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We study the avalanche statistics observed in a minimal random growth model. The growth is
governed by a reproduction rate obeying a probability distribution with finite mean ā and variance
va. These two control parameters determine if the avalanche size tends to a stationary distribution,
(Finite Scale statistics with finite mean and variance or Power-Law tailed statistics with exponent ∈
(1, 3]), or instead to a non-stationary regime with Log-Normal statistics. Numerical results and their
statistical analysis are presented for a uniformly distributed growth rate, which are corroborated
and generalized by mathematical results. The latter show that the numerically observed avalanche
regimes exist for a wide family of growth rate distributions and provide a precise definition of the
boundaries between the three regimes.

In complex systems with long-range spatio-temporal
correlations avalanche processes are commonly observed.
Well-known examples of avalanches include the spreading
of epidemics (or information) [1, 2], the price evolution of
stock options in finance [3], avalanches of neuron firings
in the brain [4–6], “crackling noise” exhibited by earth-
quakes [7, 8], structural phase transitions [9, 10] and mag-
netic systems [11, 12], or avalanches of fractures in porous
media [13] or living systems [14, 15]. A crucial quan-
tity to characterize avalanches is their size distribution,
which allows theoretical and experimental results to be
compared and can suggest mechanisms for the underlying
avalanche dynamics. Notably, heavy-tailed distributions
are often observed for avalanche size statistics and under-
standing them is important to determine the origin of the
specific process. From a practical viewpoint, it is often
difficult to distinguish the type of heavy-tailed distribu-
tions on finite intervals, especially for limited size sam-
ples or noisy data. Pareto (power-law) and log-normal
distributions are two of the most widely observed heavy-
tailed distributions [16, 17]. Many investigations have
described heavy-tailed data in terms of Pareto or power-
laws with exponential decays [18]. Careful statistical
analyses, however, indicated that statistical evidence in
support of a power-law distribution is often limited [19]
and a log-normal distributions can often be a good al-
ternative to describe heavy-tailed statistics [20]. These
difficulties are clearly exemplified by the ongoing contro-
versy between log-normal and power-law distributions in
neuroscience [21, 22] and complex networks [23]. The
discrimination between power-law and log-normal distri-
butions is even more challenging for data that can be
modelled as a log-normal distribution at moderate sizes
with a power-law tail [24].

Several paradigmatic models have been proposed to
explain the ubiquity of power-law avalanche size distribu-
tions. These include critical points in disordered systems
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[11, 25–28], self-organized criticality (SOC) [29], marginal
stability [30] and, in more abstract terms, growth mod-
els [31] or branching processes [32–35]. In fact, some of
these paradigms are related, or can even be mapped, to
each other (e.g. SOC and branching processes [36] or
branching processes and spin models [37]).

Log-normal distributions are often explained in terms
of stochastic multiplicative models of growth phenomena
based on the law of proportionate effect. Here, we fo-
cus on Gibrat’s process [38, 39], which can be viewed
as a discrete time version of the so-called multiplicative
noise [40]. Gibrat’s process assumes that the size zi of
an observable in generation i grows proportionally to its
size with a random reproduction (or growth) rate, ai:
zi+1 = aizi. Assuming that the growth rates {ai}∞i=1 are
independent random variables and the first two moments
of ln ai are finite for every i, the central limit theorem im-
plies that zi is log-normally distributed for large i [17],
or see [41] for a more precise approximation. Avalanches
are typically regarded as bursts of activity which in our
case would correspond to excursions of z that asymptoti-
cally return to the absorbing state with z = 0 after being
perturbed from this state. Since Gibrat’s variable z can
either approach zero or ∞ when iterated, we extend the
usual avalanche definition to encompass the case in which
z does not return to 0 but grows indefinitely, as in super-
critical branching processes [32]. The size of an avalanche
corresponds to the sum of zi over generations. Despite
the fact that the distribution of zi is reasonably well un-
derstood for Gibrat’s processes, little is known about the
avalanche size distribution. In general, a log-normal dis-
tribution for zi does not imply a log-normal distribution
for the avalanche size and Gibrat’s process cannot be re-
garded as an explanation of log-normal avalanche size
statistics.

Here, we push further the comparative analysis be-
tween power-law and log-normal distributions by study-
ing the avalanche size distribution of Gibrat’s processes.
By means of mathematical results and numerical sim-
ulation examples, we reveal rich avalanche behavior
which, in particular, includes power-law and log-normal
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avalanche size statistics.
a. The model.– The basis of our avalanche model is

the following multiplicative process:

zi+1 = aizi = aiz0

i−1∏

j=0

aj . (1)

The initial value z0 for the process represents a pertur-
bation of the system from the z = 0 absorbing state. We
set z0 = 1 (a different positive value of z0 would only
lead to a time shift). The reproduction rates {an}∞n=0

are independent and identically distributed (i.i.d.) ran-
dom variables with finite mean ā = Ea[a] and variance
va = Ea[a2] − E2

a[a]. In our model, the probability den-
sity function (PDF) for the reproduction rate, fa(a), is
required to have a non-negative support to ensure that
zi ≥ 0 at every generation i.

The avalanche size after T generations is given by the
following sum:

ZT =
T∑

i=1

zi = a1 + a1a2 + · · ·+ a1 . . . aT . (2)

Our aim is to understand the dependence of the PDF
for the avalanche size, p(ZT ), on the two parameters of
the reproduction rate distribution, ā and va. Eq. (2)
shows that the avalanche size ZT is a random variable
given by the sum of T random variables. The challenge
in calculating p(ZT ) is that {zi}Ti=1 are correlated and
the Central Limit Theorem does not apply in general
[42]. Accordingly, there is no reason to expect that ZT
is normally distributed for large T as one would expect
if {zi}Ti=1 were uncorrelated. In fact, Eq. (2) shows that
ZT is a Kesten scalar variable [43]. Within this context,
power-law tails have been reported for p(ZT ) under quite
general conditions [43–46]. Here, we identify power-law
decay as one of three generic behaviours for p(ZT ). In ad-
dition, our analysis establishes a conceptual link between
a Kesten recursion and the size of avalanches described
as a Gibrat’s multiplicative process.

