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Long-range interacting systems exhibit unusual physical properties not shared by systems with
short-range interactions. Understanding the dynamical and statistical effects of long-range inter-
actions yields insights into a host of physical systems in nature and industry. In this work, we
investigate the classical microscopic dynamics of screened Coulomb interacting particles confined
in the disk, and reveal the featured dynamics and emergent statistical regularities created by the
long-range interaction. We highlight the long-range interaction driven fast single-particle and col-
lective dynamics, and the emergent topological defect structure. This work suggests the rich physics
arising from the interplay of long-range interaction, topology and dynamics.

I. INTRODUCTION

The classical mechanical model of interacting parti-
cles is of great historical and scientific significance [1–3].
Based on the short-range interacting particle model, Lud-
wig Boltzmann completed the statistical interpretation
of thermodynamics, and derived the famous H-theorem
that has inspired profound discussions on the foundation
of statistical mechanics [2, 4, 5]. Generalizing the phys-
ical interaction to the long-range regime invalidates the
basic concepts of additivity and extensivity, which con-
stitute the foundation of thermodynamics [6–8]. Long-
range interactions are also widely seen in a variety of
interdisciplinary systems at length scales covering mul-
tiple orders of magnitude [9–13]. Especially, the long-
range nature of the electrostatic interaction is crucial
for the self-assembly of exceedingly rich soft matters in
electrolyte solutions [14–18]. To deal with the notori-
ously challenging long-range interacting many-body sys-
tems, the approach based on numerical integration of the
equations of motion at high precision has proven to be
a powerful tool to reveal the fundamental microscopic
dynamics not accessible by mean-field theories [6, 19].
Elucidating the dynamical effects of long-range inter-
actions yields insights into various nonequilibrium pro-
cesses ranging from hydrodynamics [9, 10, 12] to electro-
static self-assembly [16, 20–22].

The goal of this work is to investigate the classical
dynamics of screened Coulomb interacting particles con-
fined in the disk. This work represents a generalization
of the previous studies on the equilibrium packing of
charged point particles in the disk from the static to the
dynamical regime [23–25]. This theoretical model can
be realized by colloidal experiments, where the screening
length is tunable by the salt concentration [14, 25–27].
Previous studies of the static disk model show that the
inhomogeneity in density created by the long-range re-
pulsion could induce Gaussian curvature and excite topo-
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logical defects [23–25, 28]. As a fundamental topological
defect, a disclination in a triangular lattice refers to a ver-
tex whose coordination number z deviates from six. The
disk model provides the opportunity to clarify a host of
questions with broad implications, such as: What is the
distinction of short- and long-range interactions in com-
manding single-particle and collective dynamics? Will
the defect structure revealed in the static system still per-
sist in the dynamical regime, and if yes, in which form?

To address these fundamental questions, we resort
to the adaptive Verlet method to construct long-time,
energy-conserved particle trajectories [19], and reveal the
featured energy transfer mode and fast single-particle
and collective dynamics under the long-range interaction.
By analyzing the convoluted collective dynamics from the
unique perspective of topological defects, we identify the
emergent statistical regularity in the distribution of topo-
logical charges, and uncover the fundamentally different
defect structures in short- and long-range interacting sys-
tems. The discovery of the emergent dynamical and sta-
tistical regularities in this work may have implications
in characterizing the intriguing physical effects of long-
range interactions.

II. MODEL AND METHOD

The model consists of a collection of N identical point
particles of mass m0 confined in a disk of radius r0 inter-
acting by the screened Coulomb potential. The Hamil-
tonian of the system is

H =

N∑
i=1

(
~p2i
2m

+ Vwall(|~xi|)
)

+
∑
i 6=j

V (|~xi − ~xj |).(1)

