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In a recent Letter [A. Lapolla and A. Godec, Phys. Rev. Lett. 125, 110602 (2020)], thermal
relaxation was observed to occur faster from cold to hot (heating) than from hot to cold (cooling).
Here we show that overdamped diffusion in anharmonic potentials generically exhibits both faster
heating and faster cooling, depending on the initial temperatures and on the potential’s degree of
anharmonicity. We draw a relaxation-speed phase diagram that localises the different behaviours
in parameter space. In addition to faster-heating and faster-cooling regions, we identify a crossover
region in the phase diagram, where heating is initially slower but asymptotically faster than cooling.
The structure of the phase diagram is robust against the inclusion of a confining, harmonic term
in the potential as well as moderate changes of the measure used to define initially equidistant
temperatures.

Many thermal relaxation processes in nature and in-
dustry occur out of equilibrium, and thus outside of the
realm of the quasistatic approximation. As a conse-
quence, nonequilibrium thermal relaxation gives rise to
anomalous effects, such as ergodicity breaking [1] or the
Mpemba effect [2]. The latter describes the surprising
observation that some systems cool down faster, when
relaxing from a higher initial temperature. A better un-
derstanding of such anomalous relaxation effects in out-
of-equilibrium systems is important, because it may allow
us to use these phenomena to our advantage, for instance,
for increasing the rate of heating and cooling.

Although a complete understanding of anomalous
relaxation in macroscopic systems appears elusive at
present, much progress has been made recently in repro-
ducing anomalous relaxation phenomena on mesoscopic
scales. This has led to several important results such
as new theoretical [3–6] and experimental [7, 8] insights
into the Mpemba effect, strategies to increase the rate at
which systems can be cooled [9–11], and an information-
theoretic bound on the speed of relaxation to equilib-
rium [12].

Within a setup closely related to, yet slightly different
from, the Mpemba effect, a recent study [13] reported an
asymmetry in the rate at which systems heat up and cool
down. According to this study, and subsequent works
by other authors, heating occurs faster than cooling for
diffusive systems with harmonic potentials [13] and for
discrete-state two-level systems [14, 15]. On the other
hand, it was shown that this relaxation asymmetry is
non-generic for diffusion in potentials with multiple min-
ima [13] or in discrete-state systems with more than two
states [14, 15]. However, it appears to be widely be-
lieved that the described effect is a general property of
overdamped, diffusive systems with stable single-well po-
tentials [13–15].

In this Letter, we study the relaxation asymmetry for
overdamped diffusion in anharmonic potentials. Oppos-
ing common belief, we show that these systems exhibit
both behaviours, faster heating and faster cooling, even
for stable single-well potentials. Based on these results,
we draw a phase diagram locating the different regions of

“faster heating” and “faster cooling” in parameter space.
These two regions are separated by a crossover region
where cooling occurs faster at first, but heating over-
takes at a finite time. Our results suggest that the rel-
ative speed of thermal relaxation to equilibrium can be
substantially increased by varying the anharmonicity of
the potential. This should be testable in experiments and
has potential applications in the optimisation of cooling
strategies for small-scale systems [9].

To specify the problem, consider two equilibrium sys-
tems, otherwise identical, but at different temperatures
Tc < Th. We call the system at temperature Tc cold and
that at temperature Th hot. At time t = 0, both systems
experience an instantaneous temperature quench to the
same final temperature Tf , where Tc < Tf < Th. The
relaxation of the two systems toward equilibrium is mon-
itored by their nonequilibrium free-energy difference [13],

Fi(t) = 〈∆Ei(t)〉 − Tf 〈∆Si(t)〉 ,

=kBTf

∫ ∞

−∞
dx pi(x, t) ln

[
pi(x, t)

pf (x)

]
, (1)

with respect to the equilibrium distribution pf at final
temperature Tf . Here, 〈∆Ei(t)〉 and 〈∆Si(t)〉 are the av-
erage differences in the energy and entropy of the (cold or
hot) system at time t and its equilibrium state at tem-
perature Tf ; kB denotes the Boltzmann constant. The
index i in Eq. (1) takes the values c and h, and pc and ph
denote the probability densities of the initially cold and
hot system, respectively.

In order to quantitatively compare the distances Fi(t)
from equilibrium, the temperatures Tc and Th at t = 0 are
chosen so that Fc(0) = Fh(0) [13]. We call such a tem-
perature quench “F-equidistant,” i.e., at equal distance
with respect to the temperature measure (1). A com-
parison between this setup and the Markovian Mpemba
effect [3, 4] is made in Sec. I of the Supplemental Material
(SM) [16].

The specific measure (1) is used for two reasons. First,
Fi is a thermodynamic quantity for systems at equilib-
rium and hence for t < 0 and in the limit t→∞. Second,
it remains well defined out of equilibrium and thus for all
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finite times t.
In the long-time limit, both the cold and the hot sys-

tem relax to equilibrium so that Fc(t) and Fh(t) tend to
zero asymptotically. The relative distance from equilib-
rium of the two systems is conveniently measured by the
logarithmic ratio

R(t) ≡ ln

[Fh(t)

Fc(t)

]
. (2)

For overdamped diffusion in a harmonic potential, one
can prove that R(t) > 0, i.e., Fh(t) > Fc(t) during the
relaxation [13], i.e., heating occurs faster than cooling;
R(t) < 0 corresponds to the opposite case, that of faster
cooling. Note also that R(0) = 0 by definition of F
equidistance, Fc(0) = Fh(0). Hence, the momentary,
relative distance from equilibrium is determined by the
sign of R(t).

