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Abstract. Shroer, Sauer, Ott and Yorke conjectured in 1998 that the Takens delay em-
bedding theorem can be improved in a probabilistic context. More precisely, their conjecture
states that if µ is a natural measure for a smooth diffeomorphism of a Riemannian manifold
and k is greater than the information dimension of µ, then k time-delayed measurements
of a one-dimensional observable h are generically sufficient for a predictable reconstruction
of µ-almost every initial point of the original system. This reduces by half the number of
required measurements, compared to the standard (deterministic) setup. We prove the con-
jecture for ergodic measures and show that it holds for a generic smooth diffeomorphism, if
the information dimension is replaced by the Hausdorff one. To this aim, we prove a general
version of predictable embedding theorem for injective Lipschitz maps on compact sets and
arbitrary Borel probability measures. We also construct an example of a C∞-smooth dif-
feomorphism with a natural measure, for which the conjecture does not hold in its original
formulation.

1. Introduction

1.1. General background. This paper concerns probabilistic aspects of the Takens delay
embedding theorem, dealing with the problem of reconstructing a dynamical system from a
sequence of measurements of a one-dimensional observable. More precisely, let T : X → X
be a transformation on a phase space X. Fix k ∈ N and consider a function (observable)
h : X → R together with the corresponding k-delay coordinate map

φ : X → Rk, φ(x) = (h(x), . . . , h(T k−1x)).

Takens-type delay embedding theorems state that if k is large enough, then φ is an em-
bedding (i.e. is injective) for a typical observable h. The injectivity of φ ensures that an
(unknown) initial state x ∈ X of the system can be uniquely recovered from the sequence
of k measurements h(x), . . . , h(T k−1x) of the observable h, performed along the orbit of x.
It also implies that the dynamical system (X,T ) has a reliable model in Rk of the form
(X̃, T̃ ) = (φ(X), φ ◦ T ◦ φ−1).

This line of research originates from the seminal paper of Takens [Tak81] on diffeomor-
phisms of compact manifolds. Extensions of Takens’ work were obtained in several categories,
e.g. in [SYC91, Sta99, Cab00, Rob05, Gut16, GQS18, SBDH97, SBDH03, NV20] (see also
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[Rob11, BGŚ20] for a more detailed overview). A common feature of these results is that
the minimal number of measurements sufficient for an exact reconstruction of the system is
k ≈ 2 dimX, where dimX is the dimension of the phase space X. This threshold agrees with
the one appearing in the classical non-dynamical embedding theorems (e.g. Whitney theo-
rem [Whi36], Menger–Nöbeling theorem [HW41, Theorem V.2] and Mañé theorem [Rob11,
Theorem 6.2]). It is worth to notice that Takens-type theorems serve as a justification of
the validity of time-delay based procedures, which are actually used in applications (see
e.g. [HGLS05, KY90, SGM90, SM90]) and have been met with a great interest among math-
ematical physicists (see e.g. [PCFS80, HBS15, SYC91, Vos03]).

In 1998, Shroer, Sauer, Ott and Yorke conjectured (see [SSOY98, Conjecture 1]), that for
smooth diffeomorphisms on compact manifolds, in a probabilistic setting (i.e. when the initial
point x ∈ X is chosen randomly according to a natural probability measure µ), the number
of measurements required for an almost sure predictable reconstruction of the system can be
generically reduced by half, up to the information dimension of µ. A precise formulation is
given below in Subsection 1.2. We will refer to this conjecture as Shroer–Sauer–Ott–Yorke
predictability conjecture or SSOY predictability conjecture. In [SSOY98], the authors provided
some heuristic arguments supporting the conjecture together with its numerical verification
for some examples (Hénon and Ikeda maps). However, a rigorous proof of the conjecture has
been unknown up to now.

In this paper, we prove a general version of a predictable embedding theorem (Theo-
rem 1.7), valid for injective Lipschitz transformations of compact sets and arbitrary Borel
probability measures, which shows that an almost sure predictable reconstruction of the
system is possible with the number of measurements reduced to the Hausdorff dimension
of µ, under a mild assumption bounding the dimensions of sets of periodic points of low
periods. As a corollary, we obtain the SSOY predictability conjecture for generic smooth Cr-
diffeomorphisms on compact manifolds for r ≥ 1, with information dimension replaced by the
Hausdorff one (Corollary 1.9) and the original conjecture for arbitrary Cr-diffeomorphisms
and ergodic measures (Corollary 1.10). We also construct an example of a C∞-smooth diffeo-
morphism of a compact Riemannian manifold with a non-ergodic natural measure, for which
the original conjecture does not hold (Theorem 1.11). This shows that in a general case, the
change of the information dimension to the Hausdorff one is necessary.

Let us note that the SSOY predictability conjecture has been invoked in a number of
papers (see e.g. [Liu10, MS04, OL98]) as a theoretical argument for reducing the number
of measurements required for a reliable reconstruction of the system, also in applications
(see e.g. [QMAV99] studying neural brain activity in focal epilepsy). Our result provides a
mathematically rigorous proof of the correctness of these procedures.

1.2. Shroer–Sauer–Ott–Yorke predictability conjecture. Before we formulate the con-
jecture stated in [SSOY98] in a precise way, we need to introduce some preliminaries, in
particular the notion of predictability. In the sequel, we consider a general situation, when
the phase space X is an arbitrary compact set in RN (note that by the Whitney embedding
theorem [Whi36], we can assume that a smooth compact manifold is embedded in RN for suffi-
ciently large N). We denote the (topological) support of a measure µ by suppµ and write φ∗µ
for a push-forward of µ by a measurable transformation φ, defined by φ∗µ(A) = µ(φ−1(A))
for measurable sets A.

Definition 1.1. Let X ⊂ RN be a compact set, let µ be a Borel probability measure with
support in X and let T : X → X be a Borel transformation (i.e. such that the preimage of
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any Borel set is Borel). Fix k ∈ N. Let h : X → R be a Borel observable and let φ : X → Rk

given by φ(x) = (h(x), . . . , h(T k−1x)) be the corresponding k-delay coordinate map. Set
ν = φ∗µ (considered as a Borel measure in Rk) and note that supp ν ⊂ φ(X). For y ∈ supp ν
and ε > 0 define

χε(y) =
1

µ
(
φ−1(B(y, ε))

) ˆ

φ−1(B(y,ε))

φ(Tx)dµ(x),

σε(y) =

(
1

µ
(
φ−1(B(y, ε))

) ˆ

φ−1(B(y,ε))

‖φ(Tx)− χε(y)‖2dµ(x)

) 1
2

,

where B(y, ε) denotes the open ball of radius ε centered at y. In other words, χε(y) is the
conditional expectation of the random variable φ ◦ T (with respect to µ) given φ ∈ B(y, ε),
while σε(y) is its conditional standard deviation. Define also the prediction error at y as

σ(y) = lim
ε→0

σε(y),

provided the limit exists. A point y is said to be predictable if σ(y) = 0.

Note that the prediction error depends on the observable h. We simplify the notation by
suppressing this dependence.

Remark 1.2. Note that the predictability of points of the support of the measure ν does not
imply that the delay coordinate map φ is injective. Indeed, if h (and hence φ) is constant,
then every point y ∈ supp ν is predictable.

Remark 1.3 (Farmer and Sidorowich algorithm). As explained in [SSOY98], the notion
of predictability arises naturally in the context of a prediction algorithm proposed by Farmer
and Sidorowich in [FS87]. To describe it, suppose that for a point x ∈ X we are given a
sequence of measurements h(x), . . . , h(T n+k−1(x)) of the observable h for some n ∈ N. This
defines a sequence of k-delay coordinate vectors of the form

yi = (h(T ix), . . . , h(T i+k−1x)), i = 0, . . . , n.

Knowing the sample values of y0, . . . , yn, we would like to predict the one-step future of the
model, i.e. the value of the next point yn+1 = (h(T n+1x), . . . , h(T n+kx)). For a small ε > 0
we define the predicted value of yn+1 as

ŷn+1 =
1

#I
∑
i∈I

yi+1 for I = {0 ≤ i < n : yi ∈ B(yn, ε)}.

In other words, the predicted value of yn+1 is taken to be the average of the values yi+1,
where we count only those i, for which yi are ε-close to the last known point yn.

Notice that if the k-delay coordinate map φ is an embedding, then the points yi form
an orbit of y0 under the model transformation T̃ defined by the delay coordinate map φ,
i.e. yi = T̃ i(y0) for (X̃, T̃ ) = (φ(X), φ ◦ T ◦ φ−1). Hence, in this case the predicted value
yn+1 = T̃ (yn) is the average of the values yi+1 = T̃ (yi), i ∈ I.

If the initial point x ∈ X is chosen randomly according to an ergodic probability measure
µ, then for n → ∞, the collection of points yi, i ∈ I is asymptotically distributed in
B(yn, ε) according to the measure ν = φ∗µ. Therefore, the value of σε(yn) from Definition 1.1
approaches asymptotically the standard deviation of the predicted point ŷn+1. The condition
of predictability states that this standard deviation converges to zero as ε tends to zero.
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In [SSOY98], the Shroer–Sauer–Ott–Yorke predictability conjecture is stated for a special
class of measures, called natural measures. To define it, recall first that a measure µ on X
is invariant for a measurable map T : X → X if µ(T−1(A)) = µ(A) for every measurable set
A ⊂ X. A set Λ ⊂ X is called T -invariant if T (Λ) ⊂ Λ.

Definition 1.4. Let X be a compact Riemannian manifold and T : X → X be a smooth
diffeomorphism. A compact T -invariant set Λ ⊂ X is called an attractor, if the set B(Λ) =
{x ∈ X : limn→∞ dist(T nx,Λ) = 0} is an open set containing Λ. The set B(Λ) is called the
basin of attraction to Λ. A T -invariant Borel probability measure µ on Λ is called a natural
measure if

lim
n→∞

1

n

n−1∑
i=0

δT ix = µ

for almost every x ∈ B(Λ) with respect to the volume measure on X, where δy denotes the
Dirac measure at y and the limit is taken in the weak-∗ topology.

Remark 1.5. Note that in ergodic theory of dynamical systems, some authors use the
name physical measure or SRB (Sinai–Ruelle–Bowen) measure for similar concepts (see e.g.
[You02]). The term ‘natural measure’ occurs commonly in mathematical physics literature
(see e.g. [Ott02, OY08]).

Definition 1.6. For a Borel probability measure µ in RN with compact support define its
lower and upper information dimensions as 1

ID(µ) = lim inf
ε→0

ˆ

suppµ

log µ(B(x, ε))

log ε
dµ(x), ID(µ) = lim sup

ε→0

ˆ

suppµ

log µ(B(x, ε))

log ε
dµ(x).

