν = −1
2 , appendix E.2), and the limit t32 → 0, which we already computed in

section 4.3.1.

From (12.4.1) and (12.2.6) of [78],

U (a, z) =U (a, 0)u1(a, z) + U ′ (a, 0)u2(a, z), (C.13)

U (a, 0) =

√
π

2
1
2
a+ 1

4 Γ
(

3
4 + 1

2a
) , (C.14)

where u1 and u2 are respectively even and odd in z, we obtain

U (a, z) + U (a,−z) =

√
π

2
1
2
a− 3

4 Γ
(

3
4 + 1

2a
)u1(a, z), (C.15)
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and hence

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
Γ
(
ν + 3

2

)
2

3
2
ν+ 3

4π
1
4

√
Γ(ν + 1)Γ

(
ν
2 + 5

4

)
√√√√ t32

ν+ 1
2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21 e

− x2
31

2t31

× e−
1
4
w2
u1(ν + 1, w).

(C.16)

One can rewrite the result in terms of the confluent hypergeometric function

M(a, b, x) using [78, (12.7.12)]

u1(a, z) = e−
1
4 z

2

M
(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

= e
1
4 z

2

M
(
−1

2a+ 1
4 ,

1
2 ,−

1
2z

2
)
. (C.17)

This leads, finally, to

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
Γ
(
ν + 3

2

)
2

3
2
ν+ 3

4π
1
4

√
Γ(ν + 1)Γ

(
ν
2 + 5

4

)
√√√√ t32

ν+ 1
2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21 e

− x2
31

2t31

×M
(
−ν

2
− 1

4
,
1

2
,−1

2
w2

)
,

(C.18)

and,

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉

=
Γ
(
ν + 3

2

)
2

3
2
ν+ 3

4π
1
4

√
Γ(ν + 1)Γ

(
ν
2 + 5

4

)
√√√√ t32

ν+ 1
2

t
ν+ 3

2
31 t

ν+ 3
2

21

e
− x2

21
2t21 e

− x2
31

2t31

× e−
w2

2 M

(
ν

2
+

3

4
,
1

2
,
1

2
w2

)
.

(C.19)

The latter is our final expression for the three-point function, quoted in the main

text as (4.75).

C.5 t32 → 0 limit

As a consistency check, we consider the limit t32 → 0 to compare with the result

of section 4.3.1. In this limit, we have w2 ≈ x2
32
t32
→ +∞. Applying the asymptotic

formula of the confluent hypergeometric function [78, (13.7.1) and (13.2.4)] 29

M (a, b, x) ∼ exxa−b

Γ (a) Γ (b)

∞∑
s=0

(1− a)s(b− a)s
s!

x−s, (x→ +∞, x ∈ R), (C.20)

29The asymptotic formula is invalid when a and b are non-positive integers. These exceptional cases
are automatically avoided in our use of the formula. See (4.75) or equivalently (C.19).
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to the three-point function (4.75) (equivalently (C.19)), we obtain

〈Ψ(t, x3)Ψ(t, x2)Φ (0, x1)〉

=
Γ
(
ν + 3

2

)
2

3
2
ν+ 1

4 (4π)
1
4

√
Γ(ν + 1)Γ

(
ν
2 + 5

4

) t−(ν+ 3
2)e−

x2
21
2t e−

x2
31
2t

×
(

1

2
x2

32

) ν
2

+ 1
4 Γ

(
1
2

)
Γ
(
ν
2 + 3

4

) ,
(C.21)

where we have written t = t31 = t21, and put t1 = 0. This indeed agrees with

(4.70) which we obtained in section 4.3.1 directly from the pairwise equal-time

four-point function (3.13) since we have

√
πΓ
(
ν + 3

2

)
2ν+ 1

2 Γ
(
ν
2 + 5

4

)
Γ
(
ν
2 + 3

4

) = 1, (C.22)

which follows from the duplication formula [78, (5.5.5)]

Γ (2z) = π−1/222z−1Γ (z) Γ
(
z + 1

2

)
. (C.23)

D Golkar and Son’s analysis in Euclidean

signature

Golkar and Son showed [52] that the form of the scaling function appearing in the

three-point function in a Schrödinger invariant theory is severely restricted when

the scaling dimension of one of the operators equals the special value, ∆ = d
2 ,

where d is the number of spacelike dimensions. The scaling function satisfies

(except for a simple prefactor) the confluent hypergeometric equation. Their

analysis was done in Minkowski signature. Since how the analysis takes over to

Euclidean signature is not entirely trivial, in this appendix we give the Euclidean

version of the analysis of Golkar and Son. 30 In this appendix d is arbitrary and

we write x = (t,x).

The solution to the differential equation contains two arbitrary parameters.

