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We investigate the operator growth dynamics of the transverse field Ising spin chain in one di-
mension as varying the strength of the longitudinal field. An operator in the Heisenberg picture
spreads in the extended Hilbert space. Recently, it has been proposed that the spreading dynam-
ics has a universal feature signaling chaoticity of underlying quantum dynamics. We demonstrate
numerically that the operator growth dynamics in the presence of the longitudinal field follows the
universal scaling law for one-dimensional chaotic systems. We also find that the operator growth
dynamics satisfies a crossover scaling law when the longitudinal field is weak. The crossover scaling
confirms that the uniform longitudinal field makes the system chaotic at any nonzero value. We
also discuss the implication of the crossover scaling on the thermalization dynamics and the effect
of a nonuniform local longitudinal field.

I. INTRODUCTION

There is growing interest in the theory for emergence
of equilibrium statistical mechanics in isolated quantum
systems [1]. The canonical typicality [2], a reincarna-
tion of the quantum ergodic theory [3, 4], assumes that
a Hamiltonian eigenstate is statistically equivalent to a
typical state in the Hilbert space, so a quantum me-
chanical expectation value of a local quantity is indis-
tinguishable from the statistical ensemble average. The
eigenstate thermalization hypothesis [5] makes an ex-
plicit and testable ansatz for matrix elements of a lo-
cal observable in the Hamiltonian eigenstate basis to en-
sure the quantum thermalization. Extensive numerical
works have been performed to examine the ansatz di-
rectly (see Ref. [1] and references therein) and its thermo-
dynamic implications on e.g. the fluctuation-dissipation
theorem [6–9].

Dynamical aspects of the quantum thermalization have
also been attracting a growing interest. For example, out-
of-time-ordered correlations have been studied with the
hope to uncover a chaotic signature of quantum dynam-
ics [10–14]. More recently, researchers gained insight into
the quantum chaos from the operator growth dynamics.
Quantum mechanics can be formulated in terms of the
time evolution of an operator in the Heisenberg picture.
An operator, initially local and simple, becomes nonlo-
cal and complex as it evolves in time, spreading in the
operator Hilbert space. By quantifying and characteriz-
ing the complexity of the operator growth dynamics, one
may have a better understanding of quantum chaos and
equilibration dynamics of isolated quantum systems [15–
21].

The operator growth dynamics is intrinsically limited
by an upper bound set by the spatial dimensionality and
locality of interactions. Parker et al. proposed a hypoth-
esis that the operator growth dynamics in nonintegrable
systems follows a universal scaling law corresponding to
the maximal growth [17]. The hypothesis is supported
by analytic and numerical calculations on the Sachdev-

Ye-Kitaev (SYK) model, which is defined in the infinite-
dimensional space. Numerical results on low-dimensional
systems seem to be consistent with the hypothesis, but
more extensive studies are necessary for a decisive con-
clusion.
In this paper, we investigate numerically the operator

growth dynamics in the transverse field Ising (t-Ising)
spin chain in one dimension in the presence or absence
of a longitudinal field. The system is useful since one
can control the integrability by varying the longitudi-
nal field [22]. We will show that the operator growth
dynamics follows the universal scaling law predicted in
Ref. [17]. The spatial structure of the one dimensional
lattice gives rise to a logarithmic correction in the op-
erator growth dynamics, which is absent in higher di-
mensional systems. Our results demonstrate the pres-
ence of the logarithmic correction. It supports that the
universal operator growth hypothesis [17] is valid in low-
dimensional systems. We will also show that the op-
erator growth dynamics is an extremely useful tool for
investigating the transition from integrability to nonin-
tegrability. The system displays an interesting crossover
as one turns on the uniform longitudinal field. Using
the crossover, we will show that the system is thermal at
any nonzero value of the longitudinal field. As a byprod-
uct, the crossover also reveals the scaling property of the
thermalization dynamics [23–29], which will be detailed
in Sec. IV.
The paper is organized as follows: In Sec. II, we present

the review on the operator growth dynamics. The uni-
versal feature of the operator growth dynamics in some
solvable models is summarized in Sec. III. We present our
main results for the transverse field Ising spin chain in
Sec. IV. Summary and discussions are given in Sec. V.

