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We develop a machine learning framework that can be applied to data sets derived

from the trajectories of Hamilton’s equations. The goal is to learn the phase space

structures that play the governing role for phase space transport relevant to particu-

lar applications. Our focus is on learning reactive islands in two degrees-of-freedom

Hamiltonian systems. Reactive islands are constructed from the stable and unsta-

ble manifolds of unstable periodic orbits and play the role of quantifying transition

dynamics. We show that support vector machines (SVM) is an appropriate machine

learning framework for this purpose as it provides an approach for finding the bound-

aries between qualitatively distinct dynamical behaviors, which is in the spirit of the

phase space transport framework. We show how our method allows us to find re-

active islands directly in the sense that we do not have to first compute unstable

periodic orbits and their stable and unstable manifolds. We apply our approach to

the Hénon-Heiles Hamiltonian system, which is a benchmark system in the dynamical

systems community. We discuss different sampling and learning approaches and their

advantages and disadvantages.
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Prediction and control of transition between potential wells across index-one

saddles are of importance in a diverse array of non-linear systems in physics,

chemistry, and engineering. Dynamical systems theory provides the framework

for understanding transition dynamics in these systems. The relevant phase

space structures are the stable and unstable invariant manifolds of the hyper-

bolic periodic orbit associated with the index-one saddle. Thus, to determine

the fate of an initial condition in the well without solving the non-linear equa-

tions, one has to check whether the initial condition lies in a region bounded

by the globalized stable (escape from the well) or unstable (entering the well)

invariant manifold. The region that bounds the initial condition is given by the

intersection of the invariant manifold with a two-dimensional section and called

the reactive island, borrowing terminology from chemical reaction dynamics. In

this paper, we develop and verify a trajectory-based framework using support

vector machines, by applying it to the Hénon-Heiles Hamiltonian, for learning

the reactive islands. Our results show that support vector machines are an ideal

data-driven framework for learning the geometry of phase space structures. The

approaches developed here are robust to changes in system parameters and ge-

ometry of the reactive islands.

I. INTRODUCTION

The goal of this paper is to develop a machine learning framework that identifies the phase

space structures governing phase space transport in data sets constructed from trajectories of

Hamilton’s equations. Our focus in this paper will be on two degrees-of-freedom Hamiltonian

systems.

The Hamiltonian function typically has the form of the sum of a kinetic energy, a function

of the momentum variables and the potential energy, a function of the position variables. For

Hamilton’s equations in canonical form each momentum variable is canonically conjugate to

one position variable. Hence there are an equal number of momentum and position variables.

The space of both the momentum and position variables is referred to as the phase space

and the space of only the position variables is referred to as the configuration space. The
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number of degrees of freedom of a Hamiltonian system is the number of configuration space

variables.

Hamilton’s equations describe dynamics in phase space. Nevertheless, the topography

of the potential energy surface plays an important role in defining the reaction dynamics

problem for a specific Hamiltonian system. In particular, potential wells are identified as

reactants and products. Wells are separated by saddle points and the configuration space

picture of reaction dynamics is that of a trajectory evolving between wells by “crossing” the

saddle point.

Index-one saddle points on a potential energy surface (PES) are the “seeds” for the phase

space structures from which the theory of reactive islands is constructed. Conley1,2 was the

first to analyze the phase space geometry and dynamics near an index-one saddle in two

degrees-of-freedom (DoF) Hamiltonian systems in his studies of the circular restricted three

body problem.

The Lyapunov subcenter theorem3,4 is fundamental for passing from an equilibrium point

(the index-one saddle) to dynamical behavior. It states that for a range of energies above

the energy of the index-one saddle (the exact range is not given in the theorem) there

exists an hyperbolic periodic orbit having two-dimensional stable and unstable manifolds.

In the three-dimensional energy surface, stable and unstable manifolds have the geometry

of cylinders (“tubes”) and these stable and unstable cylinders mediate transport across the

region of the index-one saddle.

The cylindrical structure of the stable and unstable manifolds, together with their in-

variance, implies that trajectories starting within the tubes must remain in the tubes for

all positive and negative time. All trajectories inside the stable cylinder approach the hy-

perbolic periodic orbit in positive time, pass through the region bounded by the periodic

orbit, and then exit the region through the unstable cylinder. The stable cylinder (and the

unstable cylinder) has two “branches” joined at the periodic orbit, one emanating to each

“side” of the orbit.

In the context of escape from a potential well, escaping trajectories must lie in a branch

of the stable cylinder. Trajectories starting in the branch of the stable cylinder lying in

the potential well correspond to forward escape trajectories, i.e. trajectories that escape in

forward time. Trajectories starting in the branch of the stable cylinder lying outside the
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potential well correspond to backward escape trajectories, i.e. trajectories that are captured

in the well in forward time. After escape from/capture in the well, trajectories are guided

by an unstable cylinder. This is how stable and unstable cylinders govern the dynamics in

phase space.

We describe a lower dimensional technique for probing the geometry of the cylinders. In

the potential well we construct a two dimensional Poincaré section, i.e. a two dimensional

surface where the Hamiltonian vector field is everywhere transverse to the surface. The

Poincaré section is constructed in such a way that the stable (and unstable) cylinder intersects

it in a topological circle. The region bounded by this topological circle is referred to as a

“reactive island”, where ‘reactive’ refers to the occurence of a chemical reaction, an analogue

of the escape from a potential well considered here. The Poincaré map of the Poincaré

section into itself is the map that associates to a point its first return to the Poincaré section

under the flow generated by the Hamiltonian vector field. The inverse of this Poincaré map

of the Poincaré section into itself is the map that associates to a point its first return to the

Poincaré section under negative time, i.e. the point “where it came from”.