If ID(µ) = ID(µ), then we denote their common value as ID(µ) and call it the information
dimension of µ.

We are now ready to state the SSOY predictability conjecture in its original form as stated
in [SSOY98]. Recall that for a map T : X → X with a Borel probability measure µ, a number
k ∈ N and a function h : X → R, we consider the k-delay coordinate map for the observable
h defined by

φ(x) = φh,k(x) = (h(x), . . . , h(T k−1x)).

To emphasize the dependence on h and k, we will write φh,k for φ and νh,k for the push-forward
measure ν = νh,k = (φh,k)∗µ.

SSOY predictability conjecture ([SSOY98, Conjecture 1]). Let T : X → X be a smooth
diffeomorphism of a compact Riemannian manifold X and let Λ ⊂ X be an attractor of T
with a natural measure µ such that ID(µ) = D. Fix k > D. Then νh,k-almost every point of
Rk is predictable for a generic observable h : X → R.

Note that in this formulation some details (e.g. the type of genericity and the smoothness
class of the dynamics) are not specified precisely.

1Information dimensions are often defined in an equivalent way as

ID(µ) = lim inf
ε→0

1

log ε

∑
C∈Cε

µ(C) logµ(C), ID(µ) = lim sup
ε→0

1

log ε

∑
C∈Cε

µ(C) logµ(C),

where Cε is the partition of RN into cubes with side lengths ε and vertices in the lattice (εZ)N (see e.g. [WV10,
Appendix I]).
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1.3. Main results. Now we present the main results of the paper. First, we state a pre-
dictable embedding theorem, which holds in a general context of injective Lipschitz maps T
on a compact set X ⊂ RN equipped with a Borel probability measure µ. Recall that by the
Whitney embedding theorem [Whi36], we can assume that a smooth compact manifold is
embedded in RN for sufficiently large N . Our observation is that in this generality, the pre-
dictability holds if we replace the information dimension ID(µ) by the Hausdorff dimension
dimH µ (see Subsection 2.1 for definition).

In the presented results, we understand the genericity of the observable h in the sense of
prevalence in the space Lip(X) of Lipschitz observables h : X → R (with a polynomial probe
set), which is an analogue of the ‘Lebesgue almost sure’ condition in infinite dimensional
spaces (see Subsection 2.2 for precise definitions). In particular, the genericity of h holds
also in the sense of prevalence in the space of Cr-smooth observables h : X → R, for r ≥ 1.
Let us note that it is standard to use prevalence as a notion of genericity in the context of
Takens-type embedding theorems (see e.g. [SYC91, Rob11]).

It is known that Takens-type theorems require some bounds on the size of sets of T -periodic
points of low periods. Following [BGŚ20], we assume dimH(µ|Perp(T )) < p for p = 1, . . . , k−1,
where

Perp(T ) = {x ∈ X : T px = x}.
With these remarks, our main result is the following.

Theorem 1.7 (Predictable embedding theorem for Lipschitz maps). Let X ⊂ RN be
a compact set, let µ be a Borel probability measure on X and let T : X → X be an injective
Lipschitz map. Take k > dimH µ and assume dimH(µ|Perp(T )) < p for p = 1, . . . , k− 1. Then
for a prevalent set of Lipschitz observables h : X → R, the k-delay coordinate map φh,k is
injective on a Borel set of full µ-measure, and νh,k-almost every point of Rk is predictable.

Remark 1.8. Notice that except of predictability, we obtain almost sure injectivity of the
delay coordinate map, which means that the system can be reconstructed in Rk in a one-to-
one fashion on a set of full measure.

An extended version of Theorem 1.7 is proved in Section 3 as Theorem 3.1.
Note that the assumption on the dimension of µ restricted to the set of p-periodic points

can be omitted if there are only finitely many periodic points of given period. By the Kupka–
Smale theorem (see [PdM82, Chapter 3, Theorem 3.6]), the latter condition is generic (in
the Baire category sense) in the space of Cr-diffeomorphisms, r ≥ 1, of a compact manifold,

equipped with the uniform Cr-topology (see [BGŚ20] for more details). Therefore, we im-
mediately obtain the SSOY predictability conjecture for generic smooth Cr-diffeomorphisms,
with information dimension replaced by the Hausdorff one.

Corollary 1.9 (SSOY predictability conjecture for generic diffeomorphisms). Let
X be a compact Riemannian manifold and r ≥ 1. Then for a Cr-generic diffeomorphism
T : X → X with a natural measure µ (or, more generally, any Borel probability measure)
and k > dimH µ, for a prevalent set (depending on T ) of Lipschitz observables h : X → R,
the k-delay coordinate map φh,k is injective on a set of full µ-measure, and νh,k-almost every
point of Rk is predictable.

Suppose now the measure µ in Theorem 1.7 is T -invariant and ergodic. Then we have
dimH µ ≤ ID(µ) ≤ ID(µ) (see Proposition 2.1). Moreover, either the set of T -periodic points

has µ-measure zero, or µ is supported on a periodic orbit of T (see the proof of [BGŚ20,
5



Remark 4.4(c)]. Hence, the assumption on the dimension of µ restricted to the set of p-
periodic points can again be omitted. This proves the original SSOY conjecture for arbitrary
Cr-diffeomorphisms and ergodic measures.

Corollary 1.10 (SSOY predictability conjecture for ergodic measures). Let X be
a compact Riemannian manifold, r ≥ 1, and let T : X → X be a Cr-diffeomorphism with
an ergodic natural measure µ (or, more generally, any T -invariant ergodic Borel probability
measure). Take k > ID(µ). Then for a prevalent set of Lipschitz observables h : X → R,
the k-delay coordinate map φh,k is injective on a set of full µ-measure, and νh,k-almost every
point of Rk is predictable.

Our final result is that the SSOY predictability conjecture does not hold in its original
formulation for all smooth diffeomorphisms, i.e. the condition k > ID(µ) is not sufficient
for almost sure predictability for generic observables, even if µ is within the class of natural
measures.

Theorem 1.11. There exists a C∞-smooth diffeomorphism of the 3-dimensional compact
Riemannian manifold X = S2 × S1 with a natural measure µ, such that ID(µ) < 1 and for
a prevalent set of Lipschitz observables h : X → R, there exists a positive νh,1-measure set of
non-predictable points. In particular, the set of Lipschitz observables h : X → R for which
νh,1-almost every point of Rk is predictable, is not prevalent.

The construction is presented in Section 4 (see Theorem 4.14 for details).

Remark 1.12. Theorem 1.11 shows that the original SSOY predictability conjecture fails
for a specific system (X,T ). It remains an open question whether it holds for a generic Cr-
diffeomorphism T of a given compact Riemannian manifold X. By Corollary 1.9, this would
follow from the dimension conjecture of Farmer, Ott and Yorke [FOY83, Conjecture 1], which
(in particular) states that the Hausdorff and information dimension of the natural measure
typically coincide.

Organization of the paper. Section 2 contains preliminary material, gathering definitions
and tools required for the rest of the paper. Theorem 1.7 and its extension Theorem 3.1
are proved in Section 3. Section 4 contains a construction of the example presented in
Theorem 1.11, divided into several steps.

Acknowledgements. We are grateful to Edward Ott for bringing the paper [SSOY98] to
our attention and to Balázs Bárány for informing us about the results of [Sim12]. We also

thank Károly Simon for useful discussions. KB and AŚ were partially supported by the
National Science Centre (Poland) grant 2019/33/N/ST1/01882. YG was partially supported
by the National Science Centre (Poland) grant 2020/39/B/ST1/02329.

2. Preliminaries

2.1. Hausdorff and information dimensions. For s > 0, the s-dimensional (outer) Haus-
dorff measure of a set X ⊂ RN is defined as

Hs(X) = lim
δ→0

inf
{ ∞∑

i=1

|Ui|s : X ⊂
∞⋃
i=1

Ui, |Ui| ≤ δ
}
,
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where | · | denotes the diameter of a set (with respect to the Euclidean distance in RN). The
Hausdorff dimension of X is given as

dimH X = inf{s > 0 : Hs(X) = 0} = sup{s > 0 : Hs(X) =∞}.

The (upper) Hausdorff dimension of a finite Borel measure µ in RN is defined as

dimH µ = inf{dimH X : X ⊂ RN is a Borel set of full µ-measure}.

By the Whitney embedding theorem [Whi36], we can assume that a smooth compact manifold
is smoothly embedded in the Euclidean space, hence the Hausdorff dimension is well defined
also for Borel measures on manifolds.

In general, ID(µ) and ID(µ) are not comparable with dimH µ (see [FLR02, Section 3]). One
can however obtain inequalities between them for measures which are ergodic with respect
to Lipschitz transformations.

Proposition 2.1. Let X ⊂ RN be a closed set, let T : X → X be a Lipschitz map and let µ
be a T -invariant and ergodic Borel probability measure on X. Then

dimH µ ≤ ID(µ) ≤ ID(µ).

Proof. The inequality ID(µ) ≤ ID(µ) is obvious. The estimate dimH µ ≤ ID(µ) follows by
combining [Fal97, Propositions 10.2–10.3] with [FLR02, Theorem 1.3] and [Fal97, Proposi-
tion 10.6]. �

For more information on dimension theory in Euclidean spaces we refer to [Fal04, Mat95,
Rob11].

2.2. Prevalence. In the formulation of our results, the genericity of the considered observ-
ables is understood in terms of prevalence – a notion introduced by Hunt, Shroer and Yorke in
[HSY92], which is regarded to be an analogue of ‘Lebesgue almost sure’ condition in infinite
dimensional normed linear spaces.

Definition 2.2. Let V be a normed space. A Borel set S ⊂ V is called prevalent if there
exists a Borel measure ν in V , which is positive and finite on some compact set in V , such
that for every v ∈ V , the vector v + e belongs to S for ν-almost every e ∈ V . A non-Borel
subset of V is prevalent if it contains a prevalent Borel subset.

We will apply this definition to the space Lip(X) of all Lipschitz functions h : X → R
on a compact metric space X, endowed with the Lipschitz norm ‖h‖Lip = ‖h‖∞ + Lip(h),
where ‖h‖∞ is the supremum norm and Lip(h) is the Lipschitz constant of h. We will use
the following standard condition, which is sufficient for prevalence. Let {h1, . . . , hm}, m ∈ N,
be a finite set of functions in Lip(X), called the probe set. Define ξ : Rm → Lip(X) by
ξ(α1, . . . , αm) =

∑m
j=1 αjhj. Then ν = ξ∗ Leb, where Leb is the Lebesgue measure in Rk, is

a Borel measure in Lip(X), which is positive and finite on the compact set ξ([0, 1]m). For
this measure, the sufficient condition for a set S ⊂ Lip(X) to be prevalent is that for every
h ∈ Lip(X), the function h+

∑m
j=1 αjhj is in S for Lebesgue almost every (α1, . . . , αm) ∈ Rm.