We first present results of numerical simulations for a
specific PDF fa(a) that show the existence of three dif-
ferent regimes for p(ZT ). After that, we mathematically
demonstrate that the numerically observed avalanche
regimes are expected for any fa(a) with finite first and
second moments for a and ln a.
b. Numerical results.– Here, we present results for

a uniformly distributed reproduction rate, ai ∼ U(b, c),
with 0 ≤ b < c. The uniform distribution is a simple and
flexible choice that allows the dependence of p(ZT ) on
ā and va to be systematically studied by independently
tuning the parameters ā = (b+c)/2 and va = (c−b)2/12.
In [47], we present qualitatively similar results for ex-
ponentially (Fig. S2 of Sec. IV) and Poisson (Fig. S3 of
Sec. V) distributed growth rates. In both cases, however,
ā and va cannot be independently tuned.

Fig. 1 shows three avalanche regimes identified for uni-
formly distributed a on the (ā, va) space. The region of

FIG. 1. Phase diagram on the (ā, va) space showing three
regimes for the avalanche size distribution for uniformly dis-
tributed growth rate, a ∼ U(b, c). In regime I (Finite Scale),
p(ZT ) converges to an asymptotic PDF p(Z) with finite mean
and variance. In regime II, p(ZT ) converges to an asymp-
totic p(Z) with a power-law tail. In regime III, ZT is non-
stationary and p(ZT ) approaches a log-normal distribution
for large T , with T -dependent parameters. All regimes are
bounded from above by the condition va ≤ ā2/3 ensuring
b > 0 and (ā† ' 1.36, v†a ' 0.61). Boundaries between differ-
ent regimes were analytically obtained.

the space where a random growth processes is possible
depends on the specific PDF for the growth rate. For
uniformly distributed a, the region is restricted to ā ≥ 0
and va ∈ [0, ā2/3]. For a given ā, the upper bound for va
reflects the constraint b ≥ 0. For a general fa, the upper
bound is given by the condition a ≥ 0.

Regime I (dark blue region in Fig. 1) is characterized
by avalanches for which zi approaches zero after a finite
number of generations in such a way that the mean and
variance of p(ZT ) are finite for every T . This regime is
referred to as the Finite Scale regime, as opposed to scale-
free distributions which lack of a typical scale. Below, we
mathematically show that the necessary condition for the
first two moments of p(ZT ) to be finite is va + ā2 < 1,
for any fa(a). In particular, this condition defines the
boundary between regions I and II shown in Fig. 1 for
a uniformly distributed a. In regime I, p(ZT ) converges
to an asymptotic PDF, p(Z), after a finite number of
generations, Tz. Fig. 2(a) shows an example of the con-
vergence of p(ZT ) to p(Z) after Tz = 22 generations.
The rate of convergence decreases as the boundary with
region II is approached. The specific shape of p(Z) de-
pends on ā and va. Phenomenologically, we observe that
the subset of region I with va . ā − 0.7 (then exclud-
ing values of va just below the upper boundary) shows
distributions that are compatible with a log-normal (see
Fig. 2(a)). This result is reminiscent of cases in which a
log-normal distribution was observed as the asymptotic
distribution for the sum of a large but finite number of
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uncorrelated and log-normal, or, more generally, posi-
tively skewed random variables [48, 49]. The compari-
son of our results with those in [48, 49], however, is not
complete due to the presence of correlations between the
random variables {zi}Ti=1, defining ZT in our model. In
fact, a log-normal like distribution is observed in a good
part of region I in the phase diagram, but it is not the
only possible shape for p(Z) in this regime. For instance,
Fig. 2(b) shows an example of p(Z) observed at a point
along the upper bound for region I in the phase diagram
(line with va = ā2/3 in Fig. 1). See Sec. III A of [47] for
more examples of p(Z) in this regime.

In regime II, p(ZT ) converges to an asymptotic
PDF p(Z) with a power-law (or Pareto) tail Z−α (see
Fig. 2(c)). A maximum likelihood fit to the data (Sec. VI
of [47]) reveals that the exponent α takes values that
range from α = 3 at the boundary with regime I to α = 1
at boundary with regime III. Below we mathematically
show that this range for α holds beyond the uniformly
distributed a used for the simulations shown in Fig. 2.

In regime III, avalanches grow indefinitely and p(ZT )
does not converge to a T -independent PDF. Instead, the
location and spread of p(ZT ) monotonically increase with
T (Fig. 2(d)). Interestingly, p(ZT ) can be very well de-
scribed by a log-normal distribution with T -dependent
parameters. This is corroborated by a likelihood ratio
test [50] and parametric bootstrap [51] (see more details
in Sec. VI of [47]).
c. Mathematical results.– We now show mathemat-

ically that the three avalanche regimes illustrated nu-
merically for uniformly distributed {ai} can be observed
for generic distributions fa(a) with non-negative support
and finite first and second moments for a and ln a. This
analysis also provides general conditions satisfied at the
boundaries between different regimes.

To study the PDF of the avalanche size ZT for a generic
fa(a), we express Eq. (2) as ZT = a1 (1 +XT ). Here,
XT =

∑T
i=2

∏i
j=2 aj is a random variable whose behav-

ior at large T determines whether the system is in regime
I, II or III. Regime III corresponds to situations in which
zT+1/a1 =

∏T
j=2 aj increases monotonically with T . In

this case, an infinite avalanche occurs in which z grows
indefinitely and ZT obeys a non-stationary log-normal
distribution for large T , provided Ea[ln2 a] < ∞. In-
deed, in this caseXT is distributed as ZT−1 and therefore
ZT ∼ a1ZT−1 for large T . We then conclude that ZT is
given by the product of T i.i.d. positive random variables
obeying fa(a) and, provided Ea[ln2 a] < ∞, ZT obeys
a log-normal distribution with expectation and variance
that increase exponentially with T (see expressions for
E[ZT ] and Var[ZT ] in Sec. II of [47]). In other words, ZT
essentially obeys Gibrat’s law in regime III.

