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1 Abstract

Testing individuals for pathogens can affect the spread of epidemics. Understanding how
individual-level processes of sampling and reporting test results can affect community- or
population-level spread is a dynamical modeling question. The effect of testing processes
on epidemic dynamics depends on factors underlying implementation, particularly testing
intensity and on whom testing is focused. Here, we use a simple model to explore how the
individual-level effects of testing might directly impact population-level spread. Our model
development was motivated by the COVID-19 epidemic, but has generic epidemiological and
testing structures. To the classic SIR framework we have added a per capita testing intensity,
and compartment-specific testing weights, which can be adjusted to reflect different testing
emphases — surveillance, diagnosis, or control. We derive an analytic expression for the
relative reduction in the basic reproductive number due to testing, test-reporting and related
isolation behaviours. Intensive testing and fast test reporting are expected to be beneficial at
the community level because they can provide a rapid assessment of the situation, identify hot
spots, and may enable rapid contact-tracing. Direct effects of fast testing at the individual
level are less clear, and may depend on how individuals’ behaviour is affected by testing
information. Our simple model shows that under some circumstances both increased testing
intensity and faster test reporting can reduce the effectiveness of control, and allows us to
explore the conditions under which this occurs. Conversely, we find that focusing testing on
infected individuals always acts to increase effectiveness of control.
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2 Introduction

The observed dynamics of the COVID-19 epidemic have been driven both by epidemiologi-
cal processes (infection and recovery) and by testing processes (testing and test reporting).
In addition to shaping epidemic observations (via case reports), testing processes also alter
epidemiological dynamics (Peto, 2020; Taipale et al., 2020). Because individuals with con-
firmed infections (positive tests) are likely to self-isolate, and individuals who are awaiting
the results of a test may also do so, testing will generally increase the number of people who
are isolating and hence reduce epidemic growth rates. We developed a mechanistic model
that incorporates epidemic processes and testing in order to explore the effects of testing
and isolation on epidemic dynamics.

If testing influences behaviour, then epidemic dynamics will depend on who gets tested.
The impacts of testing will depend both on testing intensity (tests performed per day) and
on how strongly testing is focused on people who are infectious. This level of focus depends
in turn on the purpose and design of testing programs. When testing is done for the purposes
of disease surveillance (Foddai et al., 2020) tests are typically conducted randomly (or using
a stratified random design) across the population in order to make an unbiased assessment
of population prevalence.

Over the course of the COVID-19 pandemic, however, the vast majority of testing has
been done with other goals – primarily diagnostic (determining infection status for clinical
purposes) (Phua et al., 2020; WHO, 2020), or for control (determining infection status in
order to isolate cases that have been found by contact tracing) (Aleta et al., 2020; Kucharski
et al., 2020; Grassly et al., 2020; Smith et al., 2020), which we characterize as targeted testing
strategies. In these situations, testing probabilities can differ sharply across epidemiological
compartments; in our dynamical model, we will characterize these probabilities by assign-
ing a testing weight to each compartment that determines the relative probability that an
individual in that compartment will be selected for testing (see Methods).

Diagnostic testing focuses on people with infection-like symptoms; thus the relative test-
ing weights for infected people will depend on the relative probability of infected people
having symptoms. For COVID-19 infection, the testing weights will depend on the propor-
tion of asymptomatic infections, the time spent pre-symptomatic vs. symptomatic during
the course of an infection, and on the incidence of COVID-19-like symptoms among people in
the population not infected with COVID-19. Testing for epidemic control focuses on known
contacts of infected people; in this case the testing weights for infected vs. uninfected people
will depend on the probability of infection given contact, as well as the effectiveness of the
system for identifying suspicious contacts.

When a new infectious disease emerges, it is important to determine whether it will grow
exponentially in a susceptible population, and if so at what rate r (Ma et al., 2014). The
condition for positive exponential growth (r > 0) is commonly expressed as R0 > 1, where
the basic reproduction number R0 is the expected number of secondary infections arising
from a typical infective individual in a completely susceptible population (Dietz, 1993).
Although the value of R0 cannot completely characterize the dynamics of our model (Shaw
and Kennedy, 2021), it does give a simple and widely accepted index for the difficulty of
control, as well as an indication of the likely final size of an epidemic (Ma and Earn, 2006;
Miller, 2012).
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Figure 1: Flowchart of the SIR (Susceptible-Infectious-Recovered) model, A1. The disease-based
status of a compartment X (X ∈ {S, I,R}) is combined with the testing status including Xu,
Xp, Xn and Xc, for untested, waiting-for-positive, waiting-for-negative, or confirmed positive, re-
spectively. The force of infection is denoted by Λ (Eq. (3)); γ is the recovery rate; ω is the rate
of test return; and TX (Eq. (2)) and pX represent the per capita testing rate and the sensitivity
(probability of positive tests), respectively, for compartment X. For further description of the
parameters see Table 1. Note that there is a slight mismatch in the top-to-bottom order of the
testing-based compartments of each disease-based compartment X between this flowchart and the
model equations (A1); here we have switched Xu and Xn for visual clarity.