In this case, we say that S is prevalent in Lip(X) with the probe set {h1, . . . , hm}.
For more information on prevalence we refer to [HSY92] and [Rob11, Chapter 5].
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2.3. Probabilistic Takens delay embedding theorem. To prove Theorem 1.7, we will
use our previous result from [BGŚ20], which we recall below, using the notion of prevalence
described in Subsection 2.2. This is a probabilistic version of the Takens delay embedding
theorem, asserting that under suitable conditions on k, there is a prevalent set of Lipschitz
observables, which give rise to an almost surely injective k-delay coordinate map.

Theorem 2.3 (Probabilistic Takens delay embedding theorem, [BGŚ20, Theorem 4.3
and Remark 4.4]). Let X ⊂ RN be a compact set, µ a Borel probability measure on X and
T : X → X an injective Lipschitz map. Take k > dimH µ and assume dimH(µ|Perp(T )) < p
for p = 1, . . . , k − 1. Let S be the set of Lipschitz observables h : X → R, for which the
k-delay coordinate map φh,k is injective on a Borel set Xh ⊂ X of full µ-measure. Then S is
prevalent in Lip(X) with the probe set equal to a linear basis of the space of real polynomials
of N variables of degree at most 2k− 1. If µ is additionally T -invariant, then the set Xh for
h ∈ S can be chosen to satisfy T (Xh) = Xh.

2.4. Topological Rokhlin disintegration theorem. A useful tool connecting the proba-
bilistic Takens delay embedding theorem and the SSOY predictability conjecture is the fol-
lowing topological version of the Rokhlin disintegration theorem in compact metric spaces.
The Rokhlin disintegration theorem (see e.g. [Roh52]) is a classical result on the existence
and almost sure uniqueness of the system of conditional measures. The crucial fact for us is
that in the topological setting, the conditional measures can be defined as limits of condi-
tional measures on preimages of shrinking balls, where the convergence holds almost surely,
as was proved by Simmons in [Sim12].

In the context of the Rokhlin disintegration theorem, one assumes that the considered
measures are complete, i.e. every subset of a zero-measure set is measurable. Recall that
every finite Borel measure µ on a metric space X has an extension (completion) to a complete
measure on the σ-algebra of µ-measurable sets, i.e. the smallest σ-algebra containing all Borel
sets in X and all subsets of zero µ-measure Borel sets. In other words, every µ-measurable
set A can be expressed as A = B ∪ C, where B is a Borel set and C ⊂ D for some Borel
set D with µ(D) = 0 (see e.g. [Fol99, Theorem 1.19] for the case X = R). Alternatively,
this σ-algebra is obtained as a family of sets measurable with respect to the outer measure
generated by µ (see e.g. [Fol99, Example 22, p. 32]). Recall also that a function ψ : X → R
is called µ-measurable if ψ−1(B) is µ-measurable for every Borel set B ⊂ R.

Definition 2.4. Let X be a compact metric space and let µ be a complete Borel probability
measure on X. Let Y be a separable Riemannian manifold and let φ : X → Y be a Borel
map. Set ν = φ∗µ (considered as a complete Borel measure in Y ). A family {µy : y ∈ Y } is
a system of conditional measures of µ with respect to φ, if

(1) for every y ∈ Y, µy is a (possibly zero) Borel measure on φ−1({y}),
(2) for ν-almost every y ∈ Y , µy is a Borel probability measure,
(3) for every µ-measurable set A ⊂ X, the function Y 3 y 7→ µy(A) is ν-measurable and

µ(A) =

ˆ

Y

µy(A)dν(y).

We say that system of conditional measures {µy : y ∈ Y } is unique, if for every family
{µ̃y : y ∈ Y } satisfying (1)–(3), we have µ̃y = µy for ν-almost every y ∈ Y .

8



Theorem 2.5 (Topological Rokhlin disintegration theorem, [Sim12, Theorems 2.1–2.2]).
Let X be a compact metric space and let µ be a Borel probability measure on X. Let Y be a
separable Riemannian manifold and let φ : X → Y be a Borel map. Set ν = φ∗µ. Then for
ν-almost every y ∈ supp ν and ε > 0, the conditional probability measures

µy,ε =
1

µ(φ−1(B(y, ε)))
µ|φ−1(B(y,ε))

converge in weak-∗ topology to a Borel probability measure µy as ε tends to 0. Moreover, the
collection of measures {µy : y ∈ Y }, where we set µy = 0 if y /∈ supp ν or the convergence
does not hold, is a unique system of conditional measures of µ with respect to φ.

The proof of the above theorem is based on the differentiation theorem for finite Borel
measures, see [Sim12, Theorem 9.1] for details.

3. Proof of the predictable embedding theorem for Lipschitz maps

In this section we prove the following extended version of Theorem 1.7, which at the same
time is an extension of Theorem 2.3 asserting prevalent almost sure predictability.

Theorem 3.1 (Predictable embedding theorem for Lipschitz maps – extended
version). Let X ⊂ RN be a compact set, let µ be a Borel probability measure on X and let
T : X → X be an injective and Lipschitz map. Take k > dimH µ and assume dimH(µ|Perp(T )) <
p for p = 1, . . . , k−1. Then there is a set S of Lipschitz observables h : X → R, such that S is
prevalent in Lip(X) with the probe set equal to a linear basis of the space of real polynomials
of N variables of degree at most 2k − 1, and for every h ∈ S, the following assertions hold.

(a) There exists a Borel set Xh ⊂ X of full µ-measure, such that the k-delay coordinate map
φh,k is injective on Xh.

(b) For every x ∈ Xh, lim
ε→0

µφh,k(x),ε = δx in the weak-∗ topology, where δx denotes the Dirac

measure at the point x.
(c) νh,k-almost every point of Rk is predictable.

If µ is additionally T -invariant, then the set Xh for h ∈ S can be chosen to satisfy T (Xh) =
Xh.

The main ingredients of the proof of Theorem 3.1 are Theorems 2.3 and 2.5. First, notice
that under the assumptions of Theorem 3.1, we can use Theorem 2.5 to show the existence
of a system {µy : y ∈ Rk} of conditional measures of µ with respect to φh,k, such that for
νh,k-almost every y ∈ Rk, µy is a Borel probability measure in X satisfying

(3.1) µy = lim
ε→0

µy,ε

in weak-∗ topology, where

µy,ε =
1

µ(φ−1h,k(B(y, ε)))
µ|φ−1

h,k(B(y,ε))

for ε > 0.
The following lemma shows that for νh,k-almost every y ∈ Rk, the prediction error σ(y)

from Definition 1.1 is equal to the standard deviation of the random variable φh,k ◦ T with
respect to the measure µy. Note that the lemma is valid for any continuous (non-necessary
Lipschitz) maps T and h.

9



Lemma 3.2. For νh,k-almost every y ∈ Rk,

σ(y) =
√

Varµy(φh,k ◦ T ),

where

Varµy(φh,k ◦ T ) =

ˆ

X

∥∥∥φh,k ◦ T − ˆ
X

φh,k ◦ Tdµy
∥∥∥2dµy.

Proof. For simplicity, let us write φ = φh,k. Observe first that for νh,k-almost every y ∈ Rk,
by (3.1) and the continuity of φ ◦ T , we have

(3.2) χε(y) =

ˆ

X

φ ◦ Tdµy,ε −→
ε→0

χ(y)

for

χ(y) =

ˆ

X

φ ◦ Tdµy.

Moreover,

σ2
ε(y)− Varµy(φ ◦ T ) =

ˆ

X

‖φ ◦ T − χε(y)‖2dµy,ε −
ˆ

X

‖φ ◦ T − χ(y)‖2dµy

=

ˆ

X

‖φ ◦ T − χε(y)‖2dµy,ε −
ˆ

X

‖φ ◦ T − χ(y)‖2dµy,ε

+

ˆ

X

‖φ ◦ T − χ(y)‖2dµy,ε −
ˆ

X

‖φ ◦ T − χ(y)‖2dµy,

= I + II.

Again by the continuity of φ ◦ T , we have II −→
ε→0

0. Furthermore,

|I| ≤
ˆ

X

∣∣‖φ ◦ T − χε(y)‖2 − ‖φ ◦ T − χ(y)‖2
∣∣dµy,ε

=

ˆ

X

(
‖φ ◦ T − χε(y0)‖+ ‖φ ◦ T − χ(y)‖

) ∣∣‖φ ◦ T − χε(y)‖ − ‖φ ◦ T − χ(y)‖
∣∣dµy,ε

≤ 4‖φ ◦ T‖∞
ˆ

X

‖χε(y)− χ(y)‖dµy,ε = 4‖φ ◦ T‖∞ ‖χε(y)− χ(y)‖,

by the triangle inequality and the fact χε(y) ≤ ‖φ ◦ T‖∞. The latter quantity converges to
zero by (3.2). Therefore, σ2

ε(y) tends to Varµy(φ◦T ) as ε→ 0, so σ(y) =
√

Varµy(φ ◦ T ). �

The following corollary is immediate.

Corollary 3.3. For νh,k-almost every y ∈ Rk, y is predictable if and only if φh,k ◦ T is
constant µy-almost surely. In particular, y is predictable provided µy = δx for some x ∈ X.

By Corollary 3.3, in order to establish almost sure predictability, it is enough to prove
the convergence limε→0 µφh,k(x),ε = δx for almost every x ∈ X. The idea of the proof of
Theorem 3.1 is the following. Theorem 2.3 guarantees that for a prevalent set of observables,
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the corresponding delay-coordinate map is injective on a set of full µ-measure. On the other
hand, Theorem 2.5 assures that the measures µφ(x),ε are almost surely convergent as ε→ 0,
and the limits form a system of conditional measures of µ with respect to φh,k. Almost sure
injectivity implies that these conditional measures are almost surely Dirac measures, hence
indeed limε→0 µφh,k(x),ε = δx. A detailed proof is presented below.

Proof of Theorem 3.1. By Theorem 2.3, there exists a prevalent set S of Lipschitz observables
h, such that for each h ∈ S, the k-delay coordinate map φh,k is injective on a Borel set X̃h ⊂ X
of full µ-measure. For h ∈ S, let us denote for simplicity φ = φh,k and

Ỹh = φ(X̃h).