The confining potential

Vwall(|~xi|) =
1

2
k0(|~xi| − r0)2χ(|~xi| − r0), (2)

where χ(x) = 1 if x > 0, and χ(x) = 0 otherwise. The
screened Coulomb potential

V (r) = V0
1

r
e−

r
λ . (3)
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FIG. 1: Short- and long-range interacting particle systems exhibit distinct scenarios of dynamical evolution as represented in
the space of {x, vx}. (a)-(d) λ/a = 0.05. t/τ0 = {0.15, 0.90, 1.35, 5.85}. (e)-(h) λ/a = 10. t/τ0 = {0.0015, 0.009, 0.036, 6.0}.
The space is divided into 50 × 50 cells. The colored legends indicate the number of particles in δxδvx. x ∈ [−xm, xm]
and vx ∈ [−vm, vm]. (a)-(d) xm = {1.0, 1.0, 1.0, 1.0}. vm = {1.73, 2.5, 2.7, 3.6}. (e)-(h) xm = {1.0, 1.12, 1.13, 1.15}. vm =
{1.12, 27.1, 44.7, 58.2}. k0 = 105. N = 5000. V0 = 1.

The screened Coulomb potential allows us to investi-
gate the effects of the long-range interaction by com-
parison with that of the short-range interaction. Note
that the charge neutrality condition requires the exis-
tence of opposite charges, which are treated as contin-
uum background charges in our model. The model sys-
tem of charged particles with the effective interaction in
the form of Eq.(3) could be experimentally realized by
charged polymethyl methacrylate (PMMA) particles in
electrolyte solutions [25, 29]. No cut-off length is in-
troduced in the calculation of the long-range interaction
force. We distinguish the short- and long-range interac-
tions by the ratio λ/a by physical consideration, where
a is the mean distance between nearest particles. Under
the assumption that the particles are arranged by trian-

gular lattice, it is estimated that a/r0 =
√

2π/
√

3N .

The dynamical evolution of the system is governed
by the Hamiltonian in Eq.(1). We construct long-time,
energy-conserved particle trajectories by the adaptive
Verlet method, where the time step is dynamically vary-
ing for striking a balance of the energy conservation and
the computational efficiency. To highlight the effect of

the interaction range on the relaxation process, the par-
ticles are specified with a uniform velocity ~v(t = 0) = v0x̂
in the initial state. The initial positions of the particles
are randomly distributed by the standard procedure of
random disk packing [30]. We analyze the relaxation
process from both perspectives of the H-function and
the speed distribution function. In this work, the units
of length, mass, time, and energy are r0, m0, τ0, and
ε0, respectively. ε0 = m0(r0/τ0)2. τ0 = r0/v0. Typi-
cally, h = 10−7 and k0 = 105 to ensure that the total
energy is well conserved and the particles are geometri-
cally confined in the disk in our simulations. More sim-
ulation details are presented in Appendix A. The effects
of the stiffness k0 of the confining potential on both the
relaxation rate and the particle density distribution are
discussed in Appendices B and C.

III. RESULTS AND DISCUSSION

In Fig. 1, we show typical instantaneous states in the
dynamical evolution of the system in the space spanned
by the parameters x and vx for λ/a = 0.05 [Figs. 1(a)-(d)]
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FIG. 2: Fast dynamics under the long-range interaction as
demonstrated in the energy transfer process and the single-
particle motion. (a) and (b) Temporal variation of the system
energy for typical short- and long-range interacting systems.
(c) and (d) Plots of the mean squared displacement of a single
particle near the center of the disk. The quadratic (dashed
green) and linear (solid red) fitting curves indicate the ballistic
and diffusive motions. N = 5000. k0 = 105. V0 = 1.

and λ/a = 10 [Figs. 1(e)-(h)]. The dynamical evolutions
in the complementary space of {y, vy} are presented in
Appendix B. {x, y, vx, vy} constitute a complete single-
particle phase space (µ-space), where each point repre-
sents one particle with specific position and velocity. The
density of the points in the µ-space is indicated by color.
We see that the short- and long-range interacting sys-
tems exhibit distinct dynamical behaviors. The system
of λ/a = 10 reaches the equilibrium state much faster
than that of λ/a = 0.05. We also notice that, for the
case of λ/a = 0.05, the initial uniform motion of the par-
ticles along x-axis leads to the shrinking of the occupied
belt-like region, as shown in Fig. 1(b). In contrast, the
disk is always fully occupied for the case of λ/a = 10.