We consider the preimages of this reactive island by considering its evolution backwards in

time under the inverse of the Poincaré map. In this way one obtains a reactive island on the

Poincaré section that returns to the original reactive island, and then escapes for positive

time evolution. By repeating this construction we obtain a sequence of reactive islands,

ordered in time, which sequentially map to each other before reacting. Possible pathological

intersections of the cylinders with the Poincaré section can occur, and are discussed in5. A

theory of reaction dynamics for two DoF systems based on the geometry of these stable and

unstable cylinders was developed in the late 1980’s and 90’s in5–12, although some of the

ideas appeared in earlier work13,14, and it goes by the name of “reactive island theory”.

Our goal is to consider a data set consisting of points on the energy surface that are

labeled based on the evolution of the corresponding trajectory and “learn” which points lead

to a escape from a potential well and which do not. We have chosen to use support vector

machines (SVM), a class of supervised learning classification and regression algorithms15–17,

which has been introduced to nonlinear dynamical systems by Ref. 18. We employ the clas-

sification algorithms, which define a decision function by determining the boundary between

different classes of data. To be precise, SVM identifies a subset of the data set referred to as
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“support vectors” to calculate the boundary for which the distance to data in both classes is

locally maximal. In our case, the classes in the classification correspond to initial conditions

leading to “qualitatively different” dynamical behaviour. The learned boundary between

escaping and non-escaping trajectories in phase space consists of the invariant manifolds dis-

cussed above and thereby SVM enables us to determine the geometrical structures in phase

space governing reaction dynamics.

The reasons for choosing support vector machine (SVM) to identify the phase space

structures are: (i) Nonlinear kernels in SVM provide means to approximate curves such

as reactive islands which form nonlinear boundaries between reactive and non-reactive tra-

jectories. We would like to note that methods for nonlinear clustering19 and other kernel

methods20 are also candidates for developing similar approaches, but beyond the scope of

this study. (ii) We design our approach with extensions to higher-dimensional applications

in mind. SVM is known to work well even with small amounts of data, therefore our ap-

proach is computationally better suited than existing methods for high-dimensional systems

and systems where integrating trajectories is expensive. This makes SVM suitable for the

reactive island theory of three DoF21 and system-bath models of isomerization22 which has

been developed recently and supports the case for a computationally efficient approach to

phase space structures presented here.

The Hamiltonian system that we will use to benchmark our approach will be the Hénon-

Heiles system23. This is a two degree of freedom Hamiltonian system that serves as a

paradigm for understanding complex dynamics in a variety of settings. As a function of the

energy, it can display dynamical behavior that numerically appears to be “near integrable”

to completely chaotic. Moreover, this system has three index one saddles that define three

distinct reaction channels having the geometric structure discussed above. The geometry of

reaction dynamics geometry for a similar system has been analyzed and discussed in Ref.24.

This paper is outlined as follows. In Section II we describe the two degrees-of-freedom

Hénon-Heiles Hamiltonian system and the nature of reaction dynamics in the context of this

model. In Section III we describe the machine learning technique of support vector machines

(SVM) and the approach of active learning. We describe how trajectories are constitute into

data sets and the use of Lagrangian descriptors as a trajectory diagnostic. In Section IV we

describe our results, and in Section V we present our conclusions and the outlook for further
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research.

II. HÉNON-HEILES SYSTEM AND REACTION DYNAMICS

We use the Hénon-Heiles Hamiltonian with three index-one saddles in bottlenecks through

which trajectories can escape. This escape can be interpreted as a reaction by crossing the

potential energy barrier. This model system and its high dimensional analog has been

studied in great detail in nonlinear dynamical systems, statistical mechanics, for developing

molecular simulation algorithms25–29. In this study, we will define the three exits as follows:

the entering via the top index-one saddle corresponds to the formation of a molecule complex

by combination of two atoms or molecules, while the left and right exits correspond to

dissociation of the molecule into two different products with structural symmetry.

The Hamiltonian is given by

H(x, y, px, py) = T (px, py) + VHH(x, y)

=
1

2mx

p2x +
1

2my

p2y +
1

2
ω2
xx

2 +
1

2
ω2
yy

2 + x2y − δ

3
y3 (1)

where all the parameters are set to 1.0 to be comparable with the known results in the

literature23,30,31. The vector field is given by

ẋ =
px
mx

ẏ =
py
my

ṗx =− ω2
xx− 2xy

ṗy =− ω2
yy − x2 + δy2

(2)

and the equilibrium points are

(0, 0, 0, 0) ,

(
0,
ω2
y

δ
, 0, 0

)
,

(
±ωx

√
ω2
x

2
+
δω2

x

4
,−ω

2
x

2
, 0, 0

)
. (3)

The eigenvalues of the linearized system in Appendix A1 at the equilibrium points gives

the origin is a center × center equilibrium and the three remaining are saddle × center

equilibrium points.
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We illustrate the dynamics given by the vector field (2) by showing four sample trajec-

tories in the Fig. 1 at same energy starting at the center × center equilibrium point with

different px momenta and py > 0. In Fig. 1 (a,c), px coordinates only differ in the second

significant digit, and yet the escape from the potential well occurs via different bottlenecks

and at different times. However, in Fig. 1 (b,d), a similar difference in px coordinates only

changes the escape time. This illustrates the challenge of sampling an ensemble of escape

(transition) trajectories. Furthermore, the challenge in identifying different timescales of

escape trajectories is due to the large variation in time to escape from the potential well

when there is merely a small difference in px. We will next show the underlying phase space

structure of such escape behavior and then show the use of trajectory data in identifying

the structure. Finally, it is important to note that for the total energies that we consider

the energy surface is unbounded. This implies that notions of recurrence from standard

ergodic theory, such as Poincaré recurrence and ergodicity, do not apply because escaping

trajectories become unbounded and never return.