Note that Ỹh has full νh,k-measure. Moreover, Ỹh is Borel, as a continuous and injective image

of a Borel set, see [Kec95, Theorem 15.1]. Since φ is injective on X̃h, for every y ∈ Ỹh there
exists a unique point xy ∈ X̃h, such that φ(xy) = y. For y ∈ Rk define

µ̃y =

{
δxy for y ∈ Ỹh
0 for y ∈ Rk \ Ỹh

.

We check that the collection {µ̃y : y ∈ Rk} satisfies the conditions (1)–(3) of Definition 2.4.
The first two conditions are obvious. To check the third one, take a µ-measurable set A ⊂ X
and note that for y ∈ φ(A ∩ X̃h), we have y ∈ Ỹh and xy ∈ A, so µ̃y(A) = δxy(A) = 1. On

the other hand, if y ∈ Ỹh \ φ(A ∩ X̃h), then xy /∈ A, so µ̃y(A) = δxy(A) = 0. Since µ̃y(A) = 0

for y ∈ Rk \ Ỹh, we conclude that for

ψ : Rk → R, ψ(y) = µ̃y(A)

we have

(3.3) ψ = 1φ(A∩X̃h).

Hence, to show the νh,k-measurability of ψ, it is enough to check that the set φ(A ∩ X̃h) is
νh,k-measurable. To do it, note that since A is µ-measurable, we have A = B ∪ C, where

B is a Borel set and C ⊂ D for some Borel set D with µ(D) = 0. Hence, φ(A ∩ X̃h) =
φ(B ∩ X̃h) ∪ φ(C ∩ X̃h). The set φ(B ∩ X̃h) is Borel, which again follows from [Kec95,
Theorem 15.1], as φ is continuous and injective on the Borel set B ∩ X̃h. Similarly, the set
φ(C ∩ X̃h) is contained in the Borel set φ(D ∩ X̃h). Since X̃h has full µ-measure, we have

νh,k(φ(D ∩ X̃h)) = µ(φ−1(φ(D ∩ X̃h))) = µ(φ−1(φ(D ∩ X̃h)) ∩ X̃h) = µ(D) = 0.

This yields the νh,k-measurability of the set φ(A ∩ X̃h) and the function ψ. Moreover, by
(3.3), ˆ

Y

µ̃y(A)dνh,k(y) = νh,k(φ(A ∩ X̃h))

= µ(φ−1(φ(A ∩ X̃h)))

= µ(φ−1(φ(A ∩ X̃h)) ∩ X̃h) = µ(A).

It follows that {µ̃y : y ∈ Rk} is a system of conditional measures of µ with respect to φ, so
by the uniqueness in Theorem 2.5 and (3.1),

µ̃y = µy = lim
ε→0

µy,ε
11



for νh,k-almost every y ∈ Rk. Since Ỹh is a Borel set of full νh,k-measure, we have

(3.4) µy = lim
ε→0

µy,ε = δxy

for every y ∈ Yh, where Yh ⊂ Ỹh and Yh is a Borel set of full νh,k-measure. By Corollary 3.3,
this implies that νh,k-almost every y ∈ Rk is predictable, which proves the assertion (c) in
Theorem 3.1.

Define

Xh = φ−1(Yh) ∩ X̃h.

Then Xh is a Borel full µ-measure subset of X. Since φ(Xh) ⊂ Yh ⊂ Ỹh, by (3.4) we have

µφ(x) = lim
ε→0

µφ(x),ε = δxφ(x) = δx

for every x ∈ Xh, which shows the assertion (b). Finally, the assertion (a) follows from the
fact Xh ⊂ X̃h.

To end the proof of Theorem 3.1, note that if the measure µ is T -invariant, we can define
X ′h =

⋂
n∈Z T

n(Xh) to obtain a full µ-measure subset of Xh with T (X ′h) = X ′h. For details,

see the proof of [BGŚ20, Remark 4.4(b)]. �

Remark 3.4. Similarly as in [BGŚ20], the assumptions dimH(µ) < k and dimH(µ|Perp(T )) < p
of Theorem 3.1 can be weakened to µ ⊥ Hk and µ|Perp(T ) ⊥ Hp, respectively. Moreover, one
can prove a version of Theorem 3.1 for β-Hölder observables h : X → R, β ∈ (0, 1]. It is
enough to take k with Hβk(X) = 0 and assume that µ|Perp(T ) is singular with respect to
Hβp for p = 1, . . . , k − 1, where Hs is the s-Hausdorff measure. For a precise formulation of
required assumptions see [BGŚ20, Theorem 4.3]. As previously, the assumption on periodic

points can be omitted if the measure µ is T -invariant and ergodic (see [BGŚ20, Remark
4.4(c)] and its proof).

4. Counterexample to SSOY predictability conjecture – proof of
Theorem 1.11

In this section we prove Theorem 1.11, constructing an example of a C∞-smooth diffeo-
morphism T of a compact Riemannian manifold X with an attractor Λ endowed with a
natural measure µ, such that ID(µ) < 1 and for a prevalent set of Lipschitz observables,
there is a positive νh,1-measure set of non-predictable points. In particular, the set of Lip-
schitz observables h : X → R, for which νh,1-almost sure predictability holds for the 1-delay
coordinate map φh,1, is not prevalent. Since the proof is quite involved, we shortly describe
the subsequent steps.

In Subsection 4.1 we construct a model for the natural measure µ. First, we prove that for
an irrational rotation on a circle S1 ⊂ RN endowed with the Lebesgue measure LebS1 , the only
Lipschitz observables h : S1 → R such that the almost sure predictability holds for the 1-delay
coordinate map φ, are the constant functions. Then we construct a model µ0 for the natural
measure µ, taking X0 = {p0} ∪ S1 ⊂ RN for some p0 /∈ S1 and defining T0 : X0 → X0 as the
identity on {p0} and an irrational rotation on S1. Then the measure µ0 = δp0/2 + LebS1 /2
satisfies ID(µ0) = 1/2 < 1, yet the only Lipschitz observables h : X0 → R yielding almost
sure predictability for the 1-delay coordinate maps are the functions constant on S1. The
same holds for any extension (X,µ, T ) of (X0, µ0, T0) with X0 ⊂ X, T |X0 = T0 and µ = µ0.
In particular, the set of Lipschitz observables h : X → R with almost sure predictability
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for the 1-delay coordinate map, is not prevalent. Moreover, for a prevalent set of Lipschitz
observables, the almost sure predictability does not hold (Corollary 4.3).

The main step, performed in Subsections 4.2–4.3 is to realize the model measure µ0 as
a natural measure µ for a smooth diffeomorphism T of a compact Riemannian manifold
X. In Subsection 4.2, we construct a C∞-diffeomorphism f of the 2-dimensional sphere
S2 = R2 ∪ {∞}, such that the trajectories of Lebesgue-almost all points of S2 spiral towards
the invariant unit circle S = {(x, y) : x2 + y2 = 1}, spending most of the time in small
neighbourhoods of two fixed points p, q ∈ S (Proposition 4.12). It follows that the average
of the Dirac measures at p and q is a natural measure for f , with the attractor S and basin
S2 \ {(0, 0),∞} (Corollary 4.13). Then, in Subsection 4.3, we take

X = S2 × S1

and define a C∞-diffeomorphism T : X → X as a skew product of the form

T (z, t) = (f(z), hz(t)), z ∈ S2, t ∈ S1,

where hz are diffeomorphisms of S1 depending smoothly on z ∈ S2, such that for z in a
neighbourhood of p, the map hz is equal to a map g : S1 → S1 with a unique fixed point
0 ∈ R/Z ' S1 attracting all points of S1, while for z in a neighbourhood of q, the map hz is
an irrational rotation on S1. See Figure 4.1 for a schematic view of the map T .

Figure 4.1. Schematic view of the map T : S2 × S1 → S2 × S1.

The map T has an attractor
Λ = S × S1

with the basin B(Λ) = (S2 \ {0,∞})× S1 and natural measure

µ =
1

2
δp0 +

1

2
LebS1 ,

where p0 = (p, 0) and LebS1 is the Lebesgue measure on the circle {q} × S1 (Theorem 4.14).
Since the measure µ is equal to the model measure µ0, the conclusion follows.
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4.1. Model measure. Consider a circle S1 ⊂ RN (by a circle we mean an image of {(x, y) ∈
R2 : x2 + y2 = 1} by an affine similarity transformation) with the normalized Lebesgue
(1-Hausdorff) measure LebS1 and a rotation Rα : S1 → S1 by an angle α. We use here an
additive notation, i.e. for an angle coordinate t ∈ R/Z ' S1 we write Rα(t) = t + α mod 1.
We assume α ∈ R \Q. By d(·, ·) we denote the standard rotation-invariant metric on S1.

For the system (S1,LebS1 , Rα) we consider Lipschitz observables h : S1 → R and the corre-
sponding 1-delay coordinate maps φ : S1 → R. Note that 1-delay coordinate maps are equal
to the observables, i.e. φ = h.

Proposition 4.1. Suppose that for a Lipschitz function h : S1 → R, ν-almost every y ∈ R is
predictable for the 1-delay coordinate map φ = h, where ν = φ∗ LebS1. Then h is constant.

Proof. Take h as in the proposition. The proof that h is constant is divided into four parts,
described by the following claims.

Claim 1. There exists a set B ⊂ S1 of full LebS1-measure, with the following property: if
t1, t2 ∈ B and h(t1) = h(t2), then h(Rn

αt1) = h(Rn
αt2) for every n ≥ 0.

For the proof of the above claim, consider the system {µy : y ∈ R} of conditional measures
of LebS1 with respect to φ = h, given by Theorem 2.5. Let

A =
{
t ∈ S1 : h(Rαt) =

ˆ
h ◦Rαdµh(t)

}
.

It follows from Theorem 2.5 that the map y 7→
´
h ◦Rαdµy is ν-measurable, hence t 7→

´
h ◦

Rαdµh(t) is LebS1-measurable. Consequently, A is a LebS1-measurable set. By Theorem 2.5,

(4.1) LebS1(A) =

ˆ

R

µy(A)dν(y)

and

µy(A) = µy(A ∩ {h = y}) = µy

({
t ∈ S1 : h(t) = y and h(Rαt) =

ˆ
h ◦Rαdµy

})
.

Since ν-almost every y ∈ R is predictable, Lemma 3.2 implies that the function h ◦ Rα is
constant µy-almost surely for ν-almost every y ∈ R, hence µy(A) = 1 for ν-almost every
y ∈ R. Therefore, (4.1) gives LebS1(A) = 1.