We study the evolution of R(t) for overdamped dif-
fusion in an anharmonic potential V (x). For simplicity,
we analyse the case of one spatial dimension and assume
V (x) to be of the form V (x) = λx2 + k|x|α, where we
consider parameter values λ, k and α for which V is con-
fining, V (x)→∞ as x→ ±∞. We move to a dimension-
less formulation by defining a timescale τ and a length
scale ` as

τ =
1

µkBTf

(
k

kBTf

)−2/α
, ` =

(
k

kBTf

)−1/α
. (3)

Here, µ is the mobility. In the dimensionless coordinates,
times are measured in units of τ , lengths in units of `, and
energies in units of kBTf . In particular, the transforma-

tion t → t̃ = t/τ, x → x̃ = x/`, V (x) → Ṽ = V/(kBTf ),
to dimensionless coordinates yields, after dropping the
tildes, the potential

V (x) = σx2 + |x|α , (4)

with the dimensionless parameter σ =
λk−2/α(kBTf )2/α−1. The parameter σ quantifies
the importance of the harmonic term x2 compared to
the anharmonic term |x|α. We focus here on either
monomial potentials with σ = 0, or on the case where
σ is small. Small σ occurs whenever (1) λ is small, i.e,
the harmonic coupling is weak, or (2) k is large, corre-
sponding to strong anharmonic coupling. In addition,
one has the cases (3) 0 < α < 2 and small Tf , where the
behaviour is dominated by the (anharmonic) shape of
the potential close to the origin, and (4) α > 2 and large
Tf , i.e., the dynamics takes place in the anharmonic
wings of the potential V (x).

The Fokker-Planck equation [17] that determines the
evolution of the probability density during the relaxation
reads, in the new coordinates, ∂tpi(x, t) = Lpi(x, t) with

L = ∂x [V ′(x) + ∂x] , (5)

and initial conditions,

pi(x, 0) =
exp[−V (x)/Ti]

ZTi
. (6)

Here, we introduced the dimensionless temperature ratios
Ti that are either Th ≡ Th/Tf or Tc ≡ Tc/Tf , depending
on whether the initial temperature before the quench is
Th or Tc. Note that for the final-temperature ratio Tf ≡
Tf/Tf = 1. The constants ZTi in Eq. (6) are obtained
from normalising the probability density.

In the limit t → ∞, the densities pi(x, t) relax to
the equilibrium distribution, pf (x) = exp[−V (x)]/Z1.
Hence, after the F-equidistant temperature quench at
t = 0, the evolution of the relative distance from equi-
librium, measured by R(t) [Eq. (1)], is a function of the
parameters σ, and α of the potential V (x) [Eq. (4)] and
of the temperature ratios Ti that enter in the initial con-
ditions (6).

Prior to the temperature quench, the hot and cold sys-
tems are prepared at F equidistance so that their free-
energy differences match. This condition implicitly re-
lates the hot and cold temperature ratios, so that we can
write Tc(Th), with

Fh(0) = Fc(0)
∣∣
Tc(Th) ≡ F0 . (7)

Because F has a single minimum at equilibrium where
T = Tf = 1 and F = 0, there is always exactly one so-
lution to Eq. (7) for which Tc(Th) < 1 < Th. Figure 1(a)
shows schematically how the free-energy difference re-
lates the different temperatures.

At t = 0, the formula for the dimensionless free energy
difference F0 at equidistance [Eq. (1) in units of kBTf ]
can be conveniently written as

F0 = [1 + (1− T )∂T −1 ] ln

(
ZT
Z1

)
, (8)

where T = Th when T > 1 and T = Tc when T <
1. Hence, in order to obtain the required F-equidistant
temperatures, we need to solve and invert Eq. (8). This
can be done analytically for σ = 0, where we find

F0 =
1

α
[T − (1 + ln T )] , (9)

and by taking the inverse

Th = −W−1
(
−Tce−Tc

)
, Tc = −W0

(
−The−Th

)
. (10)

Here, Wn(x), n = −1, 0 denotes Lambert (or product-
log) function [18]. Figure 1(b) shows Th(Tc) (red line)
and Tc(Th) (blue line) from Eqs. (10). For σ 6= 0 the
implicit condition (7) must to be inverted numerically
but the curves remain almost unchanged (not shown).

After preparing the hot and cold systems at F-
equidistant temperatures, both systems are put in con-
tact with the same heat bath with Tf = 1. At finite time
t > 0, the probability densities pi(x, t) that enter Fi(t)
and thusR(t) are obtained from the Fokker-Planck equa-
tion by

pi(x, t) = eLtpi(x, 0) . (11)
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FIG. 1. (a) Free-energy difference F0 at time t = 0 for hot
(red line) and cold (blue line) temperatures, Th and Tc, re-
spectively. The F-equidistance relation (7) is represented by
the grey lines. (b) Th(Tc) (red line) and Tc(Th) (blue line) for
σ = 0, Eqs. (10). The grey lines and coloured labels indicate
a temperature pair (T ′

c , T ′
h), related by F equidistance.

In other words, in order to compute R(t) we must eval-
uate the operator exponential in Eq. (11). This can be
done in the short- and long-time limits, leading to pre-
cise asymptotic results for R(t). As we show below, the
asymptotics of R(t) provide an excellent characterisation
of the dynamics, also at finite t.

For short times t� 1, the logarithmic ratio (2) reads

R(t) ∼ Ṙ(0)t =
Ḟh(0)− Ḟc(0)

F0
t , (12)

where the dot denotes a time derivative and F0 is the
initial free-energy difference given in Eq. (8). Through

Ḟi(0) =
∫∞
−∞dx∂t pi(x, 0) ln[pi(x, 0)/pf (x)], the short-

time evaluation of R(t) depends on the time derivative
∂tp(x, 0), evaluated at t = 0. By expanding the expo-
nential in Eq. (11) for t � 1, we obtain ∂tpi(x, 0) =
(1− Ti)∂2xpi(x, 0), leading us, after integration by parts,

to the following integral expression for Ḟi(0):

Ḟi(0) = − (1− Ti)2
Ti

∫ ∞

−∞
dx pi(x, 0)V ′′(x) . (13)

Evaluating Eqs. (13) and (8) for i = h, c, we obtain R(t)
in the short-time limit; see Eq. (12). For σ = 0 we solve
Eq. (13) explicitly, which gives

Ḟi(0) = (1− α)
(Ti − 1)2

T 2/α
i

Γ(1− 1/α)

Γ(1 + 1/α)
, (14)

where Γ(x) denotes the gamma function [18]. Accord-
ing to Eq. (12), whether the hot or the cold system
relaxes faster at short times is determined by the sign
of Ṙ(0). As a function of α and Th, where Tc follows
from F equidistance, it is therefore instructive to draw
a “phase diagram,” marking the different regions in pa-
rameter space of initially faster heating [Ṙ(0) > 0] and

initially faster cooling [Ṙ(0) < 0].
Figure 2(a) shows the short-time phase diagram for