In order to understand the effect of testing processes on epidemic dynamics, we ex-
panded one of the simplest mechanistic epidemic models—the standard deterministic SIR
model(Kermack and McKendrick, 1927; Anderson and May, 1991)—to include testing com-
ponents. This model provides a sensible platform to link the modeling of epidemic and
testing components and study their interaction. We studied the effects of testing intensity,
rate of test return, and isolation efficacy, on transmission probability and epidemic dynamics
when different levels of testing focus (from random to highly targeted) are in place.

3 Methods

Our model groups individuals based on disease status (Susceptible, Infectious or Recov-
ered) and testing status (untested, waiting-for-positive, waiting-for-negative, or confirmed
positive) (Fig. 1). The testing status of an individual in a given disease compartment X
(where X ∈ {S, I, R}) is denoted by a subscript, namely Xu, Xp, Xn and Xc, for untested,
waiting-for-positive, waiting-for-negative, or confirmed positive, respectively. Two ‘accumula-
tor’ compartments, N and P , are included in order to collect cumulative reported negative or
positive tests. The model equations (A1) and details of calculation of the basic reproduction
number R0 are presented in Appendix A.1.

Table 1 defines the model parameters, which are generally per capita flows between
compartments, or modifiers to these flow rates. The novel component of the model lies in the
compartment-specific relative testing weights wS, wI and wR; these give the relative rates at
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which people in the S, I, and R compartments are tested, respectively. Thus, we can specify
different levels of testing focus from random (all weights equal) to highly targeted (higher
weights in more intensively tested compartments). For example, wI/wS = 3 means that
infected individuals are tested at three times the per capita rate of susceptible individuals.

In order to allow parameterization of the model by the total (overall) per capita testing
rate, we define the weighted size of the testing pool W = wSSu +wIIu +wRRu, and calculate
a scaling parameter for testing as:

σ =
ρN

W
, (1)

where ρ is the per capita testing intensity for the population, defined as the number of
daily tests administered in a population of size N . Thus, the per capita testing rate for
compartment X ∈ {S, I, R} is

TX = σwX . (2)

For a highly sensitive test, infected people typically flow through to the “confirmed positive”
(Ic, Rc) compartments and are thus not considered for further testing. Over the course of
the epidemic, a sufficiently large fixed testing rate as specified in (1) can exhaust the pool of
people available for testing, leading to a singularity when too few people are left untested to
support the specified rate. Although this phenomenon does not affect our analysis of R0, it
can affect model dynamics (we present an adjustment to the model that solves this problem
in Appendix A.5).

The classical SIR model assumes a well-mixed population; homogeneity of the population
(i.e., all individuals are equally susceptible and equally infectious with the same recovery rate
when infected); exponentially distributed duration of infection; and large population size
(Keeling and Rohani, 2011). In addition to these standard assumptions, our model assumes:

(i) there is a single force of infection (new infections per unit time per susceptible), Λ,
defined as

Λ =
β

N

(
Iu + (1− θw)(In + Ip) + (1− θc)Ic

)
, (3)

with transmission rate β; θw is the isolation efficacy (reduction of the probability of
transmission) for individuals waiting for test results, while θc is the isolation efficacy for
individuals who have received a “confirmed” positive test (Table 1). Susceptible indi-
viduals who are waiting for test results experience an additional transmission reduction
factor of 1− θw (Fig. 1).

(ii) confirmed-positive individuals isolate at least as effectively as those awaiting test re-
sults, i.e.,

0 ≤ θw ≤ θc ≤ 1.

For simplicity we assume that tests are perfectly specific — uninfected individuals never test
positive (ps = 0). Thus there are no waiting-for-positive or confirmed-positive susceptible
individuals, which reduces the number of model states from 12 to 10.

The Disease-Free Equilibrium (DFE) for the expanded SIR model (Eqs. A1) is found by
setting the infected compartments to 0 and solving for the unknowns. The DFE is

S∗n =
ρ

ω
N, S∗u = N − S∗n, and Ij = Rj = 0 for all j. (4)
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Symbol Description Unit Value

N Total population size people 106

ω

Rate of test return, i.e., rate
of onward flow from “waiting”
to “confirmed” or “untested”
compartments

1/day -

γ Recovery rate 1/day 1/6

ρ per capita testing intensity 1/day -

θw

Isolation efficacy (reduction of
the transmission probability) for
“waiting” individuals

- -

θc
Isolation efficacy for “confirmed
positive” individuals

- -

β Transmission rate 1/day 0.5

Λ Force of infection 1/day -

pS
Probability of positive tests for
S (= 1− specificity)

- 0

pI
Probability of positive tests for I
(= sensitivity)

- 1

pR
Probability of positive tests for
R (= 1− specificity)

- 0.5

wS, wI , wR Relative testing weights - Random: {1, 1, 1}
Targeted: {0.3, 1, 1}

Table 1: Parameters of the model specified by the flow chart in Fig. 1 and equations (A1).
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The corresponding per capita testing rate (Eq. 2) for the infected compartment I at DFE is
one of the key analysis parameters and can be simplified as

T̂I = (ωρ/(ω − ρ))wI/wS . (5)

The basic reproduction number, R0, was calculated by using the next-generation matrix
method (van den Driessche and Watmough, 2002). We write R0 as

R0 =
β

γ
(1−∆) , (6)

where β/γ is the classical value for a simple model (Keeling and Rohani, 2011), and 1−∆
is the proportional reduction due to testing and isolation processes. ∆ therefore measures
the “effectiveness of control”: how much these processes in reducing spread from low levels,
and is in turn given by:

∆ =
1

CN

(
C1S

∗
u + (C2(1− θw) + Cθw)S∗n

)
, (7)

where

C = (ω + γ)
(
γ(ω + γ) + (γ + ωpI)T̂I

)
, (8)

C1 = (ω + γ)(θwγ + θcωpI)T̂I , (9)

C2 =
(
ωγ(1 + pI)T̂I + γ2(ω + γ + T̂I)

)
θw + ω2pI T̂Iθc. (10)

(Appendix A.1 gives a detailed derivation of these expressions.) This explicit formula enables
us to study the effects of testing and isolation parameters on R0 both analytically and via
numerical solutions. We are specifically interested in parameters that could be manipulated
by public health policy: isolation efficacy, θc and θw; per capita testing intensity, ρ; and the
rate of test return, ω. In particular, we look at the partial derivatives of ∆ with respect
to these parameters (Appendices A.2 and A.3). We derived general expressions for these
derivatives. However, we analyzed the effect of ω on ∆ for the special case of low testing
intensity. Specifically, by making the restriction ρ � 1, we are able to Taylor-expand ∆ at
ρ = 0, use the linear approximation with respect to ρ and analyze the resulting simplified
derivatives to illustrate a surprising non-monotonic relationship between ∆ and ω.

Analytic calculation of the next-generation matrix and simplification of the R0 expres-
sion, were performed in Maple™ (Maple, 2010); numerical calculation and contour plots were
done in R (R Core Team, 2020). We computed the values and contours of ∆ at both low
(Fig. 2) and high (Fig. 3) testing intensities, and for both random testing (wS = wI = wR =
1) and targeted testing (wS = 0.3; wI = wR = 1). Because it is expressed as a proportion
of R0, the effectiveness of control ∆ is (at least in the ρ � 1 case, Eq. A22) independent
of the transmission rate β, and hence of R0 in the case where we vary R0 by changing the
transmission rate for a fixed generation interval.

The low-testing case (Fig. 2) reflects the case where testing intensity ρ is small relative
to the population size. Specifically, ρ ∈ [0, 0.013], and test return rate ω ∈ [1/12, 2]. This
testing intensity is of the correct order of magnitude (although typically larger than) test-
ing rates during the COVID-19 pandemic, i.e., a maximum of 1.3% of the population per
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day (approximately four times the maximum testing rate in Ontario, Canada in mid-2021).
The less realistic high-testing case (Fig. 3) is included to highlight the occurrence of non-
monotonic changes in R0 with respect to ρ. In Fig. 3 the maximum capacity of ρ is larger
relative to the population size, ρ ∈ [0, 1/5) and the test return rate ω ∈ [1/5, 2]; these values
are clearly unrealistic for a large population but might be relevant for small populations un-
dergoing focused testing, such as a sports league or university. In these figures, the implied
baseline reproduction number (for the SIR model without testing) is R0 = β

γ
= 3. The

different ranges of test return rates ω for the cases of low and high testing intensities is due
to the restriction ρ < ω, which is a requirement for a feasible DFE (4).

4 Results

We presented R0 as the product of the classical reproduction number, β/γ, and the pro-
portional reduction due to testing and isolation, 1 −∆, (6). We can use the formula for ∆
(7) to make a number of straightforward inferences about parameters that affect R0 mono-
tonically, i.e., for which the associated partial derivative of ∆ always has the same sign (see
Appendices).

1. Increasing isolation efficacy for waiting (θw) and confirmed-positive (θc) individuals
always increases ∆ (Eqs. A12, A15, A17);

2. Higher testing intensity ρ increases ∆ if testing is random (all wX equal) or testing
intensity (ρ) is small (Eq. A19).

3. Increasing the rate of test return (ω) always increases ∆ if waiting individuals do not
isolate (θw = 0) (Eq. A23).

4. Increasing testing focus, i.e., changing the testing weights from random (wS = wI)
toward targeted (wS < wI), always increases ∆ (Eq. A27).
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Figure 2: Effectiveness of testing and isolation in reducing R0 at low per capita
testing intensity (ρ). Numerical evaluation of the effectiveness of control (∆: eq. 7),
over a range of testing and isolation parameters. Parameter values (Table 1): β = 0.5/day,
1/γ = 6.0 days (baseline R0 = 3.0, r = 0.3); ω ∈ [1/12, 2]/day; ρ ∈ [0, 0.013]/day per capita;
θw and θc vary between 0 (no effect of isolation) and 1 (complete elimination of transmission);
pS = 0, pI = 1 and pR = 0.5. Only parameter sets where θc ≥ θw (confirmed-positive
individuals isolate more effectively than waiting individuals) are shown; the alternative case,
θw > θc, is unrealistic. Contours of ∆ are plotted for (a) random testing (wS = wI = wR = 1)
and (b) targeted testing (wS = 0.3; wI = wR = 1).

However, there are also two specific cases where ∆ changes non-monotonically, in coun-
terintuitive directions, as a function of testing and isolation parameters.

