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Abstract 

Intrinsic ripples with various configurations and sizes were reported to affect 

the physical and chemical properties of 2D materials. By performing 

molecular dynamics simulations and theoretical analysis, we use two 

geometric models of the ripple shape to explore numerically the distribution 

of ripples in graphene membrane. We focus on the ratio of ripple height to 

its diameter (t/D) which was recently shown to be the most relevant for 

chemical activity of graphene membranes. Our result demonstrates that the 

ripple density decreases as the coefficient t/D increases, in a qualitative 

agreement with the Boltzmann distribution derived analytically from the 

bending energy of the membrane. Our theoretical study provides also 

specific quantitative information on the ripple distribution in graphene and 

gives new insights applicable to other 2D materials. 
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Thermally induced (Intrinsic) rippling of two-dimensional (2D) membranes is 

an unavoidable consequence of thermal fluctuations; the theory of structural 

state of 2D systems at a finite temperature is an actively developing field of 

statistical physics [1-9]. It was enormously stimulating by an isolation of 

graphene [10], experimental discovery of ripples on freely suspended 

graphene [11] and first atomistic simulations of ripples on graphene [12] (for 

the other aspects of the problem, see Refs. [13-16]). Apart from the intrinsic 

ripples, artificial periodic structures of ripples were introduced by utilizing 

the negative expansion coefficient of graphene sheet [17]. The existence of 

ripples affects strongly the electron transport in graphene [18], its chemical 

activity [19], mechanical properties [20-22] and other important 

characteristics. Very recently, it was demonstrated that ripples play a crucial 

role in hydrogen permeation through a single-layer graphene membrane [23].  

The latter problem is especially interesting. According to the scenario 

suggested in Ref. [23], the first step in the permeation of molecular hydrogen 

through graphene is its dissociation of hydrogen atoms at the ripples, and 

the curvature of the ripples is crucially important for this process. Atomistic 

simulations [23] show that the enhanced chemical activity for the 

dissociation requires high enough curvature of the ripples, with the ratio t/D 

larger than 0.04 (here t and D are the height and diameter of a ripple). The 

fraction of hydrogen molecular going through monolayer graphene increases 

when the temperature increases, and we attributed this to the increasing 

density of ripples with a large ratio t/D [23]. Therefore, it is necessary to 

figure out the distribution of the ripples in their geometry at different 

temperatures. This is the motivation for our work where we solve this 

problem via molecular dynamic simulations. 

Before doing so, let us make a simple estimate of the expected distribution. 

Let us start with the simple expression for the bending energy of the 

membrane [1,15,24]: 

𝐸 =
𝜅

2
∫𝑑2𝑥(∇2ℎ)2                      (1) 



where 𝜅 is the bending rigidity, 𝑥 is the two-dimensional vector, and ℎ(𝑥) is 

the profile of the ripple. A very naive estimate of the integral in Eq. (1) gives 

the value of the order of (t/D)2. Substituting this estimate into Boltzmann 

distribution 𝑒𝑥𝑝(−𝐸/𝑘𝐵𝑇) , we find a quite simple expression for the 

distribution function of the ripples in their geometric characteristics: 

𝑃(𝑡, 𝐷) = 𝐴𝑒𝑥𝑝 (−𝐶
𝜅

𝑘𝐵𝑇
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𝑡

𝐷
)
2

)       (2) 

where C is an unknown numerical factor which cannot be estimated from a 

simple analysis. Keeping in mind that at room temperature for the case of 

graphene, 
𝜅

𝑘𝐵𝑇
≈ 40, one can assume that ‘chemically active’ ripples should 

be quite well presented at room temperature, and with the temperature 

increase its number grows, both conclusions are in agreement with the 

computational data [23].  

According to Eq. (2) the probability distribution of the thermal ripples 

depends only on the ratio t/D but not on the geometric sizes (t or D) 

separately. One should keep in mind however that Eq. (1) and, thus, Eq. (2) 

do not take into account the renormalization of bending rigidity via 

anharmonic coupling of in-plane and out-of-plane modes [1-9,12,15,16]. The 

latter takes place for the fluctuations with small enough wave vectors 

𝑞 < 𝑞∗ = √
3𝑘𝐵𝑇𝑌

16𝜋𝜅2
 ,                                    (3) 

where Y is the two-dimensional Young modulus. For graphene at room 

temperature12,15,16 𝑞∗≈ 2 (nm)-1. This means that Eq. (2) is valid only for strong 

enough inhomogeneities, that is, for 𝐷 < 𝐿𝑡ℎ =
2𝜋

𝑞∗
, 𝐿𝑡ℎ ≈ 3  nm for 

graphene at room temperature. For larger ripples, one can expect a 

renormalization of the bending rigidity, 

𝜅 → 𝜅𝑅 ≈ 𝜅 (
𝑞∗

𝑞
)
𝜂

≈ 𝜅 (
𝐷

𝐿𝑡ℎ
)
𝜂

,                        (4) 

where 𝜂 ≈0.8 is the corresponding ‘critical exponent’ [1-9,12,15,16].  