II. OPERATOR GROWTH DYNAMICS

We consider a system with Hamiltonian H acting on
the D dimensional Hilbert space. Focusing on operators
instead of state vectors, one can formulate the quantum
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mechanics with the von Neumann equation

∂

∂t
O(t) = iLO(t) (1)

for an operator O(t) in the Heisenberg picture. Here, L
is the Liouvillian superoperator defined as

LA = [H,A] (2)

with ~ = 1. One can introduce an inner product between
two operators. Then, an operator O(t) can be regarded
as a state vector, denoted as |O(t)) [30], in the opera-
tor Hilbert space of dimensionality D2. Under this point
of view, the quantum mechanical dynamics describes the
spreading or growth of an initial state |O(0)) in the ex-
tended operator Hilbert space.
The operator growth is described conveniently with

the Krylov basis. An initial state |O) spreads within
the subspace spanned by {|O),L|O), , · · · Ln|O), · · · },
called the Krylov subspace. The orthonormal basis set
{|O0), |O1), · · · , |On), · · · } can be constructed recursively
using the Gram-Schmidt method. It starts with the nor-
malized initial state |O0) = |O)/

√

(O|O) and proceeds
to generate the successive basis states via the recursion
relations

|An) = L|On−1)− bn−1|On−2)

|On) =
1

bn
|An) with bn =

√

(An|An)
(3)

for n ≥ 1. The operator inner product can be chosen as

(A|B) ≡ 1

D
Tr

[

A†B
]

. (4)

It is the infinite temperature average of A†B. One may
adopt a different choice of the inner product [17, 18]. In
this paper, however, we will take the simplest choice of
Eq. (4).
This procedure, which is usually referred to as the

Lanczos algorithm [31], results in the Krylov basis set
and also the sequence {bn}, called the Lanczos coeffi-
cient with b0 = 0. In computational science, the Lanczos
algorithm is one of the most important numerical meth-
ods with which one can reduce a Hermitian matrix to a
tridiagonal form. It also underlies the recursion method
which is a useful technique for evaluating the correlation
functions in condensed matter physics. For thorough re-
views, we refer the readers to Ref. [32].
Recently, Parker et al. attempted to use the Lanczos

algorithm to characterize the operator growth dynam-
ics [17]. An operator at time t is written as

|O(t)) = eiLt|O0) =
∞
∑

n=0

ϕn(t)|On), (5)

where ϕn(t) = (On|O(t)) is the probability amplitude to
be in the nth Krylov state. The Liouvillian operator is
represented as a tridiagonal matrix Lm,n = (Om|L|On)

with Ln,n−1 = Ln−1,n = bn and Ln,m = 0 for |n−m| 6=
1. Thus, the probability amplitudes satisfy the discrete
Schrödinger equation

ϕ̇n(t) = bnϕn−1 − bn+1ϕn+1 (6)

with the initial condition ϕn(0) = δn0 and b0 = 0.
Among all {ϕn(t)}, ϕ0(t) is equal to the autocorrelation
function CO(t) = (O|O(t)). The Schrödinger equation
in Eq. (6) describes a tight-binding system in a semi-
infinite one-dimensional lattice with coordinate n, which
will be called a depth in the Krylov space. Parker et al.
showed that the Lanczos coefficient is bounded above for
systems with local interactions in a d dimensional space.
The bounds are

bn =

{

O(n/ lnn) for d = 1

O(n) for d > 1.
(7)

When the bound is achieved, the average depth nt ≡
∑

n n|ϕn(t)|2 grows fastest in time. That is, nt grows
exponentially in time when bn ∝ n, which signals the
chaotic nature of quantum dynamics. Based on these
observations and known results of solvable systems, they
hypothesize that the quantum systems are chaotic only
when the Lanczos coefficient follows the scaling law in
Eq. (7) [17]. There also exists a rigorous work on the
lower bound for {bn} for a specific class of systems in-
cluding the chaotic Ising spin chain [33].

