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A dynamic mean-field theory for spin ensembles (spinDMFT) at infinite temperatures on arbitrary
lattices is established. The approach is introduced for an isotropic Heisenberg model with S = 1

2
and

external field. For large coordination numbers, it is shown that the effect of the environment of each
spin is captured by a classical time-dependent random mean-field which is normally distributed.
Expectation values are calculated by averaging over these mean-fields, i.e., by a path integral over
the normal distributions. A self-consistency condition is derived by linking the moments defining
the normal distributions to spin autocorrelations. In this framework, we explicitly show how the
rotating wave approximation becomes a valid description for increasing magnetic field. We also
demonstrate that the approach can easily be extended. Exemplarily, we employ it to reach a quan-
titative understanding of a dense ensemble of spins with dipolar interaction which are distributed
randomly on a plane including static Gaussian noise as well.

I. INTRODUCTION

Nuclear magnetic resonance (NMR) has been an ex-
tremely important field for a long time. On the one hand,
it constitutes a powerful analytical technique in physical
chemistry [1–4] which helps to understand the structure
of molecules on all levels from their primary structure to
their tertiary structure. One the other hand, it is a tech-
nique which has enabled fundamental steps in quantum
computing by taking spins S = 1

2 as quantum bits [5].
The latter development illustrates that the dynamics of
the spin degree of freedom has gained enormous atten-
tion in particular in recent years. Closely related is the
rapid development of the field of quantum sensing based
on NV-centers in diamond [6–13] which behave similarly
to an elementary spin [14].
A key phenomenon in this field is decoherence, i.e., the
loss of coherence of a small quantum system in contact
with a larger environment, often called bath. A generic
approach to small systems in weak contact with a large
bath is the theory of open quantum systems [15]. This
is a powerful approach if the energy scales of system and
bath are very different. If the bath correlations decay
much faster than the system’s dynamics quantum master
equations reliably capture the physics, for example in
radiative decay processes. If, however, the separation
of energy scales is not given and the back-action of the
system onto the bath cannot be neglected a quantitative
description is notoriously difficult.
In the context of the coherent control of spins, the small
quantum system generically is a single spin. The deco-
herence can result from a fluctuating environment, for in-
stance from stray magnetic fields or from phonons which
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may be fast. But very often it results from surrounding
spins of electronic or nuclear origin. This is the case of-
ten relevant in NMR and in sensing by NV-centers. Then
the back-action of the considered spin onto its neighbor-
ing spins is important and cannot be neglected.

While we cannot provide a comprehensive review over all
techniques applicable to spin systems, we present a brief
overview of the most commonly used techniques. This
allows us to highlight differences to the approach we are
proposing in this article.

For very small bath sizes of only a few spins the resulting
problem can be tackled by exact diagonalization (ED).
The Chebyshev polynomial expansion technique (CET)
allows for substantially larger but still comparably small
finite bath sizes [16, 17]. If, however, the degrees of free-
dom of the bath are too numerous then brute force nu-
merical approaches cannot be applied due to the expo-
nential growth of the Hilbert space with the number of
bath spins. For certain geometries such as chains and
stars density-matrix renormalization [18, 19] provides nu-
merical alternatives. But the maximum times which can
be reached are limited. For approximately star-like
topologies, like the one of the central spin model, clus-
ter expansions [20, 21] and related methods [22], linked-
cluster expansions [23, 24] and cluster-correlation expan-
sions [25–27] are prominent approaches. But, these ap-
proaches become cumbersome for lattices with many dif-
ferent bonds. In addition, they represent expansions in
time so that the reachable maximum time is limited by
the complexity of the tractable maximum clusters. The
eminent problem with (occasionally constrained) Monte
Carlo sampling methods [28–30] is that statistical errors
can become very substantial, see in particular Ref. [31]
concerning the effects for up to N = 48 nuclear spins.
By means of semi-classical or quantum mechanical mas-
ter equations for the density matrix of the whole system
[32–35], an access to the overall dynamics can be obtained
which is typically easy to realize, but potentially suffers
from the drawbacks of mean-field approaches if these are
not based on small expansion parameters.

ar
X

iv
:2

10
7.

07
82

1v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

 F
eb

 2
02

2

mailto:timo.graesser@tu-dortmund.de
mailto:philip.bleicker@tu-dortmund.de
mailto:dag.hering@tu-dortmund.de
mailto:mohsen.yarmohammadi@tu-dortmund.de
mailto:goetz.uhrig@tu-dortmund.de


2

Hence, alternative techniques are of significant interest.
One useful observation is that the dynamics of spins and
in particular the effect of a larger number of spins can
be captured fairly well by their classical equations of mo-
tion [36–40]. This can be understood as an application of
the ideas of the truncated Wigner approximation [41, 42]
whose foundations date back to the idea of Wigner that
a part of the quantumness is captured by averaging over
distributions of initial conditions [43]. But it is concep-
tually very difficult to extend this approach systemat-
ically to take more and more quantum effects into ac-
count. Apart from the smallness of Planck’s constant ~
no small parameter is apparent.

In the present article we deal with dense spin systems
where each spin interacts with a large number of other
spins. In the limit where this number of interaction
partners becomes infinite we derive a dynamic mean-
field theory for the spin dynamics (spinDMFT) at in-
finite temperature, i.e., for completely disordered spins.
As in all mean-field theories, spinDMFT comprises an
effective single-site problem and a self-consistency con-
dition. Similar to the case of the established fermionic
dynamic mean-field theories [44] the time dependence
of the mean-field is a crucial ingredient. It bears sim-
ilarities to the mean-field approach for the Sherrington-
Kirkpatrick quantum model in which spin glass behavior
has been established [45–48]. A dynamic mean-field ap-
proach has also been used for ordered magnetic phases
[49] for which, however, the couplings between the spins
have to be scaled differently.

After this introduction, we derive the spinDMFT in
Sect. II in consecutive steps for an isotropic Heisen-
berg model and discuss details of the numerical imple-
mentation. Subsequently, we compare the results of
spinDMFT for several systems with results obtained by
CET and iterated equations of motion [50, 51] in Sect. III.
Sect. IV is devoted to the application of spinDMFT to
two-dimensional spin ensembles in which the spins cou-
ple via dipolar interactions. In particular, we can con-
tinuously show how the well-known rotating wave ap-
proximation (RWA) becomes more and more reliable for
increasing external magnetic field. In Sect. V we con-
clude the article and give an outlook to future directions
of research. The appendices provide technical details
of the derivation and the numerical implementation of
spinDMFT including an analysis of the achievable accu-
racy in the numerical simulations.

II. APPROACH

A. Model and Definitions

For concreteness, we consider an isotropic Heisenberg
model for an ensemble of spins with S = 1

2 at infinite
temperature. The spins are subjected to a static and ho-
mogeneous magnetic field aligned in the z direction so

that the Hamiltonian reads as

H =
∑

i<j

Jij ~Si · ~Sj + γsB
∑

i

Szi . (1)

Here and henceforth we use bold symbols for quantum
mechanical operators and three-dimensional vectors are
indicated by the arrow above the symbol. The properties
of the underlying spin lattice are encoded in the couplings
Jij = Jji. It is useful to introduce the operators of the
local environments of each spin

~V i :=
∑

j,j 6=i
Jij~Sj . (2)

Using them the Hamiltonian can be expressed as

H =
1

2

∑

i

~Si · ~V i + γsB
∑

i

Szi . (3)

The prefactor 1
2 occurs here to avoid double counting of

the couplings. For later purposes, we also introduce the
moments of the coupling constants

Jm,i :=
(∑

j

|Jij |m
)1/m

(4)

and the effective coordination numbers depending on the
site i

zi :=
J 2

1,i

J 2
2,i

, z′i :=
J 4

2,i

J 4
4,i

. (5)

Note that we do not restrict the model to periodic lat-
tices, but include arbitrary clusters. Both coordination
numbers assess the number of spins that constitute the
environment of site i. Considering only constant nearest-
neighbor (NN) interactions both numbers zi and z′i equal
the number of nearest neighbors zNN,i = zi = z′i which
is the usual coordination number.
A common property of mean-field approaches is that they
become exact in the limit z → ∞ [44]. Therefore, 1/z
serves as a control parameter allowing us to systemati-
cally neglect terms in non-leading order in 1/z. Hence, we
examine several quantities with respect to their scaling
with the effective coordination numbers. We will show
that the spinDMFT becomes exact in the limit of infinite
zi and z′i.
As a consequence, the approach is not optimum for low-
dimensional systems. However, since we consider effec-
tive coordination numbers instead of the standard one,
not only the dimensionality but also the overall behavior
of the coupling constants matters. Obviously, long-range
couplings will increase the effective coordination num-
bers at given, fixed dimension. In Sect. IV, we demon-
strate that in case of dipolar couplings, i.e., for weakly
decreasing couplings with the distance, our approach is
successful even in two dimensions.
We establish the dynamic mean-field theory for spins
(spinDMFT) for the introduced model. This is done in
four steps:
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(i) We replace the local-environment operators by clas-
sical time-dependent random local mean-fields.

(ii) We argue that the dynamics of the local mean-field
at site i does not depend on the dynamics of the
single spin at site i.

(iii) We show that the mean-fields are normally dis-
tributed.

(iv) The defining moments of the normal distributions
are linked to spin autocorrelations yielding a closed
set of self-consistency equations.

Since we consider infinite temperature, the density op-
erator is given by 1/d, where d is the dimension of the
Hilbert space. Thus, any quantum expectation values are
given by

〈A〉 =
1

d
Tr (A) (6a)

and, consequently, any correlation by

〈A(t)B(0)〉 =
1

d
Tr
(
eitHAe−itHB

)
, (6b)

where we have set ~ = 1. In the next section, we under-
take the first and the second step, (i) and (ii).

B. From the spin ensemble to an effective single
site

1. Step (i)

We justify the substitution of the local-environment op-

erators ~V i(t) by classical fields. For this to hold, it is
crucial that the spin ensemble is dense so that quantum
fluctuations of the environment are negligible relative to
the classical dynamics. The argument is adapted from
Ref. 19 and runs as follows. We consider the Frobenius
norm of an operator defined by

||A||2 =
1

d
Tr
(
A†A

)
(7)

and apply it to

||V α
i ||2 =

J 2
2,i

4
(8)

for each component of the local-environment operator.
To assess the role of the coordination numbers, we assume
that the J2,i are of the same order of magnitude at every
site. They set the relevant energy scale which one should
think of being constant when scaling the coordination
numbers, i.e., the individual couplings scale roughly like
Jij ∝ 1/

√
z.

For a classical variable, any commutator would van-
ish. Hence, we study the commutators of the local-
environment operators and compare their norm to the

one of the ~V i themselves

∣∣∣
∣∣∣[V α

i ,V
β
i ]
∣∣∣
∣∣∣
2

=
J 4

4,i

4
=

1

4

J 4
2,i

z′i
(9)

for α 6= β; for α = β the commutator vanishes. Clearly,
for diverging effective coordination number z′i → ∞ the
commutator vanishes relative to the norm of the opera-
tor. Hence its quantumness becomes negligible and the
local-environment operators can be replaced by classical

mean-fields ~V i → ~Vi. Note that this is a very common
phenomenon in quantum mechanics. Quantities which
represent the collective properties of a large number of
constituents behave classically. We stress, however, that
this argument does not imply that the classical field is
static. Hence, we avoid this oversimplification and take
the mean-fields as classical, but time-dependent and dy-

namic. A potential correlation between ~Vi and ~Si is not
ruled out at this stage.

2. Step (ii)

Here, the aim is to show that the dynamics of the indi-
vidual spin at site i does not influence the dynamics of
~Vi in the limit of zi → ∞. The basic idea is simple: a
single spin contributes only negligibly to the large sum

defining ~Vi. But it is not straightforward to cast this
idea into a formal argument. What we want to show is

that the dynamics of ~Si does not influence the dynam-

ics of ~Vi, i.e., that no back-action needs to be taken into
account. Indeed, we show in Appendix A that the corre-
lation between the spin at site i and at an adjacent site
j scales like 1/z for the special case of a Bethe lattice
with NN interaction, where z = zi = z′i ∀i holds. Hence
the correlation between the spin at site i and its local

environment ~Vi scales like J ∝ 1/
√
z and becomes negli-

gible for z →∞. The number of spins in ~Vi scales like z
compensating the factor 1/z from the correlations.
We stress that this conclusion is subtle. It is valid if
the dynamics of ~Vi is induced by a process of order z0

because the relative error then is indeed of order z−1/2.
But if there is no process inducing a dynamics of order z0

this does not hold true. Indeed, the central spin model
(CSM) provides an instructive example. In this model, a
central spin is coupled to a large number of bath spins,
but the bath spins are not coupled among themselves

HCSM = ~S0 ·
n∑

i=1

Ci~Si = ~S0 · ~P , (10)

wherein Ci are arbitrary coupling constants and ~P de-
notes the so-called Overhauser field. This looks like a
perfect scenario for replacing the ~P by a classical Over-

hauser field ~P with a given dynamics imposed on the
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central spin. Yet, this approach fails [19, 38, 52] because
the Overhauser field has no dynamics if the central spin
is taken out and treated separately. This reasoning shows
us that it is essential at this stage to deal with a dense
spin system where each spin interacts with many others
so that excluding one of them from the dynamics hardly
changes the dynamics of all others. This is the case if
the coordination number at each site is large. We point
out that this is clearly not the case in the CSM where
excluding the central spin brings all dynamics to a halt
and where the coordination number z for each bath spin
is only 1.
On the basis of the above arguments, we replace each

local-environment field ~V i in the Hamiltonian (3) by an

a priori given dynamic mean-field ~Vi(t) so that the spin
dynamics is given by

Hmf(t) =
∑

i

Hmf,i(t) (11a)

Hmf,i(t) = ~Vi(t) · ~Si + γsBSzi . (11b)

These mean-field Hamiltonians, labeled by the subscript
“mf”, only contain linear spin-operator terms so that the
spin dynamics at a given site is decoupled from the one

at other sites once the mean-fields ~Vi(t) are given as func-
tion of time. In order to emphasize that not only single

values ~Vi(t) are meant, but the whole time dependence

we introduce the shorthand ~Vi for it. These time series
are drawn from a so far unknown probability functional

p
[
~V1, ..., ~VN

]
which we will determine in the next sec-

tion. In conclusion, the original 2N -dimensional ensem-
ble is mapped to N two-dimensional quantum impurity
systems each capturing a single spin subjected to a time-
dependent mean-field and the external field.