In [52] it was advocated that one of the parameters vanishes due to the regularity

conditions of the OPE, acting as the boundary conditions of the differential

equation. We will also give below a careful discussion of the regularity conditions,

in particular, for the case d = 1. We will see that for that case, the regularity

conditions are weaker and do not imply the vanishing of the parameter.

30We note that the notation used in [52] is slightly unusual. They call what is usually called (up
to constant multiplication) the confluent hypergeometric function M(a, b, x) (in the notation of [78])
as “a generalised Laguerre polynomial” Ln

α(x), with n = −a, b = α + 1. The function is not a
polynomial unless n = −a is a non-negative integer. As shown in [52] the parameter a is related to
the scaling dimensions of the operators (see (D.22)), and is not an integer, in general.
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D.1 Preliminaries

The operators in the Heisenberg picture are

O(t,x) = U−1O(0,0)U, (D.1)

where

U = e−Ht+iP ·x. (D.2)

It is straightforward to verify

UKiU
−1 =Ki + iPit+Nxi, (D.3)

UCU−1 =C + iDt+Kixi −Ht2 + iPix
it+

1

2
Nx2, (D.4)

using the elementary identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · , (D.5)

and the commutation relations given in appendix A.

A primary operator O in a Schrödinger invariant theory is defined by the

conditions

[Ki,O(0)] =0, (D.6)

[C,O(0)] =0. (D.7)

It follows that

[Ki,O(t,x)] =− t∂iO(x) +NOxiO(x), (D.8)

[C,O(t,x)] =−∆OtO − t2∂tO − txi∂iO +
1

2
NOx

2O, (D.9)

where we used

∂iO(t,x) =[O(t,x), iPi], (D.10)

∂tO =[H,O], (D.11)

[N,O] =NOO, (D.12)

[D,O(0)] =i∆OO(0). (D.13)

Here NO and ∆O are the U(1) charge and the scaling dimension of the operator

O.

D.2 OPE coefficients

We consider general constraints on the OPE coefficients imposed by the

Schrödinger symmetry. We consider the OPE O2O1 and focus on the part

proportional to O3, where Oi are scalar primary operators with nonzero U(1)

charges. We consider the special case, ∆3 = d
2 .
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We write down explicitly the first few descendants of O3,

O2(x)O1(0) =
((
C0(x) + Ci1(x)∂i + C2(x)∂t + Cij3 (x)∂i∂j + · · ·

)
O3

)∣∣∣
x=0

+ · · · ,
(D.14)

where t > 0 is assumed.

By taking the commutators of Ki, C with the LHS and RHS, we obtain

−t∂iC0 +N2xiC0 =N3C
i
1, (D.15)

−t∂iCj1 +N2xiC
j
1 =− C2δij + 2N3C

ij
3 , (D.16)

−∆2tC0 − t2∂tC0 − txi∂iC0 +
N2

2
x2C0 =−∆3C2 + Cjj3 N3, (D.17)

where we write Ni ≡ NOi , (i = 1, 2, 3). Generically, these equations express

differential operators acting on C0 to give C1, C2, · · · . For the special case ∆3 =
d
2 , (D.15)-(D.17) imply a differential equation on the coefficient C0:

t2∂2
i C0 + 2N3t

2∂tC0 + 2N1tx
i∂iC0 + (2N3∆2 −N2d) tC0 −N2N1x

2C0 = 0.

(D.18)

The scale and SO(d) invariance require C0 to have the form

C0(t,x) = t−
∆2+∆1−∆3

2 f

(
x2

t

)
. (D.19)

Substituting this to (D.18), we obtain, using N3 = N2 +N1,

0 =4y
d2f

dy2
+ 2d

df

dy
+ 2(N1 −N2)y

df

dy

+

(
N3(∆2 −∆1) + (N1 −N2)

d

2

)
f −N2N1yf,

(D.20)

where y = x2

t . This differential equation becomes the confluent hypergeometric

equation

z
d2v

dz2
+ (b− z)dv

dz
− av = 0, (D.21)

with

a =
1

2

(
∆1 −∆2 +

d

2

)
, (D.22)

b =
d

2
> 0, (D.23)

by a simple transformation f = e−
N1
2
yv, z = N3

2 y. Thus we have

C0(t,x) = t−
∆2+∆1−∆3

2 e−
N1
2

x2

t v

(
N3

2

x2

t

)
. (D.24)
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We assume, for simplicity, that a is not a negative integer. (This can always

be met for example by replacing (O1,O2) with (Ō2, Ō1) so that ∆1 > ∆2.)

The standard confluent hypergeometric functions M(a, b, z) and U(a, b, z) (in

the notation of [78]) are then linearly independent. Hence any solution can be

written

v = AM(a, b, z) +BU(a, b, z), (D.25)

where A,B are constants.