III. SOLVABLE SYSTEMS

There are a few cases where the operator growth is ex-
actly solvable. We list the representative cases in Table I.
These cases are also documented in Ref. [32], where the
focus is put on the analytic property of the autocorrela-
tion function.
Consider first an artificial case with constant bn =

α (type I). We are not aware of a local Hamiltonian
and an observable having the constant Lanczos coeffi-
cient. Nevertheless, it provides a useful insight on the
operator growth dynamics. We can rewrite the recursion
relation in Eq. (6) as ϕn−1 − ϕn+1 = 1

α ϕ̇n for n ≥ 0
requiring that ϕ−1 ≡ 0. It has the same form as that of
the Bessel functions, Jn−1(x) − Jn+1(x) = 2J ′

n(x) [34],
except for the boundary term at n = 0. The similar-
ity suggests that ϕn(t) is the linear combination of the
Bessel functions, ϕn(t) =

∑

m≥0 cmJn+m(2αt), whose
coefficients are determined by imposing that ϕ−1 = 0.
The resulting solution is ϕn(t) = Jn(2αt) + Jn+2(2αt) =
(n+1)Jn+1(2αt)/(αt) (see Table I). The correlation func-
tion C(t) = ϕ0(t) = J1(2αt)/(αt) decays algebraically
as C(t) ≃ (αt)−3/2 cos(2αt− 3π/4) in the long time
limit. It is straightforward to evaluate the average depth
(n)t =

∑∞

n=0 nϕn(t)
2. It grows linearly in time as

(n)t =
16
3παt+ o(t).

The spin-1/2 XY chain exhibits similar behavior.
The autocorrelation function of the spin operator in
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TABLE I. Lanczos coefficients and the autocorrelation function in exactly solvable cases. (η)n = η(η + 1) · · · (η + n− 1) is the
Pochhammer symbol.

bn C(t) ϕn(t) (n)t =
∑

n n|ϕn(t)|2

Type I α J1(2αt)/(αt) (n+ 1)Jn+1(2αt)/(αt)
16
3π

αt+ o(t)

Type II α
√
n e−α2t2/2 (αt)n

√

n!
e−α2t2/2 (αt)2

Type III α
√

n(n− 1 + η) (sechαt)η
√

(η)n
n!

(tanhαt)n(sechαt)η η(sinhαt)2

the z direction is given by C(t) = J0(2αt)
2 ≃

1
παt cos(2αt− π/4)2 [35, 36] . The Lanczos coefficient can
be evaluated from the derivatives of C(t) at t = 0 [32].
We evaluated numerically the Lanczos coefficient and
found that bn = α + O(1/n), where the correction term
has an alternating sign. Since bn converges to a con-
stant value, the average depth in the Krylov space scales
linearly in time (type I). The finite n correction term
determines the power-law decay exponent of C(t) in the
long time limit [32].
The second example (type II) is realized when one con-

siders the spin operator in the x direction in the spin-1/2
XY chain [37]. It also applies to the spin operator in the
longitudinal direction in the transverse field Ising spin
chain. In this case, the depth (n)t = (αt)2 follows the
quadratic scaling. It is faster than the linear growth of
type I, but still algebraic in time.
The last example (type III) is characterized by the lin-

ear growth bn ∼ αn of the Lanczos coefficient and the
exponential growth of (n)t ∼ eαt. This case includes
the SYK model [17, 38] and the spin system on the two-
dimensional lattice [39]. The exponent α is related to the
positive Lyapunov exponent for the out-of-time-ordered
correlators [17]. The latter is a signature of the quantum
chaos [10]. Thus, the linear growth of bn can be regarded
as a signature of quantum chaos.
In one-dimensional systems with local interactions, the

Lanczos coefficient bn cannot grow linearly in n, but is
constrained by the upper bound shown in Eq. (7). There
is no rigorous result confirming that the upper bound
is indeed achieved in a nonintegrable system. The spe-
cific scaling with the logarithmic correction has not yet
been confirmed numerically [17]. We will investigate the
scaling behavior of the Lanczos coefficient in the one-
dimensional transverse field Ising spin chain perturbed
by the longitudinal field.