C. Distribution of the mean-fields ~Vi

Here we carry out step (iii) and step (iv) from the list in
Sect. II A.

1. Step (iii)

The central argument is again that two spins at site i and
j are only weakly correlated. This is difficult to show for

an arbitrary cluster with arbitrarily linked spins. But for
the Bethe lattice with NN interaction we demonstrate
in Appendix A that the correlation 〈Sαi (t)Sβj (0)〉 scales

like z−||i−j|| where ||i − j|| is the number of NN links
needed to go from site i to j. Moreover, we show that

the correlation 〈V αi (t)V βj (0)〉 is suppressed at least like

1/z for i 6= j. Thus, we conclude that the time series of

the local mean fields ~Vi are independent at different sites

p
[
~V1, . . . , ~VN

]
=
∏

i

pi

[
~Vi
]
. (12)

This allows us to compute any local expectation value by

〈Ai(t)〉 =

∫
D~Vi pi

[
~Vi
]
〈U †i (t, t0)AU i (t, t0)〉(sts)~Vi

(13a)

=
1

2
Tr (A) . (13b)

where 〈. . .〉(sts)~Vi
stands for the expectation value for a given

single time series ~Vi. This contribution is weighted by

the probability pi

[
~Vi
]

to reach the total average. The

unitary time evolution U i(t, t0) is the solution of the
Schrödinger equation

d

dt
U i(t, t0) = −iHmf,i(t)U i(t, t0) (14)

for the initial condition U i(t0, t0) = 1. For future use, it
is worth mentioning that the unitary evolution operator
U i(t, t0) only depends on the mean-field time series be-
tween t0 and t and not on all times. Hence, the computa-
tion of a time-dependent expectation value only requires
to average over mean-field time series within the relevant
time interval.

For the case in (13), it turns out that no averaging over
time series is necessary at all. Since we assume that the
system is completely disordered at t0, i.e., the density
matrix is proportional to the identity, the unitary evolu-
tion cancels out and one arrives at the second line (13b).
Averaging actually does not matter here.

For correlations, the evolution in time does matter and
hence does the averaging over the time series. We con-
sider

〈Ai(t1)Bi(t2)〉(mf) :=

∫
D~Vi pi

[
~Vi
]
〈U †i (t1, t0)AiU i (t1, t0)U †i (t2, t0)BiU i (t2, t0)〉(sts)~Vi

(15a)

=

∫
D~Vi pi

[
~Vi
]
〈U †i (t1, t2)AiU i (t1, t2)Bi〉(sts)~Vi

(15b)

which clearly only depends on the time interval [t1, t2]. Note that temporal homogeneity is not given for a
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single time series, but it holds on average so that
〈Ai(t1)Bi(t2)〉(mf) = 〈Ai(t1 − t2)Bi(0)〉(mf) holds.

The next, important conclusion is that each local envi-

ronment ~Vi is the sum of a large number of essentially
independent spins (2). This number becomes infinite for
diverging coordination number so that the central limit

theorem applies and we conclude that the ~Vi are normally
distributed. This means that we need only two moments,
the first and second, to determine the distribution. This
brings us to the fourth and final step.

2. Step (iv)

We establish self-consistency conditions which link the
first and second moments of the normal distribution to
quantum expectation values and correlations.
For the first moment, it is straightforward to see from
Eq. (13) that it vanishes

〈V α
i (t)〉 =

1

2
Tr (V α

i ) = 0 (16)

for all sites i, all components α ∈ {x, y, z}, and all times
t because we start from the disordered, T = ∞ case
where the expectation values of all spin operators van-

ish. Hence, we conclude that the distribution pi(~V) is a
normal distribution with vanishing first moments

V αi (t) :=

∫
D~Vpi

[
~V
]
V α = 0. (17)

This is the first self-consistency condition which is easy
to fulfill. The spinDMFT can also be extended to include
non-vanishing first moments and even time-dependent
moments, but this is not the scope of the present article.
For the second moments, we consider

〈V α
i (t1)V β

i (t2)〉 =
∑

j,k 6=i
JjiJki〈Sαj (t1)Sβk(t2)〉 (18a)

=
∑

k 6=i
J2
ki〈Sαk (t1)Sβk(t2)〉(mf) (18b)

=
∑

k 6=i
J2
ki〈Sαk (t1 − t2)Sβk(0)〉(mf), (18c)

where the second line results from the fact that the spin-
spin correlations between different sites vanish in the
limit of infinite coordination number. The third line,
finally, results from (15) on average. Self-consistency re-
quires that the second moment computed above equals
the correlations of the local mean-fields, i.e.,

V αi (t1)V βi (t2)
!
=
∑

k 6=i
J2
ki〈Sαk (t1 − t2)Sβk(0)〉(mf) (19a)

= V αi (t1 − t2)V βi (0). (19b)

This closes the set of self-consistency conditions. If the
second moments only depend on the time difference t1−

t2 the resulting two-time spin expectation values only
depend on t1− t2. Hence solutions homogeneous in time
exist. Whether they are the only conceivable solutions
is an additional question which we do not study in this
paper and leave for future research.

At this stage, we observe the interesting feature that the
resulting mean-field theory is the same that one would
obtain for classical spins of the same average length. This
is so since the effective single-site problem in Eq. (11)
only contains the spin operator linearly. According to
the Ehrenfest theorem the quantum mechanical expec-
tation values behave identical to classical variables. We
conclude that the classical and quantum mechanical spin
system converge to the same spinDMFT for infinite co-
ordination number. We emphasize, however, that for
spins larger than 1/2 non-linear local terms may arise,
for instance from quadrupolar couplings [53]. Then there
is a difference between the quantum and the classical
spinDMFT.

Henceforth, we use the term ‘autocorrelation’ to denote

the local spin-spin correlation 〈Sαi (t1)Sβi (t2)〉. Later,
when numerical results are presented, we will also dis-
tinguish between diagonal autocorrelations (α = β) and
cross autocorrelations (α 6= β).

The message of Eq. (15) is that one can compute the
autocorrelations at each site if one knows the moments

V αi (t)V βi (0) defining the normal distribution of ~Vi. In
return, Eq. (19) tells us that the knowledge of the auto-
correlations of the spins linked to site i yields the second

moments of ~Vi. It is to be expected that this closed set
of self-consistency equations can be solved iteratively and
our numerical results confirm that this is true. Numerical
aspects will be discussed in the next section.

In the present paper, we do not intend to use spinDMFT
for problems with spatial dependence even though the
general formalism derived so far allows for such spatial
dependencies. But the concomitant numerical task is
quite demanding. Our goal here is first to introduce the
approach of spinDMFT and to illustrate its performance.
To this end, we opt to consider homogeneous spin en-
sembles where each site is equivalent to every other site.
Certainly, this is the case for periodic lattices but it can
also hold for dense random spin ensembles where each
spin is interacting on average with the same number of
spins and with the same interaction strength. Then, all
autocorrelations are the same and hence all second mo-
ments of the local mean-fields. Then the self-consistency
condition (19) simplifies considerably because the auto-
correlations on the right hand side can be taken out of
the sum. The site-independent second moments read as

V α(t)V β(0) = J 2
2 〈Sα(t)Sβ(0)〉(mf). (20)

Since all sites are equivalent, no site indices need to be
denoted. Interestingly, the only energy constant govern-
ing the spin dynamics aside from the external magnetic
field is the root-mean-square J2 of the couplings.
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D. Numerical implementation

Our aim is to implement a numerical procedure by which
the mean-field moments determined by the self-consistent
equations can be evaluated. The basic idea is to start
with some arbitrary initial function and to converge iter-
atively to the solution. In each iteration step, one com-
putes the autocorrelations for a single spin via the path
integral (15b) and subsequently the mean-field moments
via the self-consistent equations (20). This scheme is il-
lustrated in Fig. 1.

mean-field
moments

spin
correlations

initial
mean-field
moments

self-consistent

equations

expectation values via
path integral

Figure 1. Scheme of the iteration procedure.

The computation of the path integral constitutes the nu-
merical challenge. First, we need to discretize the time
so that the number of second moments becomes finite.
Henceforth, we set t0 = 0 and choose an equidistant dis-
cretization [t0 = 0, ...tL], i.e., tl = lδt. The numerical er-
ror resulting from the discretization is discussed and ana-
lyzed in appendix B 2. We obtain a [3(L+ 1)×3(L+ 1)]-
dimensional covariance matrix M of which the matrix
elements are

Mα,β
t1,t2 = V α(t1)V β(t2). (21)

No site label i occurs because we treat a homogeneous
spin ensemble so that the covariance matrix is the same
at each site. But a possible generalization to a spatial
dependence is obvious. If M is known the corresponding
normal distribution reads as

p
[
~V
]

=
1√

det2πM
exp

(
−1

2
~V>M−1~V

)
. (22)

To be specific, the vector-matrix-vector product in the
argument of the exponential function stands for

~V>M−1~V =
∑

α,β

∑

t1,t2

V α(t1)
(
M−1

)α,β
t1,t2

V β(t2). (23)

Second, we use a Monte-Carlo method to carry out the

path integral: we draw a time series ~V from the distri-
bution function, compute the expectation value for each
time series and finally calculate the arithmetic mean of
the results. This is done sufficiently often to achieve a
small enough statistical error which is studied in detail
in App. B 1. The strategy to determine the mean-field
moments is set up as follows:

1) Choose arbitrary functions for the initial second
moments of the mean-fields in the studied time in-
terval.

2) Construct the [3(L+ 1)×3(L+ 1)]-dimensional co-
variance matrix as in Eq. (21).

3) Draw a large number of time series for the mean-
field according to the distribution (22).

4) Compute the time evolution operator U (tl, 0) at
all times for the drawn time series. This allows
one to calculate the individual spin autocorrela-
tions 〈Sα(tl)S

β(tl′)〉(sts)~V for each time series and all

pairs of tl, tl′ . If one assumes homogeneity in time,
only the time difference matters and one can set
tl′ = 0. Numerical issues arising for this assump-
tion are clarified in App. B 4.

5) Determine the autocorrelations by averaging over
the individual autocorrelations computed in the
previous step.

6) Evaluate the iterated mean-field moments from the
self-consistency conditions (20) and return to step
2) or stop if convergence of the second order mean-
field moments is achieved within a given tolerance.

For step 2), it is convenient to set up the covariance ma-
trix in blocks depending on the spin components α, β ∈
{x, y, z}:

M =



Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


 . (24)

Spin symmetries of the system can easily be exploited
to reduce the numerical effort. For instance, for zero
magnetic field any block with α 6= β vanishes, so that the
covariance matrix becomes block-diagonal. Furthermore,
we stress that M is symmetric. This is actually required
for a covariance matrix. Here, it results from the physics
at infinite temperature: the quantum expectation values
and hence the mean-field moments are symmetric

〈V α(t1)V β(t2)〉 = 〈V β(t2)V α(t1)〉 (25)

due to the cyclic invariance of the trace. Another crucial
property of covariance matrices is their positive semidef-
initeness. In App. B 5 we show that M is automatically
positive definite because it results from the quantum ex-
pectation values of Hermitian operators. In App. B 4 we
explain how including time-translation invariance in the
algorithm reduces the numerical effort further.
Another algorithmic issue is the sampling procedure in
step 3). Since the covariance matrix is generally non-
diagonal, the mean-fields at different times cannot be
drawn independently of each other. Hence, it is indi-
cated to first change basis such that M is diagonal in
the new basis. In this basis, for each vector component
an independent random variable can be drawn from a
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one-dimensional normal distribution. Subsequently, we
transform back into the original basis obtaining the de-
sired autocorrelation in time. We recommend the follow-
ing strategy:

a) Diagonalize the symmetric, non-negative covari-
ance matrix by the orthogonal transformation O

D = O>M O. (26)

b) Sample a 3(L + 1)-dimensional vector ~R of uncor-
related Gaussian random numbers in the diagonal
basis. Each component has a zero average and a
variance given by the corresponding eigenvalue of
M , i.e., the corresponding diagonal element of D.

c) Transform the random vector ~R to the original ba-
sis

~V = O ~R. (27)

The diagonalization needs to be performed only once in
each iteration step since all drawn time series belong to
the same covariance matrix. In contrast, steps b) and c)
have to be performed for each drawn time series.
To compute the time evolution operator, or propagators,
in step 4) numerically we split it into a product of prop-
agators over the short time interval between consecutive
tl, i.e., over δt = tl+1 − tl

U (tl, 0) = U (tl, tl−1) . . .U (t2, t1)U (t1, t0) . (28)

These propagators can be computed efficiently
by commutator-free exponential time propagation
(CFET)[54]. Since we do not have information about
H(mf) at times between two consecutive tl any integral
can only be approximated by trapezoidal rule. There-
fore, the error of each propagator is at best of order δt3

so that CFETs of orders larger than two appear point-
less. From our numerical experience, we recommend a
second-order and an optimized fourth-order CFET [54]

U
(2)
CF

(
tk, tk−1

)
= eA1 (29a)

U
(4Opt)
CF

(
tk, tk−1

)
= e

11
40A1+ 20

87A2+ 7
50A3 ·

e
9
20A1− 7

25A3 e
11
40A1− 20

87A2+ 7
50A3 ,

(29b)

where

Aj = −i(2j − 1)
δt

2

(
H(tk)− (−1)jH(tk−1)

)
. (29c)

In step 6), one requires an exit condition to decide when
a sufficiently converged result has been found. A possible
choice is to compute the deviation between the results of
current and previous iterations and compare it to a cho-
sen tolerance threshold. If the deviation falls below the
tolerance threshold, the iteration is stopped. We discuss
the definition of the deviation and the choice of the toler-
ance in App. B 3. In general, when we graphically show

numerical results of spinDMFT, we choose the numerical
parameters such that the resulting errors are not larger
than the thickness of the lines, if not explicitly discussed
otherwise. As mentioned before, Appendix B provides
a closer insight into the error sources. In the following
sections, we examine the validity of spinDMFT by com-
paring its results to the ones of established numerical
techniques.