The trajectory behavior shown in Fig. 1 is mediated by the stable manifolds (cylindrical

geometry or tubes) of the hyperbolic periodic orbits associated with the index-one saddles.

For the two degrees-of-freedom Hamiltonian system, tube manifolds can be computed and

visualized in their complete geometry as shown in Fig. 2 (a) for the index-one saddle at(
0,
ω2
y

δ
, 0, 0

)
. The stable manifolds associated with the three saddles are projected on the

configuration space (x, y) are shown in Fig. 2 (b) (In Appendix. A, Fig. 9 shows all the

tube manifolds in 3D). In this article, we compute the stable manifolds using the procedure

described in the Appendix A to obtain the segments which intersect a section with y = 0

and py > 0 shown in Fig. 2(b). Given such a section of the three dimensional energy surface,

the first order reactive islands of escape are defined as the last intersection of the stable

manifolds with the section. By last intersection, we mean the trajectories in forward time

intersect the section and then leave the potential well without returning to the section and

also referred to as the imminent escape.
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FIG. 1. Four sample trajectories initialized on the section y = 0, py > 0 with px =

0.516, 0.07, 0.526, 0.08 in (a-d), respectively, projected on the configuration space. The total energy

E = 0.17 is slightly above the energy of the index one saddles and escape times TE are shown on

each plot.

III. SUPPORT VECTOR MACHINES AND ACTIVE LEARNING

The classification algorithms for SVM15–17 construct a boundary between different classes

of data. In our case, the classes correspond to areas of qualitatively different dynamics on

the section y = yc and py > 0. By qualitatively different dynamics we mean either areas

leading to imminent escape from the potential well over the corresponding saddle or the
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(a) (b)

FIG. 2. (a) Cylindrical (or tube) manifolds, stable in green and unstable in red, of the hyperbolic

periodic orbits associated with the top index-one saddle in the Hénon-Heiles Hamiltonian. The

energy of the hyperbolic periodic orbit and the invariant manifolds are at the total energy, E = 0.17

and mediate the trajectories that escape via top saddle as shown in Fig. 1(b,d). (b) Stable manifolds

projected on the configuration space reveal the geometry of imminent escape from the potential well

via the three bottlenecks. Only the segment of the stable manifolds from the hyperbolic periodic

orbits to the intersection with the Poincaré section (shown as a black line) is shown for the energy,

E = 0.19.

complementary area that does not lead to imminent escape. The exact boundaries between

these areas are the reactive islands formed by stable and unstable invariant manifolds of

hyperbolic periodic orbits discussed above. A SVM classification algorithm, also referred to

as support vector classifier (SVC), therefore approximates reactive islands in this setting.

Similarly to 32, we use the scikit-learn33 implementation of SVM34. The implementa-

tion can be used with various kernels, of which the radial basis function kernel is best suited

to approximate reactive islands in the Hénon-Heiles system, which are topological circles.

With this kernel, a previously unseen data point P is predicted to belong to a class using

the decision function ∑
i

αilie
−γ||Pi−P ||2 , (4)

where γ > 0 controls the width of the Gaussian, li = ±1 are class labels of training data

Pi and C ≥ αi ≥ 0 are weights calculated by the algorithm, of which only a number of
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the weights αi is non-zero. These weights correspond to the training data Pi called support

vectors. The weights αi are calculated by SVC such that the distance between the predicted

boundary and the closest points Pi of every class is maximised, as illustrated in Fig. 3.

FIG. 3. An illustration of a decision boundary (black) between two classes of data (blue and orange)

calculated by SVC with radial basis function kernel. The distance between the boundary and the

closest points Pi of every class, in this case the support vectors, is highlighted in green.

The upper bound C on weights αi is a user defined value that controls the complexity of

the decision boundary - a low value of C gives a smoother decision boundary, while a high

value of C leads to higher accuracy. In this article, we first perform a search over a wide

interval of C, γ values as shown in Fig. 4. Then, a smaller interval for both parameters is

chosen for each of the support vector classifier approaches. The cross-validation ensures that

the trained model does not suffer from over-fitting by splitting the training data into 5 folds,

each of which is used as a test set with the remaining four as training set.

While it is possible to apply SVM to a fixed training data set, such as a regular grid, the

accuracy of the resulting decision boundary will be limited by the amount of training data

and its spacing. A significantly less data-intensive approach is offered by active learning35,36,

where the ‘learner’ biases its sampling based on information obtained from previous samples.

To do this, we start SVM with a coarse grid of data points and iteratively add data points in

the proximity of the decision boundary and re-run SVM. This allows the algorithm to explore

the intricate structures usually formed by invariant manifolds in systems describing chemical
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FIG. 4. Colormap showing accuracy for different combination of radial basis function parameters,

(C, γ). The accuracy is obtained using a 5-fold cross validation over the grid of values for C and γ.

The pair of value which gives maximum accuracy is chosen for training the support vector classifier.

reaction dynamics. At every iteration we randomly add one data point near 10 randomly

selected support vectors. The point is added using the multivariate normal distribution

N (P, I), where P is the support vector and I the identity matrix.