IV. TRANSVERSE AND LONGITUDINAL

FIELD ISING SPIN CHAIN

Consider lattice spins on an infinite one-dimensional
lattice. Each spin at site l = 0,±1,±2, · · · is represented
by the Pauli matrix σa

l with a = x, y, and z. Formally,
the local Pauli matrix σa

l should be understood as the
direct product · · ·⊗Il−1⊗σa

l ⊗Il+1⊗· · · with the identity
operator Ik at site k. The Hamiltonian of the Ising model
with transverse and longitudinal fields (tl-Ising model in

short) is given by

H = J
∑

l

[

σz
l σ

z
l+1 + hσx

l + glσ
z
l

]

, (8)

where J = 1 is the overall coupling constant, h is a uni-
form transverse field, and gl is a site-dependent longitu-
dinal field. The Ising model with only transverse field (t-
Ising model in short) is equivalent to a free fermion sys-
tem and integrable. The longitudinal field breaks the
integrability and makes the system quantum chaotic [22].
It is convenient to work with the basis set composed

of the Pauli strings of the form τ ≡ ⊗lτl where τl ∈
{Il, σx

l , σ
y
l , σ

z
l } is a local operator acting on site l. The

Pauli matrices have the property σaσb = δabI + iǫabcσ
c

with the Kronecker-δ symbol δab and the Levi-Civita
symbol ǫabc. This property guarantees that the Pauli
strings form the orthonormal set with (τ |τ ′) = δττ ′ .
A product of two Pauli strings is also a Pauli string
with a possible phase factor. Furthermore, for any pairs
of Pauli strings τ and τ

′, their products τ
′
τ and ττ

′

are equal to each other up to a sign (−1)χ(τ ,τ
′), where

χ counts the number of sites where τl 6= Il, τ ′l 6= Il,
and τl 6= τ ′l . Consequently, the commutator is given by

[τ , τ ′] =
{

1− (−1)χ(τ ,τ
′)
}

ττ
′. Using these algebraic

properties of the Pauli strings, one can implement the
Lanczos algorithm easily. The operator algebra becomes
even simpler by adopting the binary variable representa-
tion of a Pauli string. We refer the readers to Ref. [40]
and the Appendix of Ref. [17] for more details.
As the initial operator |O0), we take a local one-body

operator Oa ≡ σa
0 or a two-body operator Oaa ≡ σa

0σ
a
1

with a = x, y, z [41] When one applies the superoperator
L to |O0) n times, the spatial support of the resulting
operator is of size ξ = O(n). Thus, it is given by a linear
superposition of O(4ξ) Pauli strings. Due to the expo-
nential increase, a numerical computation of the Lanczos
coefficient is limited by the memory capacity of a com-
puting system. In this paper, we report our results up to
n ≤ nM with nM = 58 for the t-Ising model and 38 for
the tl-Ising model.

A. t-Ising model

We first present the results for the integrable t-Ising
model with h = 1 and gl = 0. Among six observables
under consideration, Oy and Oz are characterized by the
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FIG. 1. Plots of bn for the t-Ising model (h = 1 and gl = 0)
with respect to n in (a) and

√
n in (b). bn of Oz is in perfect

agreement with the straight line in (b).

scaling law of type II. Figure 1(b) clearly demonstrates
that bn ∼ √

n for Oy andOz . For the other operators, the
Lanczos coefficient converges to a constant value. Note
the t-Ising model with h = 1 is self-dual under the trans-
formation σ̃x

l ↔ σz
l σ

z
l+1 and σ̃z

l σ̃
z
l+1 ↔ σx

l+1. Thus, Ox

and Ozz have the same operator growth dynamics. We
omit the plot of Ozz in Fig. 1.
The scaling behavior of the Lanczos coefficient is con-

sistent with the time dependence of the autocorrelation
functions. Brandt and Jacoby [42] derived that Cx(t) ≡
〈σx