σ = 0, spanned by Th and α. It separates into an upper
and a lower part with different short-time behaviours. In
the lower part, Ṙ(0) > 0 so that R(t) is initially positive

1 10
2

3

4

5

cooling faster

heating faster

(a)

Th − 1

α

1 10

(b)

cooling faster

heating faster

Th − 1

FIG. 2. Relaxation-speed phase diagram for short and
long times. (a) Short-time phase diagram, calculated from
Eq. (13). Critical line for σ = 0 (dash-dotted line), σ = 0.5
and 1 (dashed lines), and σ = −0.1, −0.15, and −0.2 (dotted
lines). The black and white arrows indicate how the criti-
cal line changes as σ is increased and decreased, respectively,
from zero. (b) Long-time phase diagram, calculated using the
eigenvalue decomposition (17). Critical line for σ = 0 (solid
line), σ = 0.2 and 0.4 (dashed lines), and σ = −0.1, −0.15,
and −0.2 (dotted lines). As in Fig. 2(a), the black and white
arrows indicate how the critical line changes.

for all pairs Ti; heating is faster than cooling. In the up-
per part, cooling is initially faster than heating. The two
parts are separated by a critical line (red, dash-dotted

line) where Ṙ(0) = 0 so that R(t) vanishes to first order
in time, R(t) ∼ O(t2). For σ = 0, the critical line is ob-

tained by equating Ḟc(0) = Ḟh(0), and solving for α. The
smallest critical α value is found to be α = 3, approached
for infinitesimal temperature quenches, Ti → 1. We note
that this value, and the location of the critical line in
general, depends on the choice of temperature measure
F . However, the existence of the critical line is robust
against moderate changes of F ; see Sec. II of the SM [16].

Similarly, small variations of σ away from zero leave the
the topology of the short-time phase diagram unchanged.
The generic effect of σ > 0 on the critical line is shown
by the green, dashed lines and black arrows in Fig. 2(a),
for values of σ up to unity. We observe that slightly
increasing σ moves the critical line to higher values but
does not change the phase diagram qualitatively.

When σ is decreased to negative values, a more com-
plex behaviour emerges, shown by the blue, dotted lines
and white arrows in Fig. 2(a): For initial temperatures
close to equilibrium Ti ≈ 1, the critical line decreases
slightly, to α values below 3. For quenches far from
equilibrium, on the other hand, the critical line shifts
to higher α.

We now turn to the analysis of the long-time limit
t� 1 which requires different methods. When the spec-
trum of L is discrete, the relaxation of the probability
densities pi to pf is exponential in the long-time limit.
As a result, the densities pi are determined by the leading
right eigenfunctions of L and their corresponding eigen-
values [3], obtained from the non-Hermitian eigenvalue
problem

Lrµ = λµrµ , L†lµ = λµlµ , (15)

where lµ and rµ are the left and right eigenfunctions,
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respectively, and λµ with λ0 = 0 > λ1 > λ2 > . . . are the
associated eigenvalues. Note that the right eigenfunction
r0 with eigenvalue λ0 = 0 is given by the steady-state
distribution r0 = pf and l0 = 1. The eigenfunctions
form a complete biorthogonal basis with orthonormality
relations

〈lµ|rν〉 =

∫ ∞

−∞
dx lµ(x)rν(x) = δµν . (16)

Expanding pi in Eq. (11) in the right eigenbasis of L we
obtain in the long-time limit t� 1,

pi(x, t) ∼ pf (x) + ci,µe
λµtrµ(x) , (17)

where µ is the lowest number for which ci,µ ≡ 〈lµ|pi(0)〉 6=
0. Because our problem is symmetric with respect to the
parity operation x → −x, ci,1 vanishes, so that µ = 2;
see Sec. III in the SM [16] for the case of a harmonic
potential. All higher-order terms in Eq. (17) that play
a role at finite times are exponentially suppressed in the
long-time limit considered here. Using Eqs. (2) and (17)
we find that R(t) approaches a constant R∞ for t � 1
that depends only on the coefficients ci,2:

R(t) ∼ 2 ln

(∣∣∣∣
ch,2
cc,2

∣∣∣∣
)
≡ R∞ . (18)

Hence, the relative magnitude of the free-energy differ-
ences is determined by the initial overlap between the left
eigenvector l2 of L and the initial distributions pi(x, 0)
before the temperature quench [3].

We determine ci,2 by solving the eigenvalue problem
(15) numerically, discretising it on an evenly spaced, fi-
nite lattice with small lattice spacing. Equations (15)
then become matrix eigenvalue problems involving large,
non-symmetric matrices, whose left and right eigenvec-
tors are approximations of the left and right eigenfunc-
tions rµ and lµ.

Figure 2(b) shows the long-time phase diagram for
σ = 0 obtained from numerically computing ci,2 and
evaluating R∞ in Eq. (18). The general structure of
the long-time phase diagram is qualitatively similar to
that of the short-time phase diagram in Fig. 2(a), featur-
ing regions of faster heating (R∞ > 0) and faster cooling
(R∞ < 0). For long times, however, the critical line [solid
line in Fig. 2(b)] is located at slightly higher values. Con-
sequently, the minimum of the critical line, attained for
close-to-equilibrium quenches, takes the slightly larger
value α ≈ 3.31. As in the short-time limit, the long-
time critical line is only weakly perturbed by moderate
changes of the temperature measure F ; see Sec. II of the
SM [16] for details.