Regimes I and II are observed when the product∏T
j=2 aj tends to zero for large T and therefore z asymp-

totically approaches the absorbing state with z = 0. In
this sense, regimes I and II define the absorbing phase of
the model. Under this condition, XT ∼ ZT and therefore
ZT tends to a stationary random variable Z with p(Z)

FIG. 2. Examples of avalanche size PDFs for a uniformly dis-
tributed growth rate, a ∼ U(b, c). (a) Regime I: convergence
of the PDF of lnZT towards an asymptotic distribution with
T . (ā, va) = (0.8, 0.06), solid line: fit of a log-normal distri-
bution to the asymptotic distribution. (b) Asymptotic PDF
p(Z) for (ā, va) = (0.5, ā2/3) (i.e. b = 0 corresponding to the
upper bound for va in Fig. 1). Solid line: analytical solution.
(c) Regime II: asymptotic p(Z) in log-log scale. Solid lines:
fits of power-laws with exponents α given in the legend. (d)
Regime III: logarithm of p(ln(ZT )) with (ā, va) = (1.1, 0.013).
Solid lines: fits of a log-normal distribution to the data for
each given T . Symbols (respectively solid lines) are used for
numerical results (resp. maximum likelihood fits or analytical
results).

given by the following equation (see a derivation in Sec. I
of [47]):

p(Z) = Ea
[
a−1p

(
Z

a
− 1

)]
, (3)

This can be reduced to a homogeneous Fredholm in-
tegral equation of the second kind [52] that is difficult
to solve in general. We only solved it analytically for a
specific case with a ∼ U(0, c) which accurately matches
the numerical results in region I, as shown in Fig. 2(b)
[47] (see [45] for other exact solutions of Eq. (3)). Even if
Eq. (3) cannot be analytically solved in general, it is easy
to show that regime I, where the first two moments of Z
are finite, is observed for any distribution fa(a) provided
Ea[a] = ā < 1 and Ea[a2] = va + ā2 < 1 [47] (Sec. II).
The boundary between regimes I and II is then given by
the condition Ea

[
a2
]

= 1, or equivalently va = 1− ā2 for
any PDF fa(a).

To investigate the properties of regime II and its
boundary with regime III, we insert a power-law tail
ansatz, p(Z) ∝ Z−α, into Eq. (3). From this we find
that the exponent α is given by the zeros of the function

h(α) = Ea[aα−1]− 1 . (4)
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The function h(α) has a root at α = 1 due to the nor-
malization of fa(a) which implies Ea[1] = 1. However, we
are only interested in roots with α ∈ (1, 3], irrespective of
the specific form of fa(a). The condition α > 1 ensures
that p(Z) is normalizable and the condition α ≤ 3 corre-
sponds to the boundary between regimes I and II where
Ea
[
a2
]

= 1.
Fig. 3 illustrates the behavior of h(α) for a uniformly

distributed a with fixed va and various values of ā. A sim-
ilar behavior is expected for any distribution fa(a) since
h(α) is strictly convex for any fa(a) in the interval with
α ≥ 1. Therefore, h(α) has at most one minimum and
one root in the interval of interest, (1, 3]. As illustrated
in Fig. 3, the root of h(α) decreases with increasing ā
from the value α = 3 at the boundary between regimes I
and II to approach the minimum admissible value, α = 1,
which marks the transition from regime II to regime III.
At the transition between regime II and III, the minimum
of h(α) occurs at α = 1 and this leads to the condition

h′(1) = Ea[ln a] = 0 (5)

for the boundary between the two regimes. The specific
shape of the boundary in the space (ā, va) depends on
the specific distribution of a. Eq. (5) allows the rela-
tion between ā and va to be obtained for any fa(a). In
particular, we obtained analytical results for uniformly
and exponentially distributed a which compare well with
numerical results (see Fig. 1 and more details in [47]).

In fact, the condition Ea[ln a] = 0 holds at the bound-
ary between regimes with stationary and non-stationary
p(ZT ), irrespective of the power-law assumption made
for regime II. Indeed, if Ea[ln2 a] < ∞, the strong law
of large numbers [42] allows us to express

∏T
j=2 aj as

eTEa[ln a] for large T . Accordingly, the sign of Ea[ln a] de-
termines whether

∏T
j=2 aj tends to zero and ZT reaches

a stationary regime (if Ea[ln a] < 0, regimes I and II)
or increases for increasing T and ZT is not stationary
(if Ea[ln a] > 0, regime III). For a power-law p(Z), one
can see the change in sign of Ea[ln a] at the transition
between regimes II and III in terms of the slope h′(1)
which is negative in regime II and positive in regime III
(see Fig. 3).
d. Conclusions.– We showed that power-law [18, 53]

and log-normal avalanches can coexist, in a minimal ran-
dom growth model with a reproduction rate with finite
mean and variance. Interestingly, the power-law tail ex-
ponent α can be continuously tuned in the range (1, 3],
by varying the control parameters. Therefore, our study
can explain several power-laws found in natural or human
processes, such as the ones described in [18], whose expo-
nents are also almost always in the interval (1, 3]. Many
of these phenomena have an underlying multiplicative
process and can be interpreted as avalanches. We have
focused on growth processes with finite value for ā and
va. It is worth noting, however, that the condition de-
termining a transition from a stationary distribution to
a non-stationary one (Eq. (5)) and the definition of the

FIG. 3. Function h(α) (Eq. (4)) for a uniformly distributed
reproduction rate (see Sec. III C of [47] for the exact analytic
form). Different curves correspond to different values of ā for
growth processes with va = 0.2. The exponent of the power-
law tail for p(Z) in regime II corresponds to the roots of h(α)
in the interval of α ∈ (1, 3]. This corresponds to curves with
0.89 . ā . 1.1 in this example.

exponent α (Eq. (4)) remain valid even if one (or both) of
the parameters diverges (provided Ea[ln2 a] < ∞). This
is consistent with previous studies, where a power-law
distributed growth rate was considered [54].