0 (t)σ
x
0 (t)〉 = J0(4t)

2+J1(4t)
2 ≃ 1

2πt

(

1− cos 8t
8t

)

. It de-
cays algebraically with an oscillating component, which
is a characteristic of the operators of type I. They also

derived that Cz(t) ≡ 〈σz
0(t)σ

z
0(0)〉 = e−2t2 , which shows

thatOz is an operator of type II with α = 2. The Lanczos
coefficient for Oy also scales as bn ∼ √

n with an alter-
nating finite-n correction. The correction term indicates
a power-law correction to the Gaussian autocorrelation
function [32].
We also studied the t-Ising model with h 6= 1. We

found that finite-n corrections become larger, but the
qualitative behavior does not change. Summarizing the
results, the Lanczos coefficients in the integrable t-Ising
model are of type I or II, depending on the choice of
observables.

B. tl-Ising model with uniform longitudinal field

The longitudinal field breaks the integrability of the
t-Ising model [22]. It is accepted that an integrable sys-
tem becomes quantum chaotic immediately as a uniform

integrability breaking field turns on. Various studies on
energy-level spacing statistics [43–46] and on the eigen-
state thermalization hypothesis [44, 47] confirm that a
nonzero integrability breaking field results in quantum
chaos. Furthermore, the fidelity susceptibility measure-
ment suggests that the threshold value of an integrability
breaking field necessary for the onset of quantum chaos
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FIG. 2. Lanczos coefficients for the operator Ox = σx
0 in the

tl-Ising model with h = 1. (a) The Lanczos coefficients at
several values of the uniform longitudinal fields g are com-
pared. (b) Plots of n/bn against W (n). Data for n > nc(g)
are in agreement with the straight lines, which indicates that
bn ∝ n/W (n) for n > nc(g). (c) Scaling plot of g−2∆bn vs n.

vanishes in the thermodynamic limit [48, 49]. We will
investigate the transition to the quantum chaos by the
uniform longitudinal field in the context of the operator
growth.
It is conjectured that the operators of the one-

dimensional chaotic systems should follow the scaling law
bn ∝ n/W (n) with the Lambert W function W (n) ≃
lnn [17]. Numerical data for the tl-Ising model in
Ref. [17] seem to be consistent with the conjecture. How-
ever, the logarithmic corrections are not clearly visible in
the data up to n . 30. In this subsection, we establish
the scaling form bn ∼ n/W (n) when the uniform longi-
tudinal field gl = g is strong. We also investigate the
crossover when g is small.
We first report the results for the observable Ox that

exhibits the scaling behavior of type I in the t-Ising
model. Numerical data are presented in Fig. 2. The
Lanczos coefficient increases with n for g 6= 0. However,
there is an overall downward curvature suggesting that
the growth is sublinear. It turns out that the logarithmic
correction is responsible for the curvature. In Fig. 2(b),
we plot n/bn as a function of W (n). When g = 1, the
data are in excellent agreement with a straight line. It
confirms the proposed scaling bn ∝ n/W (n) for the one-
dimensional quantum chaotic systems.
When the longitudinal field g is weak, we find an in-

teresting crossover at n = nc(g). The operator spreads
as in the integrable system (bn(g) ≃ bn(g = 0)) for small
n ≪ nc(g), then as in the chaotic system (bn ∼ n/W (n))
for n ≫ nc(g). We have performed a quantitative analy-
sis and found that

∆bn ≡ bn(g)− bn(0)

bn(0)
∝ g2 (9)

for n ≪ nc(g). Figure 2(c) presents the plot of the scaled
difference at several values of g. The scaling plot demon-
strates that the scaled differences g−2∆bn from different
values of g lie on a single curve, represented by a scaling
function Fx(n), until they cross over to the asymptotic
behavior at n ≃ nc(g) [see Eq. (12)]. Figure 2(c) indi-
cates that the scaling function has an exponential shape
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FIG. 3. The same plots as in Fig. 2 for the operator Oz = σz
0 .