We would like to point out the importance of the precise problem formulation. Homoclinic

and heteroclinic intersections of invariant manifolds lead to fractal structures, that is a

fractal boundary between classes of dynamics. There is no known way to resolve fractal

structures with finite precision and a finite number of data points. Thus approximating

the boundary using fixed-width Gaussians is bound to fail. In many systems it is possible

to avoid these fractal structures by carefully selecting a surface of initial conditions and

studying the dynamics under the corresponding return (Poincaré) map.
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IV. RESULTS AND DISCUSSION

In the figures below, the cyan dots denote the support vectors used by the classifier to

learn the decision boundary and the black dashed line denotes the learned decision boundary.

The true reactive islands are shown as red, green, and blue curves.

Fixed training data. We sample initial conditions on the two-dimensional section of the

three dimensional energy surface, H(x, y, px, py) = E, with y = yc and py > 0. In this study,

we present the results for two sections at yc = 0,−0.25 to denote distinct sections at the

location of the well and near the bottleneck. We also show the results for E = 0.17 − 0.20

in increments of 0.1 to illustrate the approach for various imbalance (ratio of reactive to

non-reactive trajectories) in the training data corresponding to different excess energies. We

generate a grid of initial conditions 100 × 100 and sample the y−momenta using the fixed

energy condition. Then, we run trajectories with the initial conditions for a prediction time

horizon of t = 30 time units. Then, we classify the escape trajectories as reactive through

bottleneck 1 or 2 or 3 if they cross the line x = −1.25, or x = 1.25, or y = 1.25, respectively.

If an initial condition does not satisfy any of the above conditions for the chosen time

interval, we label it as non-reactive denoted by 0. Thus, we obtain a multi-label training

dataset with two feature vectors, x, px coordinates to discover the distribution of reactive

trajectories on the two-dimensional section corresponding to the two coordinates. We use a

smaller interval for the Gaussian radial basis function parameters, C ∈ {1e2, 1e3, 1e4, 1e5}

and γ ∈ {10, 1e2, 1e3, 1e4}, to perform a grid search for high accuracy along with 5-fold

cross-validation during the training.

The decision boundaries as learned by the SVC trained using fixed size training dataset

and the reactive islands obtained from the direct computation of the tube manifolds are

compared for verification in Fig. 5. The learned decision boundaries track the true reactive

islands to a high accuracy and the classification accuracy is above 99% for all the energies

considered here. In fact, for the low energy case (E = 0.17, which is 0.003 above the energy

of the saddle, the accuracy is similar to the highest energy case, 0.033. These two energies

represent two extreme training data sets as the fraction of reactive trajectories increases with

total energy. Thus, for low energy case a uniform sampling is bound to give small number of

reactive trajectories and vice versa for high energy case. Even though this can be corrected
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(a) E = 0.17, yc = 0 (b) E = 0.18, yc = 0 (c) E = 0.19, yc = 0 (d) E = 0.20, yc = 0

(e) E = 0.17, yc = −0.25 (f) E = 0.18, yc = −0.25 (g) E = 0.19, yc = −0.25 (h) E = 0.20, yc = −0.25

FIG. 5. Fixed training data set. Reactive islands identified by the support vector classifier

trained using fixed size data set shown as dashed curves. The overlayed continuous curve is obtained

using direct computation of tube manifolds at energy E = 0.17, 0.18, 0.19, 0.20 in first, second, third,

fourth column, respectively. The magenta curve denotes the intersection of the energy surface with

the two dimensional section. The cyan dots denote the support vectors used by the classifier in

learning the reactive islands as decision surfaces. Two sections with (x, px) coordinates are shown

in top and bottom rows: (a-d) yc = 0 (e-h) yc = −0.25 with py > 0.

using a non-uniform sampling for low energy, we show that learning the reactive islands leads

to high accuracy because it is the fundamental phase space structure underlying the reactive

trajectories.

Active learning. In this approach, we developed an iterative method for active learning

of the reactive islands. The steps in this iterative method are: (i) Begin training step with

a relatively small training data that represents a coarse sampling of the two dimensional

section using a regular grid. (ii) This training data is then used to train a support vector

classifier which learns a coarse decision boundary. (iii) The method adds new training data

around the support vectors used by the classifier in the second step. The new data consists
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of 10 points generated around each support vector using a normal distribution and is added

to the initial training data. (iv) The new data set is used in training the classifier which

then relearns reactive islands. Steps (iii) and (iv) are repeated until a desired accuracy, for

example 99%, is achieved. For this approach, we use, C ∈ {10, 1e2, 1e3} and γ ∈ {1, 10, 1e2},

to perform a grid search for highest accuracy along with 5-fold cross-validation during the

training.

(a) E = 0.17, yc = 0 (b) E = 0.18, yc = 0 (c) E = 0.19, yc = 0 (d) E = 0.20, yc = 0

(e) E = 0.17, yc = −0.25 (f) E = 0.18, yc = −0.25 (g) E = 0.19, yc = −0.25 (h) E = 0.20, yc = −0.25

FIG. 6. Active learning Reactive islands identified by the support vector classifier trained using

data generated near the coarse boundaries shown as dashed curves. The overlayed continuous

curve is obtained using direct computation of tube manifolds at energy E = 0.17, 0.18, 0.19, 0.20

in first, second, third, fourth column, respectively. The magenta curve denotes the intersection of

the energy surface with the two dimensional section. The cyan dots denote the support vectors

used by the classifier in learning the reactive islands as decision surfaces. Two sections with (x, px)

coordinates are shown in top and bottom rows: (a-d) yc = 0 (e-h) yc = −0.25 with py > 0.