The total mechanical energy of the system is well con-
served in the dynamical evolution of the system, as shown
in Figs. 2(a) and 2(b). We see that the short- and long-
range interacting systems exhibit distinct energy transfer
mode between the kinetic and potential energies. Fig-
ure 2(b) shows the simultaneous reduction of the poten-
tial energy and the increase of the kinetic energy, indicat-
ing the conversion of the potential energy to the kinetic
energy. In contrast, we find that the situation is opposite
for the case of λ/a = 0.05 in Fig. 2(a). This featured en-
ergy transfer scenario is uniformly observed by changing
the value of V0 in the screened Coulomb potential from
V0 = 0.1 to V0 = 5 (see Fig. 7 in Appendix B). This
observation implies that, for long- and short-range in-
teracting systems with identical initial state, the former
system may possess a higher temperature in the final
equilibrium state, which will be discussed later. More

information about the dependence of the potential and
kinetic energies on λ is presented in Appendix A. Fig-
ures 2(a) and 2(b) also show that the kinetic and poten-
tial energy curves ultimately become flat, which can be
attributed to concurrent inverse collision processes in the
many-particle system.

The fast relaxation of the long-range interacting sys-
tem, as observed in Fig. 1, is also reflected in the varia-
tion of the energy curves in Figs. 2(a) and 2(b); note the
different time scales in the abscissa axes. A question nat-
urally arises: Do individual particles move faster under
the long-range interaction? To address this question, we
analyze the dynamics of a randomly picked single parti-
cle near the center of the disk to avoid any boundary ef-
fect. By averaging over 100 statistically independent par-
ticle trajectories, we plot the mean squared displacement
〈r2(t)〉 in Figs. 2(c) and 2(d) for both cases of λ/a = 0.05
and λ/a = 10. We uniformly observe the shift of the ini-
tial ballistic motion (the dashed green quadratic fitting
curves) to the diffusive motion (the solid red linear fitting
lines). Remarkably, the diffusion coefficient for λ/a = 10
is about 11 times of that for λ/a = 0.05. The speed of
the initial ballistic motion for the former system is about
48 times faster than the latter one. To conclude, the
single particle dynamics is significantly faster under the
long-range interaction.

We proceed to discuss the influence of the range of
interaction on the collective dynamics. Specifically, we
focus on the relaxation of the particle speed in the short-
and long-range interacting systems. According to clas-
sical statistical physics, if the interaction potential is a
function of particle coordinates only, the distribution of
the particle speed uniformly conforms to the Maxwell-
Boltzmann distribution regardless of the range of inter-
action [3]. However, the range of interaction may affect
the kinetic pathway of the relaxation process. To clarify
this question, we quantitatively characterize the relax-
ation process by both the H function and the quantity
δf2. As a measure of the deviation of the instantaneous
speed distribution f(v) from the Maxwell-Boltzmann dis-
tribution feq., δf

2 is defined as

δf2 =

∫ ∞
0

(f(v)− feq.(v))2dv. (4)

The H function measures the relative probability of an
out-of-equilibrium state, and its discrete expression is [2]:

H =
∑
i

ni log ni, (5)

where ni is the number of particles in the i−th cell of the
µ-space spanned by {x, y, vx, vy}.

Figures 3(a) and 3(b) show the H- and δf2-curves for
the cases of λ/a = 0.05 and λ/a = 10, respectively. From
the H-curves, we see that both systems tend to evolve
along the direction of reducing H [3]. The H-curves are
subject to persistent fluctuations in equilibrium. One
could read the relaxation time from both the H- and



