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We considered the phase coherence dynamics in a Two-Frequency and Two-Coupling (TFTC) model of coupled
oscillators, where coupling strength and natural oscillator frequencies for individual oscillators may assume
one of two values (positive/negative). The bimodal distributions for the coupling strengths and frequencies are
either correlated or uncorrelated. To study how correlation affects phase coherence, we analyzed the TFTC
model by means of numerical simulation and exact dimensional reduction methods allowing to study the
collective dynamics in terms of local order parameters1,2. The competition resulting from distributed coupling
strengths and natural frequencies produces nontrivial dynamic states. For correlated disorder in frequencies
and coupling strengths, we found that the entire oscillator population splits into two subpopulations, both
phase-locked (Lock-Lock), or one phase-locked and the other drifting (Lock-Drift), where the mean-fields
of the subpopulations maintain a constant non-zero phase difference. For uncorrelated disorder, we found
that the oscillator population may split into four phase-locked subpopulations, forming phase-locked pairs,
which are either mutually frequency-locked (Stable Lock-Lock-Lock-Lock) or drifting (Breathing Lock-Lock-
Lock-Lock), thus resulting in a periodic motion of the global synchronization level. Finally, we found for
both types of disorder that a state of Incoherence exists; however, for correlated coupling strengths and
frequencies, Incoherence is always unstable, whereas it is only neutrally stable for the uncorrelated case.
Numerical simulations performed on the model show good agreement with the analytic predictions. The
simplicity of the model promises that real-world systems can be found which display the dynamics induced
by correlated/uncorrelated disorder.

PACS numbers: 05.45.-a, 89.65.-s

The synchronization of oscillators is a ubiqui-
tous phenomenon that manifests itself in a vast
range of settings in nature and technology, such
as the beating of the heart3, circadian clocks in
the brain4, metabolic oscillations in yeast cells5,
and life cycles of phytoplankton6, pedestrians on
a bridge locking their gait7, metronomes on a
swing8, arrays of Josephson junctions9, chemical
oscillators10,11, electric power grid networks12 and
others13. Studies have addressed collective dy-
namics emerging in coupled oscillator networks
with properties giving rise to the formation sub-
population structures induced by either heteroge-
neous frequencies14–17 or interactions such as cou-
pling strengths18–21 and/or phase-lags22–24, with
bimodal character. Recently, Hong et al.25 con-
sidered the emergence of collective states includ-
ing traveling waves in a system with heteroge-
neous natural frequencies and positive / nega-
tive coupling strengths that were correlated with
the given natural frequency. Here, we simplify
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this model by considering the case where both
natural frequencies and coupling strengths may
assume either positive or negative value, which
may be correlated or uncorrelated. Thereby, we
compared side-by-side the impact of correlated
and uncorrelated disorder and study the collec-
tive dynamics based on numerical simulations and
dimensional reduction methods26. The result-
ing collective dynamics reflects the subpopula-
tion structure imprinted by the natural frequen-
cies/coupling strengths in a nontrivial way, de-
pending on the amount of asymmetry of the dis-
order. On the one hand, the correlated model
exhibits dynamic states where one oscillators be-
longing to one subpopulation are locked, while
oscillators in the other subpopulation are adrift,
or both subpopulations are frequency-locked with
constant phase difference; both states display
traveling wave motion. On the other hand, for
uncorrelated disorder we found a state of inco-
herent oscillations, and a state where all subpop-
ulations are phase-locked, either with a drifting
or constant phase difference; traveling wave mo-
tion is however absent. Our findings corroborate
that traveling wave motion results from asymme-
try in natural frequencies and coupling strengths
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with correlated disorder, rather than from disor-
der without correlation or disorder with non-zero
variance.

I. INTRODUCTION

Synchronization phenomena occur in a large variety of
systems in nature and technology, and a wide range of
studies used both mathematical and physical models to
uncover and understand the dynamics of synchroniza-
tion27–30. To explore the mechanisms behind collective
synchronization, the paradigmatic Kuramoto model is a
useful tool27, and its variants capture many features of
biological and physical systems in the real world, includ-
ing pedestrians walking on a bridge7, Josephson junc-
tions9, neural systems31,32, metronomes8,33, lasers and
opto-mechanical systems34. For example, the collective
synchronization in Kuramoto model has attracted physi-
cists’ attention because its governing equations can be
related to the XY model for the spin magnetics, i.e.,
the Kuramoto model corresponds to an overdamped ver-
sion of the Hamiltonian dynamics of the XY model in
physics35. The model has also attracted great theoreti-
cal attention because of its analytical tractability via the
exact low dimensional description of the microscopic dy-
namics in terms of collective mean-field variables, for a
review see26.

The natural frequencies of the oscillators in the origi-
nal Kuramoto model27 are randomly drawn from a uni-
modal distribution function such as the Gaussian one,
while the coupling strength between all oscillators is the
same value, and consequently, frequencies and coupling
strengths are uncorrelated. The natural frequencies of
the oscillators play two roles. The first is that the fre-
quencies constitute driving forces in the system. The
second is that they play the role of “disorder” due to
their randomly distributed nature. This disorder in the
oscillator frequencies tends to break synchrony and forces
the oscillator phases to run away from each other; con-
versely, (positive) coupling strength is an antagonist to
this disorder and enables the oscillators to entrain their
phases. In Ref.25, one of the authors considered a system
where the natural frequencies and the coupling strengths
are drawn from random distributions with finite variance.
In particular, the authors considered the case where
the distributions of the two parameters are symmet-
rically/asymmetrically correlated with each other and
found that the correlation may induce interesting states
including traveling waves. In the present study, we con-
sidered a minimal model where both natural frequencies
and coupling strengths are centered around two distinct
values and investigated how correlated/uncorrelated dis-
order in natural frequencies and coupling strengths af-
fected the collective dynamics of the system. Coupling
strengths hereby take on both positive and negative val-
ues.

The motivation for this article is to study the ef-
fects of correlated/uncorrelated disorder by simplifying
a previous model25 such that these effects are analyti-
cally tractable. To achieve this, we introduce a “Two-
Frequencies-Two-Coupling (TFTC) model” where fre-
quencies and coupling strengths may assume either of
two values. In particular, we would like to address the
following questions: Previous studies reported25 intrigu-
ing dynamic states such as traveling waves induced by
correlated disorder; can we observe traveling waves de-
spite the simplifications in this model, and what other
dynamic states may appear?
This paper is structured as follows. Sec. II defines the
TFTC model of coupled oscillators, Sec. III gives a di-
mensional reduction to this system in terms of macro-
scopic collective dynamics of based on the theories intro-
duced by Ott/Antonsen2,36 and Watanabe/Strogatz1,37.
In Sec. IV we carry out a stability and bifurcation anal-
ysis for the dynamics resulting from the “correlated
model”, where the natural oscillator frequency and cou-
pling strength are correlated with each other, using nu-
merical simulation and the dimensionally reduced equa-
tions. In Sec. V we carry out a similar analysis for the
“uncorrelated model”, where natural oscillator frequen-
cies and coupling strengths are randomly chosen, using
numerical simulation, a self-consistency argument and
the dimensionally reduced equations. Finally, Sec. VI
provides a summary and discussion of our results.

II. MODEL

We consider a minimal model of coupled oscillators in
which oscillators may assume either of two values for their
natural frequencies and their coupling strengths — hence
we refer to it as the “Two-Frequency and Two-Coupling
(TFTC) ” model. The dynamics of the j = 1, . . . , N ,
N ∈ N, oscillators is described in terms of their phases,
φj ∈ R/2πZ ' [0, 2π), representing points on the unit
circle S1, and evolve according to a variant of the Ku-
ramoto model,

dφj
dt

= ωj +
1

N

N∑
k=1

ξk sin(φk − φj), j = 1, . . . , N, (1)

where the natural frequencies ωj are drawn from a bi-
modal distribution function,

g(ω) = pδ(ω + qγ) + qδ(ω − pγ), (2)

where δ denotes the Kronecker-delta distribution. Thus,
oscillators have either a negative frequency, ω = −qγ,
with probability p, or a positive frequency, ω = pγ, with
probability q := 1−p. The parameter γ = |pγ−(−qγ)| >
0 defines the spacing between the two peaks and, since
〈ω〉 =

∫
ωg(ω)dω = p(−qγ) + qpγ = 0, the distribution

has always zero mean. The coupling strength, ξk, de-
fines the interaction strength between oscillator, k, and
all other oscillators, j = 1, . . . , N , and is assumed to be



3

either positive or negative. The coupling strengths are
drawn from the bimodal distribution function,

Γ(ξ) = pδ(ξ − 1) + qδ(ξ + 1). (3)