Thus, one can suppose that Eq. (2) is valid for small enough ripples, 𝐷 < 𝐿𝑡ℎ, 

whereas for the opposite limit 𝐷 > 𝐿𝑡ℎ , it should be replaced by the 

equation 

𝑃(𝑡, 𝐷) = 𝐴𝑒𝑥𝑝 (−𝐶
𝜅

𝑘𝐵𝑇
(
𝑡

𝐷
)
2

(
𝐷

𝐿𝑡ℎ
)
𝜂

).             (5) 

 One can expect therefore that for large ripples, 𝐷 > 𝐿𝑡ℎ , its probability 

decreases exponentially with the increase of the ripple size. 

Now we will verify our estimation and compare these preliminary 

considerations with the numerical results obtained from molecular dynamics 

simulations. 

For this and the following section, we performed a series of semiclassical 

molecular dynamics simulations using large-scale atomic/molecular 

massively parallel simulator (LAMMPS).[25] To keep it consistent with the 

data in Ref [23], we consider a sheet of graphene consisting of 387,200 atoms 

in a periodic cell of Lx×Ly = 95.4×101.1 nm2 (220×440 orthorhombic unit cells) 

using the modified Tersoff potential. Here, the x and y directions correspond 

to zigzag and armchair axes, respectively. Our numerical tests confirm that 

the above sample size is large enough to replicate correctly the ripple-ripple 

correlations (see the converge tests in the Supplemental Material). The 

perpendicular cell size is set to be Lz = 8 nm to avoid interaction between 

periodic images of the sheet. Meanwhile, if we choose a hexagonal super cell 

instead of rectangle, the distribution function becomes slightly larger, but 

the overall conclusion remains the same (more results with a hexagonal 

super cell are presented in the Supplemental Materials). Therefore, in the 

following, all the discussions are based on the rectangle super cell. The 

typical configurations at different T were obtained after thermalization with 

every 100,000 steps (0.000025 ps per step) and averaged over twenty of such 

snapshots. In Figure 1a, we show one example using a model of circle-like 

ripple. In our simulation, the ripples are selected by the profile of the center 

carbon atom which has a minimum value of 0.04 Å to its closest neighbor. By 

scanning each site in a snapshot obtained during the molecular dynamics 



simulations, we first identify all possible ripple centers as the highest carbon 

atoms in a circle with a radius of Rcut
 = 20 Å. As for one specific ripple, the 

profiles could be different along different directions, thus, we introduce 𝜃 as 

a measure of the angle between a vector span by the radius R and the 

armchair edge. Then one ripple is divided into 180 sectors (each in 2o) to 

obtain the effective radius along each direction 𝜃. In this way, all the atomic 

sites within a possible ripple will be taken into account. Due to the criteria of 

monotonicity in scanning of R𝜃, one ripple center will be counted only once, 

and will not be considered in other ripples. After collecting all the date of 

{R𝜃}, we can describe a ripple or characterize its size in two models: one is a 

circle-like model D = 2Rmin where Rmin=min{R𝜃}, and the other one is an 

arbitrary-shape model ({D} = {R𝜃 + R𝜃+180°}). One should notice that, in the 

second model, the ripple size is not characterized by a single value but a set 

of {D}, which is, in principle, more accurate to describe a real profile.  

In graphene, the ripple size D, no matter defined in the circle-like or arbitrary-

shape model, is counted based on the in-plane projection between two 

carbon atoms and in the limit without thermal-fluctuation it should have 

discrete values following D = |ma+nb| (m and n are integers and interatomic 

distances |a| =| b| = 1.42 Å). As the actual thermal-fluctuation induced 

displacement of a carbon atom in real space is relatively small comparing to 

the interatomic distances in pristine graphene, the obtained ripple sizes D 

are distributed closely around these discrete values of |ma+nb|. Now, we 

make a further analysis using the circle-like model. In Figures 1b and 1c, we 

plot the statistical results of ripple density as a function of ripple size D. We 

see clearly that for a finite temperature, ripples with different sizes are not 

equally distributed in graphene membrane. The distribution of D forms peaks 

slightly larger than those discrete values allowed in pristine graphene 

(|ma+nb|, indicated by the purple bar on the top). This is consistent with a 

common sense that thermal fluctuations induce the out-of-plane vibrations 

of carbon atoms, resulting in a stretching of atoms in the plane. The profound 

ripple size lies in a window from 5 to 12 Å. When temperature increases, the 

ripple density shows a similar trend as a function of D. 