4

FIG. 3: Fast relaxation of the particle speed under the long-range interaction. (a) λ/a = 0.05. (b) λ/a = 10. The relaxation
process is characterized by both the H function and the speed distribution function. δf2 is the deviation of the speed distribution
function f(v) from the Maxwell-Boltzmann distribution (see the main text for more information). The red arrows in (a) and
(b) indicate the common relaxation time as read from both the H- and δf2-curves. (c) Typical instantaneous distribution
curves in the relaxation process towards the equilibrium distribution (solid red curves). Upper panel: t/τ0 = 0.77 (green), 0.86
(blue), 1.0 (purple), and 5.85 (black). Lower panel: t/τ0 = 0.00012 (green), 0.001 (blue), 0.004 (purple), 6.0 (black). The red
arrows indicate the opposite movement of the peak. (d) Uniform collapse of the reduced speed distributions at varying λ on
the standard normalized Maxwell-Boltzmann distribution. The plot of the most probable speed vp against λ is presented in
the lower panel. N = 5000. k0 = 105. V0 = 1.

δf2-curves. These curves become stable after the char-
acteristic sites as indicated by the red arrows in Figs. 3(a)
and 3(b). And these sites give the value for the relaxation
time. The relaxation times as read from both the H- and
δf2-curves are identical, which implies the consistency of
both quantities of H and δf2 to characterize the relax-
ation process. Furthermore, comparison of Figs. 3(a) and
3(b) shows the significantly faster relaxation rate under
the long-range interaction by two orders of magnitude.
We also observe much faster relaxation of the orientation
of particle velocity in larger-λ systems (see Appendix B
for more information).

Typical instantaneous speed distributions are pre-
sented in Fig. 3(c). We see that the short- and long-range
interacting systems exhibit distinct kinetic pathways in
the relaxation process. The peak in the distribution pro-
file moves along opposite directions in these two kinds of
systems as indicated by the arrows. This phenomenon
can be understood from Fig. 2. Figure 2(b) shows that
the potential energy is converted into kinetic energy for
the case of λ/a = 10. The increase of the kinetic en-
ergy leads to the rightward movement of the peak in the
lower panel for λ/a = 10 in Fig. 3(c). This process is
reversed for the case of λ/a = 0.05. Furthermore, in the
relaxation of the long-range interacting system, we notice
the appearance of a new peak in the tail of the distribu-
tion profile [see the purple curve in the lower panel in
Fig. 3(c)]. This peak originates from the accumulation
of particle population in the high speed regime; the as-
sociated extra kinetic energy is provided by the release
of the stored potential energy in the long-range repulsive

system [see Fig. 2(b)].
The resulting equilibrium speed distributions indicated

by the solid red curves in Fig. 3(c) can be well fitted by
the two-dimensional Maxwell-Boltzmann distribution:

f(v)δv = N
v

v2p
exp

(
− v2

2v2p

)
δv, (6)

where the most probable speed vp =
√
kBT/m. By

rescaling the speed by vp, all the reduced speed distri-
butions at varying λ uniformly collapse on the standard
normalized Maxwell-Boltzmann distribution, as shown in
Fig. 3(d). The dependence of vp on λ is shown in the
lower panel in Fig. 3(d). Since T ∝ v2p, we conclude
that under the same initial condition the temperature of
a larger-λ system in equilibrium is indeed significantly
higher.

Now, we analyze the collective dynamics from the per-
spective of the underlying topological defect structure.
For a two-dimensional particle array, one can resort to
the standard Delaunay triangulation procedure to iden-
tify the particles whose coordination number z is devi-
ated from six [28]. These particles are known as discli-
nations, carrying topological charge q = 6− z. Elasticity
theory shows a remarkable analogy of disclinations and
electric charges; oppositely charged disclinations attract
and like-signs repel. The concept of topological charge
has proven crucial for understanding 2D crystal melt-
ing [31, 32], healing of crystalline order [33, 34], packing
of twisted filament bundles and virus [35–37], and non-
equilibrium dynamics [38, 39].
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FIG. 4: Short- and Long-range interacting systems exhibit
fundamentally different topological defect structures. (a)
Classification of the particles by the topological charge. (b)
Plot of 〈Q〉 vs λ. 〈Q〉 is the mean total topological charge
within the circular region indicated by the dashed red cir-
cle in (a). Notice that 〈Q〉 becomes negative at large λ. (c)
and (d) show the distributions of Q in statistically indepen-
dent equilibrium particle configurations for λ/a = 0.05 and
λ/a = 10, respectively. N = 5000. k0 = 105. V0 = 1.