The decision boundaries as learned by the SVC using an active learning approach and the

reactive islands obtained from the direct computation of the tube manifolds are compared

for verification in Fig. 6.
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Trajectory geometry enabled learning. In this approach, we use a positive scalar

quantity for encoding the geometry of a trajectory called the Lagrangian descriptor (LD)37,38

to generate a new feature for training a SVC. Lagrangian descriptors have been shown

to detect phase space structures that mediate transition dynamics in general non-linear

dynamical systems (see Ref.39 and references therein). Furthermore, as a trajectory based

diagnostic of the phase space, it can be computed on-the-fly with the trajectory. This gives

it a two-fold merit as a feature: (i) encodes the geometry of the trajectory, thus incorporates

the phase space perspective and (ii) efficient computation along with trajectory generation.

We briefly describe the method of Lagrangian descriptors which reveals regions with qual-

itatively distinct dynamical behavior by showing the intersection of the invariant manifolds

with the two dimensional section. For a general time-dependent dynamical system given by

dx

dt
= f(x, t) , x ∈ Rn , t ∈ R , (5)

where the vector field f(x, t) is assumed to be sufficiently smooth both in space and time. The

vector field f can be prescribed by an analytical model or given from numerical simulations

as a discrete spatio-temporal data set. For instance, the vector field could represent the

velocity field of oceanic or atmospheric currents obtained from satellite measurements or

from the numerical solution of geophysical models. For any initial condition x(t0) = x0, the

system of first order nonlinear differential equations given in Eqn. (5) has a unique solution

represented by the trajectory that starts from that initial point x0 at time t0.

In this study, we adopt the LD definition

Lp(x0, t0, τ) =

∫ t0+τ

t0−τ

n∑
k=1

|fk(x(t; x0), t)|p dt , p ∈ (0, 1] (6)

where fk is the k−the component of the vector field, Eqn. (5) and use p = 1/2. We note that

the integral can be split into its forward and backward time parts to detect the intersection

of stable and unstable manifolds separately. This relates to finding the escape and entry

channels into the potential well. In this study, we keep the forward part of the integral given

by

Lfp(x0, t0, τ) =

∫ t0+τ

t0

n∑
k=1

|fk(x(t; x0), t)|p dt (7)
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Although this definition of LD does not have an intuitive physical interpretation as that of

the arclength definition38, it allows for a rigorous proof that the “singular features” (non-

differentiable points) in the LD contour map identify intersections with stable and unstable

invariant manifolds40. Another important aspect of what is known in LD literature as the

p-(quasi)norm is that degrees of freedom with relevance in escape/transition (reaction) dy-

namics can be decomposed and computed. This definition was used to show that the method

can be used to successfully detect NHIMs and their stable and unstable manifolds in Hénon-

Heiles Hamiltonian24,31. For this system, where both fixed (or variable) integration time is

used, it has also been shown that the LD scalar field attains a minimum (or maximum) value

along with singularity at the intersections of the stable and unstable manifolds, and given

by

Ws(x0, t0) = argmin Lfp(x0, t0, τ) , (8)

whereWs(x0, t0) are the stable manifolds calculated at time t0 and argmin denotes the phase

space coordinates on the two dimensional section that minimize the scalar field, Lfp(x0, t0, τ),

over the integration time, τ . Thus, the scalar field plotted as a contour map identifies the

intersection of the stable manifold with a two dimensional section. This ability of LD contour

map to partition trajectories with different phase space geometry is shown in Fig. 7(a-c) as

values of LD inside the reactive islands are close to constant.

We construct the training data with three features - x, px,M0.5(τ) - and a fixed size

dataset. Then, we implement a SVC as in the Fixed training data approach with the parame-

ters for the Gaussian radial basis function C ∈ {1e2, 1e3, 1e4, 1e5} and γ ∈ {10, 1e2, 1e3, 1e4}.

In Fig. 8 (d-i), we show the reactive islands along with the predictions of a SVC trained

using the trajectory geometry given by LD as a feature and with a training data size of

10000 points. We note that when such a data set is used the support vectors used by

the model increases around the boundary. However, this approach encodes the geometry

of a trajectory in phase space and hence leads to robust classification as the total energy

parameter is increased.
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(a) E = 0.17, yc = 0 (b) E = 0.19, yc = 0 (c) E = 0.20, yc = 0

FIG. 7. Reactive islands at E = 0.18, 0.20 are shown as red, green, and blue curves, respectively,

and the LD values corresponding to the initial conditions sampled on yc = 0 with py > 0 section.

These initial conditions along with the LD value computed for τ = 30 or until a trajectory escapes

is used as the training data.

V. CONCLUSIONS AND OUTLOOK

On a transverse two dimensional section of the energy surface, reactive islands are the in-

tersections of stable and unstable invariant manifolds of hyperbolic periodic orbits. Thus, the

one dimensional boundaries of the reactive islands separate transition and non-transition tra-

jectories. In this article, we presented three support vector classifier approaches for learning

the reactive islands: fixed dataset training, active learning, and trajectory geometry enabled

training. The advantages of our approach are as follows: (a) avoiding the need to compute

hyperbolic periodic orbits and the associated invariant manifolds, in favour of finding the re-

active islands directly on a surface of section as the boundary between classes of qualitatively

different dynamics, (b) minimising computational cost of trajectory calculations by sampling

the section near a boundary learned from a coarser sampling (c) using trajectory geometry

as a dynamical (phase space) feature in the training data and compressing the high dimen-

sional trajectory into a smaller feature set. Inheriting low data requirements from SVM, our

approach is designed to work well for systems where integrating trajectories is expensive and

is expected to generalise well systems with more than two degrees of freedom.