• We would generally expect increasing testing delays to increase R0, thus decreasing
effectiveness of control ∆. This is in fact what happens when waiting individuals do
not isolate (θw = 0, top row of Fig. 2) — as we move to the right within each plot
in this row, ∆ decreases. However, when waiting individuals isolate (θw > 0), we
more often see the opposite effect: longer testing delays lead to a greater control effect
∆ (reduced R0). The reason is that people waiting for negative tests are assumed to
continue to isolate; this applies both to susceptibles and to people who became infected
while waiting for negative test results. This effect outweighs the effect of confirmed
individuals isolating, except when this isolation parameter (θc) is substantially greater
than θw. This result depends on the idea that, all else equal, people who have to wait
longer for test results isolate at the same level (but for a longer time) as they would if
the wait were shorter.

• Fig. 2 also shows that greater testing intensity (increasing ρ) generally increases the
effectiveness of control (moving up in each panel). However, this relationship can
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Figure 3: Effectiveness of testing and isolation in reducing R0 at high per capita
testing intensity. Numerical evaluation of the effectiveness of control (∆: eq. 7), over a
range of testing and isolation parameters. Parameters as in Fig. 2 except: ω ∈ [1/5, 2]/day,
ρ ∈ [0, 1/5)/day. As in Fig. 2, subplots show (a) random testing where wS = wI = wR = 1
and (b) targeted testing where wS = 0.3 and wI = wR = 1.

be reversed at very high testing intensities (provided testing is targeted, and θw is
relatively small; Fig. 3(b), right three panels of top row). It is theoretically possible
for increasing testing intensity to increase R0 because more rapid testing leaves more
susceptibles in the “waiting-for-negative-results” category at the DFE; if these people
become infected while waiting, they will need to wait for their negative test result
before they can be tested again, receive a positive test, and then begin self-isolating.
This effect is usually weak compared to the beneficial effects of testing.

5 Discussion

In this paper, we have developed and analyzed a simple compartmental model that com-
bines epidemiological dynamics—as defined by a simple SIR model—with the dynamics of
testing and isolation. Our model is a caricature: it models the most basic feedbacks between
epidemic and testing processes, but does not attempt to incorporate the many known com-
plications of COVID-19 epidemiology (e.g., exposed, pre-symptomatic, and asymptomatic
compartments (Kain et al., 2021); time-varying testing rates; behavioural dynamics (Weitz
et al., 2020)). Thus, it is most appropriate for assessing the qualitative phenomena that arise
from the interactions between transmission dynamics and testing, rather than for making
quantitative predictions or guiding pandemic responses.

Many of the qualitative results we have derived confirm simple, common-sense intuitions.
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In particular, we can generally decreaseR0 by increasing isolation efficacy or testing intensity;
returning tests faster, if individuals do not isolate while they are waiting for results; or
increasing testing focus to target individuals who are likely to be infectious (e.g., symptomatic
people or close contacts of known infections).

However, we did find two surprising patterns: under some conditions longer delays in
returning tests can reduce epidemic spread, and increasing testing rates can increase spread.

Over broad regions of parameter space, decreasing ω—i.e., slowing the rate at which test
results are returned—decreases R0 (for random testing, the parameter region is θw & 0.25;
for targeted testing, θw ≥ 0.25 and either θc ≥ 0.5 or 1/ω > 5; see Table 1 for parameter
definitions). This result is counterintuitive and would not be expected by public health
authorities that have invested a great deal of effort in reducing delays from testing to results.
Dynamically, this effect occurs because speeding up test returns shortens the isolation period
of uninfected individuals (for infected people it only shortens the time to progression to the
isolation level of the confirmed-positive compartment). Slowing test returns increases R0

only if the proportion of infectives in the tested population is high and isolation is relatively
strong among people waiting for test results.

While slowing test returns does decrease R0 over broad regions of parameter space in our
model, there are several real-world processes missing from our model that make it unlikely
that slowing test returns would actually be an effective public health measure. First, we
do not model the primary benefit of rapid testing, i.e., detecting and containing outbreaks
while they are still in progress. This process could be modeled phenomenologically by mak-
ing the testing focus more targeted as an increasing proportion of cases is detected, because
finding infections allows tests to be concentrated on their connections. Second, individu-
als may become less likely to maintain isolation if they are required to do so for longer;
phenomenologically, we could allow effectiveness of isolation in the waiting population to
be an increasing function of test-return speed, or we could introduce a separate “waiting,
but no longer isolating” compartment that individuals entered from the “waiting, isolated”
compartment at a specified rate. Finally, if one wants to decrease the overall transmis-
sion rate of the population there are more effective methods than keeping tested people in
limbo; these include masking, ventilation, distancing measures, retail and event closures, and
stay-at-home orders.