III. COMPARISON OF spinDMFT TO OTHER
APPROACHES

Before applying the advocated spinDMFT to various
physical systems it is advisable to compare results
of spinDMFT with results of different well-established
methods. Since the main idea of spinDMFT is based
on a large number of interaction partners we expect the
agreement to become the better the larger the coordina-
tion number of the spin ensemble is.

A. Methods for comparison

Below, we use two methods to obtain results for compar-
ison. The first method is the Chebyshev expansion tech-
nique [16, 17] (CET), the second method is the iterated
equations of motion (iEoM) approach [50, 51]. The CET
is numerically exact up to a systematically controlled er-
ror threshold. The iEoM approach is an approximate
approach controlled by the number m of iterations per-
formed.
To obtain the time dependence O(t) of an observable us-
ing CET we expand the unitary time evolution operator
U = e−iHt in terms of Chebyshev polynomials defined
recursively by

T0(x) = 1, T1(x) = x (30a)

Tn+1(x) = 2xTn(x)− Tn−1(x). (30b)

All polynomials Tn are defined on the closed interval
I = [−1; 1]. To ensure that the energy spectrum of a
given Hamiltonian H lies in I we rescale the Hamiltonian
according to H → H ′ = (H − b)/a. Then, the Cheby-
shev polynomials can be used as an orthogonal functional
basis. In order to perform the rescaling an estimate of
the extremal eigenvalues [55–57] of H is needed to obtain
a = (Emax − Emin) /2 and b = (Emax + Emin) /2. Rough
estimates in the form of upper (lower) bounds for Emax

(Emin) are sufficient because the rescaling only has to
ensure that the rescaled eigenvalues lie within I. Subse-
quently, the expanded time evolution operator reads as

U =

∞∑

n=0

αn(t)Tn(H ′) (31a)

αn(t) = (2− δn,0)ine−ibtJn(at) (31b)
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where the time-dependent coefficients contain the Bessel
functions of first kind Jn(at). Given an initial state |ψ0〉
its time evolution reads as

|ψ(t)〉 = U |ψ0〉 =

∞∑

n=0

αn(t)Tn(H ′) |ψ0〉︸ ︷︷ ︸
=: |φn〉

. (32)

Here, the basis states of the expansion are |φ0〉 := |ψ0〉,
|φ1〉 := H ′ |ψ0〉, and |φn+1〉 := 2H ′ |φn〉 − |φn−1〉.
In the numerical implementation, the infinite series (32)
must be terminated at some finite value Nc < ∞. The
time dependence of the prefactors is essentially deter-
mined by the time dependence of the Bessel functions
Jn(t) [58]. The higher the order n the longer it takes
the Bessel function Jn(t) to contribute noticeably to the
series. Given the cut-off Nc of the series the truncation
error of the CET series is estimated by

ε /

(
at · e
2Nc

)Nc

. (33)

Note that the truncation error is not only related to the
cut-off Nc, but also depends on the maximum time up to
which results are calculated as well as on the parameter a
which equals half the width of the energy spectrum. The
important property of the CET is that Nc, required to
keep the error low, increases only linearly with the time t
up to which one intends to compute the evolution.
The second method we employ for comparison is the
iEoM approach [50, 51] which approximates the time de-
pendence of an operator in the Heisenberg picture. Start-
ing with an arbitrary operator A1 one expands

A(t) =
∑

i

hi(t)Ai (34)

where all time dependence is incorporated in the complex
prefactors hi(t). The constant operators Ai form an op-
erator basis {Ai}. The expansion (34) is unique if the
Ai are linearly independent. For a Hamiltonian constant
in time the Heisenberg equation of motion reads as

d

dt
A(t) = i [H(t),A(t)] =: iL (A(t)) (35)

with the Liouville superoperator L. Expanding the result
of L(Ai) in terms of the chosen basis {Ai} by means of

L(Ai) =
∑

j

LijAj (36)

leads to the Liouvillian matrix L, also called dynamic
matrix. For a compact notation the time-dependent pref-

actors hi(t) are combined to a vector ~h(t) of which the
dynamics is obtained by inserting both expansions (34)
and (36) in (35) yielding

d

dt
~h(t) = iL~h(t). (37)

The Liouvillian matrix is most easily computed for an
orthonormal operator basis {Ai} (ONOB) so that each
matrix element is given by

Lij = (Ai|L(Aj)) . (38)

As previously argued [50, 51], it is crucial to achieve Her-
miticity of L to avoid exponentially diverging solutions
which are unphysical. The Hermiticity of L is equiva-
lent to the self-adjointness of L which depends on the
used operator scalar product. A convenient choice is the
Frobenius scalar product

(A|B) :=
1

d
Tr
(
A†B

)
. (39)

Due to the invariance of the trace under cyclic permuta-
tions L is indeed self-adjoint and thus L is assured to be
Hermitian [50, 51].

1i σzi
√

2σ+
i

√
2σ−i

Table I. Local operator basis for a two-dimensional local
Hilbert space. All operators are orthonormal with respect
to the operator scalar product (39).

The ONOB is found iteratively by applying the Liouville
superoperator m times which is called the loop order.
Starting from a spin operator at a given site, the applica-
tion of L creates more and more increasingly complicated
expressions which are sums of operator monomials, i.e.,
sums of products of local operators. The number of such
monomials is finite for all m, but grows exponentially for
increasing m. For a spin S = 1

2 the site local operators
are those given in Tab. I. After m iterations monomials
involving up to m + 1 sites occur. This means that in
these monomials Pauli matrices at up to m+ 1 sites can
occur. The identity operator is trivial and does not need
to be tracked. If A = A1 is the initial spin operator the

initial vector ~h has the components

hi(0) =

{
1 if i = 1

0 otherwise.
(40)

B. Observables and symmetries

Since we consider infinite temperature, any expecta-
tion value of a single-time observable is actually time-
independent, see Eq. (13). Therefore, the primarily in-
teresting observables are the spin autocorrelations which
we denote by

gαβ(t) := 〈Sα(t)Sβ(0)〉. (41)

There are nine different autocorrelations of the above
type due to the choices for α, β ∈ {x, y, z}. However, the
symmetries of the Hamiltonian imply a number of rela-
tions between them so that only a small number needs to
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be considered. We briefly discuss the symmetries of the
system in the following.
The original Hamiltonian (1) is invariant under any spin
rotation around the z axis, in particular about the angle
π/2 implying

Sxi → Syi Syi → −Sxi . (42)

As a consequence any correlation between the transversal
and longitudinal spin components disappear

gαz(t) = gzα(t) = 0, ∀α 6= z, (43)

while the transversal cross autocorrelations gxy and gyx

fulfill

gxy(t) = −gyx(t). (44)

By means of cyclic permutations in the trace and homo-
geneity in time we additionally derive

gxy(t) = −gxy(−t) (45a)

gyx(t) = −gyx(−t). (45b)

The transversal diagonal autocorrelations are equal

gxx(t) = gyy(t). (46)

In case of zero magnetic field, the system is also invariant
under time reversal because the Hamiltonian is bilinear
in spin operators which implies

gxy(t) = gyx(t) = 0, (47)

so that all cross autocorrelations vanish in this case. Fur-
thermore, the diagonal autocorrelations gαα are equal
due to complete isotropy of the model.

0 1 2 3 4 5 6

t
(

units of 1
J2

)

0.0

0.2

0.4

0.6

0.8

1.0

4g
α
β

Gaussian

gzz

gyy

gxx

gαβ, α 6= β

Figure 2. spinDMFT results for the isotropic Heisenberg
model with zero magnetic field. The Gaussian fit for short
times is best with a standard deviation σ = 1.46/J2.

A first validation of spinDMFT consists of the success-
ful check that the derived symmetry relations hold in

0 1 2 3 4 5 6

t
(

units of 1
J2

)
−1.0

−0.5

0.0

0.5

1.0

4g
α
β

gzz

gyy

gxx

gxy

gyx

gαz, α 6= z

Figure 3. spinDMFT results for the isotropic Heisenberg
model with finite magnetic field γsB = 5.0J2.

the framework of spinDMFT. The results of the self-
consistency problem (20) for zero and finite magnetic
field are depicted in Figs. 2 and 3. The spinDMFT ful-
fills the symmetry relations for both cases. Moreover, the
Larmor precession with frequency ωL = γs B is clearly
visible in the transversal components for finite magnetic
field.

0 20 40 60 80 100

t2
(

units of 1
J 2

2

)

10−9

10−7

10−5

10−3

10−1

4g
α
α

Gaussian

gαα

Figure 4. Diagonal autocorrelations on a log-scale for zero
magnetic field compared to the Gaussian short-time fit as
functions of t2.

For short times and zero magnetic field, a Gaussian fit
describes gαα very well in the linear plot in Fig. 2. Some
deviation is discernible from intermediate times onwards.
To analyze this deviation in more detail the functions
are plotted in Fig. 4 on a logarithmic scale vs. t2. In-
terestingly, the diagonal autocorrelations appear to show
Gaussian behavior at short and at long times, but with
different standard deviations. For longer times, the decay
is slowed down.
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C. Comparison to results of other approaches

We compare results from the spinDMFT to results from
exact diagonalization (ED), iterated equations of motion
(iEoM), and Chebyshev expansion technique (CET). ED
is a very well-known technique and the latter two ap-
proaches have been explained above. A conceptual dif-
ficulty lies in the fact that these alternative techniques
work best for small and low-dimensional systems while
spinDMFT is rather justified in large, high-dimensional
systems. But comparing results from spinDMFT to these
alternatives is the best option at hand. Note that such
comparisons are particularly challenging for spinDMFT.
Considering the self-consistency problem (20), we stress
that all lattice properties are embodied in a single cou-
pling constant, namely the root-mean-square J2. No
site index appears because we deal with homogeneous
systems. Time is naturally measured in units of 1/J2.
First, we consider one-dimensional (1D) spin chains with
S = 1

2 . For finite pieces of chains with N sites, periodic
boundary conditions (PBC) are taken. The Hamiltonian
in the isotropic case reads

H1D = J

N∑

i=1

~Si · ~Si+1, (48)

which entails

J2 =
√

2J. (49)

Figure 5 compares the results from the above mentioned
methods to the data obtained from spinDMFT. The ED
data are taken from Ref. 59. The results from ED and
CET coincide very nicely in the considered time inter-
val. Moreover, no finite-size effects are discernible in this
interval. For not too long times, the iEoM result also
matches very well. It has the advantage to consider the
infinite system by construction. These results almost co-
incide with the spinDMFT data until roughly t ≈ 3/J2.
The subsequent deviations can be attributed to the small
coordination number of the 1D chain with z = 2 which,
obviously, is a challenge for a mean-field approach.
The spinDMFT shows quick and rather complete deco-
herence while the genuine 1D results show weak coherent
revivals at t ≈ 5/J2 and t ≈ 9/J2. This is not surprising
because the integrable 1D system is strongly constrained
in its dynamics due to its extensive number of conserved
quantities [60].
Figure 6 compares the results of CET and iEoM in 2D,
i.e., for the isotropic Heisenberg model on the square lat-
tice

H2D = J
∑

〈i,j〉

~Si · ~Sj (50)

with NN coupling J to the data obtained from
spinDMFT. In this case, J2 = 2J holds. The agreement
between CET and iEoM is good up to t ≈ 3.5/J2; then,

0 2 4 6 8 10

t
(

units of 1
J2

)
0.0

0.2

0.4

0.6

0.8

1.0

4g
z
z

CET 1D-PBC N = 16

CET 1D-PBC N = 18

iEoM 1D (m = 13) N =∞
ED 1D-PBC N = 16

spinDMFT

Figure 5. Results for the isotropic diagonal autocorrelation in
the 1D Heisenberg chain as calculated by ED, CET, and iEoM
compared to the data of spinDMFT. We emphasize that the
CET operates on finite cluster systems with periodic bound-
ary conditions (PBC) only. The number of sites considered
here is denoted by N . The relative error tolerance (33) of
each CET time evolution is ε = 1× 10−3.

the effects of finite loop order m kick in. In 2D, it is un-
fortunately not possible to reach larger values of m. Up
to this range, the spinDMFT is in nice agreement with
the other approaches as well. What is even more inter-
esting is to see the evolution from 1D to 2D. To this end,
we include the CET result in 1D. Clearly, passing from
1D to 2D improves the agreement between the genuine
numerical results and spinDMFT. This is exactly what
one had to expect in view of the derivation of spinDMFT
as mean-field theory which becomes exact for infinite co-
ordination number. Hence, this observation constitutes
a good confirmation of the validity of spinDMFT.
In order to corroborate the foundation of spinDMFT
further we consider the Heisenberg model on complete
graphs, i.e., graphs where each site is connected to all
other sites

HCG =
∑

i<j

Jij~Si · ~Sj . (51)

Such graphs or clusters are called infinite-range clusters
in the physical literature. The Heisenberg model on such
graphs is highly symmetric if the coupling is the same for
all links. This leads to rather special autocorrelations.
In order to avoid features from non-generic high symme-
tries we consider a random model where the couplings are
drawn from a Gaussian distribution. Then, they are nor-
malized, i.e., multiplied by a suitable constant λj , such
that

J 2
2 =

∑

i

J2
ij (52)

holds for all j. The results for the autocorrelations are
averaged over 100 sets of random couplings. Figure 7
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spinDMFT

Figure 6. Results for the isotropic diagonal autocorrelation in
the 2D Heisenberg square lattice as calculated by CET and
iEoM compared to the data of spinDMFT. PBC stands for
periodic boundary conditions and N is the number of sites.
The relative error tolerance (33) of each CET time evolution
is ε = 1× 10−3.

compares the CET results to the data from spinDMFT
for various values of N . The symbols display the data
extrapolated to N = ∞ by a linear fit in 1/N3/2 of the
data for the three largest values of N . This particular
power law fit is chosen in view of the scaling of each
Jij ∝ 1/

√
N stemming from the normalization (52). This

suggests to use power law fits∝ 1/Np/2 with some integer
p. We found that p = 3 is most robust.
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Figure 7. CET results of the isotropic diagonal autocorre-
lation in the random Heisenberg model on various complete
graphs compared to the data of spinDMFT. N is the number
of sites. In addition, the extrapolation to N = ∞ is shown.
The relative error tolerance (33) of each CET time evolution
is ε = 1× 10−3.