Our work intends to simplify the process of finding reactive islands, making it easier to

generalise and more accessible to a wider scientific audience. Future work in this direction
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(a) E = 0.17, yc = 0 (b) E = 0.19, yc = 0 (c) E = 0.20, yc = 0

(d) E = 0.17, yc = −0.25 (e) E = 0.19, yc = −0.25 (f) E = 0.20, yc = −0.25

FIG. 8. Trajectory geometry enabled learning Shows the reactive islands, support vectors (as

dots), and predictions (as cross) of the trajectory geometry trained support vector classifier.

will involve the application to a model of chemical reaction and examples of high dimensional

phase space of a system-bath model.
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30M. Hénon, “Integrals of the Toda lattice,” Physical Review B 9, 1921–1923 (1974).

31A. S. Demian and S. Wiggins, “Detection of periodic orbits in Hamiltonian systems using

Lagrangian descriptors,” Int J Bifur Chaos 27, 1750225 (2017).

32Z. D. Pozun, K. Hansen, D. Sheppard, M. Rupp, K.-R. Müller, and G. Henkelman, “Op-

timizing transition states via kernel-based machine learning,” J. Chem. Phys. 136, 174101

(2012).

33F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research 12, 2825–2830 (2011).

34C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology 2, 27 (2011).

35B. Settles, “Active learning literature survey,” Computer Sciences Technical Report 1648

(University of Wisconsin–Madison, 2009).

36J. Kremer, K. S. Pedersen, and C. Igel, “Active learning with support vector machines,”

WIREs Data Mining Knowl. Discov. 4, 313 (2014).
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40C. Lopesino, F. Balibrea-Iniesta, V. J. Garćıa-Garrido, S. Wiggins, and A. M. Mancho, “A

theoretical framework for lagrangian descriptors,” Int J Bifurc Chaos 27, 1730001 (2017).

41W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, Dynamical systems, the three-body

problem and space mission design (Marsden books, 2011) p. 327.

42W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic connections between

periodic orbits and resonance transitions in celestial mechanics,” Chaos: An Interdisci-

plinary Journal of Nonlinear Science 10, 427–469 (2000).

43S. Naik and S. D. Ross, “Geometry of escaping dynamics in nonlinear ship motion,” Com-

mun Nonlinear Sci Numer Simul 47, 48–70 (2017).

44T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems

(Springer-Verlag New York, Inc., New York, NY, USA, 1989).

45K. R. Meyer, G. R. Hall, and D. Offin, Applied Mathematical Sciences (Springer, 2009).

46J. E. Marsden and S. D. Ross, “New methods in celestial mechanics and mission design,”

Bulletin of the American Mathematical Society 43, 43 – 73 (2006).

Appendix A: Hyperbolic periodic orbit and invariant manifolds

1. The Linearized Hamiltonian System

The linearized equation of motion around the index-one saddle equilibria with coordinates

(xe, ye, 0, 0) is given by expanding the terms of the Hamiltonian (1) and keeping the quadratic

terms. After making a coordinate to (xe, ye, 0, 0) as the origin, the quadratic Hamiltonian

function gives the linear system at the equilibrium point


ẋ

ẏ

ṗx

ṗy

 =


0 0 1/mx 0

0 0 0 1/my

−ω2
x − 2ye −2xe 0 0

−2xe −ω2
y + 2δye 0 0




x

y

px

py

 (A1)
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The linearized dynamics near the index-one saddle equilibrium points extend to the full

nonlinear system due to Moser’s generalization of Lyapunov’s theorem.

Let us assume the eigenvector to be v = [k1, k2, k3, k4]
T , and the eigenvalue problem

becomes Jv = βv. This gives the expressions

k3/mx =βk1 (A2)

k4/my =βk2 (A3)

(−ω2
x − 2ye)k1 − 2xek2 =βk3 (A4)

−2xek1 + (−ω2
y + 2δye)k2 =βk4 (A5)

Let k1 = 1, then using Eqns. (A2)and (A3) the eigenvector becomes
[
1, k2, βmx, βmyk2

]
.

Thus, the eigenvectors corresponding to , β = ±λ,±iω, can be written as

v±λ =

[
1,

2xe
−ω2

y + 2δye − λ2my

, ±λmx, ±λmy
2xe

−ω2
y + 2δye − λ2my

]
v±iω =

[
1,

2xe
−ω2

y + 2δye + ω2my

, ±iωmx, ±iωmy
2xe

−ω2
y + 2δye + ω2my

]
,

(A6)

respectively. Thus, the general solution of the linear system near the saddle equilibrium

point is given by

x(t) = {x(t), y(t), vx(t), vy(t)} = A1e
λtvλ + A2e

−λtv−λ + 2Re
(
Beiωtviω

)
(A7)

with A1, A2 being real and B = B1 + iB2 being complex.

2. Computing the hyperbolic periodic orbit and associated tube manifolds at

the index-one saddle

For discussing the geometry, we call the equilibrium with positive y-coordinate xeq,top and

negative y-coordinate xeq,left and xeq,right.