The other counterintuitive result from our analysis is that, for sufficiently high testing
intensity ρ, further increasing testing intensity can actually increase R0 (e.g., Fig. 3(b),
upper right panel [θc = 1, θw = 0]). This phenomenon can occur because we are considering
the DFE in the presence of testing; thus there is an equilibrium distribution of susceptibles
between the Sn (untested) and Su (waiting) compartments even as the disease approaches
extinction. A higher rate of testing leads to a greater proportion of individuals waiting for
negative tests at the DFE. If infected, individuals in this group will take longer to be tested
again and to subsequently isolate (because they must wait for their negative tests to be
returned before being tested again). If isolation in this group (θw) is low, this effect can
under some (relatively rare) circumstances (high θc, low ω, high ρ) allow R0 to increase with
testing intensity. We can show that this phenomenon occurs only under targeted testing
(wI > wS), but we have not yet found a simple explanation of why it cannot occur under
random (unfocused) testing. This phenomenon is also unlikely to occur in the real world.
In particular, it depends on levels of testing that are unrealistically high (at least in large,
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general-population settings).
Although we model the testing process in more detail than typical epidemiological mod-

els, one place where more detail could be informative is in the processes determining the
testing weights {wS, wI , wR}. While random testing, as done for surveillance purposes, un-
ambiguously leads to equal testing weights, making precise quantitative connections between
public-health practices and testing weights is difficult in other contexts. The testing weights
reflect the correlation between an individual’s risk of infection and their likelihood of be-
ing tested due to age, occupation, geographic location, etc.. This correlation is influenced,
among many other factors, by the proportion of the uninfected population with COVID-
like symptoms (e.g., due to seasonal upper respiratory tract infections); the concentration
of transmission and testing in hot spots such as long-term care facilities and high-density
workplaces; the overall testing intensity (and hence, e.g., restriction to symptomatic indi-
viduals); and the proportion of COVID-infected people who are symptomatic. Future steps
should explore mathematically tractable ways to model some of these factors more pre-
cisely. For example, separating the infected class into exposed, symptomatic, and a- or pre-
symptomatic compartments and allowing the testing weights to vary across non-symptomatic
(exposed/asymptomatic/presymptomatic) vs. symptomatic compartments could reflect the
allocation of tests for diagnostic purposes (targeting symptomatic individuals) vs. contact-
tracing (targeting infected but non-symptomatic individuals) vs. screening (relatively equal
weights, depending on the venue). Alternatively, one could make the testing weights de-
pend on the testing intensity or test-return rate as suggested above. Whatever complexity
is added would probably put the model beyond reach of the analytical methods we have
used in this paper, but one could still use semi-numerical methods such as constructing the
next-generation matrix and using it to evaluate the derivatives of R0 with respect to the
parameters numerically.

Although testing and tracing is a key part of infection control strategies, mathematical
epidemiologists have typically analyzed it with detailed models designed to inform particular
public health efforts (Endo et al., 2020; Hellewell et al., 2020; Jenness et al., 2020), rather
than analyzing simple but general models of the feedback between testing and transmission
dynamics. There have been several modeling studies of testing and tracing dynamics and
their interaction with epidemiological dynamics. In the context of repeated screening and
random testing of isolated populations (such as the members of a university), Bergstrom
et al. (2020) provided analytical results quantifying the effects that proactive screening of
asymptomatic individuals and isolation of confirmed-positive cases could have in reducing the
spread of disease. Rogers et al. (2021) simulated a SEIR model with testing and isolation;
they similarly suggest a strategy of rapid testing with antigen tests and the subsequent
isolation of confirmed-positive individuals. Friston et al. (2021) model the effects of self-
isolation on testing and tracing with a focus on projections under different testing and tracing
scenarios. They conclude that the emergence of a second wave depends almost primarily on
the rate at which immunity is lost and that it is necessary to track asymptomatic individuals
in order to control the outbreak. Our modeling approach differs from these previous efforts
in that it examines the effects of test-return rates and of different levels of testing focus,
from random to highly targeted. We hope this paper will inspire further explorations of the
fundamental properties of epidemic models that incorporate explicit testing processes.
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A Appendix

A.1 Model and calculation of R0

The model in the form of a system of ordinary differential equations is

dSu/dt = −ΛSu − TSSu + ωSn, (A1a)

dSn/dt = −(1− θw)ΛSn + (1− pS)TSSu − ωSn, (A1b)

dSp/dt = −(1− θw)ΛSp + pSTSSu − ωSp, (A1c)

dSc/dt = −(1− θc)ΛSc + ωSp, (A1d)

dIu/dt = ΛSu − TIIu + ωIn − γIu, (A1e)

dIn/dt = (1− θw)ΛSn + (1− pI)TIIu − ωIn − γIn, (A1f)

dIp/dt = (1− θw)ΛSp + pITIIu − ωIp − γIp, (A1g)

dIc/dt = (1− θc)ΛSc + ωIp − γIc, (A1h)

dRu/dt = γIu − TRRu + ωRn, (A1i)

dRn/dt = γIn + (1− pR)TRRu − ωRn, (A1j)

dRp/dt = γIp + pRTRRu − ωRp, (A1k)

dRc/dt = γIc + ωRp, (A1l)

dN/dt = ω(Sn + In +Rn), (A1m)

dP/dt = ω(Ip +Rp), (A1n)

(see Table 1 for parameter definitions). The next generation matrix for this model is G =
FV −1, where matrix F represents the inflow of new infection to the infected compartments
and matrix V represents the flow in the infected compartments when the population is totally
susceptible. Matrices F and V are

F =β/N


S∗u (1− θw)S∗u (1− θw)S∗u (1− θc)S

∗
u

(1− θw)S∗n (1− θw)2S∗n (1− θw)2S∗n (1− θw)(1− θc)S
∗
n

0 0 0 0

0 0 0 0

 (A2)