Fx(n) ∼ ean for large n so that the crossover depth nc(g)
scales as

nc(g) ∼ | ln g|. (10)

The logarithmic dependence can be also inferred from the
plots in Figs. 2(a) and 2(c), where the crossover points
nc(g) are shifted by a constant amount per tenfold in-
crease of g.
The crossover has an implication on the operator

growth dynamics in the Krylov space. At short times
until (n)t reaches nc, the operator spreads as in the inte-
grable systems. Since the mean depth grows as (n)t ∼ t
in the type-I dynamics, the system reaches the crossover
depth nc(g) at the crossover time tc

tc(g) ∼ nc(g) ∼ | ln g|. (11)

Afterward, the generic spreading dynamics of the nonin-
tegrable systems sets in.
The crossover explains the mechanism for the transi-

tion from prethermalization to thermalization. When an
integrable system is perturbed by an integrability break-
ing field, an observable temporarily remains at a nonther-
mal value predicted by the generalized Gibbs ensemble,
and then tends to the thermal equilibrium value in the
long time limit [23–29]. The thermalization dynamics is
characterized by the rate which is proportional to the in-
tegrability breaking field strength squared [25, 26]. The
thermalization rate is manifest in the quadratic scaling
in Eq. (9). Besides the thermalization rate, to the best of
our knowledge, the crossover time following the scaling
law of Eq. (11) has not been reported yet.
We also report the results for the operator Oz = σz

0

in Fig. 3. The operator exhibits the scaling behavior
of type II in the integrable t-Ising model. Figures 3(a)
and 3(b) confirm that the Lanczos coefficient scales as
bn ∼ n/W (n) when the integrability breaking field g is
large enough. The crossover also occurs for small g. It is
less trivial to locate the crossover depth nc(g) from the
numerical data in Figs. 3(a) and 3(b). Nevertheless, we
find that the scaling law in Eq. (9) is also valid for the
operator Oz , which is confirmed with the scaling plot in
Fig. 3(c). The scaling implies that the thermalization
rate is also given by ∼ g2. Note that the scaling function
for Oz has a complicated shape with oscillatory behav-
ior, which makes it difficult to locate the crossover depth
nc(g).

C. tl-Ising model with a longitudinal field at a

single site

Integrability can be broken with a local perturba-
tion [48, 50–52]. For the integrable XXZ spin chain per-
turbed with a local magnetic field applied to a single
site, the fidelity susceptibility measurement reveals that
the system becomes chaotic at any nonzero value of the
magnetic field in the thermodynamic limit [48]. The t-
Ising model has been also studied with a local longitudi-
nal field applied to a single site [52].

In the perspective of the operator growth, it is sur-
prising that the local perturbation leads to the quantum
chaos. The operator growth in the Krylov space is ac-
companied with the spatial growth of the operator sup-
port. With local perturbation, the support is affected
minimally by a local perturbation. We investigate the
impact of the local perturbation on the operator growth
dynamics in the tl-Ising model with the Hamiltonian in
Eq. (8) with h = 1 and gl = gδl0.

Figure 4 presents the Lanczos coefficient for the op-
erator Ox = σx

0 when the local field strength g ≤ 10−1

is weak. The operator Ox follows the growth dynam-
ics of type I without the longitudinal field. Figure 4(a)
looks similar to Fig. 2(a). The system undergoes a sim-
ilar crossover at the depth n = nc(g) ∝ | ln g|. On the
other hand, bn(g) for n > nc(g) shows a more pronounced
downward curvature than in Fig. 2. To characterize the
asymptotic scaling behavior of bn, we plot the Lanczos
coefficient with respect to

√
n in Fig. 4(b). The data for

large n are well fitted to a straight line, which implies
that bn ∼ √

n, characteristic behavior of type-II dynam-
ics. The asymptotic behavior, however, is not consis-
tent with the quantum chaotic scaling bn ∼ n/W (n). In
Fig. 4(c), we present the plots of n/bn against the Lam-
bert W function W (n). The convex curvature invalidates
the scaling form bn ∼ n/W (n). Thus, we conclude that
the weak local perturbation is not sufficient to lead to the
quantum chaos. It only modifies the the operator growth
dynamics from type I to type II.