Select appropriate energy above the critical value — For computation of man-

ifolds that act as boundary between the escape and non-escape trajectories, we select the

total energy, E, above the energy of the index-one saddle, Es, and thus the excess energy

∆E = E − Es > 0.

Differential correction and numerical continuation — We present a procedure

which computes the hyperbolic periodic orbits associated with an index-one saddle using
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a small “seed” initial conditions obtained from the linearized equations of motion at the

index-one saddles. Then, corrects the guess using the linearization about the trajectory

obtained by evolving the initial guess in the full nonlinear equations. This is called the

differential correction (more details can be found in Chapter 4 of the book Koon et al.

and other application of this method includes celestial mechanics, ship dynamics, models of

dissociation and isomerization reaction 22,24,42,43).

Guess initial condition of the periodic orbit — The linearized equations of motion at an

equilibrium point gives the initial guess for the differential correction method. Let us select an

equilibrium point, xeq,left. The linearization yields an eigenvalue problem Av = γv, where A

is the Jacobian matrix in Eqn. (A1) evaluated at the equilibrium point, γ is the eigenvalue,

and v = [k1, k2, k3, k4]
T is the corresponding eigenvector. The idea is to use the complex

eigenvalue and the corresponding eigenvector to obtain a guess for the initial condition on

the periodic orbit and its period Tguess,po, which should be close to 2π/ω (generalization of

Lyapunov’s theorem) and increase monotonically with excess energy, ∆E.

The initial condition for a periodic orbit of x-amplitude, Ax > 0 can be computed by

letting A1 = A2 = 0 and t = 0 in Eqn. (A7), and B = −Ax/2 (this choice is made to get

rid of factor 2) denotes a small amplitude in the general linear solution. Thus, using the

eigenvector in the center projection we can write

x̄0,g =
(
xeq,left, yeq,left, 0, 0

)T
+ 2Re(Bviω)

=
(
xeq,left − Ax, yeq,left − Axk2, 0, 0

)T (A8)

where we consider, without loss of generality, the left index-one saddle equilibrium point.

Differential correction of the initial condition — In this step, we introduce correction to

one of the coordinates of the initial guess such that the numerical periodic orbit x̄po satisfies

‖x̄po(T )− x̄po(0)‖ < ε (A9)

for some tolerance ε ≈ 10−6. For the Hénon-Heiles Hamiltonian, we hold x−coordinate

constant and correct the initial guess of the y−coordinate, use px−coordinate for terminating

event-based integration, and py−coordinate to test convergence of the periodic orbit. Let us

denote the flow map of a differential equation x̊ = f(x) with initial condition x(t0) = x0 by
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φ(t; x0). Thus, the displacement of the final state under a perturbation δt is given by

δx̄(t+ δt) = φ(t+ δt; x̄0 + δx̄0)− φ(t; x̄0) (A10)

with respect to the trajectory x̄(t). Thus, measuring the displacement at t1 + δt1 and

expanding into Taylor series gives

δx̄(t1 + δt1) =
∂φ(t1; x̄0)

∂x0

δx̄0 +
∂φ(t1; x̄0)

∂t1
δt1 + h.o.t (A11)

where the first term on the right hand side is the state transition matrix, Φ(t1, t0), when

δt1 = 0 and can be obtained by solving the variational equations numerically along with the

trajectory44. Let us suppose we want to reach the desired point xd, we have

x̄(t1) = φ(t1; x̄0) = x̄1 = xd − δx̄1 (A12)

which has an error δx̄1 and needs correction. This correction to the first order can be

obtained from the state transition matrix at t1 and gives a new guess of the periodic orbit.

This new initial condition can then be evolved and corrected as an iterative procedure with

“small” (first order or differential) correction, this gives convergence in few steps. For the

index-one saddle equilibrium points in the Hénon-Heiles Hamiltonian, we initialize the guess

as

x̄(0) = (x0,g, y0,g, 0, 0)T (A13)

and using numerical integrator we obtain the orbit until next the half-period event px = 0

a high tolerance (typically 10−14). So, we obtain x̄(t1) which for the guess periodic orbit

denotes the half-period point, t1 = T0,g/2 and compute the state transition matrix Φ(t1, 0).

Using the entries of the state transition matrix, we derive the correction for the coordinate

y0,g assuming x0,g is constant. Thus, the first order correction is given by

δpx1 = Φ32δy0 + ṗx1δt1 + h.o.t (A14)

δpy1 = Φ42δy0 + ṗy1δt1 + h.o.t (A15)

where Φij is the (i, j)th entry of Φ(t1, 0) and the acceleration terms come from the equations

of motion evaluated at the crossing t = t1 when px1 = δpx1 = 0. Thus, we obtain the first
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order correction δy0 as

δy0 ≈
(

Φ42 − Φ32
ṗy1
ṗx1

)−1
δpy1 (A16)

y0 → y0 − δy0 (A17)

which is iterated until |py1| = |δpy1| < ε for some tolerance ε, since we want the final periodic

orbit to be of the form

x̄t1 = (x1, y1, 0, 0)T (A18)

This procedure yields an accurate initial condition for a periodic orbit of small amplitude

Ax ≈ 10−4, since our initial guess is based on the linearization at the equilibrium point.

Numerical continuation to periodic orbit at arbitrary energy.— The procedure described

above yields an accurate initial condition for a periodic orbit from a single initial guess.