We may either rescale the coupling strength, ξk, or fre-
quencies (time), ωk. Here, we chose to keep the distance
between peaks of the coupling strength fixed, while the
distance between peaks of the frequencies remains tun-
able via γ. To simplify the problem, we assume that the
parameter p is identical in the two distributions given by
(2) and (3). Thus, oscillators either have positive cou-
pling strength (ξ = 1) with probability p, or negative cou-
pling strength (ξ = −1) with probability q = 1−p.
By choosing the coupling strength and natural frequency
according to (2) and (3), we introduce a certain type
of disorder in the system. We consider two model vari-
ants:
a. Correlated model. We consider the case where the
two types of disorders, namely, in natural frequencies and
in coupling strengths, are correlated with one another.
One may envision various ways to introduce correlation
between the two disorders; however, we consider a very
simple way of correlating the two distributions of cou-
pling strengths, ξj , and frequencies, ωj . Specifically, we
observe that coupling strengths with either ξ = +1 or
ξ = −1 split the population into two subpopulations, S1

and S2, containing a number of elements corresponding
to integer values near pN and qN , respectively. This
can be achieved by defining the subpopulations as fol-
lows: S1 := {1, . . . , ι(p)} and S2 := {ι(p) + 1, . . . , N}
with ι(p) := dp(N − 1)e for 0 < p < 1; S1 := {} and
S2 := {1, . . . , N} for p = 0; and S1 := {1, . . . , N} and
S2 := {} for p = 1. Correlation between frequencies and
coupling strengths is then invoked by the following rule:

ωj =

{
−qγξj , for j ∈ S1,
−pγξj , for j ∈ S2.

(4)

This choice for the correlated disorder divides oscilla-
tors into two sub-populations, σ = 1, 2, with proper-
ties:

(ξ(1), ω(1)) = (+1,−qγ),

(ξ(2), ω(2)) = (−1,+pγ).
(5)

b. Uncorrelated model. The natural frequencies ω,
drawn from the distribution g(ω), and the coupling
strengths ξ, drawn from the distribution Γ(ξ), are in-
dependent from one another. Thus, the uncorrelated
model divides oscillators into four sub-populations, σ =
1, 2, 3, 4, reflecting the two properties assigned to the os-
cillators:

(ξ(1), ω(1)) = (+1,−qγ),

(ξ(2), ω(2)) = (−1,+pγ),

(ξ(3), ω(3)) = (+1,+pγ),

(ξ(4), ω(4)) = (−1,−qγ).

(6)

The grouping of properties resulting from these two mod-
els imprints a subpopulation structure that allows us to
rewrite Eq. (1) as follows:

φ̇
(σ)
j = ω(σ) +

1

N

|M |∑
τ=1

ξ(τ)
∑
k∈Sτ

sin(φ
(τ)
k − φ

(σ)
j ), (7)

where φ
(σ)
j is the phase of oscillator j = 1, . . . , |Sσ|

belonging to subpopulation Sσ, and M = 2 or M =
4 for the correlated and uncorrelated model, respec-
tively.
c. Characterization of collective dynamics. The collec-
tive dynamic behavior observed for the governing equa-
tions (1) and both models may be characterized by the
complex order parameter,

Z = ReiΨ =
1

N

N∑
k=1

eiφk , (8)

or the weighted complex order parameter,

W = Sei∆ =
1

N

N∑
k=1

ξke
iφk . (9)

Both order parameters measure the synchronization level
in the oscillator population: for incoherent oscillations,
phases spread uniformly on the circle such that R = S =
0; synchronized phase-locked motion can be character-
ized by R = 1.
Note that the value of the weighted order parameter,
S = |W |, can be smaller than 1 even if phase-locked
motion occurs with R = 1. Accordingly, a perfectly syn-
chronized/coherent state is characterized by R = 1 and
0 < S < 1. By contrast, a state of “partial synchro-
nization” implies that some of the oscillators exhibit syn-
chronized phase-locked motion while others are adrift,
and thus the state is characterized by R < 1; or an all-
frequency locked state with distributed phases. The state
with R = 0, but S > 0 is not possible in the current sys-
tem, as we show further below using the numerical simu-
lations, see also (9) and (8), and the comments following
thereafter.

III. DIMENSIONAL REDUCTION

We restrict our analysis to the case of large systems in the
continuum limit, N →∞. The continuum limit prompts
a statistical description in terms of a density function de-
scribing the phases of oscillators, ρ = ρ(φ, ω, ξ, t), which
evolves according to the continuity equation

∂

∂t
f +

∂

∂φ
(ρv) = 0, (10)

where the velocity is given by

v = ω + Im
(
W (t)e−iφ

)
, (11)
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where the weighted order parameter,

W (t) =

∫ ∞
−∞

∫ ∞
−∞

∫ π

−π
ξ′Γ(ξ′)g(ω′)ρ(ξ′, ω′, φ′, t)eiφ

′
dφ′dξ′dω′,

(12)

acts as a mean-field forcing on each oscillator.
The Ott-Antonsen method2 formulates a solution for the
phase density via Fourier series ansatz,

f =
1

2π
g(ω)Γ(ξ)(1 + f+ + f̄+) (13)

with

f+ =

∞∑
k=1

a(ξ, ω, t)keikφ (14)

where we assume that f+ has an analytic continuation
into the lower complex plane. We may recognize this
ansatz for the phase density as the Poisson kernel, param-
eterized by a = reiφ. Geometrically, the Ott-Antonsen
manifold defines a two dimensional submanifold in the
infinite-dimensional space of density functions. Substi-
tution of this ansatz into (10) results in a infinite set of
identical ordinary differential equations, the amplitude
equations for each mode eikφ:

ȧ = −iωa+
1

2
(W̄ −Wa2). (15)

When these amplitude equations are satisfied, the phase
density ρ is restricted to the invariant Poisson mani-
fold2.
The integro-o.d.e. system defined by (15) and (12) can
be further simplified. Substituting the Ott-Antonsen
ansatz and carrying out the integral over the phases, we
have

W (t) =

∫ ∞
−∞

∫ ∞
−∞

ξ ā(ξ, ω, t)Γ(ξ)g(ω) dω dξ, (16)

and cleverly choosing the distribution functions g and Γ
allow to take the contour integral in W over the lower
complex plane and express W in terms of expressions in
a2. For the current models, evaluating the integral in W
is particularly simple due to nature of choices for g and Γ.
Here, the particular choices for g(ω) and Γ(ξ) give rise to
the subpopulation structure explained for the correlated
model in (5) and for the uncorrelated model in (6) which
also organizes the macroscopic dynamics in terms of local
order parameters, zσ, as we show next. The correlated
model implies that g(ω)Γ(ξ) = p δ(ω + qγ) δ(ξ − 1) +
q δ(ω − qγ) δ(ξ + 1) and we therefore have

W (t) = pz1 − qz2, (17)

where we defined

z1(t) := ā(ξ = +1, ω = −qγ, t),
z2(t) := ā(ξ = −1, ω = +pγ, t). (18)

Using g(ω) as defined in Eq. (2) for the uncorrelated
model, we obtain

W (t) = p

∫ ∞
−∞

ξā(ξ,−qγ, t)Γ(ξ) dξ

+ q

∫ ∞
−∞

ξā(ξ, pγ, t)Γ(ξ) dξ

= p2z1 − pqz4 + pqz3 − q2z2. (19)

where we defined

z1(t) := ā(ξ = +1, ω = −qγ, t),
z2(t) := ā(ξ = −1, ω = +pγ, t),

z3(t) := ā(ξ = +1, ω = +pγ, t),

z4(t) := ā(ξ = −1, ω = −qγ, t). (20)

Thus, the dynamics of zσ are given in closed form
by

żσ = iω(σ)zσ +
1

2

(
W − W̄z2

σ

)
, (21)

for each subpopulation σ = 1, 2 (correlated model) or
σ = 1, 2, 3, 4 (uncorrelated model).
Later, we shall use the complex order parameter which
in the N →∞ limit is defined as

Z(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ π

−π
Γ(ξ′)g(ω′)ρ(ξ′, ω′, φ′, t)eiφ

′
dφ′dξ′dω′.