Let

B =
∞⋂
n=0

R−nα (A).

Then B has full LebS1-measure. Moreover, the definition of A implies that if t1, t2 ∈ A and
h(t1) = h(t2), then h(Rαt1) = h(Rαt2). Therefore, if t1, t2 ∈ B and h(t1) = h(t2), then
h(Rn

αt1) = h(Rn
αt2) for every n ≥ 0.

Claim 2. If t1, t2 ∈ B and h(t1) = h(t2), then h(t1 + s) = h(t2 + s) for every s ∈ S1.

In order to prove the claim, assume that t1, t2 ∈ B and h(t1) = h(t2). Fix s ∈ S1. Since
α /∈ Q, every orbit under Rα is dense in S1, so there exists a sequence nk → ∞ with
Rnk
α t1 → t1 + s as k →∞. Then Rnk

α t2 → t2 + s. As t1, t2 ∈ B and h(t1) = h(t2), by Claim 1
we have h(Rnk

α t1) = h(Rnk
α t2), hence the continuity of h gives h(t1 + s) = h(t2 + s).

Claim 3. For every ε > 0, there exist t1, t2 ∈ B such that 0 < d(t1, t2) < ε and h(t1) = h(t2).
14



To prove Claim 3, note first that it holds trivially if the set h−1 ({inf h}) has non-empty
interior. Otherwise, fix a small ε > 0 and take t0 ∈ S1 such that h(t0) = inf h. Then
by the continuity of h, there exist disjoint open arcs I, J ⊂ S1 of length smaller than ε/2,
such that I ∩ J = {t0} and their images h(I), h(J) are intervals of positive length with

h(I) = h(J) = K for some closed, non-degenerate interval K ⊂ R. As B is of full LebS1-
measure and h is Lipschitz, h(I ∩ B) and h(J ∩ B) both have full Lebesgue measure in K,
hence h(I ∩B) ∩ h(J ∩B) 6= ∅. This proves the claim.

Claim 4. h is constant.

For the proof of Claim 4, fix a small δ > 0. As h is uniformly continuous, there exists ε > 0
such that |h(t)−h(t′)| < δ whenever d(t, t′) < ε. According to Claim 3, there exist t1, t2 ∈ B
such that 0 < d(t1, t2) < ε and h(t1) = h(t2). Let β = t2 − t1 mod 1 and note that β 6= 0,
|β| < ε. Applying inductively Claim 2 to t1, t2 with s = β, . . . , (n − 1)β mod 1, for n ∈ N,
we obtain h(t1) = h(t1 + β mod 1) = · · · = h(t1 + nβ mod 1). Again by Claim 2, we arrive
at h(0) = h(nβ mod 1) for n ∈ N.

Take t ∈ S1. As |β| < ε, for every t ∈ S1 there exists n ∈ N such that d(t, nβ mod 1) < ε.
For such n we have |h(t) − h(0)| = |h(t) − h(nβ mod 1)| < δ. As δ was arbitrary, we have
h(t) = h(0). Therefore, h is constant. �

Remark 4.2. In [BGŚ20, Example 3.5] it is shown that there does not exist a Lipschitz map
h : S1 → R which is injective on a set of full LebS1-measure. However, it may still happen
that for certain Lipschitz transformations T : S1 → S1 almost sure predictability holds for
every h, e.g. if T is the identity.

Corollary 4.3. Let X ⊂ RN be a compact set with a Borel probability measure µ and let
T : X → X be an injective Lipschitz map, such that

(suppµ, µ, T |suppµ) = (X0, µ0, T0),

where X0 = {p0} ∪ S1 for a circle S1 ⊂ RN and p0 ∈ RN \ S1,

µ0 =
1

2
δp0 +

1

2
LebS1 ,

and T0 : X0 → X0, such that T0(p0) = p0 and T0 is an irrational rotation Rα on S1. Set
ν = φ∗µ. Then ID(µ) = 1/2 and the only Lipschitz observables h : X → R, such that ν-almost
every y ∈ Rk is predictable for the 1-delay coordinate map φ = h, are the ones constant on
S1. Consequently, for a prevalent set of Lipschitz observables, there is a positive ν-measure
set of non-predictable points. In particular, the set of Lipschitz observables h : X → R for
which ν-almost every point of R is predictable, is not prevalent.

Proof. The fact ID(µ) = ID(µ0) = 1/2 follows from the definition of the information by
a direct checking. The assertion that only observables constant on S1 give almost sure
predictability is an immediate consequence of Proposition 4.1. Consider now the space Lip(X)
of all Lipschitz observables T : X → X, with the Lipschitz norm ‖h‖Lip (see Subsection 2.2),
and let Z ⊂ Lip(X) be the set of Lipschitz observables which are constant on S1. Note first
that any prevalent set is dense (see [Rob11, Section 5.1]), while Z is not dense in Lip(X)
in the supremum norm (hence also in the Lipschitz norm). Therefore, Z is not prevalent in
Lip(X). In fact, we can prove more, showing that Lip(X)\Z is prevalent (note that a subset
of the complement of a prevalent set cannot be prevalent, as the intersection of two prevalent
sets is prevalent, see [HSY92]).
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In order to prove prevalence of Lip(X) \ Z, we can assume that the circle S1 ⊂ X is of
the form S1 = {(x1, . . . , xN) ∈ RN : x21 + x22 = 1, x3 = 0, . . . , xN = 0}. Indeed, an affine
change of coordinates in RN transforming the circle in X to the circle {(x1, . . . , xN) ∈ RN :
x21 + x22 = 1, x3 = 0, . . . , xN = 0} induces a linear isomorphism between the corresponding
spaces of Lipschitz observables. Like in Theorem 3.1, we show the prevalence of Lip(X) \ Z
with the probe set equal to a linear basis of the space of real polynomials of N variables
of degree at most 1. In other words, we should check that for any h ∈ Lip(X), we have
h + α0 + α1h1 + · · · + αNhN /∈ Z for Lebesgue-almost every α = (α0, . . . , αN) ∈ RN+1,
where hj(x1, . . . , xN) = xj, j = 1, . . . , N . Let e1, . . . , eN be the standard basis of RN . If
h+ α0 + α1h1 + · · ·+ αNhN ∈ Z, then evaluating at e1, e2 ∈ S1 gives

h(e1) + α0 + α1 = h(e2) + α0 + α2.

Therefore α1 = α2 +h(e2)−h(e1), so α belongs to an affine subspace of RN+1 of codimension
one. It follows that given h ∈ Lip(X), we have h+α0+α1h1+· · ·+αNhN ∈ Z for (α0, . . . , αN)
in a set of zero Lebesgue measure in RN+1, which ends the proof. �

4.2. Construction of the diffeomorphism f : S2 → S2. In this subsection we construct
a smooth diffeomorphism f of S2 ' R2 ∪ {∞} with the invariant unit circle S containing
two fixed points p, q, such that the trajectories of all points in R2 \ {0, 0)} spiral towards the
invariant unit circle S, spending most of the time in small neighbourhoods of p and q.

We consider points (x, y) ∈ R2 in polar coordinates, i.e. x = r cosϕ, y = r sinϕ for
r ∈ [0,+∞), ϕ ∈ R. Let

f(r cosϕ, r sinϕ) = (R(r) cos Φ(r, ϕ), R(r) sin Φ(r, ϕ))

for

R(r) = r + ε
r(1− r)3

1 + r4
, Φ(r, ϕ) = ϕ+ εθ(ϕ) + (1− r)2η(r),

where ε > 0 is a small constant, θ : R → [0,+∞) is a π-periodic C∞-function such that
θ(ϕ) = ϕ2 for ϕ ∈ (−π/4, π/4) and θ has no zeroes except for kπ, k ∈ Z, while η : [0,+∞)→
[0,+∞) is a C∞-function such that η|[ 1

2
, 3
2
] ≡ 1, η > 0 on (0,∞) and limr→0+(1 − r)2η(r) =

limr→+∞(1− r)2η(r) = 0 (the role of η is to ensure that f extends to a C∞-diffeomorphism
of the sphere). The following two lemmas are elementary.

Lemma 4.4. For sufficiently small ε > 0, the function R has the following properties.

(a) R is an increasing homeomorphism of [0,+∞).
(b) R(0) = 0, R(r) > r for r ∈ (0, 1), R(1) = 1 and R(r) < r for r ∈ (1,+∞).
(c) Near r = 1, R has the Taylor expansion R(r) = 1 + r − 1− ε

2
(r − 1)3 + · · · .

Lemma 4.5. For sufficiently small ε > 0, the function Φ has the following properties.

(a) Φ(r, ϕ) > ϕ for r ∈ ((0, 1) ∪ (1,+∞)).
(b) For given r ∈ (0,+∞), the function ϕ 7→ Φ(r, ϕ) is strictly increasing.
(c) For the function ϕ 7→ Φ(1, ϕ) mod 2π, the points 0, π are the unique fixed points and

the intervals (0, π), (π, 2π) are invariant.

Let
B = {(x, y) ∈ R2 : ‖(x, y)‖ < 1}, S = {(x, y) ∈ R2 : ‖(x, y)‖ = 1},

where ‖ · ‖ denotes the Euclidean norm. For sufficiently small ε, the function f defines a
C∞-diffeomorphism of R2, such that the unit disc B, the unit circle S and the complement
of B are f -invariant. Compactifying R2 to the Riemann sphere S2 ' R2 ∪ {∞} and putting
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f(∞) = ∞, we extend f to a C∞-diffeomorphism of S2 with fixed points at (0, 0) and ∞.
Another two fixed points,

p = (1, 0), q = (−1, 0),

corresponding to the fixed points described in Lemma 4.5(c), are located in the unit circle S.
Now we analyse the behaviour of the orbits of points (x, y) ∈ S2 under f . By Lemma 4.5, if

(x, y) = (cosϕ0, sinϕ0) ∈ S for some ϕ0 ∈ R, then fn(x, y) tends to p (resp. to q) as n→∞
for ϕ0 ∈ (−π, 0] mod 2π (resp. ϕ0 ∈ (0, π] mod 2π). Suppose now (x, y) ∈ S2 \S. Recall that
the points (0, 0) and ∞ are fixed, so we can assume (x, y) ∈ R2 \ (S ∪ {(0, 0)}). Then

(x, y) = (r0 cosϕ0, r0 sinϕ0)

for r0 ∈ R \ {1}, ϕ0 ∈ R. The goal of this subsection is to prove

lim
N→∞

1

N

N−1∑
n=0

δfn(x,y) =
1

2
δp +

1

2
δq

in the sense of weak-∗ convergence (see Corollary 4.13). To this aim, we find the asymptotics
of the subsequent times spent by the iterates of (x, y) in small neighbourhoods of the points
p and q. We will make calculations only for the case

r0 ∈ (0, 1),

since the functions R, Φ are defined such that the behaviour of the trajectories in the case
of points r0 > 1 is symmetric (see Remark 4.11). From now on, we fix the initial point
(x, y) = (r0 cosϕ0, r0 sinϕ0) with r0 ∈ (0, 1) and allow all the constants appearing below to
depend on this point. For n ∈ N let

rn = Rn(r0)

and define inductively
ϕn+1 = Φ(rn, ϕn).