The obvious trend is that the data for finite N appear to
converge to the spinDMFT. This observation again justi-

fies the systematic derivation of the advocated dynamic
mean-field theory.
Finally, we mention that the Ising model on complete
graphs

HCG,Ising = J
∑

i<j

SziS
z
j , (53)

in the limit N →∞ has the autocorrelations [61]

4gxx = e−
1
8J 2

2 t
2

(54a)

4gzz = 1. (54b)

The energy scale is J2 =
√
N − 1J . These results are re-

produced by spinDMFT; we refrain from displaying them
because the graphs coincide perfectly. Due to the spin
anisotropy the self-consistency conditions are changed to

V α(t1)V α(t2) = J2〈Sα(t1)Sα(t2)〉 α = x, y (55a)

V z(t1)V z(t2) = J2〈Sz(t1)Sz(t2)〉 (55b)

V α(t1)V β(t2) = 0 α 6= β. (55c)

On the basis of the above results, we conclude that
spinDMFT is a systematically controlled dynamic mean-
field approach to disordered spin systems at infinite tem-
perature which becomes exact for infinite coordination
number. It is designed to provide quantitative informa-
tion of the local spin dynamics. It is a valid approxi-
mation for finite coordination numbers which nicely cap-
tures essential physics such as rapid decoherence, spin
anisotropies, and Larmor precession. Due to the required
moderate computational resources it is an attractive tool
to understand spin dynamics in various setups. We il-
lustrate this last point by applying spinDMFT to a spin
ensemble with dipolar interactions.

IV. APPLICATION TO A DIPOLAR SURFACE
SPIN ENSEMBLE

In this section, we want to show that spinDMFT can be
adapted to models which describe experimental setups or
are very close to experimental questions. We illustrate
that spinDMFT can be applied to complex physical situ-
ations because of its flexibility and, furthermore, that the
resulting numerical task is feasible and does not require
excessive compute resources.
The model which we will address is motivated by inten-
sive studies of localized defect spins of electronic origin
with S = 1

2 and a g-factor of g ≈ 2 on diamond surfaces
which are observed by NV centers [7, 11, 13]. These spins
were seen and examined in recent studies [12, 62, 63].
The precise origin of the defect spins is still a matter of
debate although recent progress indicates that they are
formed by trapped electrons very close to the surface [64].
They appear to be inhomogeneously distributed over the
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surface [7, 13, 65]. Driving these spins reduces decoher-
ence in shallow NV centers [66]. The surface spins inter-
act with one another and they are subject to additional,
slow noise. The origin of the latter is not yet clarified:
nuclear proton spins are candidates [11, 67] which agrees
with the importance of the precise chemical and morpho-
logical conditions at the surface [65]. A second candidate
is phonons which also play a role [63]. In addition, NV
centers can also measure the dynamics of 13C nuclear
spin baths which are distributed three-dimensionally in
the bulk of diamonds [68].
Here, we do not aim at describing one of the above ex-
citing experiments in detail, but to address a generic
model comprising the essential features. To this end, we
consider a random ensemble of localized electronic spins
S = 1

2 on a planar surface interacting by dipolar cou-
plings. Aside from these interactions, the spins are sub-
jected to a global magnetic field as well as to local static
magnetic field noise. The latter can be viewed as being
generated by slowly fluctuating nuclear spins stemming,
for instance, from protons.

~Si

~Sj

~Rij

~n

ϑ

ϕij

~B

~bi

Figure 8. Sketch of the considered dipolar spin ensemble on
a planar surface. The magnetic field B (red) defines the z-

direction; the isotropic random local magnetic fields ~bi (blue)
vary in strength and direction from site to site.

A. Model and Definitions

We consider an ensemble of spins S = 1
2 distributed ran-

domly over a planar surface which interact via dipole-
dipole interaction. Each spin is subjected to an external

magnetic field ~B whose direction defines the z direction
which forms an angle ϑ with the normal ~n of the plane.
Additionally, the spins see local random magnetic noise,

i.e., local magnetic fields ~bi with zero average. While
the system is inhomogeneous we assume that the ran-
dom distribution is such that each spin sees the same
environment on average, i.e., the system behaves on av-
erage like a homogeneous system. This means that the
average quantities do not depend on the site.
The Hamiltonian is given by

H =
∑

i<j

J (Rij)
[
(~Si · ~Sj)−

3

R2
ij

(~Rij · ~Si)(~Rij · ~Sj)
]

+ γsB
∑

i

Szi + γs

∑

i

~bi · ~Si, (56)

where

J(R) =
µ0γ

2
s

4πR3
. (57)

is the dipolar coupling. We apply spinDMFT which relies
on average dynamic mean-fields. Since we want to treat

the random local magnetic fields ~bi in addition we have
to distinguish three types of averages: (i) the one from
spinDMFT which we denote by an overline as before, (ii)
the one solely due to the average over the local magnetic
fields which we denote by an overline with index ‘n’ for
‘noise’, and (iii) the complete average comprising (i) and
(ii) which we denote by an overline with index ‘c’ for
‘complete’.

For simplicity, we assume that the local magnetic fields
are distributed isotropically according to a normal distri-
bution defined by the moments

bαi
n

= µN = 0, (bαi )
2
n

= σ2
N, ∀i, α. (58)

and

bαi b
β
j

n

= δijδαβσ
2
N. (59)

The latter implies that the local fields are independent
from one another. The distribution reads as

pn

(
~bi

)
=
∏

α

1√
2πσ2

N

exp

(
− (bαi )

2

2σ2
N

)
. (60)

As mentioned above, we allow for an angle ϑ between

the surface normal ~n and the external magnetic field ~B.
We introduce the in-plane polar coordinates Rij , ϕij to
express the distance vectors between site i and j by

~Rij = Rij




cos (ϕij)
sin (ϕij) cos(ϑ)
sin (ϕij) sin(ϑ)


 . (61)

The complete system is sketched in Fig. 8 including the
various introduced quantities.

B. spinDMFT

As motivated in the previous section where we introduced
spinDMFT we define local operators describing the envi-
ronments of the spins

~V i =
∑

j 6=i
J (Rij) D (ϕij , ϑ) ~Sj , (62)

where the anisotropies are incorporated in the matrix
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D (ϕij , ϑ) =




1− 3 cos2(ϕij) −3 cos(ϕij) sin(ϕij) cos(ϑ) −3 cos(ϕij) sin(ϕij) sin(ϑ)
−3 cos(ϕij) sin(ϕij) cos(ϑ) 1− 3 sin2(ϕij) cos2(ϑ) −3 sin2(ϕij) cos(ϑ) sin(ϑ)
−3 cos(ϕij) sin(ϕij) sin(ϑ) −3 sin2(ϕij) cos(ϑ) sin(ϑ) 1− 3 sin2(ϕij) sin2(ϑ)


 . (63)

With their help, the Hamiltonian can be rewritten

H =
1

2

∑

i

~Si · ~V i + γsB
∑

i

Szi + γs

∑

i

~bi · ~Si, (64)

where a factor 1
2 is introduced to avoid double counting.

From the derivation of spinDMFT in Sect. II we know
that large coordination numbers provide the justification
for this dynamic mean-field theory. Thus, we consider the
effective coordination numbers z and z′ defined in (5) for
various lattices and dipolar coupling (57), see Tab. II.

lattice z z′ zNN

triangular 19.1 6.8 6
square 17.5 5.3 4
hexagonal 13.1 3.6 3
rectangular (A) 12.0 2.8 2
rectangular (B) 7.8 2.2 2

Table II. Effective coordination numbers for various two-
dimensional lattices and dipolar coupling ∝ R−3. The ef-
fective coordination numbers were computed taking 4 · 106

unit cells into account. The conventional coordination num-
ber zNN equals the number of nearest neighbors at each lattice
site. For comparison, we include rectangular lattices with the
ratios 2 : 3 (A) and 1 : 2 (B) of their lattice constants in x
and y direction, respectively.

As expected, the long range of dipolar interactions in-
creases the effective coordination number to considerably
larger values compared to the NN coupling, see for in-
stance the triangular lattice. This effect is larger for z
than for z′ because the sums for higher moments con-
verge faster than those for the second or first moment.
We point out that the first moment “just” converges like∫
RdR
R3 ∝ 1

R .
For randomly distributed spins the issue is more com-
plicated and depends on how the spins are located on
the surface. In case of random positions without any re-
strictions, the effective coordination numbers are fairly
small because there is a high probability for each spin
to have a single neighbor close to it which dominates z
and z′. We found for completely random distributions
z ≈ 1− 10. Then, this close partner governs the dynam-
ics and the application of spinDMFT is not well justi-
fied. However, considering restrictions for the location of
the spins, in particular a minimum distance between the
spins, the effective coordination numbers increase sub-
stantially to about the values of the triangular lattice
which is the closest-packed lattice in two dimensions. We
found z ≈ 5−15. We emphasize that such restrictions are
very plausible: a minimum distance can result from the
surface structure which does not allow the spin-carrying

adatoms to be located very close to one another. In addi-
tion, a local repulsion between them would also ensure a
minimum distance between the spins. We conclude that
the lattice is dense enough so that spinDMFT is justified.
Next, we replace the local-environment fields by dynamic
mean-fields

~V i → ~Vi(t) (65)

considering the local mean-field model

Hmf,i(t) = ~Vi(t) · ~S + γsBSz + γs
~bi · ~S. (66)

The self-consistency conditions need to be complemented

by the effect of the random noise fields ~bi. Averaging has

to be done over the random time series for ~Vi and the
random local magnetic fields. We perform this in a single
step and thus pass to combined fields

~Wi(t) = ~Vi(t) + γs
~bi (67)

and perform a single average over the combined distribu-
tion

pi[ ~Wi] =
1√

det2πM
i

e−
1
2
~W>i M−1

i
~Wi , (68)

where the modified covariance matrix is given by

Mαβ
i (t1, t2) = Wα

i (t1)W β
i (t2)

c

(69a)

= V αi (t1)V βi (t2) + γ2
s b
α
i b
β
i

n

. (69b)

Then, the noise leads only to an offset in the second mo-
ments which is constant in time.
The self-consistency condition of the first moment is still
trivial

Wα
i (t)

c
= 〈V α

i (t)〉+ γsbαi
n

= 0, ∀α, i. (70)

For the second moments we consider the self-consistency

V αi (t1)V βi (t2) = 〈V α
i (t1)V β

i (t2)〉, (71)

and thus the complete self-consistency reads as

Wα
i (t1)W β

i (t2)
c

= γ2
s b
α
i b
β
i

n

+
∑

k 6=i

∑

ργ

J2 (Rik) (72)

×Dαρ (ϕik, ϑ)Dβγ (ϕik, ϑ) 〈Sρk(t1)Sγk(t2)〉(mf).

This equation still constitutes a challenging numerical is-
sue because it amounts up to a self-consistency condition
for each spin. But, as stated at the beginning of Sect.
IV A, we assume that the system is dense enough to be



14

treated on average as a homogeneous system. Essentially,
this means that J2,i takes the same value at each site i.
Then, the site indices can be omitted and we obtain much
simpler self-consistency conditions

Wα(t1)W β(t2) = (73)

J 2
∑

ργ

χαβργ (ϑ)〈Sρ(t1)Sγ(t2)〉(mf) + δαβγ
2
s σ

2
N.

The constants J and χαβργ embody the energy scale and
the spin anisotropies. The key idea is to approximate
the discrete sums in the self-consistency conditions by
integrals assuming a continuous distribution of spins with
density n0 = 1/r2

min. Of course, this is not exact, but it
provides a well-justified quantitative relation between the
dipolar interaction in Eq. (57) and the prefactors of the
self-consistency condition (73). We replace the sum by
the integration

∑

k 6=i
≈ n0

∫ ∞

rmin

dRR

∫ 2π

0

dϕ (74)

yielding

J 2 = 2πn0

∫ ∞

rmin

dRRJ2(R) =
µ2

0γ
4
s

32πr6
min

(75a)

χαβργ (ϑ) =
1

2π

∫ 2π

0

dϕDαρ (ϕ, ϑ)Dβγ (ϕ, ϑ) . (75b)

Since we are dealing with a system constant in time we
study self-consistent solutions which depend only on the
time difference t1 − t2. Hence, from now on we only
consider correlation functions with t1 = t and t2 = 0,

gαβ(t) := 〈Sα(t)Sβ(0)〉(mf) (76a)

wαβ(t) := Wα(t)W β(0). (76b)

In the remainder of this section, we specialize the above
general equations to the case of a perpendicular magnetic
field, i.e., ϑ = 0, for simplicity. From Eq. (75b) we obtain

χxxxx = χyyyy = 11
8 (77a)

χxyxy = χyxyx = − 7
8 (77b)

χxxyy = χyyxx = χxyyx = χyxxy = 9
8 (77c)

χxzxz = χyzyz = χzxzx = χzyzy = − 1
2 (77d)

χzzzz = 1, (77e)

by straightforward analytic calculation while the other
coefficients vanish.
For a brief symmetry discussion, we consider the original
Hamiltonian (56). Since ϑ = 0, the transversal x and y
spin components lie in the plane of the surface. Thus, the
dipolar interaction term and the magnetic-field term are
invariant under a rotation in spin and real space about
the angle π/2 around the z axis. This does not hold

true for the noise term ∝ ~bi. But the noise distribution
(60) is isotropic so that on average this term also remains
invariant and we have a rotational symmetry of the total
system. In particular, this implies

gxx(t) = gyy(t) (78a)

gxy(t) = −gyx(t) (78b)

gxz(t) = gzx(t) = gyz(t) = gzy(t) = 0. (78c)