(22)

For the correlated model, we find

Z(t) = pz1 + qz2, (23)

and for the uncorrelated model,

Z(t) = p2z1 + pqz2 + pqz3 + q2z2. (24)

We note that (19) and (21) may also be obtained from
considering the dynamics of oscillator (sub-)populations
with identical natural frequencies. Watanabe and Stro-
gatz37 showed that the phase space of an oscillator pop-
ulation is foliated by 3-dimensional leafs determined by
Nσ−3 constants of motion θσj ∈ R/2πZ, j = 1, . . . , Nσ−
3. Dynamics for each subpopulation σ in (7) are con-
strained to submanifolds of dimension at most three, gov-
erned by1,38,

ρ̇σ =
1− ρ2

σ

2
Re
(
We−iΦσ

)
, (25a)

Φ̇σ = ωσ +
1 + ρ2

σ

2ρσ
Im
(
We−iΦσ

)
, (25b)

Θ̇σ =
1− ρ2

σ

2ρσ
Im
(
We−iΦσ

)
, (25c)

where Re(·) and Im(·) represent the real and imaginary
parts of a complex number, respectively. Suppose now
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that the level of synchronization inside each subpopula-
tion σ is characterized by the magnitude 0 ≤ rσ ≤ 1 of
the local complex order parameter given by

zσ := rσe
iϕσ =

1

Nσ

∑
k∈Sσ

eiφk . (26)

Assuming that the constants of motion are uniformly dis-
tributed, θσj = 2πj/Nσ, j = 1, . . . , Nσ − 3, and that
the number of oscillators tends to infinity, Nσ → ∞,
one can show that the equalities rσ = ρσ and ϕσ = Φσ
hold39 and the dynamics of ρσ = rσ and Φσ = ϕσ de-
couple from the dynamics of Θσ. Using these relations
in Eq. (25a), recalling that zσ = rσe

iϕσ and using that
N1/N → p and N2/N → q, we obtain from Eqs. (25a)-
(25b) equations identical to (21) describing the dynam-
ics on the Poisson (or Ott-Antonsen) manifold40. For a
review on dimensional reduction methods developed by
Ott/Antonsen and Watanabe/Strogatz and their details,
see26 and references therein.

IV. ANALYSIS FOR CORRELATED DISORDER

A. Numerical Simulations

We obtained first insights into the possible dynamic be-
havior for the model with correlated disorder via numer-
ical simulations of Eqs. (1), using a fourth-order Runge-
Kutta (RK4) integration scheme with a time step of
∆t = 0.01, over a simulation time of Mt = 2 × 105.
For any given value of p, initial phases {φi(0)} were ran-
domly drawn from a uniform distribution on the interval
[0, 2π). Snapshots of asymptotic states of phases at time
t = Mt are shown in Fig. 1 for several values of p. For
all reported values, the oscillator population splits into
two subpopulations, where the first, S1 (red), is formed
by oscillators with ξ(1) = +1 and ω(1) = −qγ, and the
second, S2 (blue), is formed by oscillators with ξ(2) = −1
and ω(2) = +pγ.
We found that the system may exhibit at least two
states:

i) The Lock-Drift state (LD) where oscillators split
into two subpopulations, one phase-locked with
r1 = 1 (S1) and the other (S2) drifting with r2 < 1,
as shown in panels (a)-(c). The subpopulations
are frequency-locked so that their phase difference
δ := φ2 − φ1 remains constant, as shown in the
analysis further below.

ii) The Lock-Lock (LL) state where all oscillators split
into two phase-locked subpopulations with r1 =
r2 = 1 rotating at a constant frequency with fixed
phase distance, δ > 0, as shown in panel (d).

Note that the Drift-Lock state, that is, the symmetric
counterpart of the LD state where the role between the
two subpopulations is reversed, is not observed. We can

FIG. 1. (Color Online) Snapshot of the phases φi are shown
in the plane of (cosφi, sinφi) for N = 1000 oscillators in the
correlated model. Lock-Drift (LD) states are observed for
p = 0.3 (a), p = 0.4 (b), p = 0.54 (c); the Lock-Lock (LL) state
is observed for p = 0.55(> pc) in panel (d), where pc is the
critical point where the LL state loses stability and connects
to the LD state (see Sec. IV C). Red/blue circles represent
phases of the oscillators belonging to S1 / S2, and red/blue
arrows show order parameters z1 and z2, respectively.

understand this as follows. Oscillators in subpopulation
S1 with positive coupling strength ξ(1) = +1 tend to
minimize their phase differences, thus leading to “phase-
locking behavior”. Vice versa, oscillators in subpopula-
tion S2 with negative coupling strength ξ(2) = −1 tend
to maximize their phase difference, thus leading to “drift-
ing” behavior. Therefore, we observe the LD state where
subpopulation S1 and S2 assume locked and drifting dy-
namic behavior, respectively; conversely, the DL state,
where the roles of the two subpopulations is reversed,
does not emerge, as discussed in Sec. IV C 4.

Furthermore, to gain insight into the ranges of existence
of these state, we obtained the phase diagram shown in
Fig. 2, where we measured the time asymptotic behav-
ior of several macroscopic variables while varying p for
γ = 0.05 fixed, averaged over the time interval [Mt/2,Mt]
to remove transient behavior. These macroscopic vari-
ables are the complex order parameter R = |Z| given
by (8) and the weighted order parameter S = |W | given
by (9). Inspecting the phase diagram there appears to
be a transition between LD and LL states at a a crit-
ical p = pc. An incoherent state with R = S = 0 is
not observed. In the following, we attempt to explain
these observations by analyzing the dynamics described
by (27a)-(27c).
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FIG. 2. (Color Online) Order parameters R (red solid line)
and S (blue dashed line) are shown as a function of p while
γ = 0.05 is kept fixed, where R and S are given by Eq. (42)
and (44), with r1, r2, and δ shown in Eqs. (30) and (34a). The
label LD represents the Lock-Drift state shown for p < pc, and
the label LL is the Lock-Lock state for p > pc, respectively.
The critical value pc is given by Eq. (39). The dark green
dotted line displays the behavior of the wave speed Ω (with
arbitrary scale) from Eq. (45).

B. Reduced dynamical equations

We explain the observed behavior by studying the re-
duced equations (21) describing the dynamics of the lo-
cal order parameters (20) valid for the continuum limit
with the M = 2 populations present in the correlated
model. Observing the phase shift invariance of the sys-
tem, we can further reduce one dimension by introducing
the phase difference δ ≡ ϕ2−ϕ1, resulting in the system
of differential equations given by

ṙ1 =
1− r2

1

2

(
pr1 − qr2 cos δ

)
, (27a)

ṙ2 =
1− r2

2

2

(
pr1 cos δ − qr2

)
, (27b)

δ̇ = γ −

(
1 + r2

2

2r2
pr1 −

1 + r2
1

2r1
qr2

)
sin δ. (27c)

C. Equilibrium states

1. Incoherent (INC) state

The incoherent state (INC) is defined by R = S = 0.
Recalling Eq. (17) and (23), we immediately recognize
that these conditions result from letting r1 = r2 = 0 or
z1 = z2 = 0. Eqs. (27a)-(27c) are given in polar coordi-
nates and are hence singular in this point; we therefore
instead inspect Eqs. (21) for M = 2 in complex coordi-
nates and note that this incoherent state exists for any

parameter choice. The associated Jacobian

JINC =

 p/2 γq −q/2 0
−qγ p/2 0 −q/2
p/2 0 −q/2 −γp
0 p/2 γp −q/2

 (28)

has two pairs of complex conjugated eigenvalues,

λ1,2 =
1

4

(
− 1 + 2p+ 2iγ|1− 2p|

±
√

(1− 2p)2 − 4γ2 + sgn(1− 2p)4iγ
)
, (29a)

λ3,4 =
1

4

(
− 1 + 2p− 2iγ|1− 2p|

±
√

(1− 2p)2 − 4γ2 − sgn(1− 2p)4iγ
)
. (29b)

Inspecting these eigenvalues numerically reveals that INC
is unstable for almost all parameter choices: the eigen-
values are complex-valued with Re(λk) > 0 for 0 < p ≤ 1
and γ > 0; exceptional cases occur for two cases, namely,
for p = 0, where INC is stable; or for p < 1

2 and γ = 0,
where INC is neutrally stable.