We also investigate the scaling behavior of bn when
the local field strength is large. As g increases, an os-
cillatory behavior sets in, which obscures the asymptotic
scaling behavior (see Fig. 5). The oscillatory behavior is
reminiscent of the one observed in Fig. 3. We speculate
that the oscillatory behavior is a signature to a transi-
tion from the scaling of type II to the quantum chaotic
scaling. However, a decisive conclusion cannot be drawn
from the numerical data.

We conclude that the weak local longitudinal field ap-
plied to the t-Ising chain does not give rise to the quan-
tum chaos: The threshold gc of the quantum chaos tran-
sition, if any, should be nonzero. It is in contrast to the
XXZ spin chain which undergoes an immediate transition
to the quantum chaos [48].
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FIG. 4. Lanczos coefficients for the operator σx
0 in the tl-Ising
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are compared. There is a crossover from the type-I behavior.
(b) Plots of bn against

√
n. The straight line represents a

linear fit of the data with g = 0.1 for n ≥ 13. (c) Plots of
n/bn against W (n). The straight line also represents a linear
fit of the data with g = 0.1.
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FIG. 5. Lanczos coefficients for the operator σx
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plotted in the same way as in Fig. 4.

V. SUMMARY AND DISCUSSIONS

We have investigated the operator growth dynamics
in the one-dimensional transverse-field Ising model per-
turbed with the uniform and local longitudinal field.
Without longitudinal field, the Lanczos coefficient bn con-
verges to a constant (type I) or scales as O(

√
n) (type

II) depending on the choice of local operators. When the
longitudinal field is uniform and strong enough, the Lanc-
zos coefficient grows as O(n/ lnn), which corresponds to
the the maximum growth for a one-dimensional system
with local interactions. Our extensive numerical data in

Figs. 2 and 3 confirm the existence of the logarithmic
correction to the linear scaling. We were able to detect
the logarithmic correction with the help of the scaling
analysis on the numerical data bn for large values of n.
These results support the hypothesis of Ref. [17] that
the operator growth dynamics is a universal indicator of
quantum chaos.
We have also discovered that the operator growth dy-

namics exhibits a crossover scaling as the system under-
goes a transition from an integrable nonergodic state to
a nonintegrable quantum chaotic state. When the uni-
form longitudinal field strength g is small, the Lanczos
coefficients bn for n ≪ nc(g) follow the scaling form

bn(g)− bn(0)

bn(0)
= g2FO(n) (12)

with an operator-dependent scaling function FO [see
Figs. 2(c) and 3(c)]. For n ≫ nc(g), bn crosses over
to the scaling form O(n/ lnn). The crossover scaling is
the irrefutable evidence that the integrability breaking
transition occurs gc = 0. The crossover scaling form
is related to the prethermalization dynamics. Since the
Lanczos coefficient has the dimension of the inverse time,
the scaling factor g2 corresponds to the thermalization
rate. The crossover depth scales as nc(g) ∼ | ln g| for the
operator σx

0 . The implication of the crossover depth on
the thermalization dynamics has to be studied further.
The crossover scaling analysis also reveals that a local
longitudinal field at a single site does not give rise to the
quantum chaos immediately.
In conclusion, we establish that the operator growth

dynamics faithfully reflects the quantum chaos in the
transverse field Ising spin chain. Furthermore, we show
that it is a useful tool to characterize the transition of
the integrable system to the quantum chaos induced by
the integrability breaking field.
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