Summarizing, we obtain the self-consistency equations

wxx(t) = wyy(t) = 5
2J 2gxx(t) + γ2

s σ
2
N (79a)

wxy(t) = −wyx(t) = −2J 2gxy(t) (79b)

wxz(t) = wzx(t) = wyz(t) = wzy(t) = 0 (79c)

wzz(t) = J 2gzz(t) + γ2
s σ

2
N. (79d)

It is worth mentioning that the noise explicitly appears
in these equations because we included it in the mean-

field ~W . The magnetic field, on the other hand, enters
the physical problem in the Hamiltonian (66). Another
important observation is that the transversal and longi-
tudinal equations (79a) and (79d) show different prefac-
tors. Certainly, this leads to different behavior of the
corresponding autocorrelations. For zero magnetic field,
where the cross autocorrelations gxy = −gyx vanish due
to time reversal symmetry, we expect gxx = gyy to de-
cay slower than gzz, since the transversal mean-field is
stronger so that the z components are more strongly pre-
cessing.
Henceforth, we measure the time in units of 1

J and it
makes sense to define a dimensionless noise strength and
a dimensionless magnetic field

C :=
γ2

s σ
2
N

J 2
(80a)

B̃ :=
γsB

J . (80b)

Fig. 9 shows the numerical results of the self-consistent
equations (79) for various noise strengths and zero mag-
netic field. Considering C = 0.0, we observe a clear dif-
ference between the transversal and longitudinal signal.
This anisotropy is expected due to the different prefac-
tors in (79a) and (79d) as mentioned before. For C = 1.0,
the difference is still present, however, both curves show a
similar trend: a local minimum at the beginning followed
by a rather slow decay. As we increase C, the anisotropy
further diminishes because the isotropic noise contribu-
tions in (79a) and (79d) dominate more and more over
the dipolar terms. In case of a very large noise strength,
the mean-field contributions can be neglected and the
remaining dynamics can be solved analytically [19, 69]

4gααstat(t) =
1

3

(
1 + 2

[
1− t2CJ 2

]
e−

1
2 t

2CJ 2
)
. (81)

Inspecting Fig. 9, the data approach the curve (81) for
large values of C and short times. At larger times, i.e.,
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Figure 9. Numerical results of the self-consistency problem
(79) for zero magnetic field and various noise strengths. The
transversal diagonal autocorrelations gxx (solid line, filled
markers) as well as the longitudinal autocorrelations gzz

(dashed-dotted line, open markers) are depicted. Moreover,
we plotted the analytical result (81) for C = 10.0 where only
the static noise (with subscript ‘stat’) is considered without
spin-spin coupling.

beyond the local minimum, the dynamics due to the dipo-
lar couplings makes itself felt and the signal decays below
the analytical plateau. This is not surprising since the an-
alytical consideration only includes static noise neglect-
ing any mean-field dynamics. The corresponding cou-
pling may be weak compared to the noise, but it certainly
affects the long-time behavior of the signals.
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Figure 10. Numerical results of the self-consistency problem

(79) for C = 0.0, B̃ = 5.0.

Figs. 10 and 11 show numerical results for finite mag-
netic field. What catches the eye is that the transver-
sal autocorrelations in both figures show typical Larmor
precessions with ωL = γsB. For C = 0.0, the preces-
sion persists until the transversal signals have decayed
completely. For C = 10.0, in contrast, the oscillations

of gxx disappear very early although the signal is still
finite. Subsequently, this correlation shows a slow long-
time decay without discernible precession. We attribute
this behavior to the presence of transversal noise sta-
bilizing gxx = gyy. This noise component is certainly
weakened by the longitudinal magnetic field, but it ap-
pears to be still strong enough to keep the signal finite
for quite a while. Remarkably, the combination of noise
and magnetic field causes a slow down of the longitudinal
autocorrelation. This behavior is studied in detail in the
next section where we use the RWA to tackle the prob-
lem for considerably larger magnetic fields. Since the
transversal noise vanishes for such large fields, we expect
the transversal long-time signal to vanish very quickly.
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Figure 11. Numerical results of the self-consistency problem

(79) for C = 10.0 and B̃ = 5.0.

C. Strong-Field Regime and RWA

In the preceding section, we treated a general external
magnetic field of arbitrary strength, weak or strong, but
perpendicular to the plane. In this respect, the situation
was specific. In the present section, we choose the angle
ϑ of the external field with the surface normal in an ar-
bitrary way, but consider a strong field so that the RWA
is valid.
First, we switch from the laboratory frame to the frame
rotating with the Larmor frequency of precession

ωL = γsB. (82)

This leads to a time-dependent effective Hamiltonian
with oscillating terms. They oscillate the faster the
stronger the magnetic field is. The RWA consists in av-
eraging these fast oscillations yielding an effective time-
independent Hamiltonian again. The spinDMFT is ap-
plied to this effective time-independent Hamiltonian.
This requires to solve a closed set of self-consistency equa-
tions capturing the spin dynamics in the rotating frame.
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In order to consider the system in the Larmor rotating
frame one has to rotate any observables of the lab frame
backwards by the unitary evolution operator

UZ(t, t0) := eiHZ(t−t0). (83)

where the Zeeman term is the last-but-one term in Eq.
(56):

HZ := γsB
∑

i

Szi . (84)

The spin operators are given in the rotating frame by

Sαi,rot(t) = U †Z(t, t0)Sαi,lab(t)UZ(t, t0) (85a)

= U †Z(t, t0)U †(t, t0)Sαi (t0)U(t, t0)UZ(t, t0).
(85b)

The full time evolution in the rotating frame results from
the complete time evolution operator

U rot(t, t0) := U(t, t0)UZ(t, t0). (86)

Its Schödinger equation is derived by inserting (86) in
the original Schödinger equation

i∂tU
rot(t, t0) = Hrot(t)U rot(t, t0) (87)

with the Hamiltonian

Hrot(t) = UZ(t, t0) (H −HZ)U †Z(t, t0). (88)

Clearly, the Zeeman term HZ in H is canceled in this
way which was the goal of this transformation.
The remaining terms, i.e., the dipole interaction and the
noise are rotated by UZ. As a consequence, the Hamilto-
nian Hrot(t) is strongly time-dependent comprising fast
oscillating terms such as cos(ωLt) or sin(ωLt) which are
averaged in the sense of a Magnus expansion [70] in first
order. The neglected terms are smaller by a factor 1/ωL.
Put simply, the larger the Larmor frequency ωL is relative
to the typical dipolar interaction frequency ωDD = J /~,
the better the RWA is justified. Thus, the strong-field
regime is realized for

B � BDD = γsωDD. (89)

In this regime, one replaces all fast oscillating terms in
the Hamiltonian by their average values, i.e.,

cos(ωLt), sin(ωLt)→ 0 (90a)

cos(2ωLt), sin(2ωLt)→ 0. (90b)

In our case, we obtain

Hrot =
1

2
J (Rij)

∑

i<j

(
1− 3 sin2(ϕij) sin2(ϑ)

) (
2SziS

z
j − Sxi S

x
j − SyiS

y
j

)
+ γs

∑

i

bziS
z
i , (91)

which is again time-independent by construction. Note
that the transversal components of the magnetic field
noise are eliminated while the longitudinal component
remains unchanged. Therefore, one expects growing dif-
ferences between transversal and longitudinal autocorre-
lations upon increasing the noise strength σN.

Next, spinDMFT is applied to the Hamiltonian (91). We
only highlight expressions which differ from the previ-
ous application. Expressed in local-field operators, the
Hamiltonian reads as

Hrot =
1

2

∑

i

~Si · ~V i + γs

∑

i

bziS
z
i (92a)

~V i =
∑

j,j 6=i
J (Rij) D

rot (ϕij , ϑ) ~Sj , (92b)

where Drot is given by

Drot(ϕij , ϑ) =
(
3 sin2(ϕij) sin2(ϑ)− 1

)



1
2 0 0
0 1

2 0
0 0 −1


 .

(93)

Replacing the local-field operators by the corresponding
mean-fields leads to the local mean-field Hamiltonian

Hrot
mf,i = ~Vi(t) · ~S + γsb

z
iS

z (94)

and we again combine noise and mean-field in

~Wi(t) = ~Vi(t) + γs~ezb
z
i , (95)

since both follow from Gaussian distributions. While the
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first moment is still zero, the second moments obey

wαβ(t1 − t2) : = Wα(t1)W β(t2) (96a)

= δαβδαzγ
2
s σ

2
N (96b)

+
∑

ργ

J 2
(
χrot

)αβ
ργ

(ϑ)〈Sρ(t1)Sγ(t2)〉(mf).

The coupling J is given by Eq. (75a) and the coefficients
χrot result from Eq. (75b) with D replaced by Drot.
Defining the function of the polar angle ϑ

I(ϑ) :=
1

2π

∫ 2π

0

dϕ
(
1− 3 sin2(ϕ) sin2(ϑ)

)2
(97a)

=
27

8
sin4(ϑ)− 3 sin2(ϑ) + 1, (97b)

we can express the prefactors concisely by

(
χrot

)xx
xx

=
(
χrot

)yy
yy

= 1
4I(ϑ) (98a)

(
χrot

)xy
xy

=
(
χrot

)yx
yx

= 1
4I(ϑ) (98b)

(
χrot

)xz
xz

=
(
χrot

)yz
yz

= − 1
2I(ϑ) (98c)

(
χrot

)zx
zx

=
(
χrot

)zy
zy

= − 1
2I(ϑ) (98d)

(
χrot

)zz
zz

= I(ϑ). (98e)

Any other coefficient vanishes because Drot is diagonal.
We reconsider the symmetries of the underlying system to
be able to formulate the minimum set of self-consistency
conditions. The original rotating-frame Hamiltonian (91)
is invariant under spin rotation around the z axis by con-
struction: all transversal spin components only occur in
pairs. The dipolar part is invariant under time reversal.
While this does not hold for the noise term for each in-
dividual ~bi, their distribution remains unchanged under
time reversal. Spin-rotation symmetry and time-reversal
symmetry allow us to conclude

gxx(t) = gyy(t) (99a)

gαβ(t) = 0, α 6= β. (99b)

This enables us to reduce the general self-consistency con-
ditions (96) to

wxx(t) = wyy(t) = 1
4J 2I(ϑ)gxx(t) (100a)

wαβ(t) = 0, α 6= β (100b)

wzz(t) = J 2I(ϑ)gzz(t) + γ2
s σ

2
N. (100c)

Note that there is a natural anisotropy between the
transversal and longitudinal equation again, but this time
by a factor of four. Furthermore, the noise only acts in
the z-direction. Considering the results of the previous
section, we expect even bigger differences between the
autocorrelations here. Henceforth, we no longer use the
terms “diagonal” and “cross” because no cross autocor-
relations appear in the RWA dipole model. If not stated

otherwise, we set ϑ to the so-called magic angle

ϑmagic := arcsin

√
2

3

I(ϑmagic) =
1

2

in our numerical calculations.
Figs. 12 and 13 show our numerical findings for the so-
lutions of the self-consistent equations. Analyzing them,
we conclude two important facts:

(i) Because of the natural anisotropy and the noise,
the longitudinal signal decays considerably slower
than the transversal signal. Increasing the noise
strength amplifies this difference.

(ii) The transversal signal decays very accurately fol-
lowing a Gaussian, while the longitudinal decay is
weaker than exponential.
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Figure 12. Transversal RWA results of the self-consistency
problem (100) for various noise strengths.

Considering the results, the first statement is rather obvi-
ous. For C = 0.0, the longitudinal signal already survives
significantly longer than the transversal one due to the
anisotropic factors in (100). Increasing the noise strength
causes the spin to precess more and more quickly and
randomly about the z axis. As a result, the transversal
spin components experience an even stronger decoher-
ence than before and the corresponding autocorrelations
decay faster. In contrast, the z component of the spin
is stabilized by the additional rotations about the z axis
so that the longitudinal signal relaxes only very slowly.
Fig. 14 schematically illustrates the behavior of the spins.
To corroborate the statement (ii), Fig. 15 shows the
transversal signal in loglog vs. log representation for var-
ious noise strengths. All of the results show a linear be-
havior with a small upward curvature at the end. A closer
observation of the curvature reveals that the autocorre-
lations fall slightly below zero just before they finally
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Figure 13. Longitudinal RWA results of the self-consistency
problem (100) for various noise strengths.

~S

noise ~b

∝
√
C

pn(~b)

z

Figure 14. Illustration of a spin subjected to a Gaussian noise
in z direction. As the speeds of rotation of the transver-
sal components fluctuate more strongly upon increasing noise
strength C the transversal components vanish more rapidly.
In return, this weakens the processes which destroy the lon-
gitudinal component so that it is stabilized.

converge to zero. We emphasize that this negative dip
is only very small, ∝ 10−3, and hence not visible in the
provided figures. Still, we ensured that it does not result
from numerical inaccuracies. Interestingly, its height de-
creases upon increasing the noise width.

The clearly linear behavior in the plot has a slope r = 2
so that it clearly indicates Gaussian behavior. Hence, we
use the fit function

4gxxGauss(t) = e−
t2

2σ2 (101)

to extract the standard deviation σ as function of the
noise strength displayed in Fig. 16.

This behavior can be understood by an analytical consid-
eration [19, 69]. We consider purely static noise neglect-
ing the mean-field contributions in the RWA Hamiltonian
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Figure 15. Logarithmic representation of the transversal RWA
results for various noise strengths.

0 1 2 3 4 5

C

0

1

2

3

σ
( u

n
it

s
of

1 J
)

data

fit

stat

Figure 16. Standard deviations obtained from fitting the
transversal signals versus the noise strengths. The dashed
blue line is the analytical prediction based on purely static
noise, see Eq. (103). The orange line results from a data fit
according to (104).

(94):

H = γsb
z
iS

z, (102)

The analytical averaging yields the transversal signal

4gxxN (t) = e
− t2

2σ(C)2 (103a)

σ(C) =
1

J
√
C
, (103b)

which explains the Gaussian behavior of the transversal
signal for large values of C. The analytical standard de-
viation is also depicted in Fig. 16 as blue dashed line.
For increasing noise strength it describes the fitted data
better and better. This is expected because the larger
the static noise is relative to the mean-fields, the better
the static noise model captures the dynamics. For small
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Figure 17. Logarithmic representation of the longitudinal cor-
relation for various noise strengths. The blue dashed-dotted
lines correspond to exponential functions with f(t) = Ae−αt.
They illustrate that the correlations show a positive curvature
and thus decay weaker than exponentially.

values of C and in particular for C = 0.0, the transver-
sal signal still follows a Gaussian to good accuracy. The
mean-field contribution changes the standard deviations;
quite unexpectedly the mean-fields appear to counteract
the static noise partly reducing the standard deviation.
It turns out that this effect is well captured by the fit

σfit(C) =
1

J
√
C +R

(104)

as can be seen in Fig. 16 with

R = 0.159(1) (105)

This quantifies the contribution of the mean-fields to the
transversal spin dynamics.
The behavior of the longitudinal autocorrelations is more
complex; Fig. 17 shows that the decay is weaker than
exponentially as we stated before. We refer to Sect. IV E
for a detailed examination of the behavior.