2. Lock-Lock (LL) state

Next we examine the Lock-Lock (LL) state where oscilla-
tors in both subpopulations S1 and S2 are phase locked,
i.e., r∗1 = r∗2 = 1. These conditions immediately satisfy
the fixed point conditions for (27a) and (27b) by defini-
tion; Eq. (27c) yields the fixed point condition

sin δ∗ =
γ

p− q
=

γ

2p− 1
, (30)

with the explicit solutions

δ∗+,− =


arcsin

(
γ

2p− 1

)
+ 2πk

π − arcsin

(
γ

2p− 1

)
+ 2πk

, (31)

where k ∈ Z and subscripts ‘+’ and ‘-’ label the two solu-
tion branches for (27c). These two solution branches are
born in saddle-node bifurcations (SN1 and SN2) located
at p1 := |γ−1|/2 and p2 := |γ+1|/2, respectively. Thus,
the existence of these branches is limited to 0 ≤ p < p1

and p2 < p ≤ 1 (see Fig. 3), and consequentially to γ ≤ 1
since p2 ≤ 1.
The Jacobian of (27a)-(27c) for the LL state can be ex-
pressed as

JLL =

 −p+ (1− p) cos δ∗ 0 0
0 1− p− p cos δ∗ 0

−p sin δ∗ (1− p) sin δ∗ (1− 2p) cos δ∗


(32)

where δ∗ is given by (31). The Jacobian is tri-diagonal
and we readily obtain the eigenvalues for LL by substi-
tuting the two solution branches for δ∗ and eliminating
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p
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π
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π
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π

δ
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Lock-LockLock-Lock

Lock-Drift
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p1 p2 pc 1
p

1

r2
*

FIG. 3. Bifurcation diagram for Lock-Drift and Lock-Lock
states in the correlated model for γ = 0.05, with stable (solid)
and unstable (dashed) branches. Saddle node bifurcations
(SN1 and SN2) occur at p1 and p2, and a transcritical bifur-
cation at p = pc (see text).

q,

λ+,−
1 = ±(2p− 1)

√
1− γ2

(1− 2p)2
, (33a)

λ+,−
2 = 1± p

(√
1− γ2

(1− 2p)2
− 1

)
, (33b)

λ+,−
3 = −p± (p− 1)

√
1− γ2

(1− 2p)2
. (33c)

Plotting real and imaginary of these eigenvalues reveals
that only the second branch is linearly stable for pc <
p ≤ 1, where pc denotes the critical point pc where LL
state loses stability and connects to the LD state.

3. Lock-Drift (LD) state

We examine the Lock-Drift (LD) state, where oscillators
in the first subpopulation (S1) with ω(1) = −qγ and
ξ(1) = +1 show perfect synchronization, r1 = 1, while os-
cillators in the second subpopulation (S2) with ω(2) = pγ
and ξ(2) = −1 are drifting incoherently with r2 < 1.

Thus, the LD state may appear like the symmetry break-
ing “chimera state” known from previous studies18,22 in
the sense that one subpopulation of the oscillators dis-
plays perfect synchronization, but the other does not;
however, the LD state occurring in Eqs. (1) has a differ-
ent origin, since it arises due to the correlation of the two
disorders, ωi and ξi; moreover, unlike the chimera state,
the LD state does not have a symmetric counterpart cor-
responding to a DL state (see Sec. IV C 4).
Fixed point conditions for Eqs. (27a)-(27c) are satisfied
for the LD state with r1 = 1 if in addition we demand
stationary δ = δ∗ and r∗2 6= 1, i.e.,

r∗2 =
p

q
cos δ∗, (34a)

γ = sin δ∗
(

1 + r2
2

2r2
p− qr∗2

)
. (34b)

While it is possible to eliminate r2 such as to obtain an
equation containing δ as the only variable, we instead
eliminate δ∗ by using 1 = cos2 δ∗ + sin2 δ∗ and solving
the two conditions above for

cos δ∗ =
q

p
r∗2 , (35a)

sin δ∗ = γ
2r∗2

(1 + (r∗2)2)p− 2q(r∗2)2
, (35b)

resulting in

1 = T

(
(p− 1)2

p2
+

4γ2

((3p− 2)T + p)2

)
(36)

where T := (r∗2)2 ≥ 0. This cubic polynomial can be

solved for r∗2 = +
√
T using computer assisted algebra,

resulting in one real and two complex conjugated roots
— too unwieldy to display here. Finally, we obtain from
(34a) the fixed point solution shown in Fig. 3,

δ∗ = arccos

(
q

p
r∗2

)
, (37)

where only the positive branch in Eq. (34a) is a valid
solution since p, q, r2 ≥ 0 must be non-negative. The LD
state exists for 0 ≤ p < pc, where p = pc defines the
transition from LD to LL state computed in Sec. IV C 5
further below. Numerically plotting the eigenvalues of
this branch reveals that they are real and negative for
all 0 ≤ γ ≤ 1 with 0 ≤ p < pc. While fixed points
do exist for p > pc, they are not physically meaningful
since they have r2 > 1 (we therefore do not show this
branch in Fig. 3). However, their eigenvalues have posi-
tive real parts, thus prompting a transcritical bifurcation,
denoted TC, at p = pc. Furthermore, we observe that r2

is monotonically increasing for p < pc, but monotonically
decreasing for p > pc; as a consequence, the peak value
of the relative phase between the two subpopulations is
reached at p = pc where r2 = 1 so that δ = arccos (q/p).
These results are summarized in Fig. 4.
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4. Absence of Drift-Lock state

The “Drift-Lock (D-L)” state with r1 = 0 and r2 > 0
does not emerge in the system. This is easily seen as fol-
lows. The oscillators in the first subpopulation S1 with
positive coupling strength ξ(1) = +1 tend to minimize
their phase difference, thus resulting in phase-locking be-
havior. On the other hand, oscillators in the second sub-
population S2 with negative coupling strength ξ(2) = −1
tend to maximize the phase differences, thus displaying
drifting behavior.

5. Stability diagram

We establish a stability diagram for the three states dis-
cussed above: incoherence (INC), lock-lock (LL), lock-
drift (LD). We have already shown that INC can only be
(neutrally) stable for p = 0 (or γ = 0 with p < 1/2);
we are left to determining the transition point between
lock-lock and lock-drift states, i.e., the critical value pc
at which the transition between stable LD and LL states
occurs. To do this, we consider the fixed point condition
for the LL state, Eq. (30), to be considered in the limit
from above where p → p+

c and δ∗ → δc ; and the fixed
point condition for the lock-drift state, Eq. (35a), in the
limit from below where p → p−c and r∗2 → 1−. At this
point, we have

cos δc =
qc
pc

and sin δc =
γc

2pc − 1
,

for the LL and LD states, respectively; both fixed point
conditions satisfy 1 = cos (δc)

2
+sin (δc)

2
simultaneously,

so that

1 =

(
1− pc
pc

)2

+

(
γ

2pc − 1

)2

, (38)

which is equivalent to

8pc
3 − (12 + γ2

c )pc
2 + 6pc − 1 = 0, (39)

provided that pc 6= 0, pc 6= 1
2 . Since γ > 0, we may infer

the relationship

γc =
(2pc − 1)3/2

pc
, (40)

which produces the stability diagram in Fig. 4.

We find that pc monotonically increases as γ = γc in-
creases, which is reasonable in the sense that a higher
value of p is required to make the oscillators synchro-
nized for a wider distribution with increasing value of γ.
Since values p > 1 are not meaningful so that γ = 1
constitutes an absolute limit for the existence of the LD
state.

Lock-Lock

Lock-Drift

TC

1
γ

1

2

1

p

FIG. 4. Stability diagram for the correlated model with infi-
nite oscillators. The stability boundary (pc, γc) between lock-
lock (LL) and lock-drift states (LD) given by (40) corresponds
to a transcritical bifurcation (see text and Fig. 3).

6. Global order parameters and traveling waves

We investigate the behavior of order parameters W and
Z for the two stable equilibria found, LD and LL. In
the limit of infinite oscillators, where N1/N → p and
N2/N → q, the complex order parameter (17) be-
comes

Z = ReiΨ = pz1 + qz2 = pr1e
iϕ1 + qr2e

iϕ2 , (41)

which has magnitude

R =
√
p2r2

1 + 2pqr1r2 cos δ + q2r2
2; (42)

similarly, the weighted order parameter (19) is

W = Sei∆ = pz1 − qz2 = pr1e
iϕ1 − qr2e

iϕ2 , (43)

with magnitude

S =
√
p2r2

1 − 2pqr1r2 cos δ + q2r2
2. (44)

Furthermore, we may determine the mean-field frequency
or “wave speed” of the collective state (see App. B for a
derivation),

Ω :=

∣∣∣∣ d

dt
∆

∣∣∣∣ =
d

dt
arg (W ) =

1

S

√
|Ẇ |2 − Ṡ2, (45)

where

|Ẇ |2 = p2(ṙ1
2 + r2

1ϕ̇
2
1) + q2(ṙ2

2 + r2
2ϕ̇

2
2)

+ 2pq[(ṙ1r2ϕ̇2 − r1ṙ2ϕ̇1) sin δ − (ṙ1ṙ2 + r1r2ϕ̇1ϕ̇2) cos δ]

(46)

and

Ṡ =
1

S

(
p2r1ṙ1 + q2r2ṙ2

− pq
(

(ṙ1r2 + r1ṙ2) cos δ − r1r2δ̇ sin δ
))

,

(47)
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with δ = ϕ2−ϕ1. Evaluating R, S and Ω at the equilibria
corresponding to LD and LL states, we are able to plot
the behavior of R and S as a function of p for γ = 0.05
as shown in Fig. 2.
It should be clear that the nature of the LD state occur-
ring for p < pc implies that R < 1; however, note that
the LL state occurring for p > pc does not necessarily
imply perfect synchronization for the complete system in
the sense that R = 1, since the locked oscillators of the
two subpopulations may assume non-identical mean-field
phases, (δ = ϕ2 − ϕ1 6= 0), which results in R < 1. In-
specting Fig. 3 we recognize that R = 1 is only achieved
for p = 1 where δ = 0. Indeed, evaluating the order pa-
rameter for the LL state, the asymptotic behavior for p

close to 1 is R ∼ 1−
(

1−
√

1− γ2
)

(1−p)+O
(
(1− p)2

)
.