Then
fn(r0 cosϕ0, r0 sinϕ0) = (rn cosϕn, rn sinϕn).

For convenience, set
ρn = 1− rn

and note that by Lemma 4.4, ρn decreases to 0 as n→∞.

Lemma 4.6. We have

ρn =
a+ o(1)√

n
as n→∞ for some a > 0. Moreover, for every 0 ≤ k ≤ n,

k

cn3/2
≤ ρn − ρn+k ≤

ck

n3/2
,

where c > 0 is independent of n and k.

Proof. By Lemma 4.4, we have ρn ↘ 0+ as n→∞ and

ρn+1 = ρn −
ε

2
ρ3n + · · ·

for ρn close to 0. Hence, the first assertion follows from the standard analysis of the behaviour
of an analytic map near a parabolic fixed point, see e.g. [Mil06, Lemma 10.1]. To check
the second one, note that there exists a univalent holomorphic map ψ : V → C (Fatou
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coordinate) on a domain V ⊂ C containing ρn for large n, such that ψ(V ) contains a half-
plane {z ∈ C : Re(z) > c0} for some c0 ∈ R and

ψ(ρn+1) = ψ(ρn) + 1

(see e.g. [Mil06, Theorem 10.9]). Let

zn = ψ(ρn)

for large n and take n0 with Re(zn0) > c0. Then ψ−1 is defined on

D = {z ∈ C : |z − zn+k| < n+ k − n0}

for large n, and zbn/2c, zn ∈ D′ for

D′ = {z ∈ C : |z − zn+k| ≤ n+ k − bn/2c}.

Since k ≤ n, the ratio of the radius of D′ to the radius of D is at most (3/2)n+1
2n−n0

, which tends

to 3/4 as n→∞. Moreover,

|zn+k − zn|
|zn − zbn/2c|

=
k

n− bn/2c

Therefore, by the Koebe distortion theorem (see e.g. [CG93, Theorem 1.6]),

1

c

k

n
<

ρn − ρn+k
ρbn/2c − ρn

< c
k

n

for some constant c > 0. Since
√
n(ρbn/2c − ρn)→

√
2− 1 as n→∞ by the first assertion of

the lemma, this ends the proof. �

Convention. Within subsequent calculations, we will an � bn for sequences an, bn, if 1
c
<

an
bn
< c, where c > 0 is independent of n.

Lemma 4.7. Suppose

xn+1 = xn + ax2n

for n ∈ Z and some a > 0. Then for given x0 < 0 (resp. x0 > 0) sufficiently close to 0, we
have

xn � −
1

n

(
resp. x−n �

1

n

)
for n ∈ N.

Proof. Follows directly from [Mil06, Lemma 10.1]. �

By Lemmas 4.4–4.6, the trajectory of (x, y) approaches the unit circle S, spiralling an
infinite number of times near S and slowing down near the fixed points p and q. In fact, the
definitions of the functions R, Φ easily imply that p and q are in the limit set of the trajectory.
In particular, for a fixed δ > 0 (which is small enough to satisfy several conditions, specified
later), the trajectory visits infinitely number of times the δ-neighbourhoods of p and q, defined
respectively by

(4.2)
Up = {(r cosϕ, r sinϕ) : r ∈ (1− δ, 1 + δ), ϕ ∈ (−δ, δ)},
Uq = {(r cosϕ, r sinϕ) : r ∈ (1− δ, 1 + δ), ϕ ∈ (π − δ, π + δ)}.

18



Hence, for i ∈ N we can define Np,i (resp. Nq,i) to be the time spent by the trajectory during
its i-th visit in Up (resp. Uq). More precisely, set n+

p,0 = 0 and define inductively

n−p,i = min{n ≥ n+
p,i−1 : (rn cosϕn, rn sinϕn) ∈ Up},

n+
p,i = min{n ≥ n−p,i : (rn cosϕn, rn sinϕn) /∈ Up},

Np,i = n+
p,i − n−p,i

for i ≥ 1. Define n−q,i, n
+
q,i, Nq,i analogously. By Lemmas 4.4 and 4.5, if δ > 0 is chosen small

enough, then

(4.3) 0 < n−p,1 < n+
p,1 < n−q,1 < n+

q,1 < · · · < n−p,i < n+
p,i < n−q,i < n+

q,i < · · ·
or

0 < n−q,1 < n+
q,1 < n−p,1 < n+

p,1 < · · · < n−q,i < n+
q,i < n−p,i < n+

p,i < · · · ,
depending on the position of the point (x, y). To simplify notation, we assume that (4.3)
holds. Again by Lemmas 4.4 and 4.5, we obtain the following.

Lemma 4.8. We have

n−q,i − n+
p,i, n

−
p,i+1 − n+

q,i < N0

for some constant N0 > 0. In other words, the times spent by the trajectory of (x, y) between
consecutive visits in Up ∪ Uq remain uniformly bounded.

Now we estimate the times spent by the trajectory during its stay in Up and Uq.

Lemma 4.9.

Np,i � Nq,i � i.

Proof. We prove the lemma by induction. Obviously, we can assume that i is large. Suppose,
by induction,

(4.4)
j

C
≤ Np,j ≤ Cj,

j

C
≤ Nq,j ≤ Cj for j = 1, . . . , i− 1

for a large constant C > 1 (to be specified later). First, we estimate Np,i. By Lemma 4.8,

(4.5)
i2

c1C
≤ n−p,i ≤ c1Ci

2

for some c1 > 0 (we denote by c1, c2, . . . constants independent of C.) Obviously, we can
assume ϕn−

p,i
∈ [−π, π). Then, since δ is small and i is large, we have

−π
4
< −δ < ϕn−

p,i
< 0.

Note that ρn−
p,i
< δ and the sequence ρn is decreasing, so

Np,i = min{n ≥ n−p,i : ϕn ≥ δ} − n−p,i.

Recall that if ϕn ∈ (−π/4, π/4) (in particular, if n ∈ [n−p,i, n
+
p,i)), then

(4.6) ϕn+1 = ϕn + εϕ2
n + ρ2n.

Let

ρ−i =
1

C2/3i
, ρ+i =

C2/3

i
.
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To estimate the behaviour of the sequence ϕn for n ≥ n−p,i, we will compare it with the

sequences ϕ+
n , ϕ−n for n ≥ n−p,i, given by

(4.7) ϕ±
n−
p,i

= ϕn−
p,i
, ϕ±n+1 = ϕ±n + ε(ϕ±n )2 + (ρ±i )2.

First, we will analyse the behaviour of the sequences ϕ±n and then show that they provide
upper and lower bounds for ϕn. By definition, ϕ±

n−
p,i

∈ (−δ, 0) and ϕ±n increases to infinity as

n→∞. Hence, we can define

N±i = min{n ≥ n−p,i+1 : ϕ±n ≥ δ} − n−p,i.

to be the time which the sequence ϕ±n spends in (−δ, δ). Since ρ−i < ρ+i , we have ϕ−n ≤ ϕ+
n

and N+ ≤ N−. Set

k±1 = min

{
n ∈ [n−p,i, n

−
p,i +N±i ] : ϕ±n > −

ρ±i√
ε

}
,

k±2 = min

{
n ∈ [k±1 , n

−
p,i +N±i ] : ϕ±n >

ρ±i√
ε

}
.

Note that for n ∈ [n−p,i, k
±
1 ) ∪ [k±2 , N

±
i + n−p,i) we have ε(ϕ±n )2 ≥ (ρ±i )2, so

ϕ±n + ε(ϕ±n )2 ≤ ϕ±n+1 ≤ ϕ±n + 2ε(ϕ±n )2.

Hence, by Lemma 4.7,

k±1 − n−p,i � N±i + n−p,i − k±2 �
1

ρ±i
.

On the other hand, for n ∈ [k±1 , k
±
2 ) we have ε(ϕ±n )2 ≤ (ρ±i )2, so

ϕ±n + (ρ±i )2 ≤ ϕ±n+1 ≤ ϕ±n + 2(ρ±i )2,

which implies

k±2 − k±1 �
1

ρ±i
.

Hence,
i

c2C2/3
=

1

c2ρ
+
i

≤ N+
i ≤ N−i ≤

c2
ρ−i

= c2C
2/3i

for some c2 > 0. If C is chosen sufficiently large, then this yields

(4.8)
i

C
≤ N+

i ≤ N−i ≤ Ci.

Now we show by induction that

(4.9) ϕ−n ≤ ϕn ≤ ϕ+
n

for n ∈ [n−p,i, n
−
p,i + min(Np,i, N

−
i )]. To do it, note that for n = n−p,i we have equalities in (4.9).

Suppose, by induction, that (4.9) is satisfied for some n ∈ [n−p,i, n
−
p,i + min(Np,i, N

−
i )). Then

by (4.6) and (4.7),

ϕn+1 − ϕ±n+1 = (ϕn − ϕ±n )(1 + ε(ϕn + ϕ±n )) + ρ2n − (ρ±i )2,

where 1 + ε(ϕn + ϕ±n ) > 1− 2εδ > 0. Moreover, by Lemma 4.6, (4.5) and (4.8), there exists
a constant c3 > 0, such that

1

c3
√
C i
≤ ρn ≤

c3
√
C

i
,
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which gives
ρ−i ≤ ρn ≤ ρ+i ,

provided C is chosen sufficiently large. Therefore, the sign of ϕn+1−ϕ±n+1 is the same as the
one of ϕn − ϕ±n , which provides the induction step and proves (4.9).

Using (4.9), we can show

(4.10) N+
i ≤ Np,i ≤ N−i .