D. Transition from weak to strong external
magnetic field

If we consider the case of a surface perpendicular to the
external magnetic field, i.e., ϑ = 0, we can compare the
results from Sect. IV B for arbitrarily strong magnetic
fields to the results from the previous Sect. IV C based
on the RWA. This allows us to study how well the RWA
reproduces the exact result. In particular, we can de-
termine above which magnetic fields the RWA is reli-
able and to which extent. First, we compute the results
of the self-consistency problem in the lab frame (exact
spinDMFT) (79) and in the Larmor rotating frame using
RWA (RWA spinDMFT) (100). Then, we transform the

exact spinDMFT results to the Larmor rotating frame
via

gxxrf (t) = gxx(t) cos(ωLt)− gxy(t) sin(ωLt), (106a)

gxyrf (t) = gxy(t) cos(ωLt) + gxx(t) sin(ωLt), (106b)

gzzrf (t) = gzz(t), (106c)

so that a quantitative comparison is possible.
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Figure 18. Comparison of the RWA spinDMFT results
(solid line, filled markers) with the exact spinDMFT results
(dashed-dotted line, open markers) for a small dimensionless

magnetic field B̃ = 2.0 in the rotating frame at zero static
noise C = 0.0.
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Figure 19. Same as Fig. 18 for moderate dimensionless mag-

netic field B̃ = 10.0.

In Fig. 18 (C = 0.0, B̃ = 2.0), we observe consider-
able deviations between both approaches, especially in
gxy and gzz: due to the moderately large magnetic field,
the exact results show deflections and shifts which are
not present in RWA. Considering Fig. 19 (C = 0.0,

B̃ = 10.0), these deviations clearly shrink upon increas-
ing magnetic field. The deviations from the RWA are
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Figure 20. Same as Fig. 18 for large dimensionless magnetic

field B̃ = 50.0.

difficult to discern. They appear most strongly in gxy.

As we raise B̃ further, see Fig. 20 (C = 0.0, B̃ = 50.0),
the deviations due to RWA are not visible anymore. The
tiny shift between both results for the longitudinal auto-
correlation only stems from the discretization of time. It

is a purely numerical effect which grows with B̃.
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Figure 21. Same as Fig. 18 for finite static noise C = 10.0

and small dimensionless magnetic field B̃ = 2.0.

If static noise is included, see Fig. 21 for C = 10.0,

B̃ = 2.0, we observe large deviations for all autocorre-
lations, even more than what we showed in Fig. 18. The
exact transversal results strongly oscillate in contrast to
the RWA results and a huge shift between the two curves
for the longitudinal autocorrelations occurs. This implies
that the presence of static noise requires larger magnetic
fields for the RWA to be justified. Figures 22 (C = 10.0,

B̃ = 10.0) and 23 (C = 10.0, B̃ = 50.0) confirm this con-
clusion displaying better and better agreement between
the results of both approaches. We argue that this be-
havior is physically highly plausible because the RWA is
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Figure 22. Same as Fig. 18 for finite static noise C = 10.0

and moderate dimensionless magnetic field B̃ = 10.0.
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Figure 23. Same as Fig. 18 for finite static noise C = 10.0

and large dimensionless magnetic field B̃ = 50.0.

justified if the energy scale of the magnetic field is larger
than the energy scales of any other interaction in the
system, including the static noise.

E. Long-time behavior

Now, we come back to the long-time behavior of the lon-
gitudinal autocorrelation. This is an interesting issue be-
cause various ideas exist on the origin of the rather slow
decay and its functional form [71].

Fig. 17 shows that the autocorrelations do not decay in a
Gaussian fashion at all. Such decay would have led to a
negative curvature downwards. Instead we discern a pos-
itive curvature upwards which implies that the decay is
even slower than exponential. The question arises which
functional dependencies describe this decay. Considering
this, our most successful fitting attempt is a power law
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according to

4gzzfit:B(t) = Bt−m (107)

with parameters B and m. We checked also stretched ex-
ponentials since these were suggested in Ref. [71]. But we
did not achieve satisfactory fits for an ansatz according
to

4gzzfit:A(t) = Ae−αt
ν

(108)

with parameters A, α, and the exponent ν. The longi-
tudinal results including the power law fits can be seen
in Fig. 24. Note that much longer times are not easily
accessible for two reasons. First, the numerical effort in-
creases as t2 for the Monte-Carlo simulation and as t3 for
the diagonalization. Second, the smaller the autocorrela-
tion is the more difficult it becomes to determine it with
good relative accuracy in view of the statistical way of
computing it. This is also the reason why we cannot go
to longer times for C ≈ 0.
The exponent m displays a pronounced dependence on
the relative noise strength C as depicted in Fig. 25. The
dependence m(C) can be described heuristically by

mfit(C) = m0 +
k

Cr
. (109)

This fit works surprisingly well in spite of the divergence
for C → 0. Limited by the numerical accuracy, we can
hardly say if we actually obtain this divergence or if it
can be truncated, e.g., by replacing C → C+C0 in (109).
This issue is associated to the question if the power law
behavior solely results from the presence of the noise or
if it is a valid feature of spinDMFT.
All in all, these results provide evidence that the longitu-
dinal autocorrelations are relatively long-lived. Clearly,
their long-time behavior poses an interesting question
which calls for further research, both numerical and an-
alytical.

V. CONCLUSIONS

In this paper, we introduced and justified a mean-field
theory designed to capture the spin dynamics in disor-
dered dense spin systems. The key idea is that it is not
sufficient to introduce a static mean-field but that the
mean-field is dynamic itself so that we call it “spin dy-
namic mean-field theory” (spinDMFT). As usual, this
approach becomes exact if each site has an infinite num-
ber of interaction partners, i.e., the coordination number
becomes infinitely large. Historically, the same limit led
to the introduction of the fermionic dynamic mean-field
theory [44, 72].
For spins, we established that the important correlations
are the autocorrelations and that these define the dy-
namic mean-fields to which each spin is subjected. These
mean-fields are normally distributed and the dynamic
variances of these normal distributions are given by the
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Figure 24. Numerical long-time results of the longitudinal
autocorrelations in RWA for various noise strengths in Log vs.
Log representation. The blue dashed-dotted lines correspond
to power law fits as in (107).
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Figure 25. Fitted exponent m from the fit of the longitudinal
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as in (109). The estimated parameters are m0 = 1.15(2),
k = 0.35(2) and r = 0.87(3).

autocorrelations. This constitutes the self-consistency
problem which has to be solved for spinDMFT. We
showed how this can be done stochastically.

If the effective single-site problem is linear in the spin
operators it does not matter whether we consider classical
spins averaged over all directions or a quantum spin given
that the average length is scaled to be the same. In this
sense, the quantum spin system and the classical spin
system have the same spinDMFT. For spin-1/2 this has
to be the case since locally only linear spin operators
can appear. For larger spins, however, higher powers
may arise such as anisotropies of various kinds. Then,
the quantum spinDMFT and the classical spinDMFT are
different.

We gauged the advocated spinDMFT against numerical
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results for isotropic spin systems obtained by other meth-
ods, namely exact diagonalization, iterated equations of
motion, and Chebyshev expansion. This can only be
done for rather small spin clusters in low dimensions so
that the reproduction of the results by spinDMFT is par-
ticularly challenging. Nevertheless, encouraging agree-
ment could be established.

Subsequently, we applied spinDMFT to a two-
dimensional ensemble of spins with dipolar interactions
including local static noise, i.e., fluctuations of magnetic
fields. This underlines that spinDMFT is capable of deal-
ing with anisotropic interactions of long range as well.
We studied the case of an arbitrary external magnetic
field perpendicular to the plane of spins and the RWA
for a large tilted magnetic field. For zero tilt, we com-
pared both approaches quantitatively. This allowed us to
show quantitatively to which extent the RWA is justified
and above which magnetic field it yields reliable results.

We showed that the transversal autocorrelations behave
essentially like Gaussians in time. The longitudinal auto-
correlations, however, display a more complex behavior
with a rather slow decay towards long times. Evidence
for power law behavior is found. This certainly calls for
further investigations.

We are confident that spinDMFT can be applied success-
fully to many more physical systems aside from the ones
that we mentioned so far. Ample applications can be
found for nuclear magnetic resonance (NMR), electron
spin resonance (ESR), quantum information storage and
processing based on spins in solid state systems, in par-
ticular in nanostructures, and for all phenomena related
to spin diffusion in such systems.

Conceptually, further issues to be addressed are the

treatment of explicitly time-dependent Hamiltonians and
spatially inhomogeneous solutions with distributions of
mean-fields which vary along the samples. Both exten-
sions are of greatest interest, for example in the coherent
control of spin degrees of freedom.
A third fascinating issue consists in an extension of
spinDMFT to finite temperatures. So far, we derived
the approach for disordered ensembles. But in view of
related developments for spin glasses [47, 48] and the
general analogy between real and imaginary timess a dy-
namic mean-field theory for spins at finite temperatures
should also exist. Its development would enhance the
applicability of spinDMFT even further.
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Appendix A: Dynamic spin correlations on a Bethe
lattice at infinite temperature

The aim of this appendix is to derive the scaling of the
correlations as function of the coordination number. This
is a tremendous task on arbitrary lattices, even at infinite
temperature. Therefore, we consider the Bethe lattice
[73] with nearest neighbor coupling between spins S = 1

2 ,
i.e., a Cayley tree of infinite depth, so that each site has
the same environment and the system is homogeneous.
The coordination number is z and hence the so-called
branching ratio is z − 1. First, we consider the spin-
spin correlation. Second, we deduce further correlations.
We take the results for the Bethe lattice as representative
for more general lattices including long-range interactions
leading to large effective coordination numbers.

1. Spin-spin correlations

We want to show that the two-time pair correlation func-

tions 〈Sαi (t1)Sβj (t2)〉 for i 6= j are suppressed for z →∞.
This property is required to justify the use of the central
limit theorem in II C and to treat the dynamics of the
local fields as independent from the dynamics of a single
spin. Mostly, we set j = 0 and t2 = 0 without loss of gen-
erality. The advantage of considering the Bethe lattice
is that the shortest distance between any pair of sites is
unique because the lattice does not have any loops except
self-retracing paths. We consider the general Hamilto-
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nian

HBL =
1√
z

∑

〈i,j〉

∑

αβ

JαβSαi S
β
j (A1)

with arbitrary couplings Jαβ = Jβα allowing for spin
anisotropy. The factor z−

1
2 is denoted separately to ex-

plicitly keep track of the scaling with z. It must be chosen
in this way to keep the energy scale of the dynamics, J2

in Eq. (4), constant for z →∞.
The argument runs as follows. First, we use the Heisen-
berg equations of motion to set up a system of differential
equations for the temporal evolution of the correlation
functions. Second, we postulate the scaling of the cor-
relations. Third, we show that the postulated scaling is
consistent with the initial conditions and with the differ-
ential equations, i.e., the scaling is fulfilled by the initial
conditions at t = 0 and by the differential equations. As
starting point, we calculate the time derivative of the
general pair correlation function,

d

dt
〈Sρk(t)Sγ0(0)〉 = i〈LSρk(t)Sγ0(0)〉 (A2a)

=
−1√
z

∑

j,〈j,k〉

∑

αβϕ

Jαβεβρϕ〈Sαj (t)Sϕk (t)Sγ0(0)〉, (A2b)

where the Levi-Civita tensor occurs due to the spin alge-
bra. The complexity of the expectation value is increased
by the Liouville operator L which consists in the commu-
tation with the Hamiltonian. This leads to an an addi-
tional time-dependent spin operator in the expectation
value.
The same behavior is observed for higher derivatives: the
application of L results in expectation values with in-
cremented or decremented number of spin operators by
one. The decrement occurs if the additionally generated
spin operator hits an already present spin operator at the
same site and of the same component due to (Sα)2 = 1/4.
The quickly growing number of products of spin opera-
tors makes the book keeping tedious. A solution consists
in considering the correlation function of a general cluster
at time t with a single spin at time 0 and site 0

gγ(C, t) := 〈C(t)Sγ0(0)〉. (A3)

Here, C denotes an arbitrary product of spin operators
at different sites

C := C(c, α) =
∏

r∈c
Sαrr (A4)

where c is a set of lattice sites r ∈ {0, ..., N} and α is a
set of components αr ∈ {x, y, z}. The time derivative of
such cluster correlations (A3) reads

d

dt
gγ(C, t) =

1√
z

∑

C′

J(C,C ′)gγ(C ′, t), (A5)

where the sum runs over all clusters C ′ that can be
reached from C by one application of the Liouville op-
erator. All factors that are independent of the coordi-
nation number, e.g., the couplings Jαβ and factors 1/4

r = 0

Figure 26. Cutout of a Bethe lattice with z = 3. As an
example we consider a cluster of four spin operators situated
at the filled dots representing occupied sites. The open dots
represent empty sites; their number defines κ2(c) = 3. The
covering of the cluster is defined by the green links; their
number defines κ1 = 6 so that κ = 9.

from products of the same spin operators, are collected
in J(C,C ′). Hence, this generalized coupling J(C,C ′)
does not contribute to the scaling which we want to de-
termine.
By (A5) we have formally defined the system of differ-
ential equations describing the dynamics of all cluster
correlation functions. The starting conditions read as

gγ(C, 0) = 0, ∀ C 6= Sγ0 , (A6a)

gγ(Sγ0 , 0) =
1

4
. (A6b)

It is challenging to keep track of the more and more
complex clusters. To this end, we define a measure of
the cluster size or complexity and link it to the scaling.
Since S = 1