Note that R = |Z| = 0 is only possible if |z1| = |z2| = 0
as long as p > 0, q > 0; however, we found that such an
INC is (almost always) unstable. As a consequence, we
can also rule out the case where S = |W | = 0 or S > 0
with R = 0. Furthermore we note that the nonzero wave
speed, Ω 6= 0, seen in Fig. 2 implies the presence of the
traveling wave studied in Ref.25: thus, we confirm that
the asymmetry in the correlated disorder induces the mo-
tion of a traveling wave, rather than being induced by
other type of heterogeneity. While the wave speed could
be set to zero by an appropriate choice of reference frame,
we note that the wave speed Ω differs from the system’s
mean natural frequency.

V. ANALYSIS FOR UNCORRELATED
DISORDER

A. Numerical simulations

For the uncorrelated model, we first performed numerical
simulations of Eq. (1) using a fourth-order Runge-Kutta
(RK4) integration scheme with identical parameters as
listed in Sec. IV A for the correlated model. Snapshots
of asymptotic states are shown in Fig. 5 for several val-
ues of p. We first observed that, for all reported values,
oscillators residing in the subpopulations S1 and S4, and
in the subpopulations S2 and S3, respectively, are phase-
locked. We found that the system may exhibit at least
three states:

i) The Incoherent state (INC) where all subpopula-
tions are desynchronized, i.e, r1 ≈ r2 ≈ r3 ≈ r4 ≈
041, see panels a), b) and c).

ii) The Breathing Lock-Lock-Lock-Lock state (Breath-
ing LLLL) where oscillators in each subpopulations
are phase-locked, r1 = r2 = r3 = r4 = 1, but where
the two mutually phase-locked subpopulation pairs
(S1, S4) and (S2, S3) drift apart, i.e., their phase
difference δ(t) := φ2(t)−φ1(t) increases with time.

iii) The Stable Lock-Lock-Lock-Lock state (Stable
LLLL) where oscillators in each subpopulations are

phase-locked, r1 = r2 = r3 = r4 = 1, and the
phase-locked subpopulation pairs (S1, S4) are fre-
quency locked, i.e. their phase difference remains
constant in time, δ̇ = 0, see panel d).

FIG. 5. (Color Online) Snapshot of the phases φi are shown
in the plane of (cosφi, sinφi) for N = 1000 oscillators for the
uncorrelated model with γ = 0.05. INC states are observed
for p = 0.4 (a), p = 0.45 (b), p = 0.49 (c); the LLLL state is
observed for p = 0.55(> pc) in panel (d), and pc=1/2 is the
critical point where the INC state loses stability. The sym-
bols ◦, ◦,×,+ represent phases of the oscillators belonging to
S1, S2, S3, S4, respectively, and red/blue/green/black arrows
show local order parameters z1, z2, z3, z4, respectively.

We also measured the asymptotic behavior for the or-
der parameters, R and S, averaged over the time win-
dow [Mt/2,Mt] to quantify the collective synchroniza-
tion level of the system, while varying the probability p.
Fig. 6 shows the resulting time asymptotic behavior of R
and S while varying p for γ = 0.05 fixed.

The incoherent (INC) state (R = S = 0) appears to ex-
ist only for 0 < p < pc, while the coherent LLLL states
exist for p > pc. However, note that the Ott/Antonsen
Eqs. (50a)-(50d) reveal neutral stability of the incoherent
state, as we discuss further below (Sec. V C 3). Moreover,
random initial conditions for the local order parameters
zσ(0) evolve to arbitrary asymptotic order parameter val-
ues with rσ(t) > 0. Thus, we expect that initial phases
deviating more strongly from R = S = 0 in (1) also
asymptotically evolve to values with R > 0, S > 0, in-
congruent with Incoherence.

The critical value for this transition, pc, may be deduced
from a simple argument: we expect that the coherent
state with R > 0 only exists for coupling strengths with
positive mean given by

〈ξ〉 = p · 1 + q · (−1) = 2p− 1 > 0. (48)
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Since we cannot expect that the coherent state emerges
for repulsive coupling, 〈ξ〉 < 0, we obtain the critical
value pc = 1/2. Note that in the present study we chose
ξj = 1 for j ∈ S1 and ξj = −1 for j ∈ S2 without
loss of generality. We may instead assign general asym-
metrically balanced values (ξ+ 6= ξ−), ξ = ξ+ > 0 with
probability p and ξ = ξ− < 0 with probability 1 − p.
Then we have

〈ξ〉 = p ξ+ + (1− p) ξ− = (p+ (p− 1)Q) ξ+ (49)

where we define Q := −ξ−/ξ+ > 0. Again, the coherent
state exists for 〈ξ〉 > 0 only, thus determining a criti-
cal value given by pc = Q/(1 + Q). Applying this to
the present case with ξj = ±1 results in Q = 1 which
yields our previous critical value of pc = 1/2, as expected.
This value agrees well with our numerical simulations, see
Fig. 6.
In the following we explain the observed behavior using
the dimensionally reduced equations derived in Sec. III
and a self-consistency argument.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p

INC

Breathing LLLL

LLLL

R
S

R(t)

t

R
max

=1

R
min

=2p-1

FIG. 6. (Color Online) Phase diagram for the uncorrelated
model obtained via numerical simulation of Eqs. (1). Equi-
librium values for the order parameters R (red circles) and S
(blue squares) are shown as a function of p for γ = 0.05 after
transient behavior has vanished (see text). The system size
is N = 105 and the data represent values averaged over 10
sample simulations with different initial conditions {φi(0)}.
The incoherent state INC with R = S = 0 is observed for
p < pc, while the coherent state LLLL with R > 0 and S > 0
emerges for p > pc, where pc = 1/2. Theoretical predictions
for R (magenta) given by Eq. (A9) and for S (cyan) given by
Eqs. (59) and (A10), valid for p > pc, match the results ob-
tained from numerical simulations very well. The inset shows
the periodic behavior of R(t) in time for p = 0.52 (Breathing
LLLL).

B. Reduced dynamical equations

We explain the observed behavior by studying Eqs. (21)
describing the dynamics for the local order parameters
in (20) valid for the continuum limit with the M = 4

populations present in the uncorrelated model, given by

ż1 = +iqγz1 +
1

2

(
W − W̄z2

1

)
, (50a)

ż2 = −ipγz2 +
1

2

(
W − W̄z2

2

)
, (50b)

ż3 = −ipγz3 +
1

2

(
W − W̄z2

3

)
, (50c)

ż4 = +iqγz4 +
1

2

(
W − W̄z2

4

)
, (50d)

where the weighted order parameter is given
by (19),

W = p2z1 − pqz4 + pqz3 − q2z2.

We note that Eqs. (50a) and (50d) for subpopulations S1

and S4, and Eqs. (50b) and (50c) for subpopulations S2

and S3, have identical structure. Furthermore, numerical
simulations (Sec. V A) revealed asymptotic behavior for
the LLLL states, i.e., |z1(t) − z4(t)| → 0 and |z2(t) −
z3(t)| → 0 as t → ∞. This observation suggests the
existence of a stable symmetric invariant subspace SS
defined by z1(t) = z4(t) and z2(t) = z3(t) for all t. We
therefore first examined the dynamics confined to that
subspace. Eqs. (50a) and (50b) govern this dynamics.
Introducing polar coordinates zσ = rσe

iϕσ and defining
δ := ϕ2 − ϕ1, we have

ṙ1 =
1− r2

1

2
(p− q)(pr1 + qr2 cos δ), (51a)

ṙ2 =
1− r2

2

2
(p− q)(pr1 cos δ + qr2), (51b)

δ̇ = γ − 1

2
(p− q)

(
1 + r2

2

r2
pr1 +

1 + r2
1

r1
qr2

)
sin δ.