The model studied in this paper can be seen as a gen-
eralization of branching processes which correspond to a
specific distribution for the growth rate (Sec. VII of [47]).
In particular, the exponent α = 3/2 observed for power-
law distributed avalanche sizes in critical branching pro-
cesses [32, 33] is contained within the interval (1, 3] ob-
tained here. Besides power-law and log-normal distribu-
tions, we observed, especially in the Finite Scale regime,
but also along the upper bound of Fig. 1, less common
distributions for avalanches, but nonetheless observed ex-
perimentally, such as the bimodal shape shown in Sec.
III A of Supp Mat.

We assumed that ā and va remain constant during
the course of the avalanches. One could, however, con-
sider dynamical parameters to mimic feedback mecha-
nisms such as vaccination in epidemics or refractoriness
in neuronal avalanches. In this case, our phase diagram in
Fig. 1 can be used to propose qualitative scenarii for the
ongoing controversy on log-normal or power-law distribu-
tions in neuroscience and other domains [21–23]. Indeed,
besides giving an interpretation of the different distribu-
tions in terms of ā and va, it has to be seen as a guide for
avalanche distributions, even for more realistic situations
where the control parameters are functions of time, as in
[14, 27, 37, 55]. This corresponds to a path in the dia-
gram, where the distributions are combined with different
weights. For example an avalanche with initial param-
eter values in region III, shifting in time toward region
II or I (because of external feedbacks as refractoriness
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in the brain), would give a log-normal dominating distri-
bution. This qualitative scheme suggests that the three
avalanche regimes identified here are relevant to realisti-
cally complex situations with non-stationary at. A more
precise description of the avalanche size in such situa-
tions, however, would require extending our analysis to
Gibrat’s processes with non-stationary at.
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I. DERIVATION OF EQ. (3)OF THE MAIN TEXT

Eq. (??) of the main text holds for cases in which limT→∞
∏T
j=2 aj → 0 so that ZT tends to a stationary random

variable Z = a(1+X), where X = limT→∞
∑T
i=2

∏i
j=2 aj is distributed as Z. Since a and X are independent random

variables, p(Z) can be obtained from the distributions of X and a as follows:

p(Z) =

∫ ∞

0

dafa(a)

∫ ∞

0

dxp(x)δ(Z − a(1 + x)) =

=

∫ ∞

0

dafa(a)a−1

∫ ∞

0

dxp(x)δ (x− (Z/a− 1)) =

=

∫ ∞

0

dafa(a)a−1p(Z/a− 1) = Ea
[
a−1p

(
Z

a
− 1

)]
.

(S1)

Here, we used the property of the Dirac-δ distribution: δ(ax) = 1
|a|δ(x). This equation is a Fredholm Integral Equation

and, if solved, defines the full shape of the PDF p(Z) for any choice of the reproduction rate distribution. For instance
it will be used in the following Sections III C, III B, IV for uniform or exponential distributed reproduction rates.

II. EXPECTATION AND VARIANCE OF ZT

In this section we give expressions for the expected value E[ZT ] and variance Var[ZT ] of ZT which are valid for any
fa(a).

Let us denote the second moment of the reproduction rate as m2 = Ea[a2]. If ā and m2 are both either larger or
smaller than 1, the calculation of E[ZT ] and Var[ZT ] reduces to summations of geometric series and, from Eq. (??) of
the main text, one obtains:

E[ZT ] =

T∑

i=1

(E [a])
i

=
ā− āT+1

1− ā , (S2)

and, with some more steps:

Var[ZT ] =
T∑

j=1

mj
2 + 2

T−1∑

j=1

T−j∑

k=1

mj
2 (E[a])

k − E[Z]2 =
m2 −mT+1

2

1−m2
+ 2

T−1∑

j=1

mj
2

(
ā− āT−j+1

1− ā

)
− E[Z]2 =

= 2
ā

1− ā

[
m2 −mT

2

1−m2
− āT+1

ā−m2

(
m2

ā
− mT

2

āT

)]
+
m2 −mT+1

2

1−m2
−
(
ā− āT+1

1− ā

)2

.

(S3)

We can easily see that if m2 < 1 (and therefore va < 1 − ā2 and ā < 1), both E[ZT ] and Var[ZT ] converge to the
finite values: E[Z] = ā/(1− ā) and Var(Z) = m2/(1−m2) (1 + 2ā/(1− ā))− ā2/(1− ā)2. This is why we defined the
distributions belonging to region I as Finite Scale. With note that these expressions for E[Z] and Var[Z] can also be
obtained by integration from the formal expression of p(Z) given in Eq. (??) of the main text.
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When m2 = 1 (implying ā < 1), the computation of Var[ZT ] results in:

Var(ZT ) = T + 2 (T − 1)
ā

1− ā −
2ā2

1− ā

(
āT−1 − 1

ā− 1

)
−
(
ā− āT+1

1− ā

)2

, (S4)

which in the large T limit shows a linear divergence with T : Var(ZT ) ' T + 2 (T − 1) ā/(1− ā). The expected value
is still convergent, since ā < 1.