Indeed, if Np,i > N−i , then by (4.9),

δ ≤ ϕ−
n−
p,i+N

−
i

≤ ϕn−
p,i+N

−
i
,

so n+
p,i ≤ n−p,i +N−i , which is a contradiction. Hence, Np,i ≤ N−i , and then (4.9) gives

δ ≤ ϕn+
p,i
≤ ϕ+

n+
p,i

,

which implies (4.10). By (4.8) and (4.10),

i

C
≤ Np,i ≤ Ci,

which completes the inductive step started in (4.4) and shows Np,i � i.
To show Nq,i � i, note that if ϕn ∈ (3π/4, 5π/4), then for ϕ̃n = ϕn − π we have

ϕ̃n+1 = ϕ̃n + εϕ̃2
n + ρ2n.

Moreover, by the proved assertion Np,i � i and Lemmas 4.6 and 4.8, we have n−q,i � n−p,i and
ρn−

q,i
� ρn−

p,i
. Using this, one can show Nq,i � i by repeating the proof in the case of Np,i. �

A more accurate comparison of Np,i and Nq,i is presented below.

Lemma 4.10. There exists M > 0 such that

|Np,i −Nq,i| < M

for all i ≥ 1.

Proof. Take a large i ∈ N. Let

(ηn, ψn) = fn(rn−
p,i
, ϕn−

p,i
), (η̃n, ψ̃n) = fn(rn−

q,i
, ϕn−

q,i
− π)

and
σn = 1− ηn = ρn+n−

p,i
, σ̃n = 1− η̃n = ρn+n−

q,i

for n ≥ 0. Subtracting multiplicities of 2π, we can assume ψ0, ψ̃0 ∈ [−π, π), so in fact

−δ < ψ0, ψ̃0 < 0.

By definition,

(4.11) ψn+1 = ψn + εψ2
n + σ2

n, ψ̃n+1 = ψ̃n + εψ̃2
n + σ̃2

n

as long as ψn, ψ̃n < π/4. It follows that

Np,i = min{n ≥ 0 : ψn ≥ δ}, Nq,i = min{n ≥ 0 : ψ̃n ≥ δ}.
Note that (4.11) holds for n ≤ min(Np,i, Nq,i) + 1. To prove the lemma, we will carefully

compare the behaviour of the sequences ψn and ψ̃n. First, note that

(4.12) ψ̃0 ≤ ψ2 ≤ ψ̃4
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provided i is sufficiently large (because then σn, σ̃n are small compared to ε and δ). Note
also that since ρn is decreasing, we have

(4.13) σn+2 > σ̃n

for every n ≥ 0. By (4.11),

ψn+3 − ψ̃n+1 = (ψn+2 − ψ̃n)(1 + ε(ψn+2 + ψ̃n)) + σ2
n+2 − σ̃2

n

for n ≤ min(Np,i − 2, Nq,i), where ε(ψn+2 + ψ̃n) < επ/2 < 1. Hence, by induction, using
(4.12) and (4.13), we obtain

(4.14) ψn+2 ≥ ψ̃n

for n ∈ [0,min(Np,i − 2, Nq,i) + 1]. In particular,

Np,i < Nq,i + 2 or ψNq,i+2 > ψ̃Nq,i ≥ δ,

which gives

(4.15) Np,i ≤ Nq,i + 2.

The proof of the opposite estimate is more involved, so let us first present its sketch.
We fix a number k such that (roughly speaking) ψk ≈ 1/i. Then we show inductively

ψ̃n+2 ≥ ψn−cn/i3 for n ≤ k and some constant c > 0 (see (4.18)). This gives ψ̃k+2 ≥ ψk−c′/i2
for some c′ > 0 (see (4.19)). By the definition of k, we check that for sufficiently large

constant M > 0 we have ψ̃k+M ≥ ψk + c′′M/i2 for some c′′ > 0. With this starting condition,

we inductively show ψ̃n+M ≥ ψn + c′′M/i2 for n ∈ [k,Np,i] (see (4.23)). This provides

ψ̃Np,i+M ≥ ψNp,i ≥ δ, so Nq,i ≤ Np,i +M .
Now let us go into the details of the proof. By Lemmas 4.8 and 4.9, we have

(4.16) n−p,i � n−q,i � i2, Np,i � Nq,i � i,

so by Lemma 4.6,

(4.17) σn ≤
c1
i
, σ2

n − σ̃2
n+2 = (σn + σ̃n+2)(σn − σ̃n+2) ≤

c1
i3

for n ∈ [0, Nq,i + 4] and a constant c1 > 0. Let

k = max

{
n ∈ [2, Nq,i] : ψn+4 <

b

i

}
for a small constant b > 0 (to be specified later). Note that k ≤ min(Np,i− 5, Nq,i), so (4.11)
holds for n ∈ [2, k).

We will show by induction that

(4.18) ψn − ψ̃n+2 ≤
2c1n

i3

for every n ∈ [2, k]. For n = 2, (4.18) holds due to (4.12). Suppose it holds for some n ∈ [2, k).
By (4.11), we have

ψn+1 − ψ̃n+3 = (ψn − ψ̃n+2)(1 + ε(ψn + ψ̃n+2)) + σ2
n − σ̃2

n+2,

where by (4.14) and the definition of k, ψn + ψ̃n+2 ≤ ψn + ψn+4 < 2ψn+4 < 2b/i, so using
(4.16), (4.17) and the inductive assumption (4.18), we obtain

ψn+1 − ψ̃n+3 ≤
2c1n

i3

(
1 +

2εb

i

)
+
c1
i3
≤
(

2n+
4εbNq,i

i
+ 1

)
c1
i3
<

(2n+ c2b+ 1)c1
i3
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for some constant c2 > 0. Choosing the constant b in the definition of k sufficiently small,
we can assume c2b < 1, which gives

ψn+1 − ψ̃n+3 ≤
2c1(n+ 1)

i3
.

This completes the inductive step and proves (4.18).
By (4.16) and (4.18),

(4.19) ψ̃k+2 ≥ ψk −
c3
i2

for a constant c3 > 0, while (by the definition of k),

(4.20) ψk+5 ≥
b

i

and by (4.11),

(4.21) ψk+5 = ψk + ε(ψ2
k + · · ·+ ψ2

k+4) + σ2
k + · · ·+ σ2

k+4 < ψk +
5(εb2 + c1)

i2
.

by the definition of k, (4.11) and (4.17). Using (4.19), (4.20) and (4.21), we obtain

(4.22) ψ̃k+2 ≥
b

i
− 5(εb2 + c1) + c3

i2
≥ b

2i
for large i.

Take a large constant M > 0. We will show inductively

(4.23) ψ̃n+M − ψn ≥
Mεb2

5i2

for n ∈ [k,Np,i]. By (4.11), (4.19) and (4.22), we have

ψ̃k+M ≥ ψ̃k+2 + ε(ψ̃2
k+2 + · · ·+ ψ̃2

k+M) ≥ ψ̃k+2 + (M − 2)εψ̃2
k+2

≥ ψ̃k+2 +
(M − 2)εb2

4i2
≥ ψk −

c3
i2

+
(M − 2)εb2

4i2
≥ ψk +

Mεb2

5i2
,

if M is chosen sufficiently large, so (4.23) holds for n = k. Suppose (4.23) holds for some
n ∈ [k,Np,i). Now (4.15) implies that (4.11) is valid for n, so

ψ̃n+1+M − ψn+1 = (ψ̃n+M − ψn)(1 + ε(ψ̃n+M + ψn)) + σ̃2
n+M − σ2

n,

where
ψ̃n+M + ψn > ψ̃k+M + ψk > ψ̃k+2

for large i by (4.20) and (4.21) (which imply ψk > 0), while

σ̃2
n+M − σ2

n > −
c4
i3

for a constant c4 > 0 by (4.16) and Lemma 4.6 (with estimates analogous to the ones in
(4.17)). Hence, using (4.22) we obtain

ψ̃M+n+1 − ψn+1 ≥
Mεb2

5i2
(1 + εψ̃k+2)−

c4
i3
≥ Mεb2

5i2

(
1 +

εb

2i

)
− c4
i3
≥ Mεb2

5i2
,

provided M is chosen sufficiently large. This ends the inductive step and proves (4.23).
By (4.23),

ψ̃Np,i+M ≥ ψNp,i ≥ δ,
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so
Nq,i ≤ Np,i +M.

This and (4.15) end the proof of the lemma. �

Remark 4.11. Proving Lemmas 4.8–4.10, we have made the calculations for the initial point
(x, y) = (r0 cosϕ0, r0 sinϕ0) assuming r0 ∈ (0, 1). In fact, the case r0 > 1 can be treated
analogously. This can be seen by noting that Φ is symmetric with respect to r around the
circle r = 1, while the only properties of R used in the proofs of the lemmas are the ones
stated in Lemma 4.4. As the initial terms of the Taylor expansion of R near r = 1 are
symmetric around 1, we see that an analogue of Lemma 4.6 holds in the case r0 > 1 and the
proof of Lemmas 4.8–4.10 can be repeated in that case. We conclude that Lemmas 4.8–4.10
hold for every initial point (x, y) ∈ S2 \ (S ∪ {(0, 0),∞}).

We summarize the results of this subsection in the following proposition.

Proposition 4.12. For every (x, y) ∈ S2 \ (S ∪ {(0, 0),∞}) and every δ > 0, if Np,i(x, y)
(resp. Nq,i(x, y)) is the time spent by the trajectory of (x, y) under f during its i-th visit in
the δ-neighbourhood Up of p (resp. Uq of q), defined in (4.2), then

Np,i(x, y) � Nq,i(x, y) � i

and
|Np,i(x, y)−Nq,i(x, y)| ≤M

for some constant M > 0, while the times spent by the trajectory between consecutive visits
in Up ∪ Uq are uniformly bounded.

This implies the following.

Corollary 4.13. For every (x, y) ∈ S2 \ (S ∪ {(0, 0),∞}),

lim
m→∞

1

m

m−1∑
n=0

δfn(x,y) =
1

2
δp +

1

2
δq

in the sense of weak-∗ convergence.

Proof. Fix (x, y) ∈ S2 \ (S ∪ {(0, 0),∞}) and δ > 0. It is sufficient to prove that for the
δ-neighbourhoods Up and Uq, defined in (4.2), one has

lim
m→∞

1

m

m−1∑
n=0

1Up
(
fn(x, y)

)
= lim

m→∞

1

m

m−1∑
n=0

1Uq
(
fn(x, y)

)
=

1

2
.

Fix m ∈ N and let i = i(m) be the number of visits of (x, y) to Up completed up to the time
m, i.e. let i be the unique number such that

n−p,i ≤ m < n−p,i+1.