(51c)

C. Equilibrium states

1. Incoherent (INC) state

The incoherent state is defined by z1 = z2 = z3 = z4 = 0.
The Jacobian for Eqs. (50a) and (50b) describing the dy-
namics in z1 and z2 on the symmetric subspace SS, de-
fined by z1(t) = z4(t), z2(t) = z3(t), expressed in Carte-
sian coordinates is

JINC =

 p/2 γq −q/2 0
−γq p/2 0 −q/2
p/2 0 −q/2 −γp
0 p/2 γp −q/2

 (52)
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has two pairs of complex conjugated eigenvalues,

λ1,2 =
1

4

(
2p− 1 + 2iγ|1− 2p|

±
√

4iγ(2p− 1)|1− 2p| − 4γ2 + (1− 2p)2

)
(53a)

λ3,4 =
1

4

(
2p− 1− 2iγ|1− 2p|

±
√

4iγ(2p− 1)|1− 2p| − 4γ2 + (1− 2p)2

)
(53b)

Inspecting Re(λk) numerically for k = 1, 2, 3, 4 we im-
mediately see that INC is stable on the symmetric sub-
space SS only when p < pc = 1/2; otherwise, it is unsta-
ble.

2. Stable and breathing LLLL states

Locked states (LLLL) satisfy r1 = r2 = r3 = r4 = 1.
This also defines an invariant subspace (on the symmetric
subspace SS) since the LLLL state implies ṙ1 = ṙ2 = 0.
In the folowing, we consider the dynamics and stability
of LLLL states on SS as given by Eqs. (51a). Stationarity

of the LLLL state requires the additional condition δ̇ = 0,
which implies the stationary phase difference

sin δ∗ =
γ

2p− 1
. (54)

We denote an equilibrium with (r1, r2, δ) = (1, 1, δ∗) as a
Stable LLLL state. Eq. (54) informs us that stable LLLL
states are born in saddle-node bifurcations SN1 and SN2

at p1 = |γ − 1|/2 and p2 = |γ + 1|/2 and are constrained
to the intervals 0 ≤ p ≤ p1 and p2 ≤ p ≤ 1 (see Fig. 7).

To examine stability, consider the eigenvalues of the Ja-
cobian for LLLL,

λ1 = (1− 2p) cos δ∗, (55a)

λ2 = (1− 2p)(1 + p(1− cos δ∗)), (55b)

λ3 = (1− 2p)(p+ (1− p) cos δ∗). (55c)

We first note that all eigenvalues flip sign at p = pc = 1/2.
It therefore suffices to consider eigenvalues restricted to
the interval 1/2 ≤ p ≤ 1 where they share the common
factor (1−2p) < 0. For p ∈ [p2, 1], the lower branch δ∗ ∈
[0, π/2] has Re(λ1(δ∗)) < 0, whereas the upper branch
with δ∗ ∈ [π/2, π] has Re(λ1(δ∗)) > 0. Since 0 ≤ δ∗ ≤
π for p ∈ [p2, 1] we have 0 ≤ cos δ∗ ≤ 1 and λ2, λ3

are real-valued. Minimizing and maximizing these two
eigenvalues, we find that (1 − 2p)(1 + p) < λ2 < (1 −
2p) < 0 and (1 − 2p)p < λ3 < (1 − 2p). As already
mentioned, the signs of all eigenvalues are reversed for
p < 1/2. Therefore, the LLLL state (1, 1, δ∗) is stable for
p ∈ [p2, 1], as shown in Fig. 7.
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FIG. 7. Bifurcation diagram for uncorrelated disorder (γ =
0.05). Stable and unstable branches of INC and LLLL states
are indicated as solid and dashed curves, respectively (Stabil-
ity relates to the symmetric subspace SS given by Eqs. (51a)).
Breathing LLLL states corresponding to limit cycles on the
subspace r1 = r2 = 1 are anihilated in the saddle-node bifur-
cation SN2.

For p1 ≤ p ≤ p2, the phase difference δ(t) is unlocked
and evolves according to

δ̇ = γ + (2p− 1) sin δ, (56)

We denote the resulting limit cycle, confined to the in-
variant suspace r1 = r2 = 1, as the Breathing LLLL
state.
Furthermore, for p = 1/2 we have ṙ1 = ṙ2 ≡ 0 (with
δ = γ), thus implying the presence of a degeneracy where
0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1 may assume arbitrary values.
This is indicated as a the vertical dashed line in Fig. 7
(bottom).
Considering the numerical simulation results shown in
Fig. 6, the Breathing LLLL state exists inside a small
region 1/2 < p . 0.525 = p2. This parameter region
grows in size as γ is increased, which is shown as the gray
shaded region on the stability diagram in Fig. 8.

3. Transverse stability of symmetric subspace SS

We so far only discussed stability on the symmetric (in-
variant) subset SS with z1(t) = z4(t) and z2(t) = z3(t).
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It remains unclear whether or not the subset SS is sta-
ble with respect to perturbations in directions transverse
to itself, and in particular in the proximity of the LLLL
states. Unfortunately, deciding this question in general
turns out to be cumbersome since the associated varia-
tional equations do not appear decouple in suitable di-
rections. However, numerical solutions of the governing
equations (1) (see Figs. 5 and Figs. 6) and the four com-
plex Ott-Antonsen equations in z1, z2, z3, z4 (see (50a)-
(50d) or Appendix A) have confirmed stability for both
Stable and Breathing LLLL states in transverse direction
of SS, for all parameters we tested.
For INC the Ott-Antonsen equations (50a)-(50d) yield
four zero eigenvalues, and four eigenvalues that are either
negative for p < 1/2 and positive for p > 1/2; further-
more, for p < 1/2, direct integration of Eqs. (50a)-(50d)
reveals a degeneracy with respect to random initial con-
ditions, as it is seen that r1, r2, r3, r4 converge to seem-
ingly arbitrary values on [0, 1] as t → ∞, rather than
just 0, while φ1(t)− φ4(t)→ 0 and φ2(t)− φ3(t)→ 0 as
t→∞.

4. Stability diagram

The preceding stability analysis for INC and LLLL states
is summarized in the stability diagram shown in Fig. 8.
The dotted line delineates the stability boundary where
INC and Breathing LLLL swap stability, see also Fig. 7.

Stable LLLL

Breathing LLLL

INC

SN2

1
γ

1

2

1

p

FIG. 8. Stability diagram for the uncorrelated model in the
continuum limit, N →∞.

5. Global order parameters

On the symmetric subspace SS, the global order param-
eters simplify to

R =
√
p2r2

1 + 2pqr1r2 cos δ + q2r2
2 (57)

S =
√

(p− q)2 (p2r2
1 + 2pqr1r2 cos δ + q2r2

2) (58)

which for INC (0 < p < 1/2) become R = S =
0; and for the stable LLLL state with p ∈ [p2, 1]

they become and R =
√
p2 + 2pq cos δ∗ + q2 and S =√

2p(p2 + 2pq cos δ∗ + q2), where δ∗ = arcsin γ/(2p− 1).
The breathing LLLL state is bounded with Rmin :=
2p − 1 ≤ R ≤ 1 =: Rmax and (2p − 1)2 < S < (2p − 1)
since then | cos δ(t)| ≤ 1. This aligns with the phase di-
agram provided in Fig. 6, with the exception of two mi-
nor differences: (i) numerical simulations in the Stable
INC regime show that R stays close to R ≈ 0. Possible
explanations for this behavior are manifold: finite size
effects, critical slowing down near the bifurcation point
pc = 1/2, and/or the aforementioned degeneracy of the
INC state; (ii) results in the Breathing LLLL regime show
values at the end of the simulation within the ranges
specified above.
It is possible to determine an explicit expression for
S = S(p) in the stable LLLL regime by deriving a self-
consistency equation in the weighted order parameter
(12) for the coherent (phase-locked) state based on Ku-
ramoto’s classical argument27,28, see App. C:

S =

√
8p4 − 16p3 + 14p2 + 2

√
A− 6p+ 1, (59)

where A := p2(2p2 − 3p+ 1)2(−γ2 + 4p2 − 4p+ 1). This
result is numerically confirmed using numerical simula-
tions, as shown in Fig. 6.