In [52], it was advocated that appropriate regularity conditions on the OPE

coefficient imply

B = 0. (D.26)

This point will be examined in the next subsection D.3.

D.3 Boundary condition

Here we will study the regularity conditions of the OPE, leading to boundary

conditions on the function v appearing in (D.24). We focus in particular on the

possible restrictions on the coefficients A and B in (D.25).

Firstly, we observe that the regularity of C0, in the limit t → 0, x → 0 with
x2

t fixed at a nonzero finite value, does not impose any conditions on v. Hence, if

we wish to restrict the form of v we have to consider the limit x2

t →∞ (the equal-

time OPE) or x2

t → 0 (the “equal-space” OPE, i.e. the OPE O2(t,0)O1(0,0)).

Let us first examine the latter limit, i.e. the behaviour at fixed t > 0 and

x → 0. Then z → +0 and the prefactor in (D.24) behaves as, e−
N1
2

x2

t → 1. In

this limit, and for the values of a, b relevant for us (D.22) (D.23), we have

M(a, b, z) =1 +O(z), (D.27)

U(a, b, z) ≈Γ(b− 1)

Γ(a)
z1−b,

(
b =

d

2
, d = 1, 3, 4, 5, · · ·

)
, (D.28)

U(a, b, z) ≈− 1

Γ(a)
(log z + const.) ,

(
b =

d

2
, d = 2

)
. (D.29)

We have to distinguish the case d = 1 and d = 2, 3, · · · .
For d = 2, 3, · · · , U(a, b, z) → ∞ as z → 0 whereas M(a, b, z) → 1. Hence if

we require the existence of the “equal-space” OPE 31, we obtain

B = 0. (D.30)

This is the result of Golkar and Son [52].

For d = 1, we have M(a, b, z)→ 1 and U(a, b, z)→ 0 as z → 0. Hence even if

we require the existence of the OPE in the limit x2

t → 0, the coefficients A and

31We wish to note that it is far from obvious whether the requirement of the existence of the regular
“equal-space” OPE is mandatory or not.
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B are not constrained. (If we require further that the OPE be non-vanishing

then we get A 6= 0.)

Let us next examine the behaviour at z → +∞, which corresponds to t→ 0+

with fixed x, i.e. to the limit of the equal-time OPE. We shall see in fact that the

OPE coefficient C0 in this limit either diverges or goes to zero. This is not sur-

prising: Consider, in the free-field theory, the part of the OPE Ψ(t,x)Ψ Ψ(0,0)

proportional to Ψ(0,0). The OPE coefficient is essentially the two-point function

〈Ψ(t,x)Ψ(0,0)〉 ∼ 1√
t
e−

x2

2t and is singular in the limit t→ 0+ with fixed x.

The general argument goes as follows. In the limit, z →∞, we have

M(a, b, z) ∼ 1

Γ(a)
ezza−b, (D.31)

U(a, b, z) ∼z−a. (D.32)

Let us separately consider the A- and B- type solution, i.e. the first and the

second term in (D.25), respectively. The A-type solution gives, in the limit

t→ 0+ with fixed x,

C0(t,x) ∼ Ae−
N1
2

x2

t e
N3
2

x2

t = Ae
N2
2

x2

t . (D.33)

Hence if N2 > 0, C0 diverges, and if N2 < 0, C0 goes to zero. (We only write in

the above formula the leading exponential behaviour.) For the B-type solution,

we have

C0(t,x) ≈Bt−
∆2+∆1−∆3

2 e−
N1
2

x2

t

(
x2

t

)− 1
2(∆1−∆2+ d

2 )

=Bt−∆2+ d
2
(
x2
)− 1

2(∆1−∆2+ d
2 )
e−

N1
2

x2

t ,

(D.34)

using ∆3 = d
2 . Again for N1 6= 0, C0 either goes to 0 or diverges. Hence, for

operators with nonzero charges and ∆3 = d
2 , the equal-time OPE either diverges

or vanishes.

To summarise this subsection, the limit x2

t → +∞ (the equal-time OPE) is

singular (the OPE coefficient either diverging or vanishing) and does not give

constraints on the coefficients A,B. If we require the regularity of x2

t → 0 (the

equal-space OPE), we obtain B = 0 for d = 2, 3, · · · , but no constraints for d = 1.