 

Figure 1 Ripple distribution in relaxed graphene membrane with the circle-

like model. (a) Top view of a circle-like ripple with a carbon atom in the center. 

(b) Statistical results of the circle-like ripples in relaxed graphene membrane. 

Purple bar indicates possible values of D (|ma+nb|) in pristine graphene. (c) 

Temperature dependence on the distribution of small ripples; P1-P5 indicate 

the five strongest peaks in (a). 

To understand better the effect of temperature on the ripple distribution, 

we analyze five typical peaks of ripple density with high intention in Figure 

1c, which correspond to the five configurations indicated from P1 to P5 in 

Figure 1a. Our result shows that the width of D peaks becomes broader when 

the temperature increases, which is reasonable as a higher temperature 

introduces larger thermal fluctuations. However, not all the ripple density 

increases as the temperature increases, i.e., for ripples with D < 8 Å, the 

density of ripple increases as T increases; for ripples with D > 9 Å, the trend 

is reversed, while the density of ripple with D around 8.7 Å remains the same. 

 



Figure 2 Ripple density (a) and size D (b) as a function of t/D in graphene 

membrane with the circle-like model. The circles are statistical data from MD 

simulations and the solid lines are fit results using Eq. (2). Black, red, green 

and blue represent for 100 K, 200 K, 300 K and 400 K, respectively. 

Thus, it is hard to describe the ripple distribution only by D, therefore we plot 

the ripple density as a function of t/D in Figure 2a. Our result shows that as 

T increases from 100 K to 400 K, the threshold value of t/D increases from 

0.09 to 0.12. We attribute this to the thermal fluctuation of height t under 

higher temperature. More interestingly, the ripple density decreases as t/D 

increases, indicating that ripples prefer to form a flatter profile instead of a 

sharper one. Now let us compare these numerical results with our 

theoretical predictions. Indeed, the ripple sizes counted with the circle-like 

model are all less than the estimated Lth. Furthermore, by fitting those data 

with an exponential function, we found that the ripple distribution is in a 

good agreement with Eq. (2) for all the temperatures considered in our 

simulation [see solid line in Figure 3a]. This is not obvious at all since the 

estimate (2) looks too simple (in particular, it does not take into account 

interactions between ripples, their slowly decaying correlation functions 

[1,15,16] and other complications. Nevertheless, this simple estimate turns 

out to be qualitatively correct. In Table I, we list the fitting parameters in Eq. 

(2) at different temperatures with an introduced proportionality A. For 

example, at room temperature (T=300K), the obtained value of C is about 

8.63. When the temperature increases, both A and C increase, which 

probably reflects the temperature dependence of the bending rigidity 𝜅 

found in the previous study [12], not considered in our fitting process. On 

the other hand, we notice that when the temperature is over 200 K, the 

ripple density first increases and then decreases. To clarify this problem, we 

plot the relation between D and t/D in Figure 2b. When the ripple size is 

smaller than 10.5 Å, all ripple density decreases as t/D increases; but for 

ripples around 11.5 Å, the ripple density decreases after the initial increase. 

This indicates that as the environment temperature increases, more and 

more large ripples appear in graphene, and finally become dominant above 



the room temperature. These subtleties go beyond our simple analytical 

estimate. 

Table I Fitting parameters of the ripple distribution in Eq. (1) with the circle-

like model. Here the fitting is performed within an accuracy of 10-4 for the 

values of 𝑃(𝑡, 𝐷), and 𝜅 is fixed by using the value of pristine graphene at 

room temperature, i.e., 𝜅/𝑘𝐵𝑇 = 40 if T=300K.  

T 100 K 200 K 300 K 400 K 

A 25.39 32.20 34.99 36.86 

C 4.27 7.27 8.63 9.32 

Now we make an analysis of the simulation data using the arbitrary-shape 

model. We follow similar steps as performed in the circle-like model, i.e., we 

calculate {R} in 180 sectors as in the circle-like model, then extract {D} by 

summing R in each pair of sectors (𝜃 and 𝜃+180°). In this way, we will have 

90 values of D = R𝜃 + R𝜃+180°, forming a set {D} to characterize the size D of 

one ripple. A complete statistics of all 90 values may not be necessary, and 

here, we evaluate three important values from {D} : Dmin, Dmax and Dave, which 

stand for the minimum, maximum and average of the 90 values in {D}, 

respectively. The ripple distributions based on Dmin, Dmax and Dave are plotted 

in the left panel of Figure 3. Clearly, three D values obtained using the 

arbitrary-shape model are all much larger than those obtained using the 

circle-like model, especially Dmax and Dave. When the ripple size is 

characterized by Dmin, the ripple density is discrete within the range from 4 

to 17 Å and the highest peak appears around 4 Å, while the same data 

analyzed by Dmax shows that the ripples accumulate from 1.5 to 3.7 nm with 

the highest peak around 3.45 nm. On the contrary, the peaks obtained by 

Dave are nearly continuously distributed, and those ripples are highly 

accumulated in the range from 1.8 to 2.5 nm.  