Then by Proposition 4.12, there exist a constant c > 0 (independent of m) such that

i2

c
≤

m−1∑
n=0

1Up
(
fn(x, y)

)
≤ ci2,

i2

c
≤

m−1∑
n=0

1Uq
(
fn(x, y)

)
≤ ci2,

and
m−1∑
n=0

1(Up∪Uq)c
(
fn(x, y)

)
≤ ci.
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This implies

(4.24)
2i2

c
≤ m ≤ 3ci2

provided i is large enough (which holds if m is large enough). Therefore,

lim
m→∞

1

m

m−1∑
n=0

1(Up∪Uq)c
(
fn(x, y)

)
= 0

and hence

(4.25) lim
m→∞

(
1

m

m−1∑
n=0

1Up
(
fn(x, y)

)
+

1

m

m−1∑
n=0

1Uq
(
fn(x, y)

))
= 1.

Proposition 4.12 together with (4.24) implies∣∣∣∣ 1

m

m−1∑
n=0

1Up
(
fn(x, y)

)
− 1

m

m−1∑
n=0

1Uq
(
fn(x, y)

)∣∣∣∣ ≤ C

i

for a constant C > 0 (independent of m), hence

(4.26) lim
m→∞

∣∣∣∣ 1

m

m−1∑
n=0

1Up
(
fn(x, y)

)
− 1

m

m−1∑
n=0

1Uq
(
fn(x, y)

)∣∣∣∣ = 0.

Combining (4.25) with (4.26) finishes the proof (it is enough to notice that if an, bn are
sequences of real numbers with limn→∞(an + bn) = 1 and limn→∞ |an − bn| = 0, then
limn→∞ an = limn→∞ bn = 1

2
). �

4.3. Construction of the diffeomorphism T : S2 × S1 → S2 × S1. Let

X = S2 × S1,

where S2 ' R2 ∪ {∞} and S1 ' R/Z. We can assume X ⊂ RN for some N ∈ N. Let

Rα : S1 → S1, Rα(t) = t+ α mod 1, α ∈ R \Q
be an irrational rotation. Recall that the normalized Lebesgue measure on S1 is the unique
Rα-invariant Borel probability measure. Let

g : S1 → S1, g(t) = t+
1

100
sin2(πt) mod 1.

Note that g is a C∞-diffeomorphism of S1 with 0 as the unique fixed point. Moreover,
limn→∞ g

n(t) = 0 for every t ∈ S1. Therefore, δ0 is the unique g-invariant Borel probability
measure. Let f : S2 → S2 be the diffeomorphism defined in Subsection 4.2, with the invariant
unit circle S ⊂ S2 and the fixed points p, q ∈ S. Fix a small δ > 0 and consider the
δ-neighbourhoods Up, Uq ⊂ S2 of p and q, respectively, defined in (4.2). Let

T : X → X, T (z, t) = (f(z), hz(t)), z ∈ S2, t ∈ S1,

where hz are diffeomorphisms of S1 depending smoothly on z ∈ S2, such that hz = g for
z ∈ Up, hz = Rα for z ∈ Uq, and for z outside Up ∪ Uq, hz is defined in any manner which
makes T a C∞-diffeomorphism of X. 2

2This is possible since g is smoothly isotopic to identity by the family of maps gε(t) = t+ε sin2(πt) mod 1,
ε ∈ [0, 1

100 ], while Rα is smoothly isotopic to identity by the family of maps Rε(t) = t+ ε, ε ∈ [0, α].
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In view of Corollary 4.3, to conclude the proof of Theorem 1.11, it is sufficient to show the
following.

Theorem 4.14. The map T has an attractor

Λ = S × S1

with the basin B(Λ) = (S2 \ {(0, 0),∞})× S1 and natural measure

µ =
1

2
δp0 +

1

2
LebS1 ,

where p0 = (p, 0) and LebS1 is the Lebesgue measure on the circle {q} × S1.

Before proving Theorem 4.14 we show the following lemma.

Lemma 4.15. Let T : X → X be a continuous transformation of a compact metric space.
Let νn, n ≥ 0, be a sequence of Borel probability measures on X and let A ⊂ N ∪ {0} be a
set of asymptotic density zero, i.e.

lim
m→∞

1

m
#{0 ≤ n < m : n ∈ A} = 0.

Assume νn+1 = T∗νn for n /∈ A. Then any weak-∗ limit point of the sequence

1

m

m−1∑
n=0

νn

is T -invariant.

Proof. Let ν be a weak-∗ limit of a sequence 1
mk

mk−1∑
n=0

νn for some sequence mk ↗∞. Then

(4.27) T∗ν − ν = lim
k→∞

1

mk

mk−1∑
n=0

(T∗νn − νn)

and we will prove

(4.28) lim
k→∞

∥∥∥ 1

mk

mk−1∑
n=0

(T∗νn − νn)1A(n)
∥∥∥ = 0

and

(4.29) lim
k→∞

∥∥∥ 1

mk

mk−1∑
n=0

(T∗νn − νn)1Ac(n)
∥∥∥ = lim

k→∞

∥∥∥ 1

mk

mk−1∑
n=0

(νn+1 − νn)1Ac(n)
∥∥∥ = 0,

where ‖ · ‖ stands for the total variation norm. Due to (4.27), this will imply T∗ν = ν. For
(4.28), we have

lim
k→∞

∥∥∥ 1

mk

mk−1∑
n=0

(T∗νn − νn)1A(n)
∥∥∥ ≤ lim

k→∞

2

mk

mk−1∑
n=0

1A(n) = 0,

as the asymptotic density ofA is zero and all νn and T∗νn are probability measures. For (4.29),
observe that the first equality follows by assumptions, and for a given n ∈ {0, . . . ,mk − 2},
if both n and n + 1 are in Ac, then νn+1 cancels out in the sum

∑mk−1
n=0 (νn+1 − νn)1Ac(n)
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and otherwise it appears in the above sum at most once (possibly with a negative sign). The
terms ν0 and νmk appear at most once. Therefore,

lim
k→∞

∥∥∥ 1

mk

mk−1∑
n=0

(νn+1 − νn)1Ac(n)
∥∥∥

≤ lim
k→∞

1

mk

(
‖νmk‖+ ‖ν0‖+

mk−2∑
n=0

‖νn+1‖
(
1− 1Ac(n)1Ac(n+ 1)

))
= lim

k→∞

1

mk

(
2 +

mk−2∑
n=0

(
1− 1Ac(n)1Ac(n+ 1)

))
≤ lim

k→∞

1

mk

(
2 +

mk−2∑
n=0

(
1A(n) + 1A(n+ 1)

))
= 0.

�

Let us proceed now with the proof of Theorem 4.14.

Proof of Theorem 4.14. By the construction of f , the set Λ is a compact T -invariant set, and
for every (z, t) ∈ (S2 \ {(0, 0),∞})× S1, we have dist(T n(z, t),Λ) as n→∞. Hence, Λ is an
attractor for T with the basin B(Λ) = (S2 \ {(0, 0),∞}) × S1. To prove that µ is a natural
measure for T , we show that the sequence of measures

µm =
1

m

m−1∑
n=0

δTn(z,t)

converges to µ in the weak-∗ topology for every (z, t) ∈ (S2 \ (S ∪ {(0, 0),∞}) × S1. It is
enough to prove that every limit point of the sequence µm is equal to µ. It follows from
Corollary 4.13 that every such limit point must be of the form ν1/2 + ν2/2, where ν1 is
a probability measure on the circle {p} × S1 and ν2 is a probability measure on the circle
{q} × S1. Our goal is to show that ν1 = δ(p,0) and ν2 = LebS1 , where LebS1 is the Lebesgue
measure on {q} × S1.

Take mk ↗∞ such that lim
k→∞

µmk = ν1/2 + ν2/2. Let

ϑp,k =
1

mk

mk−1∑
n=0

1Up(f
n(z)) δTn(z,t), ϑq,k =

1

mk

mk−1∑
n=0

1Uq(f
n(z)) δTn(z,t)

and

ϑO,k =
1

mk

mk−1∑
n=0

1S2\(S∪{(0,0),∞}∪Up∪Uq)(f
n(z)) δTn(z,t).

Clearly,
µmk = ϑp,k + ϑq,k + ϑO,k.

By Corollary 4.13,

lim
k→∞

ϑp,k =
1

2
ν1, lim

k→∞
ϑq,k =

1

2
ν2 and lim

k→∞
ϑO,k = 0.

Let
π : X → S1, π(z, t) = t
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be the projection. As supp ν1 ⊂ {p} × S1 and supp ν2 ⊂ {q} × S1 and g, Rα are uniquely
ergodic with invariant measures δ0 and LebS1 , respectively, it is enough to show that the
limits of projected measures π∗ϑp,k and π∗ϑq,k are, respectively, g and Rα-invariant.

We have

π∗ϑp,k =
1

mk

mk−1∑
n=0

1Up(f
n(z)) δπ(Tn(z,t)),

Let

Mk =

mk−1∑
n=0

1Up(f
n(z))

be the number of iterates fn(z) which are in Up up to time mk− 1 and let (z0, t0), (z1, t1), . . .
be consecutive elements of the trajectory {T n(z, t)}∞n=0, such that (zj, tj) ∈ Up × S1. Then

π∗ϑp,k =
1

mk

Mk−1∑
j=0

δtj .

Note that if f(zj) ∈ Up, then tj+1 = g(tj), so δtj+1
= g∗δtj . Let A = {j ∈ N : f(zj) /∈ Up}.

By Proposition 4.12, the set A has asymptotic density zero, as the time spent in Up by the
trajectory of z under f during its i-th visit grows linearly with i, while during each visit only
the last iterate is such that f(zj) /∈ Up. We can therefore apply Lemma 4.15 to conclude that

the sequence 1
Mk

∑Mk−1
j=0 δtj converges to a g-invariant probability measure, hence

lim
k→∞

1

Mk

Mk−1∑
j=0

δtj = δ0.

On the other hand, Corollary 4.13 implies limk→∞
Mk

mk
= 1

2
, so

lim
k→∞

π∗ϑp,k =
1

2
δ0.

By the same arguments we show

lim
k→∞

π∗ϑq,k =
1

2
LebS1 .

Therefore, µm converges to µ in the weak-∗ topology and µ is a natural measure for T .
�

Remark 4.16. To obtain a counterexample to the SSOY predictability conjecture in its
original formulation, one can also perform a similar construction on a manifold with bound-
ary B × S1, where B is a closed 2-dimensional disc. Namely, it is enough to replace the
diffeomorphism f of S2 constructed in Subsection 4.2 with a diffeomorphism of B, which is a
suitable modification if the ‘Bowen’s eye’ example described e.g. in [Cat14, Example 5.2.(B)],
with properties similar to f .
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