As long as m2 > 1 and ā < 1, Var(ZT ) ∼ mT
2 for large T and it diverges exponentially with T (from Eq. (S3)). In

contrast, E[ZT ] converges as in the Finite Scale region.
For ā = 1, the expectation grows linearly with T :

E[ZT ] = T, (S5)

while the variance has a more complicated expression, still showing an asymptotic exponential divergence with T ,
given by:

Var(ZT ) =
1

(1−m2)
2 (mT+2

2 +mT+1
2 −m2

2 (1 + T )
2

+m2

(
2T 2 + 2T − 1

)
− T 2). (S6)

This result is based on the calculation of the following series:

sT =
T∑

j=1

jmj
2 =

m2 −mT+1
2 (1 + T (1−m2))

(1−m2)

2

.

Finally, cases with ā > 1 and m2 > 1 partially correspond to regime III, where Eqs. (S2) and (S3) are valid and
predict an exponential divergence of E[ZT ] and Var(ZT ) with T .

E[ZT ] ' āT+1

(ā− 1)
,

Var(ZT ) ' 2āāT+1mT
2

[(1− ā) (ā−m2) āT ]
.

(S7)

Since we have numerical and statistical evidence that in region III the PDF of ZT is a log-normal, we can define the
parameters µZ and σZ such that p(Z) ∼ Log-Normal(µZ , σZ). Then in the large T limit we have:

µZ ' ln
(
āT+1/ (ā− 1)

)
− 1

2
ln

(
2ãT (ā− 1)

(ã− ā) ā2T
+ 1

)
,

σ2
Z ' ln

(
2ãT (ā− 1)

(ã− ā) ā2T
+ 1

)
.

(S8)

From this we can define a standardized variable t = (lnZT − µZ)/σZ which is stable and does not depend on T ,
since both µZ and σ2

Z depend linearly on T , as for the Central Limit Theorem. Note, however, that the region in the
parameter space leading to exponential divergence of both E[ZT ] and Var(ZT ) with time (i.e. ā > 1 and m2 > 1) is
not equivalent to region III, since it is the case also for the part of region II where ā > 1 (see for instance cyan crosses
in Fig. ??(c)).

To summarize there are 5 different asymptotic behaviors of the expectation and the variance of ZT :

1 − If ā < 1 and m2 < 1, E[ZT ] and Var(ZT ) converge;

2 − if m2 = 1, E[ZT ] converges and Var(ZT ) diverges linearly;

3 − if m2 > 1 and ā < 1, E[ZT ] converges and Var(ZT ) diverges exponentially;

4 − if ā = 1, E[ZT ] diverges linearly with T and Var(ZT ) diverges exponentially;

5 − if ā > 1, both E[ZT ] and Var(ZT ) diverge exponentially.
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III. RESULTS FOR A UNIFORMLY DISTRIBUTED GROWTH RATE

In this section, we present detailed results for the probability distribution p(Z) in regimes I and II for a uniformly
distributed growth rate, a ∼ U(b, c).

A. Numerical results in regime I (Finite Scale regime)

An exploration of the asymptotic distribution p(Z) for different points (ā, va) in the region corresponding to regime
I suggests that p(Z) can be approximated by a log-normal distribution for va . ā − 0.7 (see Fig. S1(c), (d)). In
fact, a log-normal approximation is already suitable for the probability distribution p(ZT ) before convergence to the
asymptotic distribution p(Z). In contrast, p(Z) significantly deviates from a log-normal distribution for va & ā− 0.7
(see Fig. S1(a), (b)), and, in these examples, p(ln(Z)) looks like a bimodal distribution, showing a shoulder for values
ln(Z) < 0.

FIG. S1. Distribution of the logarithm of the sum ZT =
∑T

i=1 zi for different points in the parameter plane and different
T (see legends), until convergence toward the asymptotic distribution of ln(Z), after time Tz. For all the plots the number
of realizations for the statistics is 105. The asymptotic distribution, p(Z), is represented by p(ZT ) at time T = 500 and the
logarithm of the resulting distribution is plotted. Examples are shown with va > ā − 0.7 (panels (a), (0.55, 0.04) and (b),
(0.8, 0.2)) and with va < ā− 0.7 (panels (c), (0.85, 0.04) and (d), (0.8, 0.08)). In panel (c) and (d) the maximum likelihood fit
of the asymptotic distribution of ln(Z) with a log-normal distribution is shown in solid line.
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B. Analytical solution for p(Z) with a ∼ U(0, c)

In order to fully determine the expression of p(Z) in the particular case where the lower bound of the uniform
distribution is b = 0, it is convenient to write Eq. (??) in the form of a differential equation. To this end, we first
express the asymptotic avalanche size distribution for a uniformly distributed a as follows:

p(Z) =

∫ +∞

0

p(y − 1)fa

(
Z

y

)
dy

y
=

=

∫ +∞

0

p(y − 1)
θ
(
Z
y − b

)
− θ

(
Z
y − c

)

c− b
dy

y
.

(S9)

By using the properties of the Heaviside step function, differentiating with respect to Z, and noting that Z > b, from
Eq. (S9) we obtain:

p′(Z) =
p
(
Z
b − 1

)

c− b
1

Z
− p

(
Z
c − 1

)

c− b
1

Z
θ(Z − c), (S10)

which is a functional (or delayed) differential equation for p(Z).
For b = 0, Eq. (S10) reduces to

p′(Z) = −p
(
Z

c
− 1

)
1

cZ
θ(Z − c). (S11)

Here, we used that limb→0 p(Z/b − 1) = 0. The solution of this equation can be expressed in a piece-wise form as
follows:

p(Z) =





p̂1(Z), Z ∈ (0, c]

p̂2(Z), Z ∈ (c, 2c]

p̂3(Z), Z ∈ (2c, 3c]

. . .