Upon increasing σ, we again observe no qualita-
tive change of the phase diagram; the critical line is
merely pushed to larger α values [green, dashed lines in
Fig. 2(b)]. Negative σ, on the other hand, leads to a qual-
itative change: For σ < 0, the region of asymptotically
faster cooling becomes finite and is completely enclosed

10−1 100

3

4
(a)

cooling faster

crossover

heating faster

Th − 1

α

0 0.1 0.2 0.3

−0.2

0

0.2 (b)

t

R

FIG. 3. (a) Superimposed short- and long-time phase dia-
grams for σ = 0, featuring the critical lines in the short-
time (dash-dotted line) and long-time (solid line) limits. The
crossover region is shown by the cross-hatched region. The
coloured dots correspond to the parameter values for the plots
in Fig. 3(b). (b) R(t) from different numerical methods for
Th = 3 and α = 3, 3.3 and 3.5, in blue, green and red, re-
spectively. The dash-dotted lines show results obtained from
Eq. (11), by numerically calculating the spectrum of L. The
solid lines are computed from numerical simulations of the
Langevin equation. The black, dashed lines correspond to
the short- and long-time asymptotics.

by the critical line [blue, dotted lines in Fig. 2(b)]. The
sensitive dependence of the relaxation dynamics on nega-
tive values of σ, observed both in the short- and long-time
limits, must be due to the emergence of bistability of the
potential V (x), Eq. (4). The existence of two potential
minima gives rise to multiple relaxation timescales asso-
ciated with the relaxation within the same minimum and
across the two minima.

From the general structure of the phase diagrams we
conclude that asymptotically steep potentials (large α)
lead to faster cooling, compared to F-equidistant heat-
ing, when the initial temperature differences are not too
large. For small α, the opposite is true. Intuitively, this
may be explained by noting that for an initially hot sys-
tem, more probability is located in the tails of the dis-
tribution. The steeper the potential, the faster this tail
probability is advectively transported toward the poten-
tial minimum, leading to faster cooling. For small α, this
advection effect is weaker, so that it is outperformed by
the diffusive broadening of the bulk of the distribution of
the cold system, thus resulting in faster heating.

Our analysis reveals the existence of distinct critical
lines in the short- and long-time limits. This results in
an overlap between the faster-heating and faster-cooling
regions at short and long times, giving rise to a crossover
region in the phase diagram. In the crossover region, the
hot system initially relaxes faster [R(t) < 0], but is even-
tually overtaken by the initially colder system [R(t) > 0].
Hence, there must be at least one finite time tc > 0 where
R(tc) = 0, i.e., the system crosses over from faster cool-
ing to faster heating.

Figure 3(a) shows the superimposed short- and long-
time phase diagrams for σ = 0 featuring the crossover
region (cross-hatched area). The dash-dotted and solid
lines show the critical lines from Figs. 2(a) and (b), re-
spectively.
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In order to study the behaviour ofR(t) in the crossover
region, and to validate our previous results, we perform
a numerical analysis of the finite-time evolution of R(t).
We focus on a few points in the phase diagram, shown
as the differently coloured dots in Fig. 3(a), where we
expect qualitatively different behaviours: For the param-
eter sets represented by the blue and red dots, we expect
heating and cooling, respectively, to be faster, both for
short and for long times. By contrast, for the parame-
ters of the green dot we expect at least one finite-time
crossover from faster cooling to faster heating.

For the finite-time analysis we use two different nu-
merical methods. First, we obtain an approximation of
pi(x, t) by using the discretised analogue of Eq. (11) ob-
tained with the discretisation scheme discussed earlier.

The second method approximates the probability den-
sity pi(x, t) by means of a Langevin approach [19]: We
simulate a large number of trajectories xi(t), i = h, c,
following the dynamics ẋi(t) = −V ′(x) + ξ(t), where ξ(t)
is a Gaussian white-noise signal with correlation func-
tion 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). The initial values xi(0) are
sampled from the equilibrium distributions pi(x, 0) prior
to the temperature quench. The Langevin equation is
solved numerically using an Euler-Maruyama scheme [20]
with a small time step. The probability densities pi(x, t)
are then computed by generating histograms over all lo-
cations xi(t) at discrete times t.

These methods, whose parameters are summarised in
Sec. IV of the SM [16], yield two independent numeri-
cal approximations pi(x, t) from which we then calculate
R(t). Figure 3(b) shows the so-obtained R(t), where the
colours of the curves correspond to the colours of the dots
in Fig. 3(a). The dash-dotted lines show R(t) calculated
from the discretised operator L. The lighter, solid lines
show the corresponding results from the Langevin ap-
proach. Also shown are the short- and long-time asymp-
totes (dashed lines). We observe that the asymptotes
represent a good characterisation of the dynamics ofR(t)
for all times. In particular, there are no finite-time cross-
ings R(tc) = 0 for the parameter values outside of the
crossover region in Fig. 3(a), i.e., for the blue and red
curves. Inside the crossover region [see green curve in
Fig. 3(b)] we observe only a single crossing.

Furthermore, there is good agreement between the
results from the different numerical methods and the
asymptotic results. Note that the deviations between the
equally coloured curves become larger for longer times.
The reason is that for long times, the individual free-
energy differences Fi(t) in Eq. (2) become exponentially
small, so that the relative errors increase as t becomes
large. Due to this numerical difficulty, we were unable
to evaluate R(t) until convergence, as can be seen by the
discrepancy between our numerical results and the long-
time asymptotics [horizontal, dashed lines in Fig. 3(b)].

Finally, we note that far from equilibrium, for Tc ≈

0.0229 and Th ≈ 5.50, the short- and long-time critical
lines cross [see Fig. 3(a)] which implies the existence of an
inverted crossover region very far from equilibrium where
heating is initially faster but asymptotically slower than
cooling.

In conclusion, F-equidistant thermal relaxation of
overdamped diffusions in anharmonic potentials V (x)
allows for both faster heating and faster cooling, even
when V (x) has a single minimum. As a consequence, the
short- and long-time phase diagrams [Figs. 2(a) and (b)],
spanned by the (Th, α)-parameter space, are nontrivial,
exhibiting regions of faster heating and faster cooling.
Both for short and for long times, we found that cooling is
faster than heating for sufficiently large α, and heating is
faster than cooling for small α. This can be explained in
terms of a competition between the advective relaxation
of the tail probability of the hot system, and the diffu-
sive broadening of the bulk-probability in the cold sys-
tem. Despite the similarities between the short- and long-
time phase diagrams, we found that their critical lines are
different, and that the faster-heating and faster-cooling
regions overlap. Superimposing the two, we localised a
crossover region [Fig. 3(a)] where cooling is initially faster
but the rate of heating eventually overtakes. Outside
of the crossover region, we found no crossings, suggest-
ing that the short- and long-time asymptotics faithfully
characterise the relative relaxation speeds. The critical
lines separating the parameter regions with different be-
haviours are only weakly perturbed by moderate changes
of the temperature measure F or by an additional har-
monic term in the potential V (x), as long as the latter
remains single-well, i.e., σ > 0.