2 , at each site r of a cluster the active operator
can be the identity or one of the three spin components.
All products with more factors can be reduced to this
case. We call a site “occupied” if one of the three spin
components is present at this site. Otherwise, we call
it “unoccupied”. We introduce the measure κ(c) which
consists of two components

κ(c) := κ1(c) + κ2(c). (A7)

The first term κ1(c) measures the overall size of the clus-
ter c. Consider a covering of the minimum number of
bonds needed to link all sites in c and the origin 0, see
the green bold links in Fig. 26. We stress that this cov-
ering is unique, i.e., there is only one such covering due
to the properties of the Bethe lattice where two sites are
linked by one specific path. There are no loops except
self-retracing paths. The second term κ2(c) counts the
number of empty, unoccupied sites which are touched by
this covering.
We show below that κ(c) is a lower bound for the mini-
mum number n(C) of applications of the Liouville oper-
ator L needed to generate C(c, α) from an initial cluster
C0({0}, α0) with a single spin operator Sα0

0 at the ori-
gin. For the sake of completeness, we mention that in
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the exceptional cases

C = Sρ0, ρ 6= γ, (A8)

n = κ(c) + 2 = 2 holds for reaching Sρ0 from Sγ0 . From
the assertion n(C) ' κ(c) and the starting conditions
(A6) we deduce

dn

dtn
gγ(C, t)

∣∣∣
t=0

= 0, ∀ n < κ(c). (A9)

This motivates our central assertion that the cluster cor-
relation functions are scaling with z according to

gγ(C, t) ∝ z−κ(c)2 . (A10)

Obviously, this agrees with the starting conditions

gγ(Sγ0 , 0) =
1

4
∝ z0, (A11)

while all other cluster correlation functions vanish at t =
0.
To validate the claim (A10) for arbitrary times, we show
that it is consistent with the equations of motion (A5). A
single application of the Liouville operator L to a cluster
C generates a sum of multiple clusters C ′. Since we con-
sider nearest-neighbor interaction, each of these clusters
C ′ differs from C only at one link (i, j) where i and j are
adjacent. Therefore, it is sufficient to study the possible
processes on this link

C(i,j)
L−→ C ′(i,j) (A12)

where we denote the subcluster of C or C ′ on this link
by C(i,j) and C ′(i,j), respectively.

L

i j i j

i j i j

i j i j

C(i,j) C ′
(i,j)

(a)

(b)

(c)

Figure 27. Possible link processes for a single application of
L and their effect on the occupation of the involved sites.

Fig. 27 shows how the effect of L on the link

[HBL,(i,j),C(i,j)] =
∑

C ′(i,j) (A13)

can be categorized in three different types. The relevant
commutators read as

[Sαi S
β
j , S

ρ
i ] = iεαρωS

ω
i S

β
j (A14a)

[Sαi S
β
j , S

ρ
iS

β
j ] =

i

2
εαρωS

ω
i (A14b)

[Sαi S
β
j , S

ρ
iS

δ
j ] = 0. (A14c)

Interestingly, the last commutator yields zero for S = 1
2 ,

so that this process does not contribute. The remaining
two processes (a) and (b) are analyzed further. Since κ(c)
depends on the covering of c, we distinguish whether the
considered link (i, j) is part of this covering or not. This
leads to two subcases for processes (a) and (b) as shown
in Fig. 28.

L

i j i j

i j i j

i j i j

C(i,j) C ′
(i,j)

(a.i)

(a.ii)

(b.i)

i j i j
(b.ii)

Figure 28. Relevant link processes for a single application of
L including the effect on the covering which is shown in green.

As an example, we derive that the first process (a.i) pre-
serves the asserted scaling. The extension of the covering
by one link leads to

κ1(c′) = κ1(c) + 1 (A15)

while the number of unoccupied sites remains the same

κ2(c′) = κ2(c). (A16)

In order to assess the complete scaling one has to count
how often a process can occur. We call this its multi-
plicity m(c, z). The multiplicity of process (a.i) can be
bounded from above by counting at maximum z neigh-
bors of each occupied site in c. There are κ1(c)−κ2(c)+1
of such sites so that

m(c, z) ≤ z(κ1(c)− κ2(c) + 1) (A17)

holds. The indicators κi depend on the size of the cluster,
but not on the coordination number so that the scaling
resulting from the differential equation (A5) is

gγ(C(a.i), t) ∝ z− 1
2m(c, z)z−

κ(c′)
2 (A18a)

∝ z−κ(c)2 (A18b)

∝ gγ(C, t), (A18c)

where gγ(C(a.i), t) denotes the sum of the contributions
of the clusters C ′ to the correlation of cluster C via the
link process (a.i). Clearly, the asserted scaling of gγ(C, t)

is confirmed. Note that the first factor z−
1
2 in (A18a)

stems from the overall scaling on the right hand side of
Eq. (A5). In conclusion, we showed that the first process
is consistent with the claimed scaling (A10).
We do not repeat the line of argument for the processes
(a.ii), (b.i), and (b.ii). Their effects on the scaling are
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process (x.y) κ1 κ2 m(c, z) ∝ gγ(C(x.y), t) ∝
(a.i) +1 0 z z−κ(c)/2

(a.ii) 0 −1 1 z−κ(c)/2

(b.i) −1 0 1 z−κ(c)/2

(b.ii) 0 +1 1 z−(κ(c)+1)/2

Table III. Induced scaling of the contributions of the link pro-
cess to the differential equation for C. The number −1, 0,+1
indicate the increments in κ1 and κ2. The entries of the col-
umn of the multiplicity provides the scaling factors in m(c, z).
The last column shows the resulting scaling of the contribu-
tion of C′ to C.

summarized in Tab. III. While the processes (a.ii) and
(b.i) yield the same scaling as (a.i), the last process (b.ii)

is even suppressed by an additional factor z−
1
2 . Hence,

we have derived that none of the processes violates the
asserted scaling. Since this scaling holds initially, see
Eq. (A11), we deduce by continuous induction via the
differential equations (A5) that the scaling (A10) holds
at all times on the Bethe lattice at infinite temperature.
As mentioned in the beginning, we assume that this be-
havior is generic, i.e., that it applies to general lattices
and clusters. This justifies the application of spinDMFT
for dense systems by which we mean systems with large
effective coordination numbers.

A direct corollary applies to the two-time pair autocorre-

lations 〈Sαi (t1)Sβj (t2)〉. In this particular case, the clus-
ter reads as

C = Sαi (A19)

so that only the site i belongs to c and

κ1(c) = κ2(c) = ‖i− j‖, (A20)

where one must keep in mind that the site j needs to be
connected to a link as well without being occupied. This
implies

κ(c) = κ1(c) + κ2(c) = 2‖i− j‖ (A21)

where ‖i− j‖ is the taxicab distance between i and j,
i.e., the number of links required to reach i from j. Then
the general scaling (A10) reads as

〈Sαi (t1)Sβj (t2)〉 ∝ z−‖i−j‖, (A22)

which entails that the two-time pair correlations (i 6= j)
are suppressed at least by z−1 relative to the autocorrela-
tions. Hence, any pair of spins is uncorrelated in the limit
z → ∞. We used this insight to justify the application
of the central limit theorem in Sect. II C.

2. Correlations of the local-environment fields

Here we draw further conclusions from the scaling derived
in the preceding section. We recall definition (2) of the
local-environment fields which take the form

V α
i =

1√
z

∑

k,〈k,i〉

∑

γ

JαγSγk (A23)

on the Bethe lattice. Their autocorrelation reads

〈V α
i (t1)V β

i (t2)〉 =
1

z

∑

γρ

(
JαγJβρ

)2 ∑

k,〈k,i〉
l,〈l,i〉

〈Sγk(t1)Sρl (t2)〉 (A24a)

=
1

z

∑

γρ

(
JαγJβρ

)2 ∑

k,〈k,i〉

(
〈Sγk(t1)Sρk(t2)〉+

∑

l,〈l,i〉
l 6=k

〈Sγk(t1)Sρl (t2)〉
)

(A24b)

=
1

z

∑

γρ

(
JαγJβρ

)2 ∑

k,〈k,i〉

(
〈Sγk(t1)Sρk(t2)〉+O

(
z−1
))
, (A24c)

where in the last line we neglected the second term
in the brackets because it is suppressed by the factor
1/z‖k−l‖ = z−1 relative to the first term. We emphasize
that the total autocorrelation is not suppressed since the
summation and the factor z−1 compensate each other.
Equation (A24c) is vital to simplify the self-consistency
problem in II C 2.

Similarly, we analyze possible correlations of the local
fields at different sites. Inserting the definitions into the

pair correlation functions one obtains

〈V α
i (t1)V β

j (t2)〉 =
1

z

∑

γρ

(
JαγJβρ

)2∑

k,〈k,i〉
l,〈l,j〉

〈Sγk(t1)Sρl (t2)〉

(A25)

for i 6= j. Inspecting the Bethe lattice, one sees that the
above double sum consists of three types of terms with
different multiplicity m:
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i) ‖k − l‖ = ‖i− j‖ − 2, m ∝ 1,

ii) ‖k − l‖ = ‖i− j‖, m ∝ z,

iii) ‖k − l‖ = ‖i− j‖+ 2, m ∝ z2.

Fig. 29 visualizes these cases. The first case occurs if k
and l are neighbors of i and j and both are part of the
direct path connecting i with j. The second case occurs
if one index k or l stands for a neighbor that is not part
of this path while the other one lies on the path linking
i and j. The third case, finally, occurs if both indices
k or l stand for neighbors that are not part of the path
connecting i with j. The scalings stem from the fact that
there are always z−1 ∝ z ways to choose a neighbor that
is not on the path while there is only one unique neighbor
on the path. In the special case ‖i− j‖ = 1 the first case
modifies to ‖k − l‖ = ‖i− j‖ = 1 with m = 1.

i

k

l

j

k

i

l

j

k
j

l

i)

ii)

iii)

m ∝ 1

m ∝ z

m ∝ z2

i

Figure 29. Sketch to visualize the three cases occurring in
the double sum in equation (A25). The distance between
the red dots k and l defines the scaling of the expectation
value in the double sum. The green zigzag lines indicates that
the corresponding adjacent sites are connected via arbitrarily
many bonds. By the green dashed lines with open red dots
we indicate that there are multiple options for the sites k or
l.

Using the above multiplicities in combination with the
scaling of the spin-spin correlations (A22) we obtain that
the pair correlations scale like

〈V α
i (t1)V β

j (t2)〉 ∝
{
z−1 if ‖i− j‖ = 1,

z−‖i−j‖+1 if ‖i− j‖ > 1,
(A26)

so that they are suppressed by at least the factor z−1.
Hence, no correlations between the local-environment
fields need to be accounted for. By self-consistency, this
extends to the second moments of the local mean-fields.

In a similar fashion, we show that the spin dynamics of
~Si is uncorrelated to its corresponding local-environment

field ~V i:

〈Sαi (t1)V β
i (t2)〉 =

1√
z

∑

γ

Jβγ

∝z︷ ︸︸ ︷∑

k,〈k,i〉
〈Sαi (t1)Sγk(t2)〉︸ ︷︷ ︸

∝z−1

(A27a)

∝ z− 1
2 , (A27b)

as well as to any other local-environment field ~V j (j 6= i):

〈Sαi (t1)V β
j (t2)〉 =

1√
z

∑

γ

Jβγ
∑

k,〈k,j〉
〈Sαi (t1)Sγk(t2)〉

(A28a)

∝ z−‖i−j‖+ 1
2 , (A28b)

which both tend to 0 for z →∞. For the last conclusion,
one has to distinguish two cases again, see Fig. 30. First,
site i can be nearer to j than to k. Second, site i can be
nearer to k than to j. The latter case is dominant with
a multiplicity of m ∝ 1 and a scaling of ∝ z−‖j−1‖+1.
Together with the prefactor 1/

√
z this yields the provided

scaling.

i
k

i

k

j

i)

ii)

m ∝ z

m ∝ 1

j

Figure 30. Sketch to visualize the two cases occurring in the
site sum in equation (A28). The distance between the red
dots k and i defines the scaling of the expectation value on the
right hand side. The green zigzag lines indicate that the cor-
responding adjacent sites are connected via arbitrarily many
bonds. By the green dashed lines we indicate that there are
multiple options for the site k.

Appendix B: Error analyses

In this appendix, we discuss numerical errors and issues
which arise in evaluating the mean-field moments. An
assessment of the errors resulting from statistics, finite
discretization, and convergence by iteration is provided.
Subsequently, we explain how the numerical effort can be
reduced by exploiting time translation invariance and we
discuss the definiteness of the covariance matrices.

1. Statistical Error

By the self-consistent equations derived in Sect. II C 2
the moments of the mean-fields are linked to spin ex-
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Figure 31. Numerical result for the standard deviations

σ
(
gαβ~V (t, 0)

)
as function of t for the isotropic Heisenberg

model without any magnetic field. For t = 0, the autocorre-
lations are fixed and hence their standard deviation vanishes.
For large t it converges apparently to 1/4

√
3, indicated by the

dashed line.

pectation values which are calculated by path integrals
averaged over the distribution of the mean-field time se-

ries ~V. Numerically, we estimate the path integrals using
a Monte-Carlo method. The autocorrelations

gαβ~V (t1, t2) := 〈Sα(t1)Sβ(t2)〉(sts)~V (B1)

are computed for M time series ~V and averaged

gαβM (t1, t2) :=
1

M

∑

~V

gαβ~V (t1, t2) (B2)

which converges to gαβ(t1, t2) for M → ∞. Since the
time series are drawn independent of each other the vari-

ance of gαβM (t1, t2) is given by the variance of a single time
series divided by M

σ2
(
gαβM (t1, t2)

)
=

1

M
σ2
(
gαβ~V (t1, t2)

)
, (B3)

where σ2(. . . ) denotes the variance of the quantity in the
bracket.
The standard deviation σ of a single time series depends
on many parameters and cannot be calculated analyti-
cally in a simple way. But it is clear that its value is
bounded by the maximum value of the autocorrelations,
i.e., by 1

4 . Figs. 31, 32, and 33 show generic time depen-
dencies of σ computed for different physical situations.
Interestingly, we find that all of them converge to the
value 1/(4

√
3) for t → ∞. The rapidity of this conver-

gence depends on the actual decay of the correspond-
ing autocorrelation. This behavior can be understood by
the following argument. The autocorrelations vanish for
large t. Hence, the variance equals the quadratic mean

lim
t→∞

σ2
(
gαβ(t, 0)

)
= lim
t→∞

(
(gαβ(t, 0)

)2
. (B4)
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Figure 32. Same as Fig. 31 for the dipole model in the labo-

ratory frame with ϑ = 0 at B̃ = 5.0.
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Figure 33. Same as Fig. 31 for the dipole model in the rotating
frame in RWA and various noise strengths.