VI. DISCUSSION

a. Summary. We have studied the collective dynam-
ics in a network of coupled phase oscillators with disorder
in natural frequencies and coupling strengths, which were
correlated or uncorrelated. Specifically, we have assumed
that the coupling strength and the natural frequency
of each oscillator may assume only one of two values
(positive or negative), amounting to a “Two-Frequency-
Two-Coupling model”. The character and stability of
the nontrivial dynamic states in the models with cor-
related/uncorrelated disorder depend on the interplay of
the disorder asymmetry parameter, p, and the frequency
spacing, γ. To explore how the different types of disorder
influence the emergent phase coherence in the system, we
performed numerical simulations revealing several non-
trivial dynamic states. For the model with correlated
disorder, oscillators split into two subpopulations where
either one or both subpopulations are perfectly phase-
locked, amounting to Lock-Drift (LD) or Lock-Lock (LL)
states, respectively. Both states maintain a constant
phase difference, the size of which is controlled by the
disorder asymmetry p. LD is stable for p < pc and swaps
stability with LL when p > pc. This observation can
be rationalized by observing that a majority of oscilla-
tors experience attractive (ξ = 1) rather than repulsive
coupling strength (ξ = −1) for large p. Equilibria for
the global order parameters, i.e., the weighted W and
the unweighted Z, depend on p in a nontrivial way (see
Fig. 2). Furthermore, both states can be characterized
by a traveling wave motion, corresponding to a non-zero
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mean-field frequency Ω 6= 0. At first sight, the LD state
may resemble a chimera state, which also is characterized
by one locked and one drifting subpopulation; however,
the LD state is distinct since its symmetric counterpart,
the DL state, is unstable, thus reflecting that the asym-
metry inherent to the system itself rather than the system
dynamics gives rise to asymmetric states. For the model
with uncorrelated disorder, numerical simulations indi-
cated that oscillators split into four subpopulations all
of which are phase-locked (Lock-Lock-Lock-Lock / LLLL
state); however, the two subpopulations with identical
natural frequencies and opposing coupling strengths form
pairs. These pairs are either frequency-locked with con-
stant phase difference (Stable LLLL), or a drifting phase
difference (Breathing LLLL), see Fig. 6. For uncorre-
lated disorder, we also observed a state of Incoherence
(INC) where both global order parameters stay close to
R = S = 0.

Next, we carried out a detailed bifurcation analysis for
the local order parameters zσ(t) describing the collec-
tive dynamics and the synchronization level in subpop-
ulations formed by oscillators with identical attributes
(natural frequency / coupling strength). While uncor-
related disorder allows for the formation of M = 4 sub-
populations (S1, S2, S3, S4), correlated disorder naturally
implies the presence of only M = 2 subpopulations, S1

and S2, one with attractive coupling and negative fre-
quency, the other with repulsive coupling and positive
frequency. The order parameters zσ satisfy Eqs. (21)
which can be derived using the Ott-Antonsen method2,26

or the Watanabe-Strogatz method valid in the limit of
N →∞ oscillators with uniformly distributed constants
of motion.

For correlated disorder, the LD (p < pc(γ)) and the LL
(p > pc(γ)) states swap stability in a transcritical bifurca-
tion at the critical value p = pc(γ) which we determined
analytically (see Eq. (40)). We also found analytical ex-
pressions of the unweighted and weighted order parame-
ter R = |Z| and S = |W | at equilibrium, as well as for the
non-zero mean-field frequency, Ω 6= 0, thus prompting a
traveling wave motion (Fig. 2).

For uncorrelated disorder, the dynamics of locked states
are confined to the (invariant) symmetric subspace SS
implying that subpopulations S1 and S4, and S2 and S3

are mutually phase-locked (z1(t) = z4(t) and z2(t) =
z3(t)). While a proof for stability transverse to the
symmetric subspace SS remained elusive, both numer-
ical simulations of (1) and direct numerical integration
of (50a)-(50d) confirmed that SS is attractive for two
types of locked states. The Stable LLLL appears for
p > p2 and loses stability in a saddle-node bifurcation
at p = p2 on the invariant synchronized subspace defined
by r1 = r2 = 1; this gives rise to the Breathing LLLL state
which is stable for 1/2 < p < p2. The Breathing LLLL
state is characterized by a drifting phase-relationship be-
tween subpopulations S1 and S2, i.e., their phase dif-
ference δ(t) increases monotonically and results in a pe-
riodic motion in R(t) and S(t). The Breathing LLLL

state is remarkable in the sense that there is no exter-
nal periodic driving acting on the system; i.e., the peri-
odic synchronization emerges “spontaneously” when the
coupling strengths and the natural frequencies are un-
correlated. Unlike for the correlated model, we did not
find signs of traveling wave behavior with non-zero mean-
field frequency Ω; however, for the Breathing LLLL state,
two subpopulation pairs (S1, S4) and (S2, S3) drift apart
while their average frequency stays close to 0 — which
we may refer to as a “Standing Wave”, alike states ob-
served for oscillator populations with bimodal frequency
distributions14,16. Both LLLL states swap stability with
the INC state at p = 1/2.

The Incoherent (INC) state is always unstable in the cor-
related model, in contrast to the uncorrelated model,
where INC is neutrally stable for p < 1/2 on the sym-
metric subspace SS: Eqs. (21) exhibit for the INC state
four negative and four zero eigenvalues for the INC state.
Numerical integration of Eqs. (21) reveals degeneracy
in the magnitude of local order parameters, i.e., rσ(t)
may attain arbitrary stationary values between 0 and 1,
which do not match Incoherence (R = S = 0), while
|φ1 − φ4| → 0 and |φ2 − φ3| → 0 as t → ∞. Therefore,
we also expect that numerical simulations of Eqs. (1)
may reveal states for p < 1/2 that have nonvanishing
order parameters. However, introducing distributed fre-
quencies of width ∆ around each mode (ω = −qγ, pγ)
results in additional terms of the form −∆zσ in (21) for
σ = 1, 2, 3, 4. This removes the degeneracy and renders
INC into a (stable) hyperbolic equilibrium, and we can
say that INC is a robust state. Establishing a complete
bifurcation diagram for distributed frequencies is beyond
the scope of this study and remains subject for future
research.
b. Relationship with other studies. The present study
is closely related with previous work by Hong et al.25

where oscillators’ natural frequencies were drawn from
a distribution with finite nonzero variance (contrasting
the zero-width distribution considered here), in order to
explore the effects of symmetrically and asymmetrically
correlated disorder. It was found that asymmetrically
correlated disorder induces traveling wave motion, char-
acterized by non-zero mean-field frequency Ω 6= 0; here,
we found that correlated disorder still induces traveling
waves when natural frequencies are bimodally distributed
with zero variance, whereas uncorrelated disorder does
not promote traveling waves. Thus, together with the
simplifications implied by the present model, we may
conclude that the traveling wave motion results from het-
erogeneity in terms of asymmetry in natural frequencies
and coupling strengths, rather than it is a consequence
of distributions with nonzero variance.

The correlated model also relates to several other stud-
ies addressing the collective dynamics of two interacting
populations, either characterized by non-uniform inter-
actions, see Abrams et al.18 and Martens et al.21–23; the
dynamics of populations with bimodal frequency distri-
butions14–17; or the dynamics of two population mod-
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els combining both properties, see Montbŕıo et al.19,
Laing42 and Pietras43. Most of these studies assume pos-
itive coupling strengths (exceptions include variants of
the Kuramoto-Sakaguchi model with two populations22

where heterogeneous phase-lags may result in negative
coupling strength), whereas the correlated model has
W = pz1 − qz2. One may interpret the prefactors p and
−q in one of two ways: (i) in the generic way as the cor-
related model was posed, namely, natural frequencies are
bimodally distributed with asymmetric peaks, populated
by a fraction of oscillators p and q obeying attractive and
repulsive coupled, respectively; (ii) in the sense of (asym-
metric) coupling strengths, i.e., when writing Eqs.(21)
in matrix-vector notation with the (vector) mean-field
Wc =

( p −q
p −q

)
·
(
z1
z2

)
promotes attractive (or excitatory)

coupling with strength p among oscillators within the
first population and with the adjacent second population;
and repulsive (or inhibitory) coupling q among oscilla-
tors within the second population and the adjacent first
population. The mean-field for the uncorrelated model
may also be interpreted in terms of coupling strengths
in a similar fashion. Rewriting the mean-field in matrix-
vector notation, we have Wu = (2p−1)

( p q
p q

)
·
(
z1
z2

)
. Com-

paring Comparing Wu with Wc makes the different char-
acters of the uncorrelated and the correlated model espe-
cially evident, as well as it elucidates why p > 1

2 or p < 1
2

results in predominantly attractive or repulsive coupling,
promoting or hindering synchrony, respectively.