It would be interesting to test the relaxation-speed
crossover in experiments and thus to reproduce our phase
diagram under experimental conditions. This requires
tracking the changes in energy and entropy of the system
throughout the experiment which is possible in state-of-
the-art setups [7, 21]. On the theoretical side, it would
be desirable to understand the precise dynamical origin
of the different relaxation behaviours [22]. This might
lead to optimisation methods for the potential to achieve
faster heating or cooling, perhaps in the spirit of first-
passage time optimisation [23, 24].
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In this Supplemental Material, we discuss how the relaxation asymmetry after a F-equidistant
temperature quench relates to the Markovian Mpemba effect described in the literature. We also we
show that the short- and long-time phase diagrams are robust against changes in the temperature
measure, by considering a generalisation Fq of the free-energy difference F discussed in the main
text. Further, we outline a computation of the c2-coefficient for over- and underdamped Langevin
systems in harmonic potentials, and explain our numerical method. Finally, we show how in the
long-time limit and for harmonic potentials, the heating-cooling asymmetry can be traced back to
a convexity property of the inverse of the temperature measure.

I. CONNECTION WITH MARKOVIAN
MPEMBA EFFECT

In this section, we discuss the relation between the
relaxation asymmetry in F-equidistant quenches and the
Markovian Mpemba effect. Both effects refer to the ther-
mal relaxation of two identical systems at different initial
temperatures towards the same final temperature which
allows us to use similar methods for their description:
In the main text, we used the method of calculating the
coefficients c2 to determine the long-time behaviour of
the cold and hot systems after an F-equidistant tempera-
ture quench. This approach for obtaining the asymptotic
rates of heating and cooling after temperature quenches
has been previously applied to the Markovian Mpemba
effect in Ref. [3].

The perhaps most obvious difference between the two
effects is the ordering of the temperature ratios. For the
F-equidistant quench we have Tc < 1 < Th. For the
Markovian Mpemba effect, on the other hand, one has
1 < Tc < Th, or Tc < Th < 1 for the inverse Mpemba
effect [3]. It was shown in Ref. [3] that a sufficient con-
dition to observe the Mpemba effect is that c2(T ) is a
non-monotonic function of the initial temperature ratio
T > 1. In this case, there always exist temperature pairs
1 < Tc < Th so that |c2(Tc)| > |c2(Th)|. As a result,
the initially hotter system (with initial temperature Th)
relaxes asymptotically faster than the colder one (with
initial temperature Tc).

The condition Fc(t) < Fh(t) for all times, as discussed
in the main text and in Refs. [4, 5], is somewhat stronger,
as it is supposed to hold also at finite times. For the sake
of comparison with the Mpemba effect, we here restrict
ourselves to the long-time limit, where the c2-coefficient
is a faithful measure for both phenomena.

Figure 1(a) schematically shows |c2| as a function of
T . Here, the Markovian Mpemba effect corresponds to
the non-monotonicity of the red branch: We may find
pairs of initial temperatures Tc and Th (white circles)
so that |c2(Tc)| > |c2(Th)|. The equivalent phenomenon,
but for T < 1 (blue solid line), corresponds to the inverse
Markovian Mpemba effect.

Figure 1(b) schematically shows |c2| as a function

0 1 Tc Th
0

(a)

T

|c
2
|

←Fc 0 Fh→

(b)

F

Figure 1. The Markovian Mpemba effect and the long-time
limit of the F-equidistant temperature quench. (a) Schematic
of the magnitude of c2 as a function of the initial temperature
T . The blue and red solid lines show a hypothetical c2(T ).
The circles correspond to a temperature pair that exhibits the
Markovian Mpemba effect, the squares show an F-equidistant
temperature pair [see Fig. 1(b)]. The dashed lines showcase
a linear c2(T ). (b) Same schematic as in Fig. 1(a), but as a
function of the free-energy difference F . The squares repre-
sent a pair of F-equidistant temperatures.

of F which characterises F equidistance temperature
quenches in the long-time limit. The initial temper-
ature ratios Tc and Th are chosen F-equidistant such
that F(Tc) = F(Th), see gray lines in Fig. 1(b).
Loosely speaking, the initial temperatures for Markovian
Mpemba effect always lie on either branch (the red or
the blue) in Fig. 1, where the red corresponds to the
Mpembda effect and the blue to its inverse. For the F-
equidistant quench, initial temperatures from two differ-
ent branches, red and blue, are chosen.

Another important difference is that the Markovian
Mpemba effect relies only on the order of the tempera-
tures, and on how this ordering changes under the action
of the mapping |c2| : T 7→ |c2(T )|. In particular, this
means that the occurrence of the Mpemba effect is in-
variant under any mapping of the initial temperatures
that preserves their ordering [3].

In our example in Fig. 1, this can be readily verified.
The free-energy difference F preserves the temperature
ordering, i.e., 1 < Tc < Th implies 0 < F(Tc) < F(Th), so
that also |c2[F(Tc)]| > |c2[F(Th)]| [see circles in Figs. 1(a)
and (b)]. Hence, the Mpemba effect is preserved by this
mapping. The same logic applies for the inverse Mpemba

ar
X

iv
:2

10
7.

07
89

4v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

7 
Se

p 
20

21



2

effect.
On the other hand, F equidistance does depend on

the choice of the specific temperature measure F , be-
cause this notion relies on the actual values of the dis-
tances and not just on their ordering. The dashed lines
in Figs. 1(a) and (b) show how the notion of F equidis-
tance is transformed by the mapping F 7→ T (F) for a c2
that is linear in T ,

|c2(T )| ∝ |T − 1| , (S1)

see Sec. III for an example. With c2 as in Eq. (S1), a T -
equidistant temperature pair, i.e., with |Tc−1| = |Th−1|,
Tc < 1 < Th, has |c2(Tc)| = |c2(Th)|. However, if we
choose F-equidistant temperatures instead [see squares
in Fig. 1(b)], we generically have c2(Tc) 6= c2(Th) because
then |Tc−1| 6= |Th−1| [see squares in Fig. 1(a)]. In other
words, F equidistance does not imply T -equidistance,
nor equidistance with respect to any other generic tem-
perature measure. Note that this argument also holds
for a generic, nonlinear c2(T ).