In Fig. 4(a), we demonstrate the Delaunay triangula-
tion of an instantaneous particle configuration. Different
types of disclinations are indicated with different colors.
We focus on the total topological charge Q within the cir-
cular region of radius r = r0−a. Previous studies on the
static packing of long-range repulsive particles confined
in the disk reveal the negative value for Q, indicating
the emergent hyperbolic geometry in the inhomogene-
ity created by the long-range interaction [23–25]. Here,
we generalize the disk model from the static to the dy-
namical regime, and explore the defect structure in the
dynamical long-range interacting system.

We analyze hundreds of statistically independent equi-
librium particle configurations at varying λ, and obtain
the histograms of the total topological charge Q for the
cases of λ/a = 0.05 and λ/a = 10 as shown in Figs. 4(c)
and 4(d). From Fig. 4(d) for λ/a = 10, we see that
in most equilibrium states the total topological charge
is negative. However, equilibrium states with positive
Q also exist. In contrast, the value for Q is negative
in the static ground state of long-range interacting disk
system [23–25]. As such, the dynamical disk model sup-
ports richer defect structures. Figure 4(d) shows that
the mean value for Q is negative for λ/a = 10. In con-
trast, for the case of λ/a = 0.05 in Fig. 4(c), the total
topological charge is uniformly positive in all of the equi-
librium states. The dependence of 〈Q〉 on λ is plotted
in Fig. 4(b); we obtain the values for 〈Q〉 and the er-
ror bars by analyzing over 200 statistically independent
particle configurations in equilibrium. Figure 4(b) shows

that the value for 〈Q〉 turns negative with the increase
of λ. Therefore, it is in the sense of statistical aver-
aging that the dynamical long-range interacting system
preserves the negative 〈Q〉-value and the hyperbolic ge-
ometry as in the static system.

Finally, we briefly discuss the issue of boundary ef-
fect. The confining geometry of the disk brings in the
length scale r0 (the radius of the disk). The degree of
the boundary effect may be measured by the ratio λ/r0.
Calculations show that the value of λ/r0 is as small as
0.02 for λ/a = 0.75, when 〈Q〉 becomes negative as shown
in Fig. 4(b). As such, the phenomenon of negative 〈Q〉-
value reflects the intrinsic dynamical and statistical prop-
erty of the long-range interacting system. We also notice
that the value of λ/r0 increases from 0.02 (λ/a = 0.75)
to 0.27 (λ/a = 10). To reduce the boundary effect and
meanwhile to retain the effect of long-range interaction,
one shall work in the regime of small λ/r0 and large λ/a.
This condition can be fulfilled by specifying a large value

for N , since λ/r0 = (λ/a) × (
√

2π/
√

3N). By striking

a balance of simulation time and system size, the maxi-
mum value for N is 5000 in this work. Since the compu-
tation time is a quadratic function of N for simulating
long-range interacting systems, it is desirable to employ
efficient algorithm to approach the large-N limit for ex-
ploring the interested regime of small λ/r0 and large λ/a.
This is beyond the scope of this work.

IV. CONCLUSION

In summary, based on the screened Coulomb interact-
ing disk model, we investigate the dynamical and sta-
tistical effects of the long-range interaction by analyz-
ing the classical microscopic dynamics. Specifically, we
reveal the fundamental difference of the short- and long-
range interactions in the aspects of energy transfer mode,
single-particle and collective dynamics, and the underly-
ing defect structure. This work demonstrates the emer-
gent dynamical and statistical regularities in long-range
interacting many-particle systems, and suggests the rich
physics arising from the interplay of long-range interac-
tion, topology and dynamics.
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FIG. 5: Plot of the potential energy Ep and the kinetic energy
Ek versus λ in equilibrium state. N = 5000. k0 = 105.
V0 = 1.

Appendix A: Simulation details

We employ the adaptive Verlet method to construct
long-time particle trajectories [19]. The time step dt is
dynamically varying for striking a balance of the energy
conservation and computational efficiency.

We denote the trajectory of any particle labelled i as
{~xi(tj)}. From the initial state specified by ~xi(t0) and

~̇xi(t0), we obtain ~xi(ti = t0 + h) by

~xi(t+ h) = ~xi(t) + ~̇xi(t)h+
1

2
~̈xi(t)h

2 +O(h3).

~̈xi(t) = ~Fi(t)/m0, ~Fi(t) is the force on the particle i

at time t, and m0 is the mass of the particle. ~Fi =∑
i 6=j

~Fij + ~FiW , where the first term is the interaction
force from all the other particles, and the second term
arises if |~xi| > r0. According to the adaptive Verlet
method, from ~xi(tj) and ~xi(tj−1), we have

~xi(tj+1) = ~xi(tj) + (~xi(tj)− ~xi(tj−1))
dtj
dtj−1

+~̈xi(tj)
dtj + dtj−1

2
dtj . (7)

For uniform time step dtj = h, the above equation re-
duces to the ordinary Verlet integration scheme:

~xi(t+ 2h) = 2~xi(t+ h)− ~xi(t) + ~̈xi(t+ h)h2 +O(h4).

We employ the procedure of random disk packing to
generate the initial random configuration [30]. Specifi-
cally, the disks of radius rd are placed within the circle of
radius r0 in sequence. In this process, each newly added
disk shall not overlap any existent disk. The centers of
the disks constitute the initial positions of the point par-
ticles. Typically, the value of rd is about 0.3a, where a is
the mean distance of nearest particles. The reason of us-
ing random disk packing instead of random point packing
is as follows. Simulations show that random point pack-
ing could lead to aggregation of particles. The resulting
large force requires a very fine time step to fulfill the con-
servation law of energy, which significantly slows down
the dynamical evolution of the system in simulations.

The total mechanical energy in our simulations is well
conserved at a high precision up to several decimal digits

in the energy value. In the main text, we have shown the
temporal variation of the kinetic and potential energies.
Here, in Fig. 5, we plot the kinetic and potential energies
versus λ in equilibrium state. From Fig. 5(a), we see
that the potential energy increases much faster than the
kinetic energy. Furthermore, Fig. 5(b) shows the rapid
decline of the ratio Ek/Ep with the increase of λ.

Appendix B: More information about relaxation
kinetics

Typical instantaneous states in the dynamical evolu-
tion of the system in the space spanned by x and vx are
presented in Fig. 1 in the main text. In Fig. 6, we further
present the identical dynamical evolutions as in Fig. 1 in
the complementary space of {y, vy}. It is observed that
for the case of λ/a = 10, the patterns in both spaces of
{x, vx} and {y, vy} become similar after t/τ0 = 0.009 [see
Fig. 1(f) and Fig. 6(f)]. In other words, the distribution
function for the system of λ/a = 10 becomes symmet-
ric with respect to (x, vx) and (y, vy) in a much faster
fashion in comparison with the system of λ/a = 0.05.

In Fig. 7, we show the temporal variation of the kinetic
and potential energies for typical short- and long-range
interacting systems under varying V0. The value of V0
reflects the strength of the screened Coulomb potential,
as shown in Eq.(3). Since V0 is measured in the unit of
m0r0v

2
0 , varying V0 is equivalent to changing the value of

the initial speed v0. Figure 7 shows that the conversion
of kinetic and potential energies in either short- or long-
range interacting systems conforms to a common scenario
as the value of V0 is varied from V0 = 0.1 to V0 = 5.
We also notice that unlike the case of λ/a = 10 [the
lower panels in Figs. 7(d)-7(f)], the total energy of the
systems with λ/a = 0.05 is almost invariant as the value
of V0 is varied. This could be attributed to the short-
range nature of the interaction, which resembles a hard
repulsion at short distance.

In Figs. 8(a) and 8(b), we present typical instantaneous
distributions of the orientation of the particle velocity in
the relaxation process for λ/a = 0.05 and λ/a = 10,
respectively. θ is the angle between the direction of the
particle velocity and x-axis. Similar to the relaxation
of particle speed, the relaxation of θ in the long-range
interacting system is also much faster than that in the
short-range interacting system.

In Figs. 9(a) and 9(b), we show the temporal variation
of the H function under a softer confining potential for
λ/a = 0.05 and λ/a = 10, respectively. Here, k0 = 104,
which is ten times less than the case we have discussed
in the main text. In comparison with the H-curves in
Figs.3(a) and 3(b) in the main text, we find that a softer
confining potential tends to significantly slow the relax-
ation kinetics for the long-range interacting system. The
relaxation time increases from about 0.07τ0 at k0 = 105

to about 0.2τ0 at k0 = 104. In contrast, the relaxation
rate of the short-range interacting system is unaffected
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by the stiffness of the boundary wall.

Appendix C: Distribution of particle density in
equilibrium

Figures 10(a) and 10(b) show the square root of the
cumulative particle distribution in equilibrium particle
configurations. n(r) is the total number of particles in-

side the circle of radius r. We find that the
√
n(r) curve

for λ/a = 0.05 is linear in the interval r/r0 ∈ [0, 1] in
both Figs. 10(a) and 10(b), where r0 is the radius of the

disk. The linearity of
√
n(r) with r indicated a uniform

distribution of particles, since
√
n(r) =

√
πρ0r ∝ r for

a uniform particle distribution of density ρ0. Figure 10
shows that changing the stiffness of the confining poten-
tial leads to the variation of the particle density for the
long-range interacting system. More particles are accu-
mulated near a softer boundary, which reduces the par-
ticle density within the disk. In contrast, for the short-
range interacting system, the particle density distribu-
tion is almost unaffected by the stiffness of the confining
potential.
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FIG. 6: Short- and long-range interacting particle systems exhibit distinct scenarios of dynamical evolution as represented in
the space of {y, vy}. (a)-(d) λ/a = 0.05. t/τ0 = {0.15, 0.90, 1.35, 5.85}. (e)-(h) λ/a = 10. t/τ0 = {0.0015, 0.009, 0.036, 6.0}.
The space is divided into 50 × 50 cells. The colored legends indicate the number of particles in δyδvy. y ∈ [−ym, ym]
and vy ∈ [−vm, vm]. (a)-(d) ym = {1.0, 0.9, 1.0, 1.0}. vm = {1.92, 2.6, 2.83, 3.24}. (e)-(h) ym = {1.01, 1.12, 1.12, 1.15}.
vm = {16.40, 28.50, 42.21, 59.23}. k0 = 105. N = 5000. V0 = 1.

FIG. 7: Temporal variation of the kinetic (red curves) and potential (blue curves) energies for typical short- and long-range
interacting systems under varying strength V0 of the screened Coulomb potential. N = 1000. k0 = 105.



9

FIG. 8: Relaxation of the orientation of the particle velocity
for λ/a = 0.05 (a) and λ/a = 10 (b). θ is the angle between
the direction of the particle velocity and x-axis. In (a), t/τ0 =
0.57 (green), 2.07 (blue), 3.57 (purple), and 5.85 (black). In
(b), t/τ0 = 0.0001 (green), 0.0003 (blue), 0.0006 (purple), and
0.01 (black). N = 5000. k0 = 105. V0 = 1.

FIG. 9: Temporal variation of the H curve under a softer
confining potential in comparison with that in the main text.
k0 = 104. λ/a = 0.05 (a) and λ/a = 10 (b). The H curve for
λ/a = 10 (b) takes longer time to become stable than that
at k0 = 105. In contrast, the H curve for λ/a = 0.05 (a) is
almost identical to Fig.3a in the main text for λ/a = 0.05 and
k0 = 105. N = 5000. V0 = 1.

FIG. 10: Plot of the square root of the cumulative particle
distribution

√
n(r) in equilibrium configurations. k0 = 104

(a). k0 = 105 (b). The solid red lines represent the uniform
distribution of particles. N = 5000. V0 = 1.
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