=β/N


S∗u

(1− θw)S∗n

0

0


[

1, 1− θw, 1− θw, 1− θc

]
,
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and

V =


T̂I + γ −ω 0 0

−(1− pI)T̂I ω + γ 0 0

−pI T̂I 0 ω + γ 0

0 0 −ω γ

 . (A3)

The matrix inverse of V is

V −1 =
1

γC



γ(ω + γ)2 γω(ω + γ) 0 0

γ(ω + γ)(1− pI)T̂I γ(ω + γ)(T̂I + γ) 0 0

γ(ω + γ)pI T̂I γωpI T̂I Cγ/(ω + γ) 0

ω(ω + γ)pI T̂I ω2pI T̂I Cω/(ω + γ) C


, (A4)

where C =
(
γ(ω + γ) + (γ + ωpI)T̂I

)
(ω + γ) and T̂I is the per capita testing rate for the

infected people and represented in Eq. (5). Note that all the columns of matrix V −1 summ
up to 1/γ.

The particular form of F with two rows of zeros at the bottom results in the following
blocked form of matrix G.

G =

 G11 G12

0 0

 , (A5)

where both blocked matrices G11 and G12 are 2 by 2. Given the upper triangular form of
matrix G, the basic reproduction number R0 (defined as the spectral radius of matrix G) is
only determined by the blocked matrix G11,

G11 =
β

γC

 (ω − ρ)/ω

(1− θw)ρ/ω

[ 1, 1− θw, 1− θw, 1− θc

]


γ(ω + γ)2 γω(ω + γ)

γ(ω + γ)(1− pI)T̂I γ(ω + γ)(T̂I + γ)

γ(ω + γ)pI T̂I γωpI T̂I

ω(ω + γ)pI T̂I ω2pI T̂I


.

(A6)
It is notable that matrix F (A2) has rank one and consequently G11 does so. That is G11

has only one non-zero eigenvalue which is R0.
The expression of R0 has a complicated form with all of the model parameters involved.

This expression can be simplified and represented given the specific form of matrix G11 (A6).
For the purpose of simplicity we present R0 in the manuscript in terms of expressions C, C1

and C2, specified in (8).
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It remains difficult to show that the reproduction number R0 is decreasing with respect
to per capita testing intensity, ρ, and the speed of the test return, ω, for the feasible ranges
of the parameters, that is

ω > 0, (A7)

0 ≤ ρ < ω, (A8)

0 ≤ θw ≤ θc ≤ 1, (A9)
wI
wS
≥ 1. (A10)

In realistic cases the testing rate ρ is very small (i.e., only a small fraction of the population
can be tested every day); it is thus reasonable to use a linear approximation of R0 for ρ� 1
to analyze the behaviour of R0 with respect to ω (see section Appendix A.3). In the next
section we provide an equivalent representation ofR0 in order to show that increasing testing
intensity typically decreases R0.

A.2 More testing intensity may decrease R0

This section shows that ∂∆
∂ρ

can be positive or negative, with ∆ defined in Eq. (8), and thus
∂R0

∂ρ
< 0, where R0 is given in Eq. (6). We rewrite matrix G11 in (A6) in the following form

to simplify the calculations:

G11 =
β

γC

 S∗u/N

(1− θw)S∗n/N

[ C − C1, C − C2

]
, (A11)

where C is the same as the one in Eq. (8), i.e.,

C = (ω + γ)(γ(ω + γ) + (ωpI + γ)T̂I),

and C1 and C2 are

C1 =(ω + γ)(θwγ + θcωpI)T̂I ,
C2 =

(
ωγ(1 + pI)T̂I + γ2(ω + γ + T̂I)

)
θw + ω2pI T̂Iθc,

where T̂I is given in Eq. (5). Note that for analysis brevity, we let N = 1, thus S∗u and S∗n
are in the scale of 0 to 1. R0 is in the same form as in Eq. (6)

R0 =
β

γ
(1−∆),

where

∆ =
1

C

(
C1S

∗
u + (C2(1− θw) + Cθw)S∗n

)
.

The first goal is to explore how changes in isolation, θw and θc, affectsR0. Mathematically
we would like to verify the sign of ∂R0

∂θw
and ∂R0

∂θc
. We start with simplifying ∆ (A.2) by

factoring θw and θc in Eq. (A.2). Thus, ∆ can be rewritten as

∆ =
1

C

(
−D1S

∗
nθ

2
w +

(
− ω2pI T̂IS∗nθc +D2S

∗
n + γT̂I(ω+ γ)

)
θw + (ω+ γS∗u)ωpI T̂Iθc

)
, (A12)
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where

D1 =(ω + γ)γ2 + (ω + γ + ωpI)γT̂I , (A13)

D2 =(3ω + 2γ)γ2 + (ω + γ + 2ωpI)γT̂I + (γ + pI T̂I)ω2. (A14)

∆, Eq. (A12), is linear in θc with a positive coefficient. thus

∂∆

∂θc

= 1/C(γS∗u + ω(1− θwS
∗
n))ωpI T̂I . (A15)

This results in increasing ∆, thus decreasing R0 with respect to θc, that is ∂R0

∂θc
≤ 0. Note

that C is independent of θc and θw.
With a similar logic, ∆ (A12) is a concave-down quadratic equation in θw, given by