In summary, although the setup for the two effects is
similar, there are two important differences: The temper-
ature ordering and the dependence on the temperature
measure.

II. ROBUSTNESS OF THE PHASE DIAGRAM

In this section, we show that the short- and long-time
phase diagrams [Fig. 2(a) and 2(b) in the main text] are
robust against moderate changes of the temperature mea-
sure. To this end, we study the effect of replacing the
free-energy difference F by the “deformed free-energy dif-
ference” Fq,

Fqi (t) =
1

q(q − 1)

∫ ∞

∞
dx

{[
pi(x, t)

pf (x)

]q−1
− 1

}
pi(x, t) ,

(S2)

which reduces to F , as defined in the main text, in the
limit q → 1. This can be seen by noting that for |q−1| �
1,

[
pi(x, t)

pf (x)

]q−1
− 1 ∼ (q − 1) ln

[
pi(x, t)

pf (x)

]
. (S3)

The limit q → 0, on the other hand, corresponds to F
when swapping pi(x, t) and pf (x) which follows from

[
pi(x, t)

pf (x)

]q−1
∼ pf (x)

pi(x, t)

[
1 + q ln

pi(x, t)

pf (x)

]
, (S4)

for |q| � 1. The deformed free-energy difference Fq has a
probabilistic interpretation in terms of a generalisation of
the Kullback-Leibler divergence to Tsallis statistics [6–8].
For our purpose, Fq is convenient because it encompasses

a rather broad range of temperature measures while al-
lowing for similar analytical progress as the original free-
energy difference F , attained for q = 1. For simplicity,
we consider only the case σ = 0 in what follows.

In order to relate the initial and final temperature ra-
tios, we first need to compute Fq0 ≡ Fq(0) as function
of T . Performing the integral in Eq. (S2) for the initial,
stationary distributions we find

Fq0 =
1

q(q − 1)

[( Tq
T q
)1/α

− 1

]
, (S5)

where we defined

Tq ≡
T

1− (q − 1)(T − 1)
. (S6)

For q → 1, we have Fq0 → F0 given in Eq. (9) in the main
text. In order for Fq0 to remain finite and real, we must
require Tq > 0 which in turn requires Th < q/(q − 1) for
q > 1. The limit Th → q/(q − 1) corresponds to Tc → 0
for the cold temperature ratio.

We now use Eq. (S5) to relate the hot and cold tem-
peratures, thus giving Th(Tc) and Tc(Th). Figure 2(a)
shows Th(Tc) and Tc(Th), obtained from combining both
temperature branches as in Fig. 1(b) in the main text, for
different q. Also shown is the case of a linear temperature
measure (dash-dotted line). We observe that varying q
leads to a different relations between the hot and cold
temperatures, as expected. Larger q > 1 leads to a g
that is closer to that of the linear temperature measure
|Th − 1| = |Tc − 1| [dotted line in Fig. 2(a)]. Interest-
ingly, a straightforward calculation using Eq. (S5) shows
that for q = 2, Fq-equidistance becomes equivalent to T -
equidistance (dash-dotted line), i.e., to |Th−1| = |Tc−1|.
Conversely for q < 1, the temperature measure Fq is fur-
ther away from the linear measure.

A. Short-time phase diagram

The short-time phase diagram for the deformed free-
energy difference (S5) is obtained by computing Rq(t) ≡
ln[Fqh(t)/Fqc (t)] for short times using the equivalent of

Eq. (12) in the main text. This requires evaluating Ḟq(0),
given by

Ḟq(0) = −(α− 1)
(1− T )2

(TqT q)1/α
(Tq
T

)2
Γ(1− 1/α)

Γ(1 + 1/α)
, (S7)

which for q → 1 reduces to Eq. (14) in the main

text. Equation (S7) allows us to evaluate Ṙq(0) =

[Ḟqh(0) − Ḟqc (0)]/Fq0 , from which we obtain the short-
time phase diagram, marking regions in parameter space
where Ṙq(0) > 0 (faster heating) and Ṙq(0) < 0 (faster
cooling). Figure 2(b) shows the critical lines of the phase
diagram for different q. We observe that q < 1 generically
pushes the critical line to higher α values, while q > 1
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Figure 2. (a) Temperatures Tc(Th) (red) and Th(Tc) (blue) for q = 1 (solid), q = 0.8 (dotted), q = 1.2 (dashed), and the linear
measure attained for q = 2 (dash-dotted). The dots show the cases when Th → q/(q − 1) and Tc → 0. (b) Short-time phase
diagram for different values of q. The critical line for q = 1, the case discussed in the main text, is shown as the red, solid
line. The green, dotted lines correspond to q < 1, with values q = 0.9 and q = 0.8. The blue, dashed lines correspond to q > 1
with values q = 1.2, 1.4 and 1.6. The dash-dotted line shows the critical line for the linear measure attained for q = 2. The
blue dots show the critical points for the limits Th → q/(q − 1) and Tc → 0. (c) Long-time phase diagram for different values
of q. Same q values and line styles as in (b). (d) Critical α for close-to-equilibrium quenches in the short- (dash-dotted) and
long-time (solid) limits as functions of q.

decreases it. However, the topology of the phase dia-
gram remains intact in a whole neighbourhood of q values
around q = 1. We therefore conclude that the short-time
phase diagram is robust against moderate changes of the
temperature measure, at least against those of the kind
given by Eq. (S2).

B. Long-time phase diagram

In the long-time limit, Rq(t) simplifies to

lim
t→∞

Rq(t) = 2 ln

(∣∣∣∣
c2,h
c2,c

∣∣∣∣
)

= R∞ , (S8)

independent of q and thus identical to the expression in
Eq. (18) in the main text. This is not unexpected, as
it can be shown that a broad class of temperature mea-
sures is equivalent in the long-time limit [3]. This does,
however, not mean that the long-time phase diagram is
unaffected by the change F → Fq. The reason is that
the initial temperature ratios, Th and Tc are still related
to each other by Fq-equidistance, which is in general dif-
ferent from F equidistance [see Fig. 2(a)].