D.4 Three-point function

We consider the general form of the three-point function of primary opera-

tors [32],

〈Ō3(t3, x3)O2(t2, x2)O1(t1, x1)〉

=t
−∆3+∆1−∆2

2
31 t

−∆2+∆1−∆3
2

21 t
−∆3+∆2−∆1

2
32 e

− |N2|
2

x2
21
t21
− |−N3|

2

x2
31
t31 F123(w2),

(D.35)

where t3 > t2 > t1. Here w is the Schrödinger invariant spacetime cross-ratio

defined by (C.8). To be specific, we consider the case,

N1 > 0, N2 < 0, N3 > 0,−N3 < 0, (D.36)

N1 +N2 −N3 = 0. (D.37)
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(This choice is consistent with the three-point function we studied in section

4.3.2. The comparison is done at the end of this subsection.)

To compare with the OPE coefficient, we set

(t1,x1) =(0,0), (D.38)

(t2,x2) =(t,x), (D.39)

and consider the limit (t,x)→ (0,0) with x2

t fixed. Then we have

w2 =
(x3 − x)2

t3 − t
− (x3)2

t3
+

x2

t
−→ x2

t
, (D.40)

and hence

〈Ō3(t3, x3)O2(t2, x2)O1(t1, x1)〉

−→t−∆3
3 e

−N3
2

x2
3
t3 t−

∆2+∆1−∆3
2 e−

−N2
2

x2

t F

(
x2

t

)
.

(D.41)

On the other hand, the OPE yields

〈Ō3(t3,x3)O2(t,x)O1(0,0)〉
→〈Ō3(t3,x3)O3(0,0)〉 × C0(t,x)

=t−∆3
3 e

−N3
2

x2
3
t3 × t−

∆2+∆1−∆3
2 e−

N1
2

x2

t v

(
N3

2

x2

t

)
,

(D.42)

using (1.4) and (D.24). Note that the contributions from descendants of O3

vanish in this limit.

Comparing (D.41) and (D.42), we finally obtain

F (y) =e−
N3
2
yv (y)

=e−
N3
2
y

(
AM

(
1

2

(
∆1 −∆2 +

d

2

)
,
d

2
,
N3

2
y

)
+BU

(
1

2

(
∆1 −∆2 +

d

2

)
,
d

2
,
N3

2
y

))
,

(D.43)

using (D.25), (D.22), (D.23).

Substituting back to (D.35), the three-point function is

〈Ō3(t3, x3)O2(t2, x2)O1(t1, x1)〉

=t
−∆3+∆1−∆2

2
31 t

−∆2+∆1−∆3
2

21 t
−∆3+∆2−∆1

2
32 e

− |N2|
2

x2
21
t21
− |−N3|

2

x2
31
t31

×e−
N3
2
w2

(
AM

(
1

2

(
∆1 −∆2 +

d

2

)
,
d

2
,
N3

2
w2

)
+BU

(
1

2

(
∆1 −∆2 +

d

2

)
,
d

2
,
N3

2
w2

))
.

(D.44)

To compare with our result presented in section 4.3, we put O1 = Φ,O2 =

Ψ, Ō3 = Ψ with N1 = 2, N2 = −1, N3 = 1,∆1 = 3
2 + ν,∆2 = 1

2 ,∆3 = 1
2 , and

d = 1. We see that for our model, the result of our explicit computation (4.75)

supports Golkar and Son’s ansatz, B = 0, even if the regularity conditions do

not require B = 0 in d = 1.
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E Free-Boson limit

In this appendix, we consider the limiting case ν = −1
2 , which is the free boson

theory.

E.1 Pairwise equal-time four-point function

Substituting

I− 1
2

(y) =

√
2

π

1
√
y

cosh y (E.1)

into the pairwise equal-time four-point function (3.13) (which is valid for t >

0, x21 > 0, x43 > 0), we obtain

〈Ψ(t, x4)Ψ(t, x3)Ψ(0, x2)Ψ(0, x1)〉

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t ×
√
x21x43

4πt3

√
2

π

1√
x21x43

2t

cosh
x21x43

2t

=e−
x2
21+x2

43+(x3+x4−x1−x2)2

4t × 1

πt
cosh

x21x43

2t

=
1

2πt

(
e−

(x21+x43)2+(x3+x4−x1−x2)2

4t + e−
(x21−x43)2+(x3+x4−x1−x2)2

4t

)
=

1

2πt

(
e−

x2
14+x2

23
2t + e−

x2
13+x2

24
2t

)
=K(x4, x1; t)K(x3, x2; t) +K(x4, x2; t)K(x3, x1; t),

(E.2)

where K(x′, x; t) in the last line is the free propagator (3.20). This is the expected

result for free bosons.

E.2 Three-point function

Substituting ν = −1
2 into (4.75), and then using M(1, b, z) = 1 for general b, we

obtain

〈Ψ(t3, x3)Ψ(t2, x2)Φ (t1, x1)〉 =
1√
π

√
1

t31t21
e
− x2

21
2t21 e

− x2
31

2t31 . (E.3)

Here Φ =
√
πΨ

2
for the free-field theory; the normalisation condition is fixed by

the two-point function (4.9). This reproduces the free theory result.
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