In a next step, we consider the vector-valued signal

~g β~V (t, 0) := 〈U †(t, 0)~S(0)U(t, 0)Sβ(0)〉(sts)~V (B5a)

=
〈(
R~V(t, 0)~S(0)

)
Sβ(0)

〉(sts)

(B5b)

=
1

4
R~V(t, 0)~eβ , (B5c)

where R~V(t, 0) denotes the orthogonal rotation matrix
which describes the rotation of the initial spin vector
due to its temporal evolution subjected to the fluctu-

ating time series ~V (t). Obviously, the square of ~g β~V (t, 0)

is constant

(
~gβ(t, 0)

)2
=

1

16
(B6)

before and thus also after averaging.
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Next, it is plausible and in accord with all previous results
that the decoherence is sufficiently strong to have the spin

vector R~V(t, 0)~S(0) lose all information about its initial
direction. If it points in z direction at t = 0 it will point
into any direction of the unit sphere after sufficiently long
time. Therefore, each component α of the rotated spin
vector has the same variance for t→∞ and contributes
equally to the squared vector in (B6). This allows us to
conclude

lim
t→∞

σ
(
gαβ(t, 0)

)
= lim
t→∞

√
(~gβ(t, 0))

2
/3 =

1

4
√

3
(B7)

in perfect agreement with the numerical findings. This
enables us to derive the reliable estimate

σ
(
gαβM (t1, t2)

)
≈ 1

4
√

3M
. (B8)

for the statistical error from averaging over M times se-
ries. It becomes even exact for t→∞.

2. Discretization Error

The goal of this appendix is to estimate the error result-
ing from the discretization of time, i.e., the error result-
ing from working with a finite time step δt > 0 instead
of taking δt → 0. Certainly, this error will depend on
details of the model. We discuss it for both the isotropic
Heisenberg model and the dipole model without and with
RWA.
We consider the discretization error of the diagonal auto-
correlations α = β up to some maximum time tmax which
we determine such that

|gαα(tmax)| ≈ 1

100
(B9)

holds, i.e., the autocorrelation has decreased to 1/25 of
its initial value. For simplicity, we focus on the autocorre-
lation that decays slowest in each physical scenario, since
it is most susceptible to the discretization error which ac-
cumulates in the course of its temporal evolution. Mostly
this is the longitudinal autocorrelation.
To be specific, we compute gαα(t) on the time interval
t ∈ [0, tmax] for various step widths

δt(ν) = δt(0)2−ν , ν ∈ [0, 1, 2, ..., νmax]. (B10)

The results for gαα(t) for ν < νmax are compared to the
‘best’ solution for νmax, i.e., the solution from the finest
discretization which is used as reference. We define the
discretization error

∆q(ν) =

L(ν)∑

l=0

|gαανmax
(lδt(ν))− gααν (lδt(ν))|

L(ν) + 1
(B11)

where L(ν) = tmax/δt(ν) is the number of time steps.
We stress that the input data for ∆q(ν) are not exact,
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Figure 34. Numerical analysis of the time discretization error
for the isotropic model. Data are shown for zero magnetic
field (1) and for finite magnetic field γsB = 5.0J2 (2) and,
furthermore, for M = 4× 105 (A) and for M = 6.4× 106

(B) time series, respectively. The dashed line (A) and the
dashed-dotted line (B) represent the statistical errors σ for
the corresponding M . The thin orange lines follow δt2 and
are given for comparison.
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Figure 35. Numerical analysis of the time discretization er-
ror for the lab-frame dipole model with ϑ = 0 for various
magnetic fields B̃ and noise widths C. The dashed line
corresponds to the statistical error σ for the sample size
M = 4× 105. The thin orange lines follow δt2 and are given
for comparison.

but subjected also to the statistical error discussed in the
previous section.
Figs. 34, 35, and 36 show the results for the three differ-
ent models investigated in the main text. The qualitative
behavior is very similar. For small values of δt the de-
viation ∆q is clearly dominated by the statistical error.
Hence the curves level off displaying roughly plateaus
with some fluctuations. For large values of δt the curves
also level off displaying a plateau. This stems from errors
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Figure 36. Numerical analysis of the time discretization error
for the RWA dipole model for various noise widths C. The
dashed line corresponds to the statistical error σ for the sam-
ple size M = 4× 105. The thin orange lines follow δt2 and
are given for comparison.

so large that the deviations are of order 2/4 because the
fluctuating diagonal autocorrelations gαα are bounded by
1/4.
Thus, the relevant regime is at intermediate time steps
between these two plateaus. Here the effect of the dis-
cretization can be discerned. The double logarithmic
plots are consistent with the conclusion ∆q ∝ δt2 as can
be read off by comparing to the straight lines resulting
from the quadratic power law. This can be easily under-
stood by the approximation we have to use for the uni-
tary time evolution operators which propagate the sys-
tem from t to t+ δt. The employed second-order CFET
and the trapezoidal rule entail a discretization error scal-
ing like δt3. But since this error accumulates over time
one has to multiply this scaling by the number of step
from t = 0 to t = tmax so that we obtain

∆q ∝ Lδt3 ∝ δt2. (B12)

This explains the observed quadratic scaling of the dis-
cretization error with the time step size δt.
Aside from the above discussed scaling further conclu-
sions on the influence of the discretization can be drawn.
Inspecting Figs. 34 and 35 shows that a finite magnetic
field increases ∆q. The reason is that the Larmor preces-
sions need to be resolved. If the step size δt is too long,
approaching the Larmor period, sizable discretization er-
rors occur. As a rule of thumb, δt should be at maximum
a tenth of the Larmor precession period

T =
2π

γsB
. (B13)

Since the time discretization error accumulates over time
longer lasting correlations imply larger discretization er-
rors. This can be seen for instance in Fig. 36 where the

dipole model is studied in RWA. The error ∆q increases
with the noise strength because the decay of the longitu-
dinal autocorrelation is slowed down upon increasing C.
Finally, we point out that a small discretization error is
desirable. But in view of the efficiency of the total algo-
rithm it does not pay to reduce the discretization error
below the statistical error. Hence, the parameters should
be set such that ∆q ≈ σ(g) holds.

3. Termination condition for the iteration

We determine the solution of the self-consistency condi-
tions iteratively. If the algorithm is stable, the autocorre-

lation functions gαβ(i) (t) of the iteration i converge to the

exact results for i→∞. In practice, it is necessary to de-
fine a termination condition to decide when the iterations
can be stopped. For this we use

∆Iαβ (i) =
1

L+ 1

L∑

l=0

|gαβ(i) (tl)− gαβ(i−1)(tl)|. (B14)

This quantity measures the difference between the results
of iteration j+1 and j, where j ≥ 1 . The execution of the
code is stopped if ∆Iαβ (i) falls below a certain threshold.
Since the iteration error itself is limited by the statistical
accuracy this threshold cannot be chosen smaller than
the statistical error. It needs to be set above the statis-
tical standard deviation to achieve reliable termination.
In our numerics, it turned out that

∆Ithreshold = 2σ
(
gαβM (t1, t2)

)
=

1

2
√

3M
(B15)

is a reasonable choice. It avoids unnecessary iterations
while it is strict enough to yield sufficient convergence.

Figure 37 depicts the iteration error of gzz for the
isotropic Heisenberg model without magnetic field. The
iterations started from two different initial diagonal au-
tocorrelations gαα while the cross autocorrelations gαβ

with α 6= β are set to zero. The iteration error decreases
very fast in the beginning. At about the fourth iteration
it reaches the magnitude of the threshold. Beyond the
fourth iteration, statistical fluctuations stemming from
the averaging over M time series occur and dominate
the iteration error ∆Ixx. For optimum computational
efficiency, the code should terminate before the statisti-
cal fluctuations take over.

We emphasize that the “converged” results obtained in
this way are independent of the initially chosen auto-
correlations. The deviation between the iterated results
from the exponential and the Gaussian initial autocor-
relation is of the same magnitude as the error threshold
(B15). For this reason, we consider the chosen iterative
algorithm robust enough to determine physically mean-
ingful solutions.
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Figure 37. Iteration error 4∆Izz as function of the iteration
number i. Case (A) starts from an exponential initial di-
agonal autocorrelation and case (B) from a Gaussian initial
diagonal autocorrelation. The error threshold (B15) is dis-
played as horizontal dashed line for M = 1× 105 time series.
The termination condition is fulfilled at i = 5 for case (A)
and at i = 4 for case (B).

4. Time-Translation Invariance

For both the isotropic and the dipolar spin systems we
considered a time-independent Hamiltonian so that the
systems are invariant under time translation

U(t2, t1) = e−iH(t2−t1) = U(t2 − t1, 0) (B16)

and so are all two-time spin autocorrelations

〈Sα(t1)Sβ(t2)〉 = 〈Sα(t1 − t2)Sβ(0)〉. (B17)

Applying spinDMFT, the situation is slightly more com-
plicated. The autocorrelations with respect to a sin-

gle time series ~Vi are not time-translation invariant be-
cause the mean-field is dynamic, i.e., it depends on time.
But the physically meaningful expectation values are
obtained by averaging over the distribution of possible

mean-fields. In the path integral the mean-field ~Vi can
be shifted in time so that the time evolution operators

and the distribution functional p[~Vi] are shifted. Time-
translation invariance is ensured if and only if the distri-
bution remains unchanged by this shift. Specifically, this
is equivalent to the condition

V α(t1)V β(t2) = V α(t1 − t2)V β(0), (B18)

for the second moments of the mean-fields, i.e., they
are time-translation invariant themselves. As stated
in the main text, the time invariance of the moments
and hence of the distribution implies time translation
invariance of the spin-spin autocorrelations. So time-
translational self-consistent solutions are possible, but it
cannot be excluded that solutions exist which are not

time-translationally invariant. Here, we do not consider
them because they cannot occur in a quantum system at
infinite temperature although time-crystalline behavior
cannot be excluded generally for specific situations.
In practice, the averaging based on Monte-Carlo sam-
pling allows for small unphysical violations of time trans-
lational invariance due to the finite statistical error:
the self-consistently computed moments and autocorrela-
tions may not be exactly time-translation invariant, even
though the initially inserted moments have this property.
To avoid violations of time translational invariance, we
enforce it in each iteration step. A simple implementa-
tion consists in setting

t1 = ∆t, t2 = 0, for t1 > t2, (B19a)

t2 = ∆t, t1 = 0, for t2 > t1, (B19b)

where ∆t = |t1 − t2|, instead of considering all pairs of
times t1, t2.
The reduced set of data together with the assumption
of time translation invariance provides all required in-
formation. Due to the time-translational invariance the
covariance matrix has constant matrix elements on all
diagonals

Mαβ =




a b c

b̃ a b
. . .

c̃ b̃ a
. . .

. . .
. . .

. . .



, (B20)

where

a = V α(0)V β(0), (B21a)

b = V α(0)V β(δt), b̃ = V α(δt)V β(0), (B21b)

c = V α(0)V β(2δt), c̃ = V α(2δt)V β(0). (B21c)

This procedure has two advantages: (i) time-translation
invariance is built-in by construction; (ii) the autocor-
relations need only be computed at the time differences
∆t. Hence, the effort of steps 4) and 5) of the numerical
procedure is reduced from O(L2) to O(L) where L is the
number of time steps.

5. Definiteness of the Covariance Matrix

In the self-consistency conditions the two-time correla-
tions are taken as matrix elements of a covariance ma-
trix. The physical justification is given in Sect. II. In
addition, we discuss whether this identification is mathe-
matically possible. To this end, the quantum correlations
must provide (i) real symmetric matrix elements and the
resulting matrix must be (ii) positive semi-definite.
In Sect. II D we already showed property (i) at infinite
temperature. Property (ii) is equivalent to

∑

αβ

∑

t,t′∈I
〈V α

i (t)V β
i (t′)〉λαt λβt′ ≥ 0, (B22)
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for arbitrary real coefficients λαt and t ∈ I where I is an
arbitrary set of time instants. By shifting the sums into
the expectation value we find

〈(∑

α

∑

t∈I
V α
i (t)λαt

︸ ︷︷ ︸
:=B

)2〉
≥ 0. (B23)

Since B is a Hermitian operator, its square is a non-
negative operator and thus any of its expectation values
are non-negative. This proves the required positive semi-
definiteness and applies to the expectation values of the
path integral (15) and extends to the averages (B2).
There is, however, a subtlety in the implementation de-
scribed in the previous section. We guaranteed time
translation invariance by using

1

M

∑

~V

gαβ~V (t1, t2) ≈ 1

M

∑

~V

gαβ~V (∆t, 0). (B24)

For M = ∞ this is relation holds exactly true. But the

statistical fluctuations at finite M imply that the covari-
ance matrix computed by Eq. (B20) need not be non-
negative. If we refrained from setting all matrix elements
on a diagonal constant, but used the two-time autocorre-
lations, L would be non-negative. Enforcing time trans-
lation invariance breaks the positive semi-definiteness to
the extent of the statistical standard deviation. Since we
keep this deviation low the computed covariance matrices
are very close to being non-negative. Due to the Monte
Carlo approach to the averaging all numerical results are
subjected to the statistical error so that the statistical in-
accuracies of the approximate covariance matrix are no
source of additional deviations.

Practically, we diagonalize the approximate covariance
matrix and set the eigenvalues which are negative to zero
for the next iteration step. We stress that the modu-
lus of these negative eigenvalues is of the order of the
statistical error, i.e., small in a systematically controlled
way. Therefore, the employed procedure provides consis-
tent physical solutions for the dynamic autocorrelations
within the discussed errors.
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