If our initial guess came from the linear approximation near the equilibrium point, from

Eqn. (A7), it has been observed numerically that we can only use this procedure for small

amplitude, of order 10−4, periodic orbits around xeq,bot. This small amplitude correspond

to small excess energy, typically of the order 10−2, and if we want to compute the periodic

orbit of arbitrarily large amplitude, we resort to numerical continuation for generating a

family which reaches the appropriate total energy. This is done using two nearby periodic

orbits of small amplitude to obtain initial guess for the next periodic orbit and performing

differential correction to this guess. To this end, we proceed as follows. Suppose we find two

small nearby periodic orbit initial conditions, x̄
(1)
0 and x̄

(2)
0 , correct to within the tolerance

dtol, using the differential correction procedure described above. We can generate a family of

periodic orbits with successively increasing amplitudes around x̄eq,bot in the following way.

Let

∆ = x̄
(2)
0 − x̄

(1)
0 = [∆x0,∆y0, 0, 0]T (A19)

A linear extrapolation to an initial guess of slightly larger amplitude, x̄
(3)
0 is given by

x̄
(3)
0,g = x̄

(2)
0 + ∆

=
[
(x

(2)
0 + ∆x0), (y

(2)
0 + ∆y0), 0, 0

]T
=
[
x
(3)
0 , y

(3)
0 , 0, 0

]T (A20)
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Thus, keeping x
(3)
0 fixed, we can use differential correction on this initial condition to compute

an accurate solution x̄
(3)
0 from the initial guess x̄

(3)
0,g and repeat the process until we have a

family of solutions. We can keep track of the energy of each periodic orbit and when we

have two solutions, x̄
(k)
0 and x̄

(k+1)
0 , whose energy brackets the appropriate energy, E, we can

resort to combining bisection and differential correction to these two periodic orbits until we

converge to the desired periodic orbit to within a specified tolerance. Thus, the result is a

periodic orbit at desired total energy E and of some period T with an initial condition X0.

Globalization of invariant manifolds — We find the local approximation to the

unstable and stable manifolds of the periodic orbit from the eigenvectors of the monodromy

matrix. Next, the local linear approximation of the unstable (or stable) manifold in the

form of a state vector is integrated in the nonlinear equations of motion to produce the

approximation of the unstable (or stable) manifolds, such as those shown in Fig. 9. This

procedure is known as globalization of the manifolds and we proceed as follows.

First, the state transition matrix Φ(t) along the periodic orbit with initial condition X0

can be obtained numerically by integrating the variational equations along with the equations

of motion from t = 0 to t = T . This is known as the monodromy matrix M = Φ(T ) and the

eigenvalues can be computed numerically. For Hamiltonian systems (see45 for details), tells

us that the four eigenvalues of M are of the form

λ1 > 1, λ2 =
1

λ1
, λ3 = λ4 = 1 (A21)

The eigenvector associated with eigenvalue λ1 is in the unstable direction, the eigenvector

associated with eigenvalue λ2 is in the stable direction. Let es(X0) denote the normalized

(to 1) stable eigenvector, and eu(X0) denote the normalized unstable eigenvector. We can

compute the manifold by initializing along these eigenvectors as:

Xs(X0) = X0 + εes(X0) (A22)

for the stable manifold at X0 along the periodic orbit as

Xu(X0) = X0 + εeu(X0) (A23)

for the unstable manifold at X0. Here the small displacement from X0 is denoted by ε and

its magnitude should be small enough to be within the validity of the linear estimate, yet not
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so small that the time of flight becomes too large due to asymptotic nature of the stable and

unstable manifolds. Ref.41 suggests typical values of ε > 0 corresponding to nondimensional

position displacements of magnitude around 10−6. By numerically integrating the unstable

vector forwards in time, using both ε and −ε, for the forward and backward branches respec-

tively, we generate trajectories shadowing the two branches, W u
+ and W u

−, of the unstable

manifold of the periodic orbit. Similarly, by integrating the stable vector backwards in time,

using both ε and −ε, for forward and backward branch respectively, we generate trajectories

shadowing the stable manifold, W s
+,−. For the manifold at X(t), one can simply use the

state transition matrix to transport the eigenvectors from X0 to X(t) as

Xs(X(t)) = Φ(t, 0)Xs(X0) (A24)

It is to be noted that since the state transition matrix does not preserve the norm, the

resulting vector must be normalized. The globalized invariant manifolds associated with

index-one saddles are known as Conley-McGehee tubes46. These tubes form the skeleton

of transition dynamics by acting as conduits for the states inside them to travel between

potential wells.

The computation of codimension-1 separatrix associated with the hyperbolic periodic or-

bit around a index-one saddle begins with the linearized equations of motion. This is obtained

after a coordinate transformation to the saddle equilibrium point and Taylor expansion of

the equations of motion. Keeping the first order terms in this expansion, we obtain the

eigenvalues and eigenvectors of the linearized system. The eigenvectors corresponding to the

center direction provide the starting guess for computing the hyperbolic periodic orbits for

small excess energy, ∆E << 1, above the saddle’s energy. This iterative procedure performs

small correction to the starting guess based on the terminal condition of the periodic orbit

until a desired tolerance is satisfied. This procedure is known as differential correction and

generates hyperbolic periodic orbits for small excess energy. Next, a numerical continuation

is implemented to follow the small energy (amplitude) periodic orbits out to high excess

energies.
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FIG. 9. Tube manifolds for the three index-one saddles at total energy E = 0.17. The green and

red trajectories denote the stable and unstable tube manifolds, respectively. We only show the

branches of the manifolds inside the potential well. The branches of the stable manifolds mediate

escape out of the well and branches of the unstable manifolds mediate entry into the well.
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