(S12)

In the interval Z ∈ (0, c], the function p̂1(Z) is given by

p̂′1(Z) = 0⇒ p̂1(Z) = k1 , (S13)

where k1 is a constant that can be obtained from the normalization of p(Z). From Eq. (S11), the functions {p̂j(Z), j ≥
2} satisfy the following recurrence relation:

p̂′j(Z) = − p̂j−1(Z/c− 1)

cZ
⇒ p̂j(Z) = kj −

∫
p̂j−1(Z/c− 1)

cZ
j = 1, 2, . . . (S14)

Here, all the constants {kj , j ≥ 2} can be expressed in terms of k1 by imposing the continuity of p(Z) at each point
Z = jc. Then k1 is actually the only normalization constant of the probability p(Z). This is valid for any c such that
the product

∏T
j=2 aj → 0, otherwise p(Z) becomes non-stationary and log-normal, as explained in the main text (for

(ā, va) >
(
ā†, v†a

)
, along the line va = ā2/3).

For the functions {p̂j(Z), j ≥ 2}, we present results for the case c = 1. In the interval Z ∈ (1, 2), p̂2(Z) is given by

p̂′2(Z) = −k1

Z
⇒ p2(Z) = −k1 ln(Z) + k2 . (S15)

By imposing continuity at Z = 1 we get k2 = k1.
The function p̂3(Z) giving p(Z) in the interval Z ∈ (2, 3] is given by

p̂3(Z) = −k1 ln(Z)− k1Li2(Z) + k1(ln(Z − 1)− ln(1− Z)) ln(Z) + k3 , (S16)

where Lis+1 is the polylogarithm function defined as:

Lis+1(x) =

∫ x

0

Lis(t)
t

dt and Li1(x) = − ln(1− x) .
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The expression for p̂4(Z) corresponding to the interval Z ∈ (3, 4] can again be expressed in terms of the polylogarithm
function:

p(Z) = −k3 ln(Z)− k1Li2(Z) + k1(ln(Z − 1)− ln(1− Z)) ln(Z)+

+k1[−Li3(2− Z)− Li3(Z) + Li3
(

Z

2− Z

)
− Li3

(
Z

Z − 2

)
+

+ ln

(
Z

2− Z

)(
Li2
(

Z

Z − 2

)
− Li2

(
Z

2− Z

))
+ Li2(2− Z)

(
ln(Z)− ln

(
Z

2− Z

))
+

+Li2(Z − 1) ln(Z) + Li2(Z)

(
ln(2− Z) + ln

(
Z

2− Z

))
+

+
1

2

(
ln

(
− 2

Z − 2

)
+ ln(Z − 1)− ln

(
2(Z − 1)

Z − 2

))
ln2

(
Z

2− Z

)
+

+ (ln(1− Z)− ln(Z − 1)) ln(Z) ln

(
Z

2− Z

)
+ ln(2− Z) ln(Z − 1) ln(Z)+

+
1

2
(ln(Z − 1)− ln(1− Z)) ln(Z) (ln(Z)− 2 ln(2− Z)) +

Li3(1− Z) + Li3
(

1− Z

2

)
+ Li3

(
Z − 1

Z − 2

)
− Li3

(
2(Z − 1)

Z − 2

)
−

+ ln

(
2(Z − 1)

Z − 2

)(
Li2
(
Z − 1

Z − 2

)
− Li2

(
2(Z − 1)

Z − 2

))
+

−Li2(1− Z)

(
ln(Z − 2) + ln

(
2(Z − 1)

Z − 2

))
+

−Li2
(

1− Z

2

)(
ln(Z − 1)− ln

(
2(Z − 1)

Z − 2

))
+

−1

2

(
ln

(
1

4− 2Z

)
+ ln(Z)− ln

(
Z

2− Z

))
ln2

(
2(Z − 1)

Z − 2

)
+

− ln(2) ln(1− Z) ln

(
2(Z − 1)

Z − 2

)
+

+
1

2
ln(2) ln(1− Z) (ln(1− Z)− 2 ln(Z − 2))− ln(Z − 2) ln(Z − 1) ln

(
Z

2

)
+

+Li3(Z)− Li2(Z) ln(−Z) +
1

2
(ln(Z − 1)− ln(1− Z)) ln2(−Z)] + k4

(S17)

This shows that the solution becomes quickly complicated, but in principle can be found for all intervals and will
involve all degrees of the polylogarithm function. More pragmatically we can observe that the solution for large Z
can be calculated, giving us the asymptotic behavior of p(Z). That is:

p′(Z) = −p(Z)

Z
⇒ p(Z) =

k∞
Z

for z � 1. (S18)

The presented solution is the one plotted in Fig ??(b).

C. Analytical results in regime II (Power-Law)

We present here the analytical calculations for the case of a uniformly distributed reproduction rate, which was
chosen for illustration of the results in the main text.

For a ∼ U(b, c) a full solution of Eq. (??) is in general not possible, but still we can obtain a general expression
of the power-law exponent α with respect to the model parameters. Indeed, an analytical expression of the function
h(α) (see Eq. (??)) is possible:

h(α) =

∫ +∞

0

aα−1 θ (a− b)− θ (a− c)
c− b da− 1 =

[
ā+
√

3va
]α −

[
ā−√3va

]α

2α
√

3va
− 1, (S19)
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where we have injected the relations b = ā−√3va and c = ā+
√

3va, and written the uniform PDF by means of the
Heaviside step function θ(x), as

fa(a) =
θ (a− b)− θ (a− c)

c− b
The zeros of h(α), if they exist, are the exponent of the power-law tail in region II, thus α is related to ā and va by:

− α =

(
ā−√3va

)α −
(√

3va + ā
)α

2
√

3va
. (S20)