 

Figure 3 Temperature-dependent ripple distribution in graphene membrane 

using the arbitrary-shape model. The left panel shows the ripple density as a 

function of Dmin, Dmax and Dave, respectively. The purple bar indicates possible 

ripple size using the lattice of pristine graphene. The right panels show the 

corresponding relations between the ripple density and t/D using Dmin, Dmax 

and Dave.  

Now, we turn to the relation between the ripple density and t/D as shown in 

the right panels of Figure 3. In general, the numerical results using Dmin, Dmax 

and Dave show similar dependence of  𝑃(𝑡, 𝐷)  just as in the circle-like model, 

but with a much faster decreasing rate. When t/Dmin (t/Dave) is larger than 



0.08 (0.06), the density of ripple becomes zero, this is because the statistic D 

values here are much larger than those in the circle-like model, resulting in a 

smaller threshold of t/D. However, if the ripple density is counted by t/Dmax, 

we see that it first increases to a maximum value around t/Dmax = 0.05, and 

then decreases gradually to 0 around t/Dmax = 0.12, which is close to the 

threshold of the circle-like model. In fact, as a ripple is generally anisotropic 

and Dmax is the maximum value from  R𝜃 + R𝜃+180°, there could be cases that 

the decay of the ripple is very slow along one direction, therefore t  will keep 

small, and Dmax could be very large, leading to small t/Dmax. Therefore, Dmax 

may not be a good quantity to characterize the real ripple size, especially if 

we obtain a small t/Dmax. Once again, by performing fitting processes with 

the data based on Dmin or Dave, we find that the ripple distribution agrees well 

with the prediction in Eq. (2). The corresponding fitting parameters of A and 

C are listed in Table II. However, it is notable that the value of C using Dmin or 

Dave is one or two orders larger than that in the circle-like model. In the case 

of Dmax, because the value of Dmax is accumulated around 3.45 nm which is 

larger than the estimated 𝐿𝑡ℎ ≈ 3 nm, we have to fit the data by Eq. (5) 

instead of Eq. (2). Due to the reason mentioned above,  𝑃(𝑡, 𝐷) can only be 

captured by the theoretical prediction for large t/Dmax, namely, the ripple 

distribution using the definition of Dmax follows the expression of Eq. (5). 

Besides, the values of C at different temperatures are all in the same order 

as that in the ripple-like model. To this end, we can conclude that, for a given 

graphene membrane, if the definition of the ripple size is different, then the 

distribution function of ripples may vary dramatically. Even so, all of them 

meet the standard or corrected Boltzmann distribution.  

Table II Fitting parameters of the ripple distribution using the arbitrary-shape 

model. Here Eq. (2) is adopted for data based on Dmin and Dave, and Eq. (5) is 

used for Dmax.  

 
T 

t/Dmin t/Dave t/Dmax 

A C A C A C 
100 K 35.2 9.94 47.76 28.12 31.30 1.78 

200 K 48.93 18.51 72.89 67.40 39.60 3.45 



300 K 56.52 23.68 99.14 112.79 46.61 5.17 

400 K 60.54 26.39 120.57 156.01 51.62 6.78 

In summary, we provide a theoretical analysis of the ripple distribution in 

graphene membrane at finite temperature and verified our estimations via 

the semiclassical molecular dynamics simulations. We introduced two 

geometric models to study numerically the distribution of ripples in 

simulated graphene membrane. In the circle-like model, we emphasize the 

effect of temperature on the density of ripples. In a contrast to some intuitive 

feeling, not all the density of ripples will increase when the ambient 

temperature increases. In the arbitrary-shape model, we conclude that if the 

ripple size is defined differently, one can get totally different distribution 

functions for the same membrane. More importantly, we found in both 

models that once the ripple size is well defined, the ripple density decays 

exponentially as the curvature (t/D) increases in a way of the standard or 

corrected Boltzmann distribution for small and large ripples, respectively. 

These numerical results are constant with our theoretical predications 

derived analytically from the bending energy of the membrane. Thus, our 

combined theoretical and numerical studies will present a deep 

understanding of ripples in graphene and other related 2D materials.  
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