As in the case q = 1 (see main text), we compute R∞
by calculating c2(T ) numerically from the spectral de-
composition of the Fokker-Planck operator. From this,
we obtain the long-time phase diagram by marking re-
gions in the (Th, α) plane where R∞ > 0 (heating is
faster than cooling) and R∞ < 0 (cooling is faster than
heating). Figure 2(c) shows the long-time phase diagram
for different values of q. As for short times, the long-time
phase diagram is robust against moderate changes of q
away from q = 1. We observe that a decrease in q moves
the critical α line to larger values. Conversely, increasing
q shifts the critical line to lower α values. The general
structure of the long-time phase diagram remains unal-
tered, just as for short times. Interestingly, however, we
find that for q values below q ≈ 0.78, the crossover region
observed for q = 1 disappears, giving rise to an extended
inverted crossover region (see main text).

C. Critical line for close-to-equilibrium quenches

We now show how to compute the critical line for close-
to-equilibrium quenches, where |Ti − 1| � 1, in both
the short- and the long-time limit. To this end, we first
calculate Tc(Th) asymptotically for Th − 1 ≡ ε � 1 by
expanding Fq0 in Eq. (S5) in T − 1:

Fq0 ∼
1

2α
(T − 1)2 +

q − 2

3α
(T − 1)3 . (S9)

Now we make the ansatz Tc − 1 ∼ −ε + Aε2 where ε =
Th−1. We substitute this ansatz into Eq. (S9), expand in
small ε and solve for A. This gives the following relation
Tc(Th) valid for small Th − 1� 1:

Tc − 1 ∼ −(Th − 1) +
2

3
(2− q)(Th − 1)2 . (S10)

In the short-time limit, the critical line is determined by
the condition Ṙ(0) = 0. To obtain the critical line for

close-to-equilibrium quenches, we expand Ṙ(0) in Th −
1� 1 using Eq. (S10). This gives

Ṙ(0) ∼ −8

3
(α− 1)[α(2q − 1)− 3q]

Γ(1− 1/α)

Γ(1 + 1/α)
(Th − 1) .

(S11)

Setting this expression to zero gives the asymptotic value
of the critical line for close-to-equilibrium quenches. We
obtain

α ∼ 3q

2q − 1
. (S12)

The dash-dotted line in Fig. 2(d) shows Eq. (S12) as a
function of q. For q = 1 we obtain the value α = 3 stated
in the main text. The value q = 2, which corresponds
to the linear temperature measure, gives critical α = 2,
the harmonic potential. This is the case also in the long-
time limit as shown in Sec. III, see discussion below. We
also find that the short-time critical line is pushed to
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infinity as q → 1/2, and disappears for q < 1/2. This
shows that the general structure of the short-time phase
diagram may change for temperature measures that are
very different from F .

In the long-time limit, the critical line is determined
by R∞ = 0 and thus by |c2(Th)| = |c2(Tc)|. To obtain
the critical α value for close-to-equilibrium quenches, we
expand c2(T ) around T − 1� 1:

c2(T ) ∼ c′2(1)(T − 1) +
c′′2(1)

2
(T − 1)2 . (S13)

Now, using Eq. (S10) together with |c2(Th)| = |c2(Tc)|
we obtain the relation

c′′2(1) =
2

3
(q − 2)c′2(1) . (S14)

This expression determines the critical α value for close-
to-equilibrium quenches in the long-time limit. To eval-
uate α, we numerically compute c′2(1) and c′′2(1) from
c2(T ), along a fine grid of α values. The result is shown
as the solid line in Fig. 2(d). We observe that the critical
lines in the short- and long-time limit behaves similarly as
functions of q. For q = 1 we obtain the long-time value
α ≈ 3.31 stated in the main text. For q = 2, we find
α = 2. This can be understood by noting that q = 2 in
Eq. (S14) gives c′′2(1) = 0, which is precisely the case for
harmonic potentials, i.e., α = 2, see Eqs. (S17) and (S18)
in Sec. III. Note that at q ≈ 0.78 the close-to-equilibrium
values for α in short- and long-time limits cross, so that
the crossover region of the phase diagram vanishes, as
discussed before. Furthermore, the long-time critical line
is pushed to infinity for q ≈ 0.45, similarly to what we
observed in the short-time limit.

To conclude this section, we analysed the change of the
phase diagram under variation of the temperature mea-
sure by setting F → Fq. We observed that the topology
of the phase diagram is robust under moderate changes of
this measure. Decreasing q too far away from q = 1 first
leads to a loss of the crossover region at q ≈ 0.78, giving
rise to an extended inverted crossover region (see main
text), followed by the complete vanishing of the critical
lines in the short-time (at q = 1/2) and in the long-time
(at q ≈ 0.45) limit.

III. ANALYTICAL EXPRESSION OF c2 FOR
HARMONIC POTENTIALS

In this section, we outline the derivation of the c2-
coefficient for over- and underdamped diffusion in har-
monic potentials. In particular, we show that the c2-
coefficients are linear in the temperature ratio T . To
calculate c2, we need to find the left eigenvectors associ-
ated with the Fokker-Planck operator L [Eq. (5) in the
main text].

We start by discussing the overdamped limit. The po-
tential V (x) [Eq. (4) in the main text] is chosen to be har-
monic V (x) = x2, i.e., σ = 0 and α = 2. For harmonic

TABLE I. Parameter values in our numerical simulations.
L dx Ngrid dt Ntraj Nbin m M
10 1.25× 10−4 8× 103 10−3 1.62× 108 104 10−4 102

potentials, the Fokker-Planck equation can be solved an-
alytically [1]. The first three left eigenfunctions read

l0(x) = 1 , l1(x) = x , l2(x) = 2x2 − 1 . (S15)

The associated eigenvalues are λ0 = 0, λ1 = −2 and λ2 =
−4, respectively. With the initial distributions given by
p(T ) = exp(−x2/T )/

√
T π, we obtain from

cµ(T ) = 〈lµ|p(T )〉 (S16)

the coefficients

c0(T ) = 1 , c1(T ) = 0 , c2(T ) = T − 1 . (S17)

We observe that c2 is linear in the dimensionless temper-
ature ratio T = Tc/h/Tf for overdamped diffusion in a
harmonic potential.