Eq. (S20) has a trivial solution for α = 1, which is not compatible with the definition of a probability distribution,
since it is not normalizable, besides not being compatible with the numerical observed one (see Fig. ??(c)). Notably,
Eq. (S20) has another solution that can be found numerically and is in very good agreement with exponents of
Fig. ??(c). Therefore the asymptotic behavior of p(Z) is proved to follow a power-law tailed distribution, which is an
asymptotic solution of Eq. (??) and whose exponent is determined by the model parameters from Eq. (S20). We are
now going to compare these analytical results with the numerical observed ones shown in Fig. ??. We first note that
at the critical line va = 1 − ā2, we find α = 3, which does not depend on ā (corresponding to (ā ' 0.98, va ' 0.033)
in Fig. ??(c)). This happens when m2 = 1 and hence, from Eq. (S4), Var(ZT ) is divergent with T , consistently with
the value α = 3 for which p(Z) has a divergent variance and a convergent mean. As long as m2 > 1 and ā < 1,
we have seen that Var(ZT ) shows an exponential divergence with T , while E[ZT ] converges. This is the case for the
black triangles in Fig ??(c), for which the exponent computed from Eq. (S20) is α ' 2.62. Another peculiar case
is when ā = 1. Here, Eq. (S20) predicts an exponent α = 2 for any possible value of va. For this value of ā the
average of Z grows linearly with T (see Eq. (S5)), and Eq. (S6) shows an exponential divergence with T . Again, this
is consistent with the exponent α = 2, for which p(Z) starts having a divergent mean as an effect of the fat tail of its
distribution. When both ā and m2 are larger than 1 both E[ZT ] and Var(ZT ) diverge exponentially with T , but as
shown in Fig. ??(c) (cyan crosses) the distribution can still be stationary with a very large power-law tail. For that
values of parameters, the analytical exponent α ' 1.29.

For a uniformly distributed a, the boundary between regime II and III given by Eq. (??) of the main text satisfies:
(
ā+
√

3va
) (

1− ln(ā+
√

3va)
)

(
ā−√3va

) (
1− ln(ā−√3va)

) = 1. (S21)

This defines the curve in the phase diagram above which p(Z) is not stationary anymore and allows us to compute
(ā† ' 1.36, v†a ' 0.61), representing the largest parameter values for a power-law distribution.

IV. RESULTS FOR AN EXPONENTIALLY DISTRIBUTED GROWTH RATE

Analytical results are also possible for an exponentially distributed reproduction rate a ∼ Exp(ā−1), with probability
density function fa(a) = ā−1e−x/ā. In this case there is only one relevant parameter, since va = ā2. This has the
consequence that the phase diagram (shown in Fig. S2(a)) is composed of a curve and not of an extended region as
for the uniformly distributed growth rate. In Fig. S2(b), (c) and (d) we show a numerical example of avalanche size
distribution for each of the three regimes identified in the phase diagram. The three regimes are the same as for a
uniformly distributed reproduction rate.

The expression for h(α) giving the power-law exponent α can be analytically obtained by integration of Eq. (??):

h(α) = āα−1Γ(α)− 1, (S22)

where Γ(z) =
∫∞

0
xz−1e−xdx is the gamma function. The roots of this equation are therefore the exponents of the

power-law tail of region II, and can be found numerically. For instance for the example shown in Fig. S2(c) the value
of the analytical exponent is α = 1.23, which, within statistical error, coincides with the numerically estimated value
given in the figure legend. Moreover, the curve separating region II and region III can also be expressed from Eq. (??)
as:

Ea[ln a] = γ + ln (ā) = 0, (S23)

where γ ' 0.58 is the Euler-Mascheroni constant. In this case the point separating the Power-Law and the Log-Normal
region is simply ā = eγ , while the point ā = 1/

√
2, corresponding to the condition va = 1 − ā2, separates regions I

and II.
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FIG. S2. (a) Phase diagram of the distribution of Z for an exponentially distributed reproduction rate, in the model parameter
space. (b) Example of distribution of p(ln(Z)) in regime I, for a reproduction rate a ∼ Exp(1/0.5). (c) Example of distribution
of p(Z) in log-log scale for regime II and correspondent power-law fit, for a ∼ Exp(1/1.5). (d) Example of distribution of
p(ln(ZT )) with T = 1000 in regime III and correspondent fit, for a ∼ Exp(1/2). In plots (b), (c), (d) symbols (respectively
solid lines) are used for numerical results (resp. maximum likelihood fits).

FIG. S3. Left: Example of distribution of the asymptotic p(ln(Z)) in regime I, for a reproduction rate a ∼ Poisson(0.5).
Center: Example of distribution of the asymptotic p(Z) in log-log scale for regime II and correspondent power-law fit, for
a ∼ Poisson(2). Right: Example of distribution of p(ln(ZT )) with T = 100 in regime III, for a ∼ Poisson(15) and corresponding
maximum likelihood fit.

V. NUMERICAL RESULTS FOR A POISSON DISTRIBUTED GROWTH RATE

In this section we introduce some numerical results for a Poisson distributed growth rate, in order to show that the
picture described in the main text is not only true for continuous growth rates, but can also be applied to discrete a.
In Fig. S3 we show the same three regimes observed for the uniform and exponential distributions, are also observed
for Poisson distributions, where the value zi = 0 can be achieved after a finite number of generations. Note that since
ZT here is discrete, in regime I the shape of the asymptotic distribution for Z can be very different. Indeed, with
respect for instance to Fig. S2(b) the distribution is cut for ln(Z) < 0. However, the mathematical understanding of
the 3 regimes remains valid.
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VI. STATISTICAL METHODS: LIKELIHOOD ESTIMATE OF THE EXPONENT, LIKELIHOOD
RATIO TEST AND BOOTSTRAP

We describe in this section the statistical techniques used to study the properties of p(ZT ).