1/C
(
−D1S

∗
nθ

2
w +

(
− ω2pI T̂IS∗nθc +D2S

∗
n + γT̂I(ω + γ)

)
θw

)
. (A16)

We show that the feasible range of θw lies between 0 and the vertex of this parabola where
the parabola is increasing in θw, and so does ∆ which results in inferring ∂R0

∂θw
≤ 0. It is

enough to show that partial derivative of the expression (A16) with respect to θw at θw = 1
is non-negative. It follows that

∂∆

∂θw

∣∣∣∣
θw=1

=1/C
(

(D2 − 2D1 − ω2pI T̂Iθc)S
∗
n + γT̂I(ω + γ)

)
(A17)

=1/C
(

(γ(ω + γ) + γω2 + (1− θc)ω
2pI T̂I)S∗n + γ(ω + γ)T̂I(1− S∗n)

)
,

which is a positive quantity, given that θc and S∗n vary between 0 and 1.
The second goal is to explore how changes in per capita testing intensity ρ affects R0.

Mathematically we would like to verify the sign of ∂R0

∂ρ
, which specifically depends on ∂∆

∂ρ
.

We use the derived expressions for S∗u and S∗n, given by Eqs. (4), in ∆ (A.2). Also, we define
φ = T̂S = ρω

ω−ρ , to reparameterize ρ. This is mainly to avoid singularity in T̂I (5), when
testing intensity ρ is very close to the rate of test return ω. Thus, ρ is reparameterized as

ρ =
ωφ

ω + φ
. (A18)

This one-to-one monotonic reparameterization enables us to simplify the mathematical ex-
pressions and explore the simpler ∂∆

∂φ
instead of the complicated ∂∆

∂ρ
. Defining wIS ≡ wI

wS
, the

derivative is

∂∆/∂φ =
1

d3

(a3φ
2 + b3φ+ c3), (A19)
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where

a3 = wIS

(
(1− θw)(1 + wIS)θwγ

3 + (1− θc)p
2
IθwwISω

3 (A20)

+
((

(1− θw − wIS)θc + (3− 2θw)θwwIS

)
pI + (1− θw)(1 + wIS)θw

)
ωγ2

+
((

(1− θw − θwwIS)θc + (2− θw)θwwIS

)
pI + (2θw − θ2

w − θc)wISp
2
I

)
ω2γ

)
,

b3 = 2wIS(ω + γ)γ
(

(ω + γ + ωpI)(2− θw)γθw + (1− θw)ω2pIθc + ω2pIθw

)
,

c3 = (ω + γ)2γ
(

(2− θw)γ2θw + (1 + wIS)ωγθw + wISω
2pIθc

)
,

d3 =
(ω + γ)

ω

(
(ωpI + γ)wISφ+ (ω + γ)γ

)2

(ω + φ)2.

Note that φ ≥ 0, also b3, c3 and d3 are all positive. However a3 can be positive or negative.
If a3 ≥ 0, ∂∆/∂φ ≥ 0 for all feasible range of parameters, thus ∂R0

∂ρ
≤ 0. It is straightforward

to show that a3 ≥ 0 when testing is random, i.e., wS = wI = 1. If a3 < 0, then the
quadratic expression in the numerator of (A19) has a positive root, φ∗, such that for φ > φ∗,
∂∆/∂φ < 0.

An example of this countervailing effect of φ, and consequently ρ, on R0 occurs when
θw = 0 and θc = 1. This is illustrated in the top-right panel of the Fig. 3 panel (b), where the
strength of isolation for awaiting people is the least, but the most for the confirmed cases.
In this case, simplifying a3 in Eq. (A20) gives

a3 = wISωγpI ((ω + γ)− wIS(ωpI + γ))

∝ ω (1− wISpI) + γ (1− wIS) .
(A21)

If pI > 0, then a3 < 0 for sufficiently targeted testing (i.e. when wISpI > 1; because
pI ≤ 1, wISis always ≥ wISpI). When the test is perfectly sensitive (pI = 1), a3 < 0 as
long as wIS > 1. Under either of these conditions, there exists a range for ρ over which
∂R0

∂ρ
≤ 0. Because increasing values of ρ and ω both delay the rate at which individuals flow

to the Ic compartment, it is reasonable that increasing either value could (under appropriate
circumstances) increase R0.

A.3 Rate of returning tests

The third goal is to explore how changes in the rate of test return ω affectR0. Mathematically
we would like to verify the sign of ∂R0

∂ω
, which specifically depends on ∂∆

∂ω
. We use the

linearization of ∆ when ρ� 1 to show that there a non-monotonic relationship between R0

and ω. The linear term in the Taylor expansion of ∆ when ρ� 1 is

∆ =
ρ

ωγ(ω + γ)

(
wISω

2pIθc + (wIS + 1)γωθw + γ2θw(2− θw)
)
. (A22)

This results in

∂∆

∂ω
=

ρ

ω2(ω + γ)2

(
(pIwISθc − (1 + wIS)θw)ω2 − 2θwγ(2− θw)ω + θwγ

2(θw − 2)
)
. (A23)
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The latter expression has two roots

ω∗+ =
γ
(
− c4 +

√
c2

4 + (a4 − b4)c4

)
b4 − a4

(A24)

ω∗− =
γ
(
− c4 −

√
c2

4 + (a4 − b4)c4

)
b4 − a4

, (A25)

where a4 = pIwISθc, b4 = (1 + wIS)θw, c4 = θw(2 − θw). This enables us to describe the
behaviour of R0 with respect to ω in the following two cases.