The calculation for the underdamped case goes along
similar lines. For the computation of the left eigenfunc-
tions of the Kramers equation we refer to, e.g., Appendix
A of Ref. [2]. From Eq. (S16) one finds

c0(T ) = 1 , c1(T ) = 0 , c2(T ) = N2 (T − 1) , (S18)

with

N2 = 1 + 4
(
ζ −

√
ζ2 − 1

)2
. (S19)

Here, ζ =
√
mγ2/(8k) is the dimensionless damping ra-

tio with particle mass m, friction coefficient γ and har-
monic coupling k. Equations (S18) show that also in
the underdamped limit, the coefficient c2 is linear in the
temperature ratio T . Upon taking the overdamped limit
ζ → ∞, the second term in Eq. (S19) vanishes and we
recover Eqs. (S17).

IV. NUMERICAL METHOD

Here we explain in more detail the numerical methods
used to obtain the results presented in Fig. 3(b) of the
main text. The numerical values of all parameters are
summarised in Tab. I.

For the first method, we discretise the Fokker-Planck
operator L [Eq. (5) in the main text] on a finite do-
main [−L/2, L/2] with absorbing boundary conditions,
using an evenly spaced grid with Ngrid points, resulting
in a grid spacing of dx = L/(Ngrid − 1). To obtain the
discretised probability density pi(xk, t) at grid point xk,
k ∈ {1, . . . , Ngrid}, and time t, we then numerically com-
pute the matrix exponential in Eq. (11) of the main text.

For the second method we simulate Ntraj trajectories
{xi(t)} using an Euler-Maruyama scheme with time step
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dt. The initial points of each trajectory are sampled from
the initial probability densities pi(x, 0) at temperature
ratios Ti, i = h, c. At each time step tn, the proba-
bility densities are calculated by binning the positions
xi(tn) of the trajectories into Nbin bins with logarithmi-
cally spaced edges at locations ranging between m and
M .

V. HEATING-COOLING ASYMMETRY FOR
HARMONIC POTENTIAL

In this section, we show that in the long-time limit and
for harmonic potentials, the asymmetry between heating
and cooling in F-equidistant temperature quenches can
be traced back to the convexity of the inverse of F .

To this end, we consider a generic measure f(T ) for the
distance from equilibrium, assuming that f has a single
minimum at T = 1 where f(1) = 0. The function f has
two branches, corresponding to T ≤ 1 and T ≥ 1, that
we call f1 and f2, respectively. Along the same lines as in
Ref. [4] and in the main text, we define an f -equidistant
temperature pair (Tc, Th) by

f1(Tc) = f2(Th) . (S20)

By inverting f1 and f2, we explicitly relate Tc and Th:

Tc = f−11 [f2(Th)] , Th = f−12 [f1(Tc)] . (S21)

In order to obtain a single function g that is defined on
the positive real line, we join the two branches given in
Eq. (S21) according to

g(T ) =

{
f−12 [f1(T )] , T < 1 ,

f−11 [f2(T )] , T ≥ 1 .
(S22)

It follows from the properties of f1 and f2 that g(1) = 1,
and that g is a decreasing function of T . Furthermore,
since (f−12 ◦ f1)−1 = f−11 ◦ f2, g is its own inverse,
g(g(T )) = T . Geometrically, the T > 1-branch of g
is the mirror image of the T < 1-branch, with respect to
an axis that goes through the origin at angle π/4.

In addition to these generic properties, we make the
assumption that g is convex, i.e., g[tx+(1−t)y] ≤ tg(x)+
(1− t)g(y), for 0 ≤ t ≤ 1.

Under these assumptions, we now show that for
f -equidistant temperatures and a linear c2(T ) as in
Eqs. (S17) and (S18), heating occurs faster than cool-
ing as t → ∞. This corresponds to proving the condi-
tion |Tc − 1| < |Th − 1|, which, using Tc < 1 < Th and
Tc,h = g(Th,c), is expressed as

g(T ) ≥ 2− T , (S23)

where T = Tc for T < 1 and T = Th for T ≥ 1.
We now prove (S23) by contradiction. First, we assume

that there exists a T1 < 1 so that g(T1) < 2 − T1. The
function g maps T1 to a second temperature that we call
T2 = g(T1) > 1. Due to the convexity of g, we have

g

(T1 + T2
2

)
≤ 1

2
g(T1) +

1

2
g(T2) . (S24)

On the right-hand side of Eq. (S24), g(T1) = T2 and,
since g is its own inverse, g(T2) = T1. We thus write

1

2
g(T1) +

1

2
g(T2) =

T1 + T2
2

. (S25)

Now, by assumption g(T1) = T2 < 2 − T1, so that
(T1 + T2)/2 < 1. And, since g is decreasing, g[(T1 +
T2)/2] > g(1) = 1. Using Eq. (S24) we therefore obtain
the contradiction

1 < g

(T1 + T2
2

)
≤ T1 + T2

2
< 1 , (S26)

which proves that we must have g(T ) ≥ 2−T for T < 1.
The same reasoning works for T > 1. For T = 1 we
obtain equality in Eq. (S23). Putting the different cases
together proves Eq. (S23).

In summary, under the assumption that g(T ) is con-
vex, heating occurs faster than cooling whenever c2 is
a linear function of T . As shown in Sec. III, the co-
efficient c2 is linear for over- and underdamped diffu-
sions in harmonic potentials. Furthermore, the function
g [Eq. (S22)] that corresponds to the free-energy differ-
ence F is convex [see Fig. 1(b) in main text] in this case.
The same holds for deformed free-energy difference Fq,
see Fig. 2(a). Hence, for harmonic systems in the long-
time limit, the relaxation asymmetry is a consequence of
the convexity of g, which relates the hot and cold tem-
peratures through the equidistance condition (S20).
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