A. Maximum likelihood estimate of the exponent and likelihood ratio test

The mathematical procedure to fit the tail of the distribution is the one described in reference [? ] and the software
used is a lightly modified version of the python module described in Ref. [? ] (with some added features, in particular
a corrected definition of the cumulative distribution used to perform the fit, defined as P (X ≤ x) instead of P (X < x),
which can have some impact on the results only for small data-sets, say < 1000 , that is not our case). Briefly, the fit
procedure consists in identifying which is the best interval of the domain to be appropriately fitted by a power-law
and in this interval estimate by maximum of likelihood the exponent.

Moreover, a new fit by maximum of likelihood of the tail of the distribution with distributions other than the
power-law (for instance the log-normal), can be done. We applied this method for instance to estimate the power-law
exponent of Fig. ??(c). There, the standard deviation of the fit is always smaller than or equal to the last digit, except
for the blue circles, where it is 0.03, meaning that the power-law tail is very well statistically confirmed. Notice that
the estimated exponents leads to a diverging mean and/or variance of Z.

The likelihood-ratio test [? ] is a test based on the ratio of the likelihood of the model fitted by two different
distributions and this can be done to compare a power-law tail with the tails of other distributions. The null
hypothesis of this test is that the likelihood of the 2 fits (with different distributions) are equal. This test was used
to check if the tail of the distributions obtained in regime III was log-normally or power-law distributed, showing for
all times T of Fig. ??(d) statistical significance (with a significance threshold at 0.05) that the distribution that was
the best fit of the tail was the log-normal. In particular for T = 500 the p-value of the test was 4 · 10−6 indicating
that the likelihood is significantly better for a log-normal tail.

B. Bootstrap

Bootstrap was used to assess the suitability of a log-normal distribution for p(ZT ) in regime III. Opposite to other
techniques, such as the likelihood ratio test described before, the goal of the bootstrap technique is to study the
statistical information regarding the full distribution, not only the tail. The bootstrap technique is described for
instance in ref. [? ]. We developed a python code to apply parametric bootstrap to our case, the bootstrap being
parametric since we are supposing that the distribution is a log-normal and then it depends on 2 parameters, µZ
and σ2

Z . Basically, this method aims at checking if the difference between the distribution of ZT and the log-normal
distribution with parameters µZ and σZ can be explained by random fluctuations only. The algorithm works in the
following way:

1 − we do a maximum likelihood estimate of µZ and σ2
Z from the original data (the simulation) and we compute the

KS distance, D∗ (quantifying the distance between the expected distribution and the one of the data, described
just above);

2 − we generate new random data with the same size as the original one (the simulation), following a log-normal
distribution with the estimated parameters µZ and σ2

Z ;

3 − we estimate by maximum of likelihood the parameters µ and σ of the random data from point 2 and the distance
D between the distribution of the generated random data and the log-normal distribution having as parameters
the new µ and σ;

4 − we repeat 2 and 3 a statistically large number of times (of the order of at least 1000-2000), in order to have a
good statistics for the distribution of the distance D.

At the end we have a large number of D values and we can thus plot their distribution. Therefore we can compute
the probability that the D obtained with the bootstrap process is bigger than the D∗ of the simulation. This gives us
a p-value under the null hypothesis: ZT follows a log-normal distribution. This p-value then tells us the probability
that Z follows a log-normal. With a typical significance threshold of 5%, we can then draw a conclusion about the
null hypothesis.

For this study, we developed a code to use this technique, obtaining strong statistical evidence that the difference
between the 3 distributions of Fig ??(d) and the maximum likelihood fit of the log-normal can be explained by random
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FIG. S4. Reproduction rate distribution of a critical branching process with p = 0.5 and n = 2, for i = 10, 50, from numerical
simulations.

fluctuations only. For the parameters in Fig ??(d) the p-value> 0.05 for all T and increases with T up to 0.31, for
T = 500. We can thus draw the conclusion that the null hypothesis of zero distance between the log-normal and the
distribution of ZT can be accepted for all the T considered. Moreover, this suggests a convergence of p(ZT ) toward a
log-normal with T , as expected from the Central Limit Theorem.

Finally, we found that the p-value remains quite stable when increasing the number of repetitions, nrep. This means
that even the tails of the distribution are well fitted by the log-normal distribution, since, by increasing nrep, events
with probability of the order of 1/nrep (and therefore very rare) become accessible to the simulation. We did this by
checking the p-value for T = 500 and nrep = 103, 105, 105, 106, where the last value is the one chosen for Fig.??(d).

VII. GROWTH RATE DISTRIBUTION FOR BRANCHING PROCESSES

The size zi+1 of the population in a branching process at generation i+ 1 is given by the sum of offspring {kj , j =
1, 2, . . . , zi} of the zi individuals in generation t, i.e. zi+1 =

∑zi
j=1 kj [? ? ]. The branching process can be mapped

to the multiplicative process given by Eq. (??) if we define a growth rate

ai =

∑zi
j=1 kj

zi
. (S24)

In particular, we studied the probability distribution of {ai} for branching processes in which the number of offspring
obeys a binomial distribution, k ∼ B(n, p). Fig. S4 shows examples of the distribution of ai for a critical branching
process with n = 2 and p = 1/2. As expected, ā ' np = 1. The variance va decreases to 0 with i, as shown in
Fig. S5. The distribution shown in Fig. S4 is discrete, because the in Eq. (S24) zi remains always of the order of 1,
and therefore ai can only take sparse rational values.

Besides this, in branching processes the two parameters ā and va cannot be independently tuned. For instance, for
a critical branching process ā = 1 and only the initial value of va = 1 − p can be partially tuned, but it still has to
verify p = 1/n. Also, the dynamics of the 2 parameters is fixed by the rules governing branching processes.

This is a particular case of our model, which leads to the known avalanche size distribution of branching processes,
that, since they are discrete processes, can be computed via the generating function method [? ? ].
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FIG. S5. Behavior of the mean ā (left) and the variance va (right) with time i for the critical branching process with p = 0.5
and n = 2, from numerical simulations.