The models considered by Maistrenko et al.44 and Te-
ichmann and Rosenblum45 coincides with our model
Eqs. (1), but there are important differences. Our
study concerns the effects of correlated/uncorrelated dis-
order on the long-term collective behavior and on their
phase transitions towards synchrony for the thermody-
namic limit (N → ∞); these authors studied solitary
states in finite oscillator systems, where a single oscil-
lator ’escapes’ from the synchronized frequency cluster
as repulsive interactions increase, however they disap-
pear in the thermodynamic limit N → ∞. Both mod-
els44,45 are restricted to subpopulations with equal size,
N1 = N2 = N/2, corresponding to p = 1/2 in our model
for the thermodynamic limit; here, we studied the general
case with 0 ≤ p ≤ 1. Maistrenko et al. considered iden-
tical natural frequencies (γ = 0), while Teichmann and
Rosenblum45, considered the case with different natural
frequencies in the subpopulations with attractive and re-
pulsive (self-)interaction and found that the transition
from a two-cluster synchrony to partial synchrony occurs
via the formation of a solitary state for small frequency
mismatch.
c. Outlook. Our analytical results are constrained to
the dynamics on the Poisson manifold discovered by
Ott and Antonsen2,40; it would be interesting to investi-
gate the dynamics off this manifold, too. Furthermore,
it would be desirable to better understand how robust
the Incoherent state in the correlated model is with re-
gard to perturbations of the system. The simplicity
of the model suggests that real-world systems can be

found that display the dynamic states induced by cor-
related/uncorrelated disorder that we reported here. In
this context it could be fruitful to identify intuitive mech-
anisms for, e.g., the breathing of the LLLL state, gener-
ating periodic behavior of R(t). Candidates for experi-
mental systems might for instance be found in Josephson
junction arrays9, coupled Belousov-Zhabotinsky oscilla-
tors11,46–48, and electro-chemical oscillators10,49.
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Appendix A: Full Ott-Antonsen equations for uncorrelated
model

For completeness, we list the Ott-Antonsen equations for
the uncorrelated model in polar coordinates, describing
the complete dynamics on the Poisson manifold (i.e., on
and off the symmetric subspace SS). Rather than per-
forming a bifurcation analysis for this system, we numeri-
cally solved the four ordinary differential equations above
for the fixed point conditions (ṙ1 = ṙ2 = ṙ3 = ṙ4 = 0) for
p > pc(= 1/2). Introducing zσ ≡ rσe

−iθσ , σ = 1, 2, 3, 4,
we have

ṙ1 =
1

2

[
p2r1 − pqr4 cos δ41 + pqr3 cos δ31

− q2r2 cos δ21 − p2r3
1 + pqr4r

2
1 cos δ41

− pqr3r
2
1 cos δ31 + q2r2r

2
1 cos δ21

]
,

(A1)

θ̇1 = −qγ − 1

2r1

[
pqr4 sin δ41 − pqr3 sin δ31

+ q2r2 sin δ21 + pqr4r
2
1 sin δ41

− pqr3r
2
1 sin δ31 + q2r2r

2
1 sin δ21

]
,

(A2)
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where we defined the phase difference δkl(t) := θk(t) −
θl(t) with k and l = 1, 2, 3, 4. Similarly, we find

ṙ2 =
1

2

[
p2r1 cos δ21 − pqr4 cos δ42 + pqr3 cos δ32

− q2r2 − p2r1r
2
2 cos δ21 + pqr4r

2
2 cos δ42

− pqr3r
2
2 cos δ32 + q2r3

2

]
,

(A3)

θ̇2 = pγ − 1

2r2

[
p2r1 sin δ21 + pqr4 sin δ42

− pqr3 sin δ32 + p2r1r
2
2 sin δ21

+ pqr4r
2
2 sin δ42 − pqr3r

2
2 sin δ32

]
,

(A4)

ṙ3 =
1

2

[
p2r1 cos δ31 − pqr4 cos δ43 + pqr3

− q2r2 cos δ32 − p2r1r
2
3 cos δ31 + pqr4r

2
3 cos δ43

− pqr3
3 + q2r2r

2
3 cos δ32

]
,

(A5)

θ̇3 = pγ − 1

2r3

[
p2r1 sin δ31 + pqr4 sin δ43

− q2r2 sin δ32 + p2r1r
2
3 sin δ31

+ pqr4r
2
3 sin δ43 − q2r2r

2
3 sin δ32

]
,

(A6)

ṙ4 =
1

2

[
p2r1 cos δ41 − pqr4 + pqr3 cos δ43

− q2r2 cos δ42 − p2r1r
2
4 cos δ41 + pqr3

4

− pqr3r
2
4 cos δ43 + q2r2r

2
4 cos δ42

]
,

(A7)

θ̇4 = −qγ − 1

2r4

[
p2r1 sin δ41 + pqr3 sin δ43

− q2r2 sin δ42 + p2r1r
2
4 sin δ41

+ pqr3r
2
4 sin δ43 − q2r2r

2
4 sin δ42

]
.

(A8)

With Eq. (A1)-(A8), the order parameters R = |Z| and

S = |W | are then given by

R =
[
p4r2

1 + p2q2r2
4 + p2q2r2

3 + q4r2
2

+ 2p3qr1r4 cos δ41 + 2pq3r3r2 cos δ32

+ 2p3qr1r3 cos δ31 + 2p2q2r1r2 cos δ21

+ 2p2q2r4r3 cos δ43 + 2pq3r4r2 cos δ42

]1/2
,

(A9)

and

S =
[
p4r2

1 + p2q2r2
4 + p2q2r2

3 + q4r2
2

− 2p3qr1r4 cos δ41 − 2pq3r3r2 cos δ32

+ 2p3qr1r3 cos δ31 − 2p2q2r1r2 cos δ21

− 2p2q2r4r3 cos δ43 + 2pq3r4r2 cos δ42

]1/2
.

(A10)

Note that the R and S in Eq. (A9) and (A10) are valid
only for p > pc since the fixed points solutions are avail-
able only for p > pc. Eqs. (A9) and (A10) show a good
agreement with the numerical simulation data, as seen in
Fig. 6.

Appendix B: Wave Speed

We derive the wave speed stated in Eq. (45). We have
W (t) = S(t)ei∆(t) where W,S,∆ ∈ R, and

Ẇ = (Ṡ + iS∆̇)ei∆, (B1)

which implies ∆̇ = − i
S (Ẇe−i∆ − Ṡ). However, since

∆ ∈ R we require ∆̇ ∈ R, and we therefore define

Ω := |∆̇| = 1

S
|Ẇe−i∆ − Ṡ|. (B2)

Observing the identity,

˙̄Wei∆ + Ẇe−i∆ = 2Ṡ, (B3)

obtained by substituting (B1), and |z|2 = zz̄, z ∈ C, we
obtain:

|Ẇe−i∆ − Ṡ|2 = |Ẇ |2 − Ṡ( ˙̄Wei∆ + Ẇe−i∆) + Ṡ2 (B4)

=

√
|Ẇ |2 − Ṡ2. (B5)

The wave speed is therefore

|∆̇| = 1

S

√
|Ẇ |2 − Ṡ2. (B6)

Appendix C: Self-consistency argument for weighted order
parameter

The weighted order parameter in (12) allows us to re-cast
the continuous version of the governing equations (11)
into the following form,

φ̇ = ω − S sin(φ−∆). (C1)
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We expect that a phase-locked solution with φ̇ = 0 with
constant order parameter W may exist when the effective
coupling S is sufficiently large to overcome the spread of
the natural frequencies (i.e., when S > |ω|). Accordingly,
the locked phases are given by

φ = ∆ + sin−1(ω/S). (C2)

In the continuum limit of N → ∞, the weighted order
parameter (16) is expressed as follows:

W = Sei∆ = 〈ξ〉
∫
ei(∆+sin−1(ω/S))g(ω) dω,

= ei∆〈ξ〉

[∫ S

−S

√
1− (ω/S)2g(ω) dω

]
, (C3)

where the stationary probability distribution function
given by ρs(φ;ω, ξ) = δ(φ − (∆ + sin−1(ω/S))), and
〈ξ〉 =

∫
ξ Γ(ξ) dξ = 2p−1 is the mean value of the distri-

bution in ξ. Since oscillators assume either of two values
for both coupling strengths and frequencies, we assume
there is no contribution to the integral from drifting os-
cillators. Carrying out the integral, we find that S is
implicitly given by the self-consistency equation

S = (2p− 1)[p
√

1− (qγ/S)2 + q
√

1− (pγ/S)2]. (C4)

We note that S in Eq. (C4) must satisfy the conditions
S ≥ qγ and S ≥ pγ in order to be real-valued; in other
words, the interval of p is restricted for which the self-
consistency equation produces real values for S.
Substituting q = 1−p, Eq. (C4) we can find an exact so-
lution for S using algebraic manipulation software given
by

S =

√
8p4 − 16p3 + 14p2 + 2

√
A− 6p+ 1, (C5)

where A := p2(2p2−3p+1)2(−γ2 +4p2−4p+1). This re-
sult is numerically confirmed using numerical simulations
(Fig. 6).
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