• Case I: If b4 ≥ a4, ∂∆
∂ω

< 0, so R0 is always increasing with respect to ω (i.e., it is
always harmful to return tests more rapidly).

• Case II: If b4 < a4, R0 will be decreasing with respect to ω (i.e., returning tests more
rapidly is beneficial) only when ω > ω∗−.

Note that b4 ≥ a4 is characterized by(
wIS + 1

)
θw ≥ wISpIθc ⇐⇒

(wS
wI

+ 1
) 1

pI
≥ θc

θw

. (A26)

We begin with a proof of Case I. Suppose that b4 ≥ a4. If the roots of ∂∆
∂ω

are not complex,
then we must have c4 ≥ b4−a4. Note that ω∗− must be negative since the numerator is clearly
negative but the denominator is positive. Next, note that since c4 ≥ b4 − a4, the numerator
of ω∗+ must also be negative, so ω∗+ is negative. Thus, in this case, ∂R0

∂ω
does not change sign

on (0,∞). Checking the sign of A23 for arbitrarily large ω shows that it is negative (since
the (a4 − b4)ω2 term dominates and is negative). So R0 is increasing with respect to ω on
all of (0,∞).

We now turn our attention to a proof of Case II. Suppose that b4 < a4. It follows
that ω∗+ and ω∗− are real since c4 > 0 > b4 − a4. Next, note that ω∗− is positive since both
the numerator and denominator are negative. On the other hand, ω∗+ is negative since the
denominator is negative but the numerator is positive (because c4 > b4−a4). Thus, our task
is to understand the sign of ∂∆

∂ω
around the root ω∗−. Checking the sign of A23 for arbitrarily

large ω shows that it is positive (since the (a4 − b4)ω2 term dominates and is positive).
Likewise, checking the sign for values of ω close to 0 shows that it is negative. Thus, R0 is
increasing with respect to ω when ω < ω∗−, and is decreasing ω > ω∗−.

Having presented the formal analysis, we now concern ourselves with its biological in-
terpretations. We begin by interpreting A26, under which returning tests more rapidly is
always harmful. Notice that the ratio θc

θw
is simply a measure of how much more strongly

individuals self-isolate when they test positive compared to when waiting for tests. Since
the rate of test return directly influences the rate at which individuals change from a wait-
ing state to a confirmed-positive state, it is intuitive that θc

θw
would appear in A26. Next,

note that the left-hand side increases when test sensitivity decreases and when targeting of
positive individuals is poor. This is consistent with our intuition: a false negative that is
returned more rapidly will allow an infectious individual to relax their self-isolation, thus
increasing transmission. Likewise, if individuals tested are mainly susceptible (rather than
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infectious), then returning tests more slowly would encourage them to self-isolate for longer
while awaiting test results. Having understood the role of each of the parameters in A26, a
holistic interpretation of this inequality is that returning tests more slowly is helpful when
the benefit of extended self-isolation by infected individuals awaiting test results outweighs
the benefit of identifying positive cases.

Now we interpret Case II. In this case, R0 will have a global maximum with respect
to ω at ω∗−. Note that our model assumption that ρ < ω plays an important role here: if
ω∗− < ρ, then R0 will be always decreasing with respect to ω. On the other hand, if ρ < ω∗−,
then R0 will be increasing with respect to ω on (ρ, ω∗−) and decreasing beyond that.

A.4 The effect of testing focus parameter wIS on R0

∂∆

∂wIS

=
(ω − ρ)(ω(ω − ρθw) + γ(ω − ρ))(θwγ + θcωpI)

(−ω2γ + ωγρ− γρωwIS − ωγ2 + γ2ρ− ω2pIρwIS)2
, (A27)

which is a positive quantity. Thus, ∂R0

∂wIS
≤ 0. Therefore, increasing the focus of testing on

the infectious people will result in less transmission.

A.5 On Testing Rate and Numerical Singularity

In this work, we do not present any numerical solutions of the ODEs to investigate typical
trajectories. However, attempting to do so quickly reveals a problem in the way the model
is posed; with the scaling of testing (σ) defined as in the body of the paper (Eq. (1)), the
population in the S compartments appeared to blow up when the system is near the DFE.
This occurs because once the only untested people are susceptibles, the FOI approaches
Λ = 0, and the testing rate TS → ρN/Su. Thus, the first equation of the model (A1) will
become dSu/dt = −ρN + ωSn. Thus changes in Su will be independent on Su, and the
decay of the Su population becomes linear rather than exponential — allowing Su to become
negative! To avoid this problem the testing rate, σ, should be formulated such that people
from the untested compartments will not be tested if they are not there. One way to fix
this issue, is to consider a maximum testing rate, τ (1/day). In general, we want to test
at a rate of ρ across the whole population. This won’t always be possible, so we impose a
maximum rate of τ per testable person and redefine σ = τρN

τW+ρN
, with the assumption that

τ � ρ. This modification of σ does not affect any of the results we have derived about the
invasion of the epidemic from the DFE (i.e., results on R